A hygiene intervention study in rural north-east Thailand
by John Pinfold, John Hubley and Duncan Mara

Hygiene education is reinforced by the provision of a simple plastic container with a tap for hand washing. The appropriate hygiene practices for this study were identified in the last issue of Waterlines.

Reducing risk
Bacteria can also multiply on food, particularly at high ambient temperatures. It was not thought that householders would readily change the practice of storing prepared food, however, as this would require field evaluators to be in the community and to observe for long periods of time. Indirect measurement, such as asking people to report on their practices, can provide inaccurate data. It is therefore helpful to have simple and objective indicators of practices in order to assess the means of delivering a hygiene intervention.

Devising an intervention
Studies from urban Bangladesh suggest that a hygiene intervention would be most likely to succeed if it consisted of relatively few messages whose prescribed behaviours already occurred in the community. If little or no extra effort is required to adopt an identified behaviour, and messages are kept simple, then the problems of acceptability are minimized.

Measurement of the extent to which hygiene practices have been adopted within a given community is also very difficult. Direct observation is usually only possible when these practices take place in the open, and this requires field evaluators to be in the community and to observe for long periods of time. Indirect measurement, such as asking people to report on their practices, can provide inaccurate data. It is therefore helpful to have simple and objective indicators of practices in order to assess the means of delivering a hygiene intervention.

As methodological problems are inherent when measuring the level of diarrhoea, we used E.coli contamination of water samples and fingertips to provide information on the potential risk of disease transmission. We used the results from the case study in neighbouring village Ban Sahart to help us identify the sort of hygiene practices that would be appropriate for an intervention study. Fingertips were more likely to be contaminated when sampled after activities associated with child care, food and water. Stored water was contaminated much more often than water sources and, in particular, water used for washing dishes and cooking-related activities was usually highly contaminated. Dirty utensils from cooking and eating were often left to soak, thereby providing the necessary ingredients for the growth of faecal bacteria.

Reducing risk
Bacteria can also multiply on food, particularly at high ambient temperatures. It was not thought that householders would readily change the practice of storing prepared food, however, as this would require field evaluators to be in the community and to observe for long periods of time. Indirect measurement, such as asking people to report on their practices, can provide inaccurate data. It is therefore helpful to have simple and objective indicators of practices in order to assess the means of delivering a hygiene intervention.

As methodological problems are inherent when measuring the level of diarrhoea, we used E.coli contamination of water samples and fingertips to provide information on the potential risk of disease transmission. We used the results from the case study in neighbouring village Ban Sahart to help us identify the sort of hygiene practices that would be appropriate for an intervention study. Fingertips were more likely to be contaminated when sampled after activities associated with child care, food and water. Stored water was contaminated much more often than water sources and, in particular, water used for washing dishes and cooking-related activities was usually highly contaminated. Dirty utensils from cooking and eating were often left to soak, thereby providing the necessary ingredients for the growth of faecal bacteria.

Handwashing was encouraged by providing a plastic container with a tap.

John Pinfold is seconded to a research programme in Khon Kaen, Thailand, by ODA, and Duncan Mara is a Lecturer at the Department of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK. John Hubley is a senior lecturer in Health Education at the Health Education Unit, Leeds Polytechnic, Leeds, UK. Nigel Horan, co-author of the previous article with John Pinfold, is a Lecturer at the Department of Civil Engineering, University of Leeds.
The use of a tap prevents stored water from becoming contaminated.

Water use

<table>
<thead>
<tr>
<th>Water use</th>
<th>Geometric mean of E.coli (150 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking-water</td>
<td></td>
</tr>
<tr>
<td>Drinking and cooking</td>
<td></td>
</tr>
<tr>
<td>Combined domestic</td>
<td></td>
</tr>
<tr>
<td>Wash dishes</td>
<td></td>
</tr>
<tr>
<td>Wash clothes</td>
<td></td>
</tr>
<tr>
<td>Bathing</td>
<td></td>
</tr>
<tr>
<td>Toilet</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Stored water contamination by water use in Ban Sahart and Ban Daengnoi.

The intervention study

Ban Daengnoi ('little red village') was chosen for the intervention study. The village comprised 422 households with a total population of 2110. Farming was the main source of income and the level of education was very uniform, with most completing only four years. About 95 per cent of householders had access to a pour-flush toilet. Water sources (shallow wells, tubewells, ponds, and rain) were similar to that found in Ban Sahart but this study took place during the rains, which greatly improved rainwater availability.

Sixty households containing children under six years were randomly selected by stratified sampling. Water samples and fingertip-rinse from each household were taken on separate occasions, twice before the intervention took place and twice after. After the first visit the households were divided into three groups of 20 so that each had similar levels of contamination. On the second visit, the maternal heads in the ‘Education only’ group were asked to follow the two hygiene messages, and feedback was obtained to make sure the advice was understood; this procedure was repeated on each subsequent visit. In

Compliance indicators

The development of simple and, as far as possible, objective methods to ascertain whether a behavioural change has occurred was important. To this end, the presence of soaking dishes in the households gave a quick and simple indication that dishes were not being washed immediately after use. An indication of handwashing practice provided a greater challenge. A microbiological method which involves taking a fingertip-rinse from people’s hands and testing for the same faecal bacteria commonly used in water quality analysis was being developed. The presence of E.coli, however, is largely influenced by activities conducted immediately before the fingertip test because it can only survive for a short period of time on the skin. Faecal streptococci, on the other hand, survives much longer on the skin and this provided a better indicator.

Figure 1. Stored water contamination by water use in Ban Sahart and Ban Daengnoi.
addition to being provided with advice, householders in the 'Education and tap' group were also loaned a translucent plastic container with a tap, and this was used to demonstrate the hygiene messages. No such messages were given to the third group, which acted as the 'Control'.

Water quality

As with Ban Sahart, most of the contamination occurred after water collection and the contamination of stored water was primarily a function of water use. Figure 1 compares E. coli contamination of stored water by water use for Ban Sahart and Ban Daengnoi prior to intervention. With the exception of the category 'Combined domestic' the similarities between the two villages are remarkable. Moreover, the case study showed that the households with the least contamination were, coincidentally, the main ones in the 'Combined domestic' category.

There were similar levels of the two indicators of compliance and contamination of stored water for each group before the intervention took place (Figures 2 and 3). After the intervention the number of households leaving dishes to soak declined in all groups. A gradual improvement to the control was expected and may be attributed to the dissemination of the message through friends, neighbours and relatives, but there was a stronger impact of the hygiene messages on the intervention groups. The 'Education and tap' group was significantly better at adopting these messages and their stored water was significantly less contaminated than the control, whereas the 'Education only' group was only slightly better than the control.

The study was not large enough to test different means of communication, but the provision of a plastic container with tap did appear to reinforce the hygiene messages. Such was its impact on stored water and fingertip contamination in the 'Education and tap' group, that it is reasonable to suppose that the container itself improved the hygiene practices. The use of a tap in this study was designed to make it easier to practice good hygiene without affecting water quantity. Water samples drawn from these taps were the least contaminated of all stored water because the plastic containers were well protected from water handling.

Indicators

The faecal contamination of stored water and fingertip-rinses have been used to identify hygienic be-
Data from our small study shows the limitations of relying simply on exhortations to change behaviour. The provision of a simple plastic container with a tap not only reinforced the hygiene messages, but also made it easier to practice good hygiene. We now hope to use these findings to instigate a larger study and evaluate the different means of communicating hygiene messages by using the fingertip test.

References

Figure 3. The impact of the intervention on E.coli in stored water.

Figure 4. Seasonality of reported diarrhoea and climatic conditions.