Self-supply relies upon households making their own investments in new and improved water supply facilities. Commonly, self-supply involves digging traditional hand-dug wells to access shallow groundwater and a wide range of associated lifting devices, but it may also involve rainwater harvesting, and household water treatment and storage to improve water quality. Self-supply acceleration involves public and development partner investment in a set of activities that are intended to help trigger these household investments.

In most of the country, self-supply by households is unregulated with little or no planning, technical oversight, monitoring or regulation. While many households in performance-based districts are expected to meet with poor water quantity or quality concerns currently, there is a lack of evidence that self-supply or any other form of water service delivery involves infrastructural and social and technical support. While most households have already invested in some form of water supply, this investment is unsupported with little or no planning, technical support or monitoring. Self-supply as a main source of drinking water is unsupported with little or no planning, technical support or monitoring. The facility survey included 280 household-level facility surveys that were completed. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.

What are family wells in Omo-Nada like?

Family wells were considered to be any wells that had been expected, used, and monitored and involved in the compartment bag test. The compartment bag test is a simple, easy and affordable technique to perform and to trigger self-supply investments and to design, monitoring of such NGO-supported programmes. This poster presents some results of the baseline survey in Omo Nada woreda, Oromia Region. Activities intended to introduce new technology, build up local private sector capacity and supply chains and improve access to finance among others. The remaining the success factors and barriers to self-supply acceleration are crucial to understanding government priorities for providing drinking water and sanitation services.

Self-supply's role is expected to be of higher volumes of supply. Self-supply is one of four rural water supply options that the Ministry of Water, Irrigation and Energy (MWA-EP) is supporting local (woreda) governments to further evolve. The facility survey was completed. The number of wells that were identified as unprotected. Improvements could be readily made to make using the wells and their water safer. Of all the well owning households, 17% use their wells for drinking. Of all the well owning households, 0% of the samples were very low health risk (E. coli zero levels). There are a hidden resource: household-led rural water supply. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.

How are family wells protected in Omo Nada?

The survey was implemented using random-based data collection tools and was conducted by WaterAid, National Water, Health and Agriculture offices, seeking to provide the best estimate of the total self-supply ownership. This poster presents some results of the baseline survey in Omo Nada woreda, Omo Region. Activities intended to introduce new technology, build up local private sector capacity and supply chains and improve access to finance among others. The remaining the success factors and barriers to self-supply acceleration are crucial to understanding government priorities for providing drinking water and sanitation services.

Level of family well protection in Omo Nada (n. 280)

Water quality is poor, consistent with low levels of sanitation practices i.e. cleaning, bathing and washing clothes. Nearly all (99%) make one water source. Just over half (51%) family wells have no rainwater harvesting systems. E. coli for 13% of the samples were very low health risk (E. coli zero levels). There are a hidden resource: household-led rural water supply. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.

How safe is the water from wells in Omo-Nada?

Water quality is poor, consistent with low levels of sanitation practices i.e. cleaning, bathing and washing clothes. Nearly all (99%) make one water source. Just over half (51%) family wells have no rainwater harvesting systems. E. coli for 13% of the samples were very low health risk (E. coli zero levels). There are a hidden resource: household-led rural water supply. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.

Water, Health, and Agriculture officials, seeking to improve the scale and performance of self-supply, are key to policy, innovation and Transformation Plan (2018-2028) — also proposes higher level water service standards including on-site access and higher rates of supply. Self-supply is not reported to further evolve. The facility survey was completed. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer. The number of wells that were identified as unprotected. Improvements could be readily made to make using the wells and their water safer. Of all the well owning households, 17% use their wells for drinking. Of all the well owning households, 0% of the samples were very low health risk (E. coli zero levels). There are a hidden resource: household-led rural water supply. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.

How are family wells developed in Omo Nada?

Forest offices tend to think about wells in Ethiopia parts of Ethiopia. The facility survey in Omo Nada woreda identified 280 household-level facility surveys that were completed. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer. Of all the well owning households, 17% use their wells for drinking. Of all the well owning households, 0% of the samples were very low health risk (E. coli zero levels). There are a hidden resource: household-led rural water supply. The number of wells that were identified were classified as unprotected. Improvements could be readily made to make using the wells and their water safer.