101 Technologies From the South for the South

IDRC/

CANADA

BIBLIOTHÈQUE DU CRDI

OTTAWA

FEB 18 1993

/New technology/, /innovations/, /diffusion of innovations/, /developing countries/ — /agricultural innovations/, /agroforestry/, /fishery engineering/, /energy technology/, /environmental technology/, /industrial engineering/, /health services/, /educational technology/, /information technology/, /social participation/, /costs/, /research workers/, /manuals/, references.

UDC: 600.001.6 ISBN: 0-88936-656-X

A microfiche edition is available.

Il existe également une édition française de cette publication.
Contents

<table>
<thead>
<tr>
<th>Technology number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>4</td>
</tr>
<tr>
<td>Agriculture</td>
<td>1 - 20</td>
</tr>
<tr>
<td>Forestry</td>
<td>21 - 27</td>
</tr>
<tr>
<td>Fishery</td>
<td>28 - 37</td>
</tr>
<tr>
<td>Energy</td>
<td>38 - 41</td>
</tr>
<tr>
<td>Environment</td>
<td>42 - 46</td>
</tr>
<tr>
<td>Engineering</td>
<td>47 - 59</td>
</tr>
<tr>
<td>Health</td>
<td>60 - 78</td>
</tr>
<tr>
<td>Education</td>
<td>79 - 89</td>
</tr>
<tr>
<td>Communication and Information</td>
<td>90 - 101</td>
</tr>
<tr>
<td>Index</td>
<td>219</td>
</tr>
</tbody>
</table>
You are looking at proof that technological innovations originate in developing countries. This book describes over one hundred innovations, new methodologies and original conclusions, produced by many of the South’s most brilliant minds.

When a problem occurs in a developing region, the local population and even governments tend, all too often, to turn to Northern “experts”. This habit is encouraged by international aid agencies, which are often unaware of Southern achievements and skills. The resulting inappropriate, ephemeral solutions are depressingly familiar.

I hope that this book, with its many examples of tangible, practical results in the fields of agriculture, environment, education, information, health and communications, will contribute to raising the profile of the successes achieved by scientists in developing countries. Although we produced the book for all development officials, it is intended specifically for non-governmental organizations in the North as well as in the South. Sometimes these organizations have few opportunities to learn about the achievements of Southern scientists who can be reached by telephone, fax or a short trip.

I am extremely proud of this book. It shows the extent to which our cooperation has been productive, and presents just a fraction of the work done by the IDRC’s scientific partners.

At a time when IDRC is mobilizing all its energies to implement the objectives of the Agenda 21 adopted at the Earth Summit, the tangible results contained in these pages augur well for future successes.

Keith A. Bezanson
President
Agriculture
The Jab-Seeder
A Tool for Manual Seeding

In the Northeast part of Thailand, poor soybean farmers who cannot afford power-driven farm tools spend long, tiring hours seeding their farms by hand. It is done in three steps: making the holes, dropping the seeds in, and covering them up. The task is laborious, time-consuming, unpleasant, and tiring.

The Asian Institute of Technology in Bangkok has developed a new tool called the jab-seeder, which is a low-cost, simple, easy-to-operate alternative for manual seeding of farms. It increases productivity, reduces planting costs, and reduces the drudgery of the task.

The main advantages of the jab-seeder are that hole-making and seed-dropping are done simultaneously, and there is no bending or squatting. It significantly cuts down on the labour requirements (and therefore the costs) of the planting process. A farmer using the seeder punches it into the ground to make a hole and the seed is dropped into the hole as the seeder is lifted.

The jab-seeder has the following features:

- It is useful in various types of soil, including untilled (wet) soil, conventionally tilled soil (with or without residues from previous crops), sandy loam, loamy soil, or clay loam soil.
- It weighs 2 kilograms and is 1.5 metres long.
- It can adjust the amount of seed to be planted per hectare.
- It can seed soybean, mungbean, rice, maize, peanuts, and cotton.
- Its design can be adapted according to locally available materials.
- It has four different types of soil-openers (hole-makers) for various soil conditions.

The jab-seeder has been disseminated in Thailand through promotion on TV and through posters and pamphlets; training sessions with farmers and extension workers; and work with manufacturers and sales networks. There is interest in other Asian countries in disseminating the jab-seeder to small farmers.
Potential users
Small soybean, peanut, rice, maize, and cotton farmers who can't afford power-driven farm equipment.

Cost and availability
The jab-seeder costs approximately US $10.00. It is currently made by three Thai manufacturers:

- Ar-ree Ar-thorn, 253/1-3 Talad Chong-kae, Amphur Takli, Nakorn-sawan, Thailand.
- Kunasin, 107-108 Srisatchanalai Rd, Amphur Sawankalok, Sukhothai, Thailand. Tel.: (055)642119
- Anusarn Co. Ltd, 94-120 Chareonmuang Rd, Chiangmai, Thailand.

Contact
Manual Seeder Project
Division of Agricultural and Food Engineering
Asian Institute of Technology
GPO Box 2754, Bangkok 10501, Thailand
Telex: 84276 TH; Cable: AIT BANGKOK

Resources and publications
The Asian Institute of Technology has published two manuals in Thai and English:

- Operator's Manual — AIT Jab-Seeder
- Manufacturer's Manual — AIT Jab-Seeder

Engineering drawings and technical assistance in the manufacture of the seeder can be obtained from AIT.

Promoting the Use of Soybeans

The reduction in Nigeria's oil revenues has resulted in a decrease in imports, including imported high-protein foods. Local production of high-protein foods has also been low, resulting in widespread malnutrition, especially among women and children.

The International Institute of Tropical Agriculture set out in 1986 to promote the growing and eating of soybeans, a high-protein food, to improve the nutrition of rural and urban people. Soybeans need no fertilizer, grow well on poor soil, store well, and can be intercropped with other species. Made up of 40% protein, a higher proportion than cowpeas, powdered milk, or groundnuts, they are less expensive and more nutritious than many traditional foods. While soybeans have the same protein content as dried fish, they are considerably less expensive. The sale of soybean products also provides new income possibilities for women.

The project developed a package of technologies for households and small-scale rural enterprises, including:
Identification of appropriate processing equipment, such as an improved oil expeller and an extrusion cooker for developing commercial soybean products that are acceptable to consumers, easy to prepare and store, and economical to produce;

Recipes for soybean-based foods suitable for local consumption and sale; and

A program for introducing soybeans to communities.

Among the new foods that have been developed are soy vegetable soup and soy milk. Soy flour is also added to customary cowpea, yam and cassava flours in traditional foods such as gari, akara, and ogi. These foods made with soybeans taste similar to the traditional foods but have 10 to 20 times the protein content. They have gained wide acceptance both in rural and urban areas.

New recipes and processing techniques seek to reduce the workload and simplify the production of soybean-based foods. For example, a method was developed for making soy milk from flour at home in 15 minutes, instead of the overnight soaking and grinding required in the traditional method. New, faster methods for manual dehulling of beans at home have also been developed.

A number of booklets on soybeans have been published in English, Hausa, Ibo and Yoruba, using simple language and clear illustrations. These include a step-by-step guide to planting, harvesting, storing and processing, and a booklet of recipes (see below).

The program has resulted in a sharp increase in the growing and use of soybeans in Nigeria. In areas where the project activities took place, the percentage of people eating soybeans rose from 0 to 54% since the project started, and 35% of the farmers now grow it. The number of retail outlets selling soy products has also dramatically increased, both in rural and urban areas. Small enterprises now produce soy milk, soy oil, and soybean-based baby foods and animal feeds. Several hospitals and clinics teach mothers how soybean foods can help improve and maintain their children’s health. Many women now use

- Products being promoted in Nigeria’s drive to increase soybean consumption.
soy weaning foods instead of buying commercial baby foods.

Potential users
Farmers, nongovernmental organizations (NGOs), government, women's groups, co-ops, agriculturalists, small producers, particularly in areas where the diet is protein deficient.

Contact
Dr Kenton Dashiell, Project Leader
Mrs Sidi Osho, Project Coordinator
Grain Legume Improvement Program
International Institute of Tropical Agriculture
Oyo Road, PMB 5320, Ibadan, Nigeria
Tel.: 400300 - 400314; Cable: TROPFLOUND IKEJA
Telex: TDS IBA NG 20311 (Box 015) or TROPIB NG 31417

Resources and publications
- *Soybeans for Good Health: How to Grow and Use Soybeans in Nigeria*, 22-page booklet, International Institute of Tropical Agriculture.
- *Soybean as Food in Nigeria*, S.M. Osho, 50-page booklet, IITA.
- *Soybean Recipes*, S.M. Osho, 26-page booklet, IITA.

The Improvement of Chickpea and Lentil Production

In Jordan, lentils and chickpeas are an important part of the diet. However, production of these legumes declined dramatically in the 1980s. Originally an exporter of lentils and chickpeas, Jordan now imports 40% of local requirements for lentil and 50% of local requirements for chickpea. Farmers stopped producing lentils and chickpeas because of low yields and rising labour costs. Most lentil farmers use manual labour almost exclusively and get caught in a labour crunch at harvest. They are switching to other crops, mostly cereals, to increase profits. Cereal growing is more mechanized.

To increase the production of lentils and chickpeas, to increase farmers' incomes, and to reduce Jordan's protein food deficit, researchers developed improved strains as well as a package of improved technologies and agricultural practices.

The "full package" includes the following:
- Improved agricultural practices including the use of the chisel plow and sweep to prepare the seedbeds, the grain drill for seeding and fertilizing, and the roller;
- Improved varieties of lentils (called Jordan 1, 2 and 3) and chickpeas (called Jubeiha 1, 2 and 3);
- Optimum seeding rates for lentils (120 kg/ha for high
Improved agricultural practices allow chickpea farmers in Jordan to increase yields and profits.

rainfall areas and 80 kg/ha for low rainfall areas) and chickpeas (100 kg/ha);
- Optimum rates for fertilizer application (20 kg of nitrogen and 40 kg of phosphate per hectare);
- Early sowing for winter varieties, which significantly increases yields;
- Optimum methods for weed control;
- Recommendations on equipment adapted to the terrain, for use in mechanical harvesting, including a tractor back-mounted cutter bar (single or double knife), a self-propelled cutter bar, a plant puller, a grain combine and a whole harvester.

The most promising technique for chickpea so far is a modified conventional grain combine used at a slower speed. For lentils, pulling and swathing techniques are still being investigated to reduce straw loss, which is valuable for animal feed.

Techniques and machinery are adapted to local conditions and socioeconomic factors. The Jordan Cooperative Organization (JCO) rents the required equipment to farmers who request it. They also conduct demonstration trials on seeding and harvesting.

The technology has been demonstrated as a full package to farmers who possess landholdings large enough to introduce mechanization (five hectares or more), and as a minimum input (improved varieties and fertilizers) to smaller, poorer farmers. Seeds of the improved varieties are propagated by the Ministry of Agriculture and distributed to participating farmers. Use of the improved package has doubled the yields of some farmers.

Extension bulletins in Arabic, detailing the recommended practices, have been produced for farmers and extension workers. A 45-minute video in Arabic on mechanical lentil and chickpea production has also been prepared and shown at workshops and field days.

A similar program has been developed in Tunisia at the Institut national de la recherche agronomique de Tunisie, involving improved strains of lentils and chickpeas, seed.
production, and recommended agricultural practices. A publication in Arabic will be produced.

Potential users

Lentil and chickpea producers on rainfed farms. The package can be used by farmers with access to machinery, as well as very small farmers or farmers working on stony or hilly soils.

Contact

Mr Bassam Snobar
University of Jordan
Faculty of Agriculture
Amman, Jordan, T1X 21629
Tel.: 962-6-843555 ext. 2523
Fax: 962-6-823218; Telex: 21629 UNV JO

In Tunisia:

Mr Habib Halila
Institut national de la recherche agronomique de Tunisie
Avenue de l'Indépendance, Ariana, Tunisie
Tel.: 231 985 or 231 693; Fax: 216 1 711 741

Resources and publications

• Pamphlets in Arabic describing all recommended management practices (University of Jordan).

• 45-minute video in Arabic describing recommendations (University of Jordan).

• Annual reports on the project are available in English.

Beekeeping in Rural Areas

"Honey hunting," or gathering wild honey in the tropical rainforest, has been a longstanding cultural tradition in Malaysia, from which beekeeping has slowly evolved. Honey and wax are widely used in medicine, as health food, and for traditional crafts such as batik. Malaysia only produces 3% of its local requirements in honey. The rest is imported from Australia, China, and the US. However, local honey at higher cost is preferred to the cheaper, imported honey. Honey hunting is therefore a lucrative business, with expeditions into the jungle bringing in between $300 and $600 a day.

Researchers in Malaysia have now developed technologies and methods to promote beekeeping as a cottage industry with many socioeconomic benefits for rural small farmers and landless peasants. Currently, some 1000 Malaysians maintain about 5000 bee colonies. Most of these beekeepers are small farmers with less than 2 hectares or no land at all.

The technologies that the research team developed include:

• Methods of hive management using movable frames
mounted in wooden boxes to control the production of honey, wax, and pollen;

- Methods to control pests and disease;
- Methods for the treatment and storage of honey;
- Methods for breeding and rearing queen bees;
- A technique for the mass rearing of carpenter bees for crop pollination;
- An inventory of indigenous plants on which bees feed (in English and Bahasa Malaysia).

The main system that has been developed is the rearing of bees under coconut trees (called "coconut complex agroecosystem"). However, bees can be kept under coffee, pineapple, star fruit, rubber trees, and in orchards. The pollination activities of the bees increase yields of orchards and other crops.

Beekeeping has been shown to increase a farmer's income by up to 50% under favourable conditions; it requires little capital outlay, no land, and is not labour intensive. It is particularly suited as an income-generating activity for women, young people, and the landless. During the study, it was found that revenue from honey sales reached US $2160 per year; operating costs (labour, feed supplements, pest control, and bottles) cost $837. Net income was therefore $1322.

A major dissemination project has been funded by the Communications Division of IDRC with the following components:

- Publication of a manual on basic beekeeping, for semi-literate readers, in Bahasa Malaysia. The manual includes modules on hive design, catching wild
colonies, hive management, honey collection, pest control, and the economics of beekeeping;

- Two training programs: basic beekeeping (this course is mainly targeted at women from coconut beekeeping areas), and a queen bee rearing course for more advanced beekeepers;
- Field days, seminars, etc.

As a result of the success of this project, an Asia-wide network is being considered to promote and extend beekeeping to other countries.

Prerequisites

Cost of 36 hives and beekeeping equipment (hat and veils, bee blower, gloves, cleaning tool, and bee brush) is approximately US $2488. Pay-back period has been estimated at 2 years. The system works best under coconut trees. The bees themselves can be purchased or colonies caught in the wild (the beekeeping course provides instruction on catching wild colonies).

Potential users

NGOs, co-ops, small farmers, women's groups, and youth groups, particularly in coconut-growing regions of Indonesia, Malaysia, the Philippines, Sri Lanka, and Vietnam.

Contact

Dr Makhdzir Mardan
Malaysian Beekeeping Research and Development Team
Universiti Pertanian Malaysia
Faculty of Agriculture
43400 Serdang, Selangor, Malaysia
Tel.: 9486101; Telex: MA 37454

5

Forage System for Semi-Arid Areas

In Bali, Indonesia, it is common for farmers to mix crop and animal systems. In the dry regions cattle are very important, bringing in up to 43% of the total farm income. Native grasses, tree leaves, and cereal straws are used as feed, but the supply is often inadequate.

To increase the availability of animal feed in dry areas, researchers have been working on a new forage production system based on three strata: grasses and native legumes, shrubs, and fodder trees. The system has the potential to reduce erosion and promote a sustainable system for crop and animal production.

The system, as developed by the researchers, uses 0.09 hectares of land on the perimeter of a 0.25-hectare crop field. This land is used to grow grass and legumes (stratum 1), shrubs (stratum 2), and fodder trees (stratum 3). Cattle are kept in stalls and fed exclusively with forage from the plot, unlike traditional systems where the
cattle are tethered on grass during the day. Modified versions of the system are operating in India and Southeast Asia. Farmers adapt the system by choosing appropriate forage species and deciding on the amount of land to be allocated to fodder production.

The researchers found that the three-strata system has the potential to:

• Produce more forage than other systems;
• Increase the number of animals that can be sustained on a given farm;
• Increase farmers’ incomes from animal production;
• Reduce soil erosion and increase soil fertility;
• Provide up to 64% of a household’s needs in firewood.

Other potential benefits associated with the system are increased poultry and snail production, the possibility of honey production, and protection of the local ecosystem.

Specific grass and tree species were found to be particularly suited to the semi-arid regions of Indonesia, including *Stylosanthes, Acacia, Gliricidia*, and *Leucaena* (trees and shrubs) and *Cenchrus, Panicum, Centrosema, Verano*, and *Urochioa* (grasses and legumes). Through the introduction of goats and more complete utilization of the available feeds, the researchers are seeking to improve the economic benefits of the system further in relation to traditional systems.

Prerequisites
Access to seed or seedlings of appropriate species.

Potential users
Small farmers, NGOs, extension services in semi-arid areas where mixed crop-animal systems are used.
Women and Integrated Pest Management

The widespread use of pesticides in agriculture has resulted in new problems including poisonings, insect resistance to the chemicals, and the loss of the pests' natural enemies. In the Philippines, it is usually the women who decide on and buy agrochemicals for the farm.

Filipina researchers have been introducing to rural women a new system of integrated pest management (IPM), an environmentally and economically sound way to control agricultural pests.

IPM controls pests using a combination of techniques: the natural enemies of a pest; special cropping practices (such as proper timing and rate of fertilizer application, and synchronized planting, rodent control, and harvesting at the community level); pest-resistant varieties; and minimal use of chemical pesticides based on regular monitoring of the fields to diagnose pest damage.

In the Philippines, IPM was first developed for rice and vegetable plots. Like most technologies, IPM must be fine-tuned and adapted to specific agricultural, ecological, and economic conditions, as well as to the felt needs of the farmers. It has the potential to lower the risks to human health and the environment significantly while providing higher yields and profits.
Because IPM is a people-oriented and knowledge-based technology, a communication strategy is essential to its success. Various methods are used to bring the IPM message to rural communities and specifically to women: radio programs, audio cassettes, and local "resource centers" with exhibits and educational materials, including videos recording local people's experiences with IPM, comic books, leaflets, and posters. Intensive on-farm, hands-on training is needed to acquire the necessary decision-making skills that will make IPM effective. Education on the health hazards of pesticides is also an important component to convince people of the importance of IPM after they have been repeatedly told that pesticides are essential to their farming practice.

Although educating the women in IPM increases its chances of success, it also provides them with the opportunity to increase their participation in decision-making and their self-esteem. A participatory approach with built-in feedback mechanisms is essential.

When many farmers complained that monitoring the fields took too much time and was difficult for them because of poor eyesight, training in field monitoring was given to young "IPM scouts" who could then be hired by farmers and earn an income.

Prerequisites

IPM must be developed and tested for different locations and crops according to local conditions. Information must be available on local pests, their natural enemies, pest-resistant crop varieties, as well as social, economic, and ecological factors.

Potential users

Farmers everywhere. In Asia, four countries have encouraged IPM as official policy on crop protection: India, Indonesia, Malaysia and the Philippines.

Contact

Dr Candida B. Adalla
Department of Entomology
University of the Philippines at Los Baños
Laguna 4031, The Philippines
Tel.: KO 225-3527/2594; Fax: 632-817-0598

Resources and publications

The Philippines program has produced a number of materials, mostly in Tagalog (the local language) and some in English. These include comic books, pamphlets, leaflets, and other publications on various aspects of bio-intensive gardening and agriculture. It also developed a slide-tape show on the project which is available for the cost of reproduction (US $95.50). Mailing costs for the slide show or the set of print materials is US $25.50 airmail or US $1.20 surface mail.
MULBUD
A Computerized Calculator for Multi-Crop Farm Budgets

Farmers who integrate tree crops into their farms are making a long-term investment that commits them to a course of action for decades rather than one or two seasons. Because of this, it is important for them to be able to do an economic assessment before designing their tree cropping systems.

To facilitate this, a computer package has been developed for the economic analysis of multi-period and multi-crop farm budgets. Called MULBUD (for MULti-crop and MULti-period farm BUDgets), it is an interactive, user-driven simulation tool designed for users with little or no experience with computers and minimal training in economics. It is user friendly and "fail-safe."

The program is used to build farm budgets from data entered by the user. As a simulation tool, its aim is to provide alternatives, rather than fixed solutions. It helps to do rapid calculations of expected future earnings versus current costs, and to decide if the proposed crop combination is advantageous.

The software has the following features:

- 60 possible time periods;
- Years and "seasons";
- A built-in editor;
- Multiple enterprise budgets;
- Multiple products per enterprise;
- Sensitivity analysis;
- Loans/credit scheduling;
- 15 different displays;

MULBUD allows farmers to better assess their situation and make the best use of harvest and market schedules.
• Final report tables and graphics;
• Extensive HELP functions;
• A detailed user’s manual.

The first system was developed in 1983 for use in Southeast Asia and the Pacific. In 1984, MULBUD version 3 was developed and disseminated in Africa as part of an extension tool kit distributed by the International Council for Research in Agroforestry (ICRAF). A version for use with DOS was subsequently developed, and MULBUD version 5 was released in April 1990.

A detailed user's manual in English accompanies the software, and ICRAF has produced a training manual.

Prerequisites

Version 3 can be used on a 808 chip or Z80 computer with 53K RAM and CP/M 1.4 or higher operating system. The version for PC microcomputers requires an XT with 192K RAM and DOS 2.0 or higher operating system.

Potential users

Agricultural researchers, planners, consultants, and extensionists working with smallholder farmers in the tropics; agricultural economists, foresters, agroforesters, government, universities, credit agencies, large-scale farmers involved in orchards, vineyards or agroforestry. Some examples of the way MULBUD has already been used include: teaching in forestry and agroforestry courses; an economic analysis of options for intercropping under coconuts; development of credit and subsidy policies for banana farmers; analysis of alley cropping of maize and beans between rows of Leucaena; analysis of intercropping coffee with food crops; silvo-pastoral alternatives in areas suffering overgrazing. The system is in use in about 50 countries.

Cost and availability

The copyright is held by D.M. Etherington and P.J. Matthews in Australia. The package is available from:

• Anutech Pty Ltd, PO Box 4, Canberra, ACT 2601, Australia. Cost of the package is US $295.

Contact

International Council for Research in Agroforestry
PO Box 30677, Nairobi, Kenya
Tel.: 29867; Telex: 22048 ICRAF; Cable: ICRAF
Fax: 521001; E-mail: 157:CGI236

Dan Etherington
Economics Department
Research School of Pacific Studies
The Australian National University
PO Box 4, Canberra, ACT 2601, Australia
Tel.: 616-06-249-3387; 249-2188; Fax: 616-06- 2571893
Telex: AA 62694 SOPAC

18
The easy to use rubber-tire groundnut sheller benefits farmers by reducing shelling time and processing costs.

Groundnuts, or peanuts, are one of the major cash crops in some regions of Thailand and are an important source of protein for rural people. Thousands of Thai farmers work farms of less than 1 hectare, producing groundnuts by manual methods. This is a labour-intensive process which, along with the low productivity of the land and the low quality of the nuts, results in a low income for farmers.

Traditional groundnut cultivation requires substantial time for land and seed preparation, planting, cultivating, and harvesting, as well as drying, dehusking, and cleaning the nuts for selling.

The manual peanut sheller benefits farmers by reducing time and processing costs for both commercial shelling and shelling for seed. Shelling the nuts by hand produces 7–10 kg of shelled nuts per day, whereas the sheller has a capacity of 30–60 kg per hour. It can potentially increase farmers’ incomes as shelled nuts bring in twice as much as unshelled nuts. The initial investment can be recovered quickly, often within the first year of commercial shelling.

The peanut sheller is made of a used rubber tire mounted in a metal housing with a concave wire screen bottom. As the wheel is cranked, the nuts enter the space between the tire and the screen, are dehusked, and drop through the screen into a trough. Winnowing can be done by hand or with a fan. The sheller is 95% efficient and only 3–5% of the nuts are broken. It requires very little maintenance (average cost per year for maintenance is $3 to $5), and
Spare parts are easily available. During trials, a single machine processed 22 tonnes of nuts in one season without any repairs.

An "economic version" of the sheller has also been designed. It has a simpler and smaller frame and no trough (the nuts fall through the screen directly to the ground below). Its capacity is 25–30 kg per hour, and it has the same efficiency as the larger version.

As well, a motorized rubber-tire sheller with an integrated winnowing fan has been designed for use by large-scale farmers, co-ops, and local traders.

Mechanized equipment developed and designed in Thailand to modernize peanut farming is now being introduced in Africa, Indonesia, and the Philippines.

A dissemination plan for farmers, extension workers, and traders has also been undertaken in the groundnut-producing regions of Thailand. A booklet entitled Construction Handbook for Groundnut Machinery has been published in Thai and English. It includes instructions on building the manual sheller as well as other groundnut equipment such as a stripper/winnower, a motorized peanut sheller, a grinder, and two types of planters.

Potential users

Small-scale groundnut farmers and traders.

Cost and availability

The sheller costs approximately Can $150 for the manual version and $600 to $700 for the motorized version. Some 150 shellers are in use in Thailand and elsewhere. The sheller is available from the following manufacturer:

- Kunasin Manufacturing, 107-108 Sri-Satchanalai Road, Sawankalok, Sukhothai, Thailand, Tel.: (055) 642119

Contact

Dr Winit Chinsuwan
Vice-President, Research Affairs
Khon Kaen University
Khon Kaen 40002, Thailand
Tel.: (66-043) 237604; Telex: 55303 UNIKHON TH

Resources and publications

- Machinery for Groundnut, leaflet in Thai and English.
- A 20-minute promotional video has been produced by the project, and covers the range of groundnut equipment developed at Khon Kaen University. In English or Thai, PAL standard.

For all of the above, contact Dr Chinsuwan at Khon Kaen University.
Hand-Operated Wooden Groundnut Shellers

Groundnuts are one of the most important crops in Malawi. They currently are the fourth largest export crop and provide smallholder farmers with more than a quarter of their annual agricultural cash income, while supplying about half of domestic oil needs. Both confectionery and peanut oil varieties are produced in the country.

Groundnut shelling in Malawi's smallholder sector is predominantly done by hand. While hand shelling keeps the rate of kernel breakage low, it is labour-intensive and leads to "sore thumb syndrome" when large quantities of groundnuts are handled. The low productivity (1–3 kg/hour) of hand shelling puts enormous pressure on farmers, as they need to shell their groundnuts before the marketing season (June–September) ends. At the same time they are processing and marketing other crops. It was therefore important to search for a simple, efficient, low-cost machine to replace hand shelling.

The Farm Machinery Unit of Malawi, in conjunction with the Tropical Development and Research Institute developed the first model of a hand-operated wooden groundnut sheller. IDRC funded further testing and modification of the sheller, and initial trials were run for a confectionery groundnut variety. Market standards (90% average whole kernel efficiency, WKE, or 10% visible kernel damage) were met.

The sheller was later adapted to work with two other common peanut varieties — one confectionery and one oil. On-site development and testing established optimal factors such as the size of the grid gaps. Depending on the variety, the sheller attained WKEs of 92–96% with shelling rates of 21–42 kg/hour. A larger model of the sheller (twice as wide) more than doubled the shelling rate of the smaller sheller, while achieving similar WKE.
Before shelling is done the groundnuts are pre-graded by size using grading sieves. The sheller is operated by two people, one at each end pushing the sheller back and forth. Groundnuts are placed in a hopper, fall through an opening called the throat, and settle into the gaps in the removable grid, which is placed in a slot in the base. The hopper is pushed against the resistance provided by the nuts, thereby shelling them. The broken shells and kernels fall through the grid gaps into a container placed under the base.

Although the sheller has been designed and adapted for three local varieties, it is possible to use it with other varieties of similar size or to adapt it to new varieties.

The Farm Machinery Unit has demonstrated the sheller at Science and Technology Fairs and agricultural shows for smallholder farmers, and provides information on the construction and use of the sheller. Rural carpenters have been trained in its construction. A construction manual was produced for use primarily by rural-based carpenters. The manual is available in English and Chichewa, Malawi's official language. The manual also describes how the grids are constructed. Distribution is done through agricultural and small-scale industry extension personnel. Extension staff have been trained in proper operation of the sheller with each variety of groundnut.

Potential users

Smallholder farmers of Malaw and other East African countries will benefit from the savings in time and labour obtained with the sheller. Rural craftsmen can manufacture and sell the sheller. The manual's instructions and drawings are meant to enable rural carpenters to build the sheller with a minimum of tools.

Cost and availability

The estimated cost of the original sheller is K52.84 (US $19.90) while that for the larger model is K61.31 (US $23.08). A well-made sheller will last 5 years. Budget analysis indicates that the sheller is worthwhile even for a smallholder farmer.

Contact

Darwin D. Singa and Wells Kumwenda
Farm Machinery Research Officers
Farm Machinery Unit
Chitedze Agricultural Research Station
PO Box 158, Lilongwe, Malawi
Tel.: (265)767 222/5; Telex: 44648 MINAGRI MI

Resources and Publications

The Grain Mini-Dehuller

In Senegal, the Société industrielle sahélienne de mécaniques, de matériels agricoles et de représentations (SISMAR) in collaboration with the Institut sénégalais de recherches agricoles (ISRA) has modified and tested several grain dehullers under rigorous laboratory and village conditions. This has led to improvements in one model of the dehuller, making it more durable, simple, inexpensive, and easy to maintain. The mini-CIS dehuller is now being manufactured and commercialized by SISMAR.

The mini-CIS dehuller was originally designed by the Prairie Research Laboratory of Canada’s National Research Council, and modified and adapted in several countries of Africa as well as in India. These dehullers are all based on a metal shaft on which a number of grinding stones, or abrasive disks, are spaced about two centimetres apart. The discs, spinning at 1500 to 2000 revolutions per minute, rub against the freely moving grain and abrade away the outer husks. A winnower separates the grain from the bran by tossing the dehulled grain into the air while a fan blows the bran away.

Sturdy and simple, the mini-dehuller offers many advantages:

• It frees up women’s time, improving their quality of life and providing time for income-generating activities such as gardening, if desired;

• It can process several different types of grain, including traditional grains such as sorghum, maize, and millet, and legumes such as cowpeas;

• Unlike traditional pounding, no water is used, which means the grain can be stored for longer periods;

Exploded view of PRL dehuller. A, bran to cyclone; B, fan; C, grain hopper; D, air inlet; E, feed gate; F, resinoid disk; G, adjustable gate; and H, overflow outlet for dehulled grain.
• It can mill as little as 2–5 kg of grain at a time, about what thousands of African village women manually pound each day, or as much as 10 kg.

Once dehusked, the grain can be put through hammer mills to produce flour that can compete with the increasingly available imported wheat flour. Removal of the husks makes cooking easier and improves the texture and the taste by removing the bitter elements found in the outer hull of these grains.

The mini-CIS dehuller is now being manufactured for use in villages, with training programs on installation, operation, maintenance, and repair for operators and village committees.

Various models of the dehuller are manufactured in Botswana (which exports dehullers to about 10 other African countries), Canada, the Gambia, Senegal, and Zimbabwe. The dehullers are being disseminated in Burkina Faso, Cape Verde, Egypt, Ethiopia, Ghana, India, Kenya, Malawi, Mali, Niger, Nigeria, Somalia, Sudan, and Uganda.

Prerequisites

An evident demand for the mill; training for ongoing maintenance and repair of the dehuller; availability of parts.

Potential users

Village organizations, women's groups, and others that have traditionally handled sales of local cereals in the villages; commercial millers in urban centres; and cooperatives.

Cost and availability

- **SISMAR, BP 3214, Dakar, Senegal,**
 Tel.: 21.24.30/22.24.85; Fax: 51.10.59;
 Telex: 77121 SISMAR SG

 Produces the CIS II mini-dehuller for approx. Can $3800 including a diesel motor and $2600 including an electric motor.

- **Rural Industries Innovation Centre, Private Bag 11,**
 Kanye, Botswana, Tel.: 340392/3, 340448/9;
 Fax: 340642

 Produces the full-size sorghum dehuller for US $2500 (not including diesel or electric power source). Requires a 5.5 kW 3-phase electric motor or a 10 HP engine.

- **International Workshop, Latrikunda Sabije,**
 The Gambia, Tel.: 93649 or contact them c/o Catholic Relief Services, PO Box 568, Banjul, The Gambia, Tel.: 27120/27121; Telex: 7680202 CRS UC; E-mail 141: TCN 1423

 Produces the 1 Mark III mini-dehuller (capacity 6 kg of grain) with pulley for electric drive for US $970; the 1 Mark III dehuller with a clutch and pulley for a diesel engine for US $1190. The first model requires a 3 HP electric motor of 3000 turns per minute; the second runs on a diesel engine of at least 6 HP. Both models need a simple
but rigid stand. Drawings can be supplied for suitable stands. The Catholic Relief Services can provide information on their experiences with the dehullers over the last 8 years.

- Nutana Machine Ltd, 2615 First Avenue North, Saskatoon, SK, S7K 6E9, Canada, Tel.: (306) 242-3822; Fax: (306) 242-2671

This Canadian company produces the Minihull Dehuller (based on the original National Research Council design) and the Nuhull Dehuller.

The Minihull Dehuller requires a 3 HP electric motor or 5 HP gas engine. It costs Can $2300, including crating; a gas engine drive package costs $1075, and an electric motor drive package costs $725. Quantity pricing is available; contact Nutana for estimated shipping costs.

The Nuhull Dehuller can process 5–15 kg of grain in the batch mode, and 200–500 kg per hour in the continuous flow mode (rate varies according to grain variety, operator experience, and local operating conditions). It requires a 10 HP electric motor or 24 HP gas or diesel engine. The dehuller costs Can $4900; an electric motor drive package costs $1309; crating for international shipment costs $195.

- Environment Development Activities (ENDA), PO Box 3492, Harare, Zimbabwe, Tel.: 708568/9; Fax: 729204

ENDA distributes two mini-dehullers: an 18-kg barrel capacity dehuller with aspiration and a 10-kg barrel capacity batch processor. Both require an electric motor or diesel engine and can process sorghum, millet, and rapoko. The 18-kg model processes 5 tonnes per day and costs US $6000. The 10-kg dehuller processes 900 kg per day.

Contact

Mr Hyacinthe Modou Mbengue
ISRA-CNRA, BP 53, Bamby, Senegal
Tel.: (221) 23-60-50; Telex: 61117 SG.

Resources and publications

- An End to Pounding, 15-min. film on mechanical dehulling, IDRC, 1980.

Dehulling Businesses Run by Women

In Andhra Pradesh, India, processing sorghum and millet using the mini-dehuller has enabled the establishment of small-scale food production businesses run by women. The businesses are an important income generator for women's groups associated with the Bharatiya
Grameen Mahila Sangh (National Association for Rural Women) program. These enterprises produce and sell dehulled sorghum in the form of semolina and flour, as well as sorghum-based foods using recipes developed and tested among the local people.

The Indian Council of Agricultural Research and the College of Home Science in Hyderabad, India, have combined their efforts to make sorghum and millet more accessible and acceptable to local people. Sorghum and millet are considered coarse, low-status foods, and are being displaced by imported wheat flour. Sorghum, millet and legumes, once freed of their husks, become more acceptable to consumers. Dehulled sorghum and legume flours were shown to be just as nutritional and as versatile for cooking as rice and wheat flours, and much less expensive.

The technology itself includes:

- Introduction of the mini-dehullers at the household, village, and periurban level. Initially, mini-dehullers were imported from Canada. The dehullers, now produced in India, have been adapted and modified to suit women users by reducing the height and adding wheels for easy movement.

- Development of recipes using sorghum flour and semolina. These were tested and demonstrated in villages and promoted through newspaper columns. Government supplemental feeding programs for vulnerable sectors of the population are using these recipes for infant foods and in porridge, biscuits, and buns. Market research and testing has shown a solid demand for the sorghum products.

- The establishment of small sorghum/legume processing businesses run by women. These village bakeries are popular and profitable, producing roti, sooji, flour, semia, snack foods, mixes, infant foods, biscuits, and baked goods.

The project provided a training program for women in establishing small-scale bakeries. A video, posters,
workshops, and exhibits were used to promote the new sorghum products and processing methods.

Prerequisites
Access to a sorghum dehuller. Different food products can be made depending on available resources.

Potential users
Women's groups and cooperatives, government supplemental feeding programs, child-care centres, etc., in sorghum and millet-growing areas.

Contact
Dr P. Geervani
Dean of Home Science
Andhra Pradesh Agricultural University
Rafendranager, Hyderabad, India
Tel.: 245057 ext. 284; Telex: 425-6936 APAU IN

Resources and publications
• Blueprints and an instructional manual for the modified dehuller.
• Booklets of recipes using dehulled sorghum.
• Project profiles for different sorghum enterprises.

12
Small-Scale
Rural Oilseed Processing

In Kenya in 1987, 80% of the vegetable oils and fats consumed by the population were imported. The intake of edible oils remains low, affecting the nutrition and health of the people. The production of oilseeds, such as sunflower and sesame, is low, and rural processing of the oils has been virtually nonexistent. The needs of the rural population for oil and animal feed have been met by urban processors at high cost.

The introduction of small-scale processing equipment in the rural areas has the potential to reduce local people's need for cash to buy oil, improve the nutrition levels of both people and livestock, and increase farmers' incomes. It can create additional employment for farmers and oilseed press operators.

Researchers have developed a technological package to introduce small-scale oil expelling enterprises to rural areas in Kenya. The package includes a ram press for extracting the oil, a filtration device, tools for maintenance, and information on the proper utilization of the oil and cake (the residue of the seeds after the oil has been squeezed out) and on the socioeconomic and nutritional benefits of an oilseed processing enterprise. The ram press, driven manually by a long handle, is composed of a small piston that presses a charge of oilseeds into a metal cage. The basic design was developed by Carl Bielenberg
of AT International, while in Tanzania. The original and improved versions are now widely used there.

The four subcomponents of the package are the following:

• Training in the preparation of the seeds (drying, cleaning, and warming), the proper use of the press, filtration, and storage of the oil. Filtration is used to obtain clean oil by removing particles of cake or dirt in suspension;

• Information on oil utilization, including the advantages of home-processed oil over commercial oils and fats;

• Information on how to mix the residual cake, which is rich in protein, with grain for use as animal feed, especially for milk production;

• Information on the socioeconomic benefits of local oilseed processing.

The package can potentially benefit communities by making ready-to-use oil and seed cake locally available and by providing an important energy source for young children. The presence of the press can stimulate the production of oilseeds, such as sunflower, and create the potential for developing a rural industry, which in turn can create employment and eventually reduce Kenya's edible oil imports.

A technical manual on rural processing of oilseeds using the ram press has been produced. It includes information on the proper methods of preparing the seeds, operating procedures and optimum settings for the press, maintenance of the equipment, oil filtration methods, packaging and storage of the oil and cake, a trouble-shooting section, recipes using the oil, cake utilization, and how to make the enterprise profitable (including accounting charts).

Current field trials are revealing an effective demand for the technology package. The project aims to leave in place a self-sustaining process, with local manufacture and credit arrangements, for the delivery of the technology to rural areas.
Prerequisites

• Access to oilseed varieties that provide a good yield of oil under small-scale processing conditions, and that are easy to process.

• Knowledge of the use of the products (oil and cake) and markets for the surplus.

Potential users

Farmers, community groups, and NGOs in rural areas, especially semi-arid areas, who do, or could, include oilseeds in the local farming systems. With proper settings, the most recent design of the manual press can be operated by any man or woman of average strength without undue strain.

Cost and availability

The cost of the ram press, including a filtering system, insurance, and transportation, is estimated at about Ksh 30,000 (Can $1500). Annual costs of running the press are estimated at approximately Ksh 11,000 (Can $450). Profit margins for a Kenyan operation, whether the press is privately-owned or run by a cooperative, have been estimated at about Ksh 14,500 (Can $575) per year. This means loans on the equipment could be paid back within about two and a half years.

Contact

Mr John Mugeto
Department of Agricultural Engineering
Egerton University
PO Box 536, Njoro, Kenya
Tel.: 61620/61031/61032; Telex: 33075

Improved Oilseed Press

In Pakistan, the domestic production of edible oils is far below the population's requirements, resulting in a high level of imported oils and inadequate diets. Researchers from the Pakistan Council for Scientific and Industrial Research have been adapting and improving village-level oilseed processing equipment to increase the availability of edible oils, increase income and employment, and improve nutrition.

Village-level oilseed extraction exists in the form of animal and motor-driven kohlus (large mortar and pestle type installations) and small screw expellers, but these are largely inefficient and can only process seeds such as rapeseed and mustard. There are no village-level technologies to process "hard" seeds such as sunflower and safflower, which are increasingly being cultivated in Pakistan. Improved screw expellers will help in the introduction of these new oilseeds, by enabling communities to set up their own processing.

The researchers have improved the design and
The performance of a small mechanical expeller to increase its oil extraction by 3–4%, its efficiency, and its longevity. The expeller is made of a simple screw composed of a number of segments mounted on a shaft, which can be easily removed and replaced when worn. The screw turns at about 38 rpm within a cage of iron bars with small slits that allow the oil to escape. The pressure and mixing action break the oil cells in the seeds and the heat that is generated makes the oil more fluid.

Technical modifications have increased the expeller's capacity and reduced the amount of residual oil left in the cake from 11–12% to 7.5%. The main modification is the addition of a reverse worm at the end of the main screw assembly to produce extra frictional heat and greater pressure on the raw material. There are two expeller models with different capacities. The 40-cm expeller can process 60 kg of seed per hour; the 56-cm expeller can process up to 100 kg of seed per hour (the original model processed 35 kg per hour). The energy consumption of the modified expellers is lowered to 75 Wh from 100–120 Wh per kg of seeds. The expeller is driven by a 10 HP electric motor.

The new expeller provides an alternative to both the existing small screw expellers and the large commercial expellers. It can compete with the commercial expellers in terms of capacity, oil recovery, and versatility. It is less expensive (half the price of a large commercial expeller) and more efficient, using only a 10 HP motor as compared to the 30 to 40 HP motor required by the large expellers.

The modified expeller can process rapeseed, linseed, sesame, and copra. Other seeds such as sunflower, safflower, and cottonseed can also be processed either whole or decorticated.
Potential users

Co-ops, village organizations, farmers in Southeast Asian countries where oilseeds are grown and where there is insufficient edible oil available.

Cost and availability

The researchers are collaborating with a manufacturer for the commercial production of the new expeller. The expected price will be approximately Rs 25,000 to Rs 30,000 or Can $1000 to $1300.

Contact

Dr Shafique Ahmad Khan
Pakistan Council for Scientific and Industrial Research
Press Centre, Shahrah-E-Kamal Ataturk
Karachi 0109, Pakistan
Tel.: 212114; Fax: 92-42-227057
Telex: 47115 PCSIR PK; Cable: CONSEARCH

14

Improved Methods for Storing Corn

The main cereal grown in Togo is corn (maize), 95% of which is produced by small farmers who suffer substantial losses because of insects and mildew. Inadequate storage facilities compound the problem.

Researchers at the University of Benin in Togo have developed a series of methods to improve storage, thereby increasing farmers' income by minimizing losses. Improved storage also increases the amount of food available to their families during the year.

Modifications to the granary. A, air inlet in the roof; B, plastic lining in the roof; C, removable plastic lines the walls during the rainy season; D, plastic placed around the platform overnight; and E, fire.
The new methods incorporate traditional granaries which are made from harvested cobs and straw. They are used for both storing and drying.

The methods described below are recommended to increase the quality and quantity of the corn.

- Seeding in rows (with generous spacing between) and early harvesting increase the quantity of corn and limit insect infestation. In very humid regions, a late harvest is recommended because of mildew problems.

- Granaries should be built in sunny areas on cleared land 3 metres away from the nearest building to minimize the presence of rodents. Wire netting can be placed between the posts supporting the granaries to keep rats out.

- In humid areas, it is recommended that granaries be raised off the ground (1.2 to 1.6 metres) and fumigated. Elsewhere or when fumigation is not carried out, granaries should be kept low (35 to 50 cm above ground).

- The recommended size for small granaries is 2–5 metres wide and 1–2 metres high.

- A water-resistant base reduces water reabsorption during the night.

- The walls of corn are reinforced every five or six rows by wrapping them with creepers or rope.

- A conical roof made from plaited straw should cover the corn.

- Sorting before storage will remove any cobs that have already been attacked by insects or mildew. Studies show that sorting the cobs reduces the amount of corn attacked in the granaries by 36%.

- Neem tree leaves, a thin layer of ash on the corn and fumigation create a hostile environment for insects.

- When the corn is sufficiently dry, air circulation is reduced by partially covering the roof with plastic and lining the walls with plastic or clay.

Farmers in Togo have shown great interest in the research findings, which involve no major changes to their usual methods and little extra cost. These simple methods increase the harvest and improve the quality of the corn. Thanks to improved methods, farmers have noted losses of 9%, compared with 15–50% using traditional methods.

A popularization program is currently underway with the assistance of CUSO and the African Institute for Economic and Social Development. An illustrated manual in French has been produced for extension workers and brochures written in local languages are also being prepared for farmers. An information video was produced in French and a local language (Ewe) and will be translated into English.

Potential users

Small corn producers in West Africa.
Contact
Mr K. Kpakote, Director
Ecole supérieure d’agronomie
Université de Bénin, PO Box 1515, Lomé, Togo
Telex: UNIVERBENIN 5258 UB TO;
Telegram: UNIVERBENIN

Resources and publications
A manual in French for extension workers and a video-cassette in French and Ewe have been produced. The video is distributed by Canal France International (CFI) and an English edition is planned.

15
Improved Grain Storage

Traditionally, in Eastern and Southern Africa, small-scale farmers have stored their year’s supply of cereal grain in granaries made of termite-resistant wood, a material that is being rapidly depleted. Given the scarcity of wood it is becoming extremely difficult to repair the traditional granaries or to build new ones. Most traditional structures do not provide adequate protection against rain, insects, and rats. High moisture and poor hygiene make the grain susceptible to mould and allow carry-over of pests. Storage losses are estimated to be in the range of 10–20%. It is therefore essential to develop new types of granaries using alternative materials.

IDRC has supported research by Environment Development Activities-Zimbabwe (ENDA) on the introduction and testing of an affordable improved granary. Initially designed and introduced in maize-growing areas, the improved granaries are now being introduced into sorghum and millet-growing areas. The objective is to develop, test, and distribute improved technologies for...
postproduction handling and storage of cereals to communal farmers in Zimbabwe's drier areas.

The improved granary retains the traditional cylindrical layout, but is constructed of brick, rather than poles and mud. The only materials that might not be locally available are cement and the large timbers required for the granary floor. The internal dividing walls are about chest high. Four of the resulting compartments are filled with grain, or maize on the cob — fully dried before being put into storage. The fifth enables a person to enter through the door, stand inside, and fill or empty the compartments. The outside bricks are ordinary burnt bricks — red or reddish-yellow depending on locally available clays.

The new granary can store up to 2.5 tonnes of shelled maize, more than enough for the average maize-eating family. The size of the granary can be scaled down and adapted to various storage requirements.

Cost and availability
The improved structure costs approximately ZWD 600 (about Can $138). Most of the materials are locally available.

ENDA provides information on the construction of the granary and other aspects of cereal postproduction handling and storage technologies. A dissemination package of improved farm-level storage recommendations is available to extension agents, farmers, and researchers.

Potential users
Small-scale farmers of Eastern and Southern Africa. The new postharvest technologies will contribute to the overall strategy of food security for the nine countries of the Southern Africa Development Co-ordination Conference (SADCC).

Contact
Mr Charles Gore
Deputy Executive Director
Environment and Development Activities — Zimbabwe
14 Belvedere Rd., PO Box 3492
Mount Pleasant, Harare, Zimbabwe
Tel.: (263) 708-568; Fax: (263) 729-204

Multi-Crop Dryers

Drying is a preservation process that prevents the deterioration of perishable crops and allows for handling, transport, and storage of the products for sale outside the community where they are grown. In Northeastern Thailand, researchers have adapted drying technologies to help expand the markets for fruits and vegetables.

For individual farmers, a cabinet-type tray dryer was designed with a capacity of 100 kg, using a wood fired furnace and the natural thermal draft to move the drying air. This dryer, well accepted by the longan farmers who
tried it, is useful if sufficient fuelwood is available. The project has given the design to farmers in Lamphun Province, who are building 50 dryers with government assistance.

For traders needing a larger capacity, a mechanical dryer with a low-cost fuel oil burner was designed. A mobile mechanical dryer was also designed and was well accepted by users. The mechanical dryers are easy to use, have a fast drying time, and produce uniform products. The investment cost is low and the potential benefits high, as dry products sell for substantially more than fresh fruits and vegetables.

The dryers were field-tested and produce an acceptable quality dry product for the following crops: groundnut, soybean, black mungbean, chili, longan, black mushroom, and Chinese apricot.

The latest prototype mechanical tray dryer, called CMU-IDRC II, measures 1.2 x 2.4 x 2.0 metres, and is made of galvanized steel insulated with 25-mm thick fibre glass. It holds 18 trays, which can dry 500 kg of fresh produce. The hot air is produced by a gas burner that uses about 0.5 kg of gas per hour. Drying time is approximately 48 hours. A 1 HP motor is needed to run the dryer.

The dryers have been disseminated through workshops to some 2000 farmers, traders and exporters in Thailand, and have been well received. In 1991, Chiang Mai University received more than 20 orders for the mobile mechanical dryer from longan traders, farmers, and cooperatives.

Prerequisites

Appropriate produce for drying and available markets for dried products. Access to fuel and electricity.

Potential users

Farmers, co-ops, extension programs, traders, and processing factories.

Cost and availability

The dryers have initially been commercialized through the Centre for Engineering Services (CES) of Chiang Mai University. The natural draft dryer costs about 8000 baht or Can $400. The mechanical cabinet type dryer (model CME-IDR II) has an estimated price of 70,000 baht or Can $3500, including installation. Other costs include labour, fuel, electricity, and maintenance.
Potato-Based Food Products for Low-Income Consumers

The poor populations living in the urban slums of Lima, Peru, suffer from chronic malnutrition and limited access to low-cost, nutritious food. In the rural areas, potatoes are a major crop, especially for small farmers, and the tubers have traditionally been an important source of calories and protein. However, seasonal price fluctuations put the potato out of reach of the urban poor at certain times of the year.

Researchers at the Centro Internacional de la Papa (CIP) have been looking at ways to support potato farming while providing low-income city people with low-cost, nutritious food products based on the potato.

Combining dried potato with cereal and legume flours, the researchers developed a food product they called M-6, which is cheaper than potatoes, nutritious, versatile, stable, and well accepted in the community. The technology, which has the potential to benefit both poor urban consumers and potato farming communities, has not been widely adopted. The reasons include the complexity of the process, demands on management to effectively run a processing operation on very tight margins, and the high price/irregular supply of potatoes. A small plant in the central highlands of Peru produces a modified version of M-6 to supply CARITAS (a local Catholic NGO) with several tonnes of the product each month.

The potato mix M-6 is made of 30% dried potato and the flours of rice, broadbeans, oat, barley, and maize. This was based on local agricultural products; in other areas different ingredients and combinations should be used, based on their availability and low cost. The mix is reconstituted with water and boiled for 25 minutes till it makes a thick soup. Because of its bland taste, it can be used in savoury or sweet dishes.

The potato mix can be used for a wide variety of recipes including breakfast foods, main dishes, and desserts. M-6 provides one third of the nutrients needed by children, and has been shown to improve their health and nutrition when eaten regularly.

CIP developed equipment and processes to produce M-6
This potato-masher, which can also serve as a grinder, is one of several small-scale machines adapted by CIP for use in family-based processing enterprises.

both at the family and community levels (100 kg per week), and at the factory level (one tonne per week).

The factory level process involves the following steps: weighing the potatoes; washing and peeling them using a peeling machine; "rectification", which involves a visual inspection and the removal of eyes, green areas, spots, and sprouts with a knife; cooking the potatoes in water; mashing them, using either a manual meat grinder or more sophisticated mechanical or motorized mashers; using a mixing machine to mix the mashed potato with the right proportions of cereal and legume flours that have been milled beforehand; using a shredder to homogenize the size of the granules; and finally, drying the mix in a solar or electric dryer.

The pilot plant was able to produce 500 kg of wet mix per day, which produced 250 kg of M-6 after 48 hours of drying.

The researchers also developed a process for family or community level production. It was estimated that 100 kg of M-6, used three times a day, could feed a family of six for 9 months. Household equipment (hand grinder, pots, knives, peelers, hand masher, tubs, spatulas) are all that's needed to produce the mix, with the exception of the wooden drying tray which has to be built.

Cooking is done using traditional stoves, and the potatoes are peeled manually after cooking. As mashing with a hand grinder can be very tiring, CIP developed a grinder/masher for home use. Mixing is done manually in a large tub with flours that have been milled beforehand. The mix is then dried in the sun or in an oven. CIP also developed prototype equipment for families for milling and mixing.

CIP's work on low-cost potato-based foods has wound down, but the results of this experience are being used by CIP in Cameroon, India, and Peru. CIP continues to receive requests for information about processing; for which the M-6 experience has proven very useful.
Potential users
Farming communities, community organizations, small enterprises, NGOs, government, relief agencies and community kitchens in potato-growing areas.

Contact
Centro Internacional de la Papa
Postharvest Management and Marketing
AP 5969, Lima, Peru
Tel.: (51-14) 350266/350842; Telex: (394) 25672 PE
Cable: CIPAPA—Lima; Fax: (51-14) 35 15 70;
E-mail: 57: CG1801

Resources and publications
- Appropriate Techniques for Development and Manufacture of Low-Cost Potato-Based Food Products in Developing Countries, Peter J. Keane, Robert H. Booth, Nilda Beltrán, CIP, 1986. Describes in detail the process used to develop M-6.
- A manual on product development for root and tuber crops will be published by CIP, CIAT and IITA, and will include CIP's experience with village level processing.

Diffused Light Storage for Seed Potatoes
Potatoes are a staple crop in some 130 countries worldwide, and rank fourth in production after wheat, maize, and rice. In Peru, potatoes are an important food source, and the main crop in the Andean highlands. Traditionally, small farmers store their potatoes at home in a dark room to prevent them from greening. These are used as seed potatoes for the next planting, as well as for sale and home consumption. Dark storage can be a problem, however, in the warmer lowland and coastal areas, as it can cause excessive sprouting (the potatoes need to be

Storing seed potatoes on covered balconies prevents premature greening due to good ventilation and indirect lighting.
de-sprouted before planting) and increased losses to insects.

The Centro Internacional de la Papa (CIP) in Peru, in the course of a larger research program on postproduction technologies for the potato, developed a low-cost, simple method to improve the storage of seed potatoes. The method, called diffused light storage (DLS) involves storing the potatoes in thin layers on shelves or trays in natural diffused (indirect) light with good ventilation.

This simple technique can reduce the weight loss of the tubers during storage, increase their resistance to pests, allow the farmer to store the crop for longer periods, increase yields (by 15 to 30%), and reduce sprouting. Farmers can use their own seed potatoes for planting, avoiding the high costs of commercial seed at planting time. They have more flexibility in choosing their planting time and do not have to de-sprout the tubers (which can require up to five person-days per hectare). The major constraint of the method for small farmers is that diffused light will "green" the potatoes, making them unsuitable for eating. The method can therefore only be used for storing seed potatoes.

Farmers adapted the diffused light concept according to their own needs and accumulated knowledge. They often used corridors, verandahs, attics, terraces, sheds, etc., experimenting with different options and only rarely reproducing the models of extension agents. The technology varied from placing potatoes in front of windows to the building of a 100-tonne diffused light store by a cooperative of producers.

By 1984, 4000 farmers in 16 countries, including Colombia, Guatemala, Peru, the Philippines, and Sri Lanka, had adopted diffused light storage for seed potatoes. A wide array of diffused light storage designs was developed by the farmers, who almost all continued to use the technique on an ongoing basis. Continued research is being done by national potato programs in various countries.

Potential users
Small- and large-scale potato farmers.

Contact
Centro Internacional de la Papa (CIP)
Postharvest Management and Marketing
AP 5969, Lima, Peru
Tel.: 366920/354354; Telex: 25672 PE
Cable: CIPAPA—Lima; Fax: (51-14) 351-570

Resources and publications
Cooling Technologies for the Preservation of Fruits and Vegetables

In the highlands of Northern Thailand, farmers who grow fruits and vegetables suffer high postharvest losses due both to the conditions in the fields and to poor storage techniques.

Researchers from Chiang Mai University have investigated various storage and cooling technologies, to increase the potential market for the farmers' produce. In a first phase, they designed and tested a passive cooler for storing fruit. While this storage facility required no outside energy, and was inexpensive and simple, it was suitable for only a few kinds of fruit.

The researchers then developed several prototype precooling systems using water spray. They found that precooling and refrigerated transport reduced losses by 8 to 17%. The effects of this system can be increased with careful management including harvesting at the most appropriate time, proper trimming and grading, a good marketing strategy, care in handling, and appropriate pre-treatment and packaging.

Precooling involves reducing the product's temperature before storage and transport, and requires that a large amount of heat be removed in a short period of time, making it more expensive than cold storage. Conventional precooling uses large-capacity refrigerators that require a considerable amount of energy. Forced-air cooling, the method chosen by the researchers, is the most versatile and the most widely used form of precooling.

Because there is a high risk of drying out the produce using this technique, the air humidity must be kept high, around 90–95% relative humidity. The prototype precooler consists of an insulated room and an air-cooling unit. Air is drawn from the room into the unit and forced upward through a large surface heat exchanger called "packing." Cold water is sprayed from nozzles above and absorbs heat from the air through direct contact. The air comes out of the packing colder and more humid. It passes through a demister to remove water droplets, then is circulated back into the insulated room where the produce is stored. The water falls to a receiving tank below and is recirculated.

The water can be cooled using a variety of techniques, including:

- A roof-pond system which passively cools the water during the night;
- Ice used as a supplementary cooling source;
- Mechanical refrigeration as a supplementary cooling source; or
- Mechanical refrigeration alone (called active cooling).

The prototypes were the first high-humidity precoolers.
A high-humidity precooler that were locally designed using locally available materials. They cost about one third of comparable imported coolers, and cost can be further reduced by combining them with a passive-cooling system to produce the cooled water.

The passive-cooling system consists of a shallow pond on the roof of a building. A movable insulation panel is placed over the pond during the day and removed at night. This water-cooling method requires no energy and is simple to build and maintain. It is dependent however on an appropriate climate, ideally dry, cool nights, clear skies, and relatively little wind. It can be used in tropical climates with careful evaluation beforehand and an awareness of its limitations.

Commercial-scale precoolers (1000 to 1300 kg) are currently in use in Thailand and are well accepted.

Prerequisites

The precoolers can be built using locally available materials. The packing can be made of corrugated galvanized-steel sheets, PVC tubing, or layers of wire mesh. The cooler requires pumps and a fan, an evaporator coil made of bare copper tubing, PVC nozzles, and wooden slats for the demister. A typical roof pond system uses a 40-square-metre roof with a 4 cubic-metre water tank.

Potential users

Communities growing fruits and vegetables in highland areas.

The precoolers are currently being manufactured by the Centre for Engineering Services (CES), of Chiang Mai University, at the address below.
ACT-AIS
Agricultural Marketing Information System

Foreign exchange is being used in most Caribbean countries to buy food that could be grown locally and traded regionally. Information on regionally grown crops, however, is not easily accessible. A result of this poor flow of information is that few foods are exported, other than the traditional exports of sugar and bananas.

The Association for Caribbean Transformation (ACT) is supporting domestic food production and promoting regional trade in Trinidad and Tobago, Dominica, and Antigua by providing farmers with better market information.

The ACT Agricultural Information System (ACT-AIS) is a computerized database designed by ACT to monitor national data on the agricultural sector in five categories: commodity prices in the wholesale and retail market, the prices of agricultural inputs, estimates of costs of production of various crops, recorded data on total production and supply, and agricultural trade data. Each of these modules can be used alone to facilitate a quick retrieval of data.

ACT-AIS helps with three basic tasks:
• Storage, retrieval and generation of relevant data;
• Processing of the data into useful information using standard analytical methods;
• Using the data to formulate strategies for low-income farmers and traders to establish themselves in the market.

For example, the Commodity Price Module can provide, among other things, a time series on any crop for any specified time period, and a comparative analysis of crop prices for a specified month, the previous month, and the same period 1 year earlier.

The information produced by this module can be printed in a spreadsheet format to generate seasonal indexes of price changes, trends, and forecasts. The information is used to evaluate proposals for investing in certain crops; to plan production; to develop marketing strategies for specific crops; and to formulate realistic expectations of the market at any given time.

Most importantly, ACT uses the information technology to help small-scale producers with little overt market power
to estimate what the market wants and to be ready to supply it at the opportune time.

Information is disseminated in the form of bulletins, status reports, and personalized services. To reach directly small-scale farmers — who generally get their information through institutions, traders, and large-scale farm operators — ACT is developing strategies such as providing speakers on local farm radio shows in Antigua and Dominica and producing fact sheets with large print and many illustrations.

ACT is currently developing two new software packages. The first is to maintain an ongoing database on suppliers and buyers of agricultural produce, so as to easily facilitate market operations from a central information point. The second is to identify agricultural trade opportunities, and provide initial background data for developing agricultural trade.

Prerequisites
An IBM-compatible computer with 640K RAM. The program is currently written in dBase III Plus and is being adapted for dBase IV. ACT can compile the program so the dBase program is not necessary to run it. A working knowledge of DOS and a spreadsheet program is needed.

Application of ACT-AIS to agricultural development requires knowledge of small-scale production, marketing, and the development of a network for accessing agricultural data and information from the public domain (such as from government ministries and institutions that publish such information regularly).

Potential users
NGOs that support productive activities by low-income groups; secondary cooperatives, especially marketing

Monitoring the market with the software.
cooperatives; and groups of small-scale agricultural producers with a common production or marketing objective.

Cost and availability

The basic programs for the ACT databases are available on request. Contact ACT for information on costs including postage. ACT has provided training activities for NGOs from Africa, which included not only the database structure, but also how it supports the credit, marketing, and technical assistance programs of ACT. Copies of the supporting training material are available upon request for the cost of duplication and postage. ACT's preference is to conduct a series of informal discussions, in which ACT can get an understanding of the objectives of the organization, then suggest how ACT-AIS can be modified to serve those objectives better.

Contact

Mr Allan Williams, Project Leader, ACT Ltd, 3 Pelham Street, Belmont Port of Spain, Trinidad and Tobago Tel.: (809) 624-2142; Fax: (809) 627-6032; Cable: ACTRANS PORTOFSPAIN
Forestry
Alley farming is a sustainable farming system that could replace shifting cultivation systems in tropical Africa, reducing deforestation and land degradation. It exploits the potential of trees, primarily for maintaining the fertility of the soil, as well as for improving crop and livestock production.

Multipurpose trees (usually leguminous) are established in rows 4–6 metres apart with crops cultivated in the "alleys" between the tree rows. Trees are pruned at the end of the first year and subsequently managed through periodic pruning of the regrowth so that interplanted food crops get enough light.

Under this system:

- The trees and shrubs protect the soil against water run-off and erosion, particularly on sloping land;
- Tree prunings may be applied to the soil surface as mulch or incorporated as green manure;
- A significant amount of nitrogen, mineral nutrients, and organic matter is made available to the topsoil improving soil fertility and reducing the need for inorganic commercial fertilizer;
- The mulch also acts as a weed-suppressor and helps earthworms to multiply;
- The pruned branches can be used as a protein-rich livestock feed leading to improved productivity of sheep and goats;
- The system can also produce fuelwood or poles if desired.
The system increases the length of cropping periods, so the land can produce more, and soil fertility is rapidly regenerated and maintained. Alley farming can be used on farms of any size.

Prerequisites
Availability of seeds of multipurpose tree species appropriate to local climate and conditions; training of farmers and community groups interested in trying out the new techniques.

Potential users
Farmers, extension workers, NGOs, and development workers in the agriculture sector. Techniques are useful in areas with erosion problems (such as hill-side farming) and where population pressure and land degradation increasingly limit the availability of fertile land for farming. Alley farming is flexible enough to be used by small farmers as well as by large mechanized farms, and is close to current farming methods. It is also in use in Southeast Asia.

Established in February 1989, the Alley Farming Network for Tropical Africa (AFNETA) promotes and supports alley farming research, on-farm testing, and extension of the concept across diverse environments in tropical Africa. Technical studies are complemented by studies of some of the constraints to alley farming, such as systems of land ownership, labour requirements, gender issues, religious beliefs, ancestral traditions, and socioeconomic pressures.

AFNETA's activities include: information dissemination, and exchange of alley farming techniques; training; and collaborative research with national and international agricultural research centres. A major priority for the network is collaboration between research institutions and development organizations. For example AFNETA co-hosted a training workshop on "Research Institution - NGO Linkages" in 1991; an international conference on alley farming held in Ibadan, Nigeria, in September 1992 featured presentations from both research institutions and NGOs.

AFNETA works in Benin, Burkina Faso, Burundi, Cameroon, Côte d'Ivoire, Ethiopia, Ghana, Kenya, Liberia, Malawi, Mali, Nigeria, Rwanda, Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zaire, Zambia and Zimbabwe.

Contact
Kwesi (A.N.) Atta-Krah, Coordinator, AFNETA
International Institute of Tropical Agriculture
Oyo Road, PMB 5320, Ibadan, Nigeria
Tel.: (234-22) 400300/400314
Telex: TDS IBA NG 20311 (Box 015) or TROPIB NG 31417 / 31159; Cable: TROPFOUND IKEJA

Resources and publications
• Alley Farming: the Development of Alley Cropping as a Promising Agroforestry Technique, B.T. Lang and
Using Paulownia Trees for Intercropping

In many Third World countries, the depletion of native forests coupled with the increased demand for timber and fuel is creating serious environmental, economic and social problems. One strategy to deal with this situation is to encourage rural people to integrate trees within existing farming systems.

In China, the Paulownia tree has been used with great success in agroforestry programs, on nearly two million hectares of farmland. This planting has helped alleviate the chronic shortage of timber, fuelwood, and animal fodder, and at the same time has served to increase agricultural production and improve soil conservation. The successful development and use of Paulownia in China...
can benefit many other countries that face similar problems of competing priorities between agriculture and wood production.

Scientists at the Research Institute of Forestry, Chinese Academy of Forestry, have been studying Paulownia and have developed and distributed several improved varieties to farmers and organizations in China and other countries.

The benefits of Paulownia trees include:

- They are adaptable. They grow on flat or mountainous land, in various types of soil, including: rich humous soil in temperate areas, dry poor soil, rich forest soil, and clay soil in the subtropics, laterite soil in the tropics, and dry steppes.

- Paulownia also adapts to a variety of climates, even temperatures as low as −20°C (different species vary in their resistance to the cold). The optimum mean daily temperature for Paulownia is 24–29°C. Precipitation needs also vary greatly, from as low as 500 mm to a maximum of 2000 or 3000 mm annually.

- They grow extremely quickly (average growth 2 metres per year).

- They have a deep root system that does not compete with the roots of crops.

- Their branches and leaves are sparse, allowing plenty of light to come through.

- Intercropping with Paulownia can improve the micro-climate by reducing the effects of drying winds (wind speed can be reduced by 20–50% on average) and increasing air moisture, which considerably increases yields of crops such as winter wheat, millet, and maize.

- Paulownia produces a light yet strong timber useful for furniture, plywood and musical instruments; its sale can considerably increase the income of rural people.

- Its branches can be used for fuelwood (a 10-year-old tree produces 400 kg of branches per year).

- The branches, leaves, and flowers are rich in protein, carbohydrates, and minerals, making them ideal for animal feed and green fertilizer (a 10-year-old tree produces 30 kg of dry leaves per year).

- The leaves, flowers, and wood have medicinal properties.

If the trees are used primarily to improve agricultural production, 40–67 trees are planted per hectare. This will increase yields of wheat, millet, and maize. Crops such as sesame and sweet potato are not suitable for intercropping with Paulownia and their yields may actually decrease. If 50 trees are planted per hectare, they will produce 20–25 cubic metres of timber per tree over 10 years, an important extra income to farmers.

Paulownia trees can also be planted primarily for timber production, with the crops as a secondary activity. In this case 200–400 trees are planted per hectare. The crop yield is reduced after 4–10 years, but can still amount to some 37.5 tonnes per hectare over 10 years. From 80 to
140 cubic metres of timber per hectare can be produced after 10 years.

Prerequisites

Access to seedlings or root cuttings of appropriate Paulownia species for local conditions; training in planting and management of the trees and intercropping techniques. The Chinese Academy of Forestry has provided training courses for farmers, technicians, and extension workers.

Potential users

Farmers around the world could benefit from intercropping with Paulownia, especially in areas with poor soils, climate problems such as sandstorms, high winds, and droughts, and timber, fuelwood, and fodder shortages. Paulownia seeds have been introduced in more than 30 countries in Africa, America, Asia, Australia, Europe, Latin America, and with considerable success in Australia, India, and Pakistan.

Cost and availability

Seeds of different Paulownia species are available from the Paulownia Research Group (see below). Cost is approximately US $10 per 100 g plus US $15 to $20 to cover mailing, quarantine, etc.

Contact

Paulownia Research Group
Forest Research Institute
Chinese Academy of Forestry
Wan Shou Shan, Beijing 100091
People's Republic of China
Tel.: 2582211 ext 672; Fax: 2582317

Resources and publications

- A 27-minute film in English titled Paulownia in China has been produced by the Chinese Agricultural Studio.

- Paulownia in China: Cultivation and Utilization, by the Chinese Academy of Forestry Staff, Asian Network for Biological Sciences and IDRC, 1986, 65 pp.

- Available from the National Paulownia Centre in the United States: Paulownia Information Packet; Kiri Newsletter (Kiri is a subspecies of Paulownia); and Kiri seed. Contact: Dr Peter R. Beckford, 4303 Kenny St, Beltsville, MD 20705, USA.
Agroforestry Seed Information Clearinghouse

Agroforestry is quickly becoming an important component of agricultural development in many countries. Expansion of agroforestry systems, however, are hampered by lack of seed. When seeds are available they are too often expensive and of low quality. This situation is aggravated by limited knowledge of seed production, handling, and testing for quality.

The Agroforestry Seed Information Clearinghouse (AFSICH) in the Philippines was established to serve the information needs of NGOs and government. The project collects information on seed sources and technologies for promising agroforestry species and distributes the information to NGOs and government agencies through brochures, newsletters, and training sessions.

Activities of the clearinghouse include:

- A database of seed resources for major agroforestry species in the Philippines, as well as organizations, resource persons, and seed production technologies;
- Training in seed production and handling for planners, NGOs, trainers, and farmers;
- Research;
- Coordination of a network linking NGOs and government agencies involved in uplands development in the Philippines;
- Production and distribution of extension materials.

The following types of information on seeds are being generated by the clearinghouse: information sources, uses of

Place 2 teaspoons of vegetable oil to 1/3 of seeds

Add more seeds

Roll gently back and forth

Oil application to protect seeds
different species, taxonomy, growth habits, adaptation, areas under cultivation, flowering requirements and characteristics, seed setting requirements and characteristics, seed handling, and requirements for establishment of the plants.

Information from the project has been used to produce the Agroforestry Technology Information Kit and was highlighted in a special issue of the Sustainable Agriculture Newsletter on agroforestry seeds. Fifteen hundred copies of the newsletter were distributed in 75 countries. The newsletter contains information on seed technology (guidelines for production, seed collection and preparation, seed drying, seed storage and protection, seed quality testing, and pregermination treatments), as well as worldwide lists of seed sources, resource people, agencies, organizations, and projects involved in seed production.

The project works closely with NGOs through the network, and its research agenda is based on farmers' problems as identified by NGOs and extension workers, not by the researchers. It is a model of a successful seed exchange network.

Potential users
Farmers, NGOs, and government agencies who do not have access to information on seeds through usual channels.

Contact
Dr Pamela G. Fernandez
Agroforestry Seed Information Clearinghouse
Department of Agronomy
University of the Philippines at Los Baños
Laguna, The Philippines 4031
Fax: 63-2-818-2087, c/o Paul Tengirri

Resources and publications
• Agroforestry Technology Information Kit, available from: Dr. Julian Gonsalves, Director, Appropriate Technology Unit, International Institute of Rural Reconstruction, Room 38, Elena Apartments, 512 R. Salas St., Ermita, Manila, The Philippines.

Agroforestry Seed Centre for Southern Africa
As deforestation becomes an increasingly serious problem in southern Africa, agroforestry programs and community woodlots are in need of reliable sources of good-quality tree seed. There is a need for a wider selection of tree species to meet a variety of uses: improvement of soil fertility, protection of crops, provision of shelter,
shade, and forage for domestic animals, provision of wood for fuel and construction, and mitigation of environmental damage.

Current problems facing forestry and agroforestry programs include a lack of available seed (and the need to import seed), inadequate testing and storage of seed, a lack of trained personnel, and inadequate information. For the programs to work, obtaining the best possible seed at the right time is crucial. To address this situation and to promote self-sufficiency in seed supply of multipurpose trees, a regional seed centre has been established in Zimbabwe.

The regional seed centre includes offices, workshop and conference facilities, a seed lab, and cold storage. It aims to provide the Southern Africa region with access to certified and improved seed for research and development programs; to develop standardized techniques for collecting, processing, storing, and testing seed for distribution; to provide training to seed workers in the region; to identify and record existing seed sources and tree stands in the region; to establish resource conservation tree stands for seed production; and to disseminate information (including information on problems of seed importation).

For the first time in Africa, seed stands of major dry-zone species have been established. A system of seed stands has been set up in Kenya, Malawi, Zambia, and Zimbabwe. The regional seed centre has organized various training activities, including a workshop for scientists on taxonomy, seed handling and testing, and a course on indigenous tree seed collection attended by seed workers from Botswana, Burkina Faso, Ethiopia, Kenya, Malawi, Zambia, and Zimbabwe. A computerized list of commercial seedlots has been drawn up, and information on seeds is provided to individuals and organizations both inside and outside the region. As well, the seed centre is identifying seed sources in other countries and on other continents for promising species that can be used in the Southern Africa region.

Potential users

Forestry and agroforestry programs throughout Africa.

Cost and availability

Seed for research is available free or on an exchange basis. A price list in US dollars for different categories of seeds is available. Seeds can be sent to any country by air freight or air mail. An import permit is required for commercial seed orders, but not for seed for research purposes.

Seed species available include:

- Exotic species: various eucalypt and pine species, and small quantities of other species;
- Indigenous species: a range of Zimbabwe acacias and other species.
Agroforestry in Semi-Arid Areas

Kenya's semi-arid areas are under increasing ecological pressure due to growing population and a lack of arable land. Grazing lands are under threat in the Kakuyuni catchment area (Machakos district), where the number of cattle, goats, and sheep is now more than twice the recommended maximum for the type of land. Rainfall is low, the land produces little, and there are shortages of fodder.

The Kenya Forestry Research Institute is developing agroforestry technologies to counteract the soil erosion and poor conditions. The technologies include:

- Identification of the most promising species for intercropping (planting trees with crops) and for hedges;
- Establishment of fodder banks;
- Technologies for the rehabilitation and management of grazing lands;
- Identification of appropriate fruit tree species to improve nutrition and provide a small cash crop to local farmers;
- Improved tree-planting techniques;
- Techniques for community participation and dissemination of the new technologies.

The growing of hedgerows of trees among crops can increase productivity and improve and protect the soil. The most promising material includes species of *Leucaena*, *Gloricidia*, *Cassia*, and *Sesbania* which provide fodder, mulch, and fuelwood while preventing soil erosion and surface water runoff.

Wooden fences in the area are constantly attacked by termites and need to be replaced frequently, using scarce trees to provide the wood. Live fences provide a solution to this problem. Three species are recommended to farm-
ers (Caesalpinia spinosa, Parkinsonia aculeata, and Zizyphus mauritania). The trees are planted less than 50 cm apart and are pollarded at 30 to 50 cm above ground to stimulate the growth of side branches.

Natural vegetation in the grazing lands is prevented from maturing by lack of moisture and constant browsing by animals. A package of treatments has been devised for eroded grazing land, to protect both natural vegetation and newly planted trees and shrubs. This includes: digging a 2-metre-long V-shaped trench upslope of the tree to improve water retention; pruning the tree to one main branch to promote upward growth; surrounding the tree with thorny bush to protect it from animals while the main branch is growing; constructing ditches for erosion control; introducing appropriate tree, shrub, and grass species to enrich the land.

Four species of fruit trees were introduced to increase available food and income: mango, pawpaw, rough lemon, and guava.

Researchers are working with farmers to develop tree-planting and management techniques for particular species and locations. These include: pruning the roots of seedlings and the stems if necessary; digging larger planting holes to encourage rapid root development; and planting promptly at the beginning of the rainy season to take advantage of all available moisture.

Self-help groups of farmers, predominantly women, participated in the trials and were the first to plant the most promising species on their farms. School children and self-help groups are taught the importance and the methods of rehabilitating grazing lands, and given seedlings to start tree nurseries. Information is disseminated mainly through radio programs, newspaper articles, women's groups, and schools.

Women participating in new agroforestry techniques in Kenya.
Prerequisites
Access to seeds or seedlings of appropriate species; training in intercropping, building and maintaining live fences, and rehabilitating grazing lands. The technologies need to be adapted to local conditions, including socio-economic factors and current farming practices.

Potential users
Farmers, co-ops, community groups, NGOs, extension workers, and agriculturalists working in semi-arid areas.

Contact
Dr Jeff A. Odera
Director, Kenya Forestry Research Institute
PO Box 20412, Nairobi, Kenya
Tel.: Karuri 32173 or 32220; Cable: KEFRI Nairobi

Live Fences for Protecting Crops and Plants

In Burkina Faso, deforestation and soil erosion are having a disastrous impact on the environment. Programs for reforestation and smallholding protection have been introduced to reverse the damage. Much of the reforestation, carried out annually at great cost in terms of financial and local manpower resources, is usually destroyed in its first year by village cattle. It is estimated that the plant survival rate is less than 30%. To reduce losses in the reforestation program, researchers from the Ministry of Environment and Tourism have developed agroforestry methods using live fences.

To protect their vegetable crops and young plants, farmers usually use wire fencing, which is expensive, or enclosures made from branches or other material that rots quickly. In contrast, live fences are cheap and quickly...
form permanent barriers that cattle find difficult to penetrate.

Researchers have identified the best species and methods suited to local environmental conditions. The species were chosen according to the following criteria:

- The plant’s recovery rate after planting;
- The plant’s annual growth rate in height and diameter;
- Ramification, which must be low and full to produce an impenetrable fence; and
- The cover, or interpenetration of the branches.

The following species were selected: Acacia senegal, Acacia nilotica, Acacia seyal, Bauhinia rufescens, Ziziphus mauritiana and Prosopis juliflora.

The following instructions should be followed closely to ensure a healthy fence:

- Planting the fence. A system of trenches improves water infiltration and increases root growth. The trenches, which aid plant recovery while minimizing the farmers’ work, should measure 50 cm (for single rows) to 80 cm (for double rows) wide and 60 cm deep. The trees are planted in staggered, double rows with 40 cm between the rows and 30 to 50 cm between trees in the same row.

- Upkeep. The fences must be weeded two or three times during the first year after planting, to reduce competition from weeds. During the dry season each plant needs at least 1.5 litres of water per week.

- Pruning. The plants must be pruned once or twice a year, depending on their height, at the end of the dry season or during winter. At first, pruning should be kept low (50 to 80 cm from the ground) to encourage branches to form at the base of the trees. Subsequent pruning depends on the height to be protected, generally around 1.2 metres.

Two major drawbacks to this method became apparent during the research stage: namely, the amount of work required to dig the trenches and the availability of plants in sufficient quantities at the right time. To overcome these problems, the researchers identified species and methods suitable for creating live fences using direct seeding rather than plants.

Producing live fences using direct seeding is an easy, cost-effective method that does not require growing trees in nurseries and eliminates the planting process. The success of direct seeding depends on regular, frequent watering. The species producing best results using direct seeding are: Acacia nilotica, Acacia seyal and Bauhinia rufescens. The seeds must be planted in early winter (June and July) in trenches that have been dug and refilled before seeding.

The live-fence method has proved popular with farmers, especially those growing vegetables. This method is a significant step forward and will improve reforestation and vegetable farming conditions in the country.
Prerequisites

Seedlings, potted plants, or cuttings of the appropriate species. In Burkina Faso, the seeds of the forest species used are available from the Centre national des semences forestières (CNSF), PO Box 2682, Ouagadougou, Burkina Faso (Tel.: 30-08-57/30-12-33).

Plants and cuttings are available from the nurseries of the Ministère de l’Environnement et du Tourisme (see above address).

Potential users

Reforestation groups, farming and vegetable programs in dry regions where cattle are causing damage and efforts are being made to halt soil erosion.

Contact

Zigani Goudouma
Direction de la production
Ministère de l’Environnement et du Tourisme
PO Box 7044
Ouagadougou, Burkina Faso
Tel.: 33-12-13/33-63-11

A Windbreak for Protecting Crops

Most of Tunisia is exposed to strong winds that blow in from the sea. These winds cause numerous problems, including soil erosion, increased rainfall, a reduction in the foliation area of plants, flattening of standing grain, drying out flowers, and blowing down fruit. A windbreak that reduces the wind by 40% provides effective protection for crops.

Although windbreaks have been used in Tunisia for some time, the majority of them are incorrectly planted (trees are too close together), poorly maintained, or made up of tree species that are not suitable for the purpose.

Tunisian researchers have shown that, with appropriate species and methods, windbreaks can increase the yield of vegetable and fodder crops by 17 to 100%, depending on the crop and local conditions. Windbreaks can also produce additional income from firewood and poles.

Although the best windbreaks are designed to suit local conditions, they all have some common characteristics:

- It is important to use several tree species (eg, Eucalyptus, Acacia, Cypress) to avoid the entire windbreak being destroyed by harmful insects; trees of varying heights also offer fuller protection.
- Young plants should be protected by plastic-wrapped mulch to minimize humidity loss and to protect them against harmful insects and weeds. They should be watered regularly.
The windbreak should be permeable to allow a certain amount of wind to get through. An impermeable windbreak raises the temperature in the fields, thereby damaging the crops. The porosity of the windbreak varies according to the farmer's needs.

Since the windbreak occupies about a tenth of the productive land area, it is important that it produces additional income to compensate for the loss in crops. The species selected should be viable for lumber, firewood, and poles. Small fodder or medicinal plants can also be planted at the foot of the trees to create another source of income.

Hedges that are not irrigated will compete with the crops; a space or laneway must therefore be left between the windbreak and the crops. Fruit trees should be planted at least 6 metres from the hedge to avoid competition.

The windbreak should be maintained and pruned regularly.

Costs can be minimized by planting trees 1 to 1.5 metres apart and hedges 80 to 100 metres apart without reducing the windbreak's effectiveness (trees are traditionally planted 50 cm apart and hedges 50–60 metres apart). The trees also benefit from the irrigation provided for the crops.

In the dry regions of Southern Tunisia, which receive only 100 to 200 mm of rain per year, researchers have studied the optimum methods for protecting crops and structures against the wind and blowing sand. They have tested fences erected perpendicular to the direction of the prevailing winds. The fences that produce the best results are made from either plaited palm-tree leaves or fibre cement sheets.

Prerequisites
Availability of seeds or seedlings of species suitable for local conditions.

Potential users
Farmers growing crops in regions exposed to frequent, strong winds.

Farmers are preparing to plant a row of trees in their field to act as a windbreak. Wind erosion is a major problem in Tunisia.
Distribution

A 20-minute videocassette is available, as well as illustrated brochures in Arabic, written in a simple and lucid style. Radio programs have also been produced and extension workshops organized.

Contact

Mrs Jelila Benzarti
Laboratoire de climatologie
Institut national de recherche agronomique de Tunisie
PO Box 2, Ariana-Tunis, Tunisia
Tel.: 23-19-23; 23-00-24; Telex: 143570MUVM
Non-Toxic Aquarium Fish-Catching

With a net and new techniques, this Filipino fisherman no longer needs cyanide to catch tropical fish.

Coral reefs around the Philippines are the source of 70% of the world's colourful, tropical marine fish. Cyanide is used to catch about 80% of them. It stuns them and makes the fish easier to catch. But it also kills many fish and shellfish along with their eggs and larvae, and creates a health hazard for the fishermen and their families. Repeated doses also kill the coral that provides food and shelter for numerous fish species, shrimp, lobster, shell fish, and other marine life. Over two-thirds of the coral in the Philippines is damaged. Despite being illegal, cyanide is still used widely by Filipino fishermen each of whom spends more than US $500 a year (about half his gross monthly income) on this poison.

The coral reef ecosystem is a major source of protein for Filipinos. Healthy reefs produce 35 tonnes of fish per square kilometre each year; deteriorated reefs produce only 7 tonnes. Fish account for more than half the animal protein in the rice-based diet of Filipinos. Reduced food supplies and growing unemployment are direct results of the use of cyanide and damaged coral. The coral reefs also used to be a major tourist attraction.

The Haribon Foundation for the Conservation of Natural Resources (the Philippines) and Ocean Voice International (formerly International Marinelife Alliance Canada) have trained Filipino coral reef fishermen to use fine-mesh nets as an alternative to cyanide. Once banned, hand-held nets are now allowed as long as the mesh is large enough to allow fish fry to pass through. The nets
do not damage the coral reef, are non-toxic, cheaper than cyanide and more effective.

A thin pleated net made of transparent mesh is draped over the coral. Divers bang bamboo sticks against the coral to get the fish to swim into the invisible net. They then use small dip nets to pick out the fish they want.

A 2-week course that the entire community (women and children included) is encouraged to attend deals with proper use of nets, fish habits, reef ecology, diving skills, and handling of captured fish. Fishermen are paid US $70 to attend. So far some 300 people have been trained in net fishing and management of the coral reef, and the training team is now 100% Filipino.

Potential users

Communities that engage in aquarium fish catching in Indonesia, Malaysia, the Philippines, and other regions where there are coral reefs.

Cost and availability

The nets cost about US $25 each. For information on suppliers contact Ocean Voice International at the address below.

Contact

Dr Don McAllister
Ocean Voice International
2883 Otterson Drive
Ottawa, Ontario, Canada K1V 7B2
Tel.: (613) 990-8819 (day) and 731-1755
Fax: (613) 521-4205

Resources and publications

• *Save Our Coral Reefs* is an illustrated educational manual that covers coral reef biology, causes of reef destruction, and what can be done to save the reefs. It is aimed at coastal communities whose livelihood comes from the sea, as well as inland peoples who receive their food from the sea. It is currently produced in English and Indonesian, with a Filipino version on the way. It is hoped the manual will be adapted for use in various countries and languages, substituting local examples and illustrations for those already in the text.

Remote Sensing for Artisanal Fisheries

Tuna and swordfish are an important source of revenue for many artisanal fishermen along the coast of Chile. Albacore or white tuna (*Thunnus alalunga*) and swordfish (*Xiphias gladius*) are affected by climatic conditions, and are found seasonally in areas where the sea surface temperature varies by a few degrees along persistent (5–10 days) thermal fronts. The fishermen use thermo-
Fishermen use these kinds of maps to plan expeditions.

meters and check the water colour for signs of phytoplankton on which the fish feed. Traditionally, the fishing boats can spend 2 or 3 days prospecting the sea, using up scarce gas and time to find the elusive fish. Prospecting the sea accounts for up to 40% of operating costs on artisanal fishing boats.

Researchers have now developed a method to produce timely maps of sea conditions to assist artisanal tuna and swordfish fishermen. The maps are based on images from the US NOAA-H remote sensing satellite, from which sea surface temperatures and the likeliest fishing grounds can be determined. The Chilean Centre for Space Research (CEE) has a NOAA receiving station and acquires daily images. The project, called SATAL and located at the Universidad Católica de Valparaiso, uses the data to prepare maps of probable fish locations. Satellite images received by 3:00 pm can generally be consulted the same evening in the communities located close to Valparaiso.

Use of the maps has contributed to an increase in the catch for tuna and swordfish, and has extended the fishing season for these species. While the maps contribute to an increase in revenue and significantly reduce the fishermen's prospecting expenses, they are costly to produce. Mechanisms for making the service self-sustaining are therefore essential.

Training in the use of the maps has been provided to area fishermen. To increase the independance of the fishermen and lessen the need for time-consuming training, simpler
maps have been devised and a monthly newsletter produced.

The newsletter, called SATAL Bulletin, provides diverse information of interest to tuna and swordfish fishermen, including articles on equipment, legislation concerning offshore fishing, statistics on catches, the satellite maps, and instructions on their use.

In a second phase, the researchers will develop an information package on the technology for worldwide distribution. They will also investigate the potential application of the technology for small pelagic species.

Prerequisites

To produce the maps: access to satellite images of the desired coastal area and training in their interpretation.

To use the maps: training in the reading of the maps and in basic navigation techniques to find the potential fishing grounds.

Potential users

Artisanal tuna and swordfish fishermen; fishing associations.

Contact

Dra Maria Angela Barbieri, Jefe, proyecto SATAL
Escuela de Ciencias del Mar
Universidad Católica de Valparaíso
Avda. Altamirano 1480, Casilla 1020
Valparaíso, Chile
Tel.: (56-32) 281868/9; Fax: 56-32-28.18.70
Telex: 230389 IJCVAL CL

Resources and publications

- *SATAL Bulletin*, a monthly newsletter in Spanish produced by the SATAL project and distributed free to fishing associations.

- *Elementos Básicos de Navegación Costera*. A publication to assist fishermen in using the remote sensing maps. Includes basic navigation techniques and case studies of problems encountered while using the maps.

Chinese Methods for Integrating Fish Culture with Crop and Livestock Farming

The integration of fish, livestock and crop production is an age-old practice in China that has been developed to a fine art. The Chinese system has developed its own characteristics and has attracted world attention. Advantages of this system include:

- It produces an artificial recycling ecosystem with no waste, reducing organic pollution. For example,
livestock and poultry manure are good organic fertilizers for fish farming; combining fish farming with mulberry cultivation on which silkworms can be raised allows the pupae to be used as fish feed and the worm feces and wastewater from silk processing to be used as pond fertilizers. Pond silt can be used as fertilizer for fodder crops, which can be used to feed livestock, poultry, or the fish.

- It increases the food supply. By using manure instead of pelleted grain and animal protein fish feeds, the system increases the food available for human consumption. Integrated fish farming can fully use the water, land, and pond silt to increase the food supply. For example, geese and ducks may be raised on the pond, pond dikes may be used for fruit tree and mulberry cultivation or for raising pigs, and dike slopes may be used for fodder crops.

- The diverse activities on an integrated farm increase employment opportunities.

- There is increased production and income. Currently, pelleted feeds for cultured fish are very expensive. The integrated fish farm produces its own feeds and fertilizers, thereby reducing costs.

While this practice has been very successful, the reasons for its success have not been systematically identified and vary from region to region.

The Asian Pacific Regional Research and Training Centre for Integrated Fish Farming in Wuxi, China, has been doing aquaculture research for 10 years, and has provided annual training courses for students from Africa, the Asia-Pacific region, Europe, Latin America, and the Middle East. The Centre is devoted to the collection, review, and scientific understanding of the traditional Chinese practice of integrated fish farming and the transfer of the technologies to other parts of the world. They have produced a manual entitled Integrated Fish Farming in China, which introduces the Chinese system and acts as a guide for adapting it to suit local conditions.

Various Chinese integrated fish farming models have evolved according to different geographical and climate conditions, local agricultural characteristics, socioeconomic conditions and traditional practices. Most fish farms have established complex integrated farming and management systems. For example, the Huzhou sheep provide manure for growing mulberry on which silkworms live; the silkworm dregs are used to feed the fish, the autumn leaves of the mulberry serve as feed for the sheep in winter. Complementary species of fish in the same pond are also used. For example grass carp eat green fodder and their excreta fertilize the water or are eaten by the silver carp.

The Wuxi centre has focused its research on identifying the essential elements that would allow for transfer of the technology to other regions, including: key factors influencing economic returns from the fish farms; the interrelation of economic, energy, and material factors in each system; the optimal species, stocking ratio, and input of feed and fertilizer to meet different local conditions.
The manual reflects the understanding and experience gained by the workers in the centre, as a result of studies in China and technical cooperation with people from other countries. Because the Chinese system of carp culture is the base level from which integration with other crops, plant and livestock, has evolved, a good portion of the book begins with the biology of the major carp species and the introductory aspects of pond culture. Someone from another country who is new to the Chinese practice of integrated farming needs to understand the basic biology, reproduction, and culture of Chinese carps. The book then goes on to introduce Chinese and other models of integrated fish farming; management issues; animal raising and plant cultivation on an integrated fish farm; and the design and construction of an integrated fish farm.

The Wuxi centre will be focusing the next phase of its research in three main areas:

- An analysis of socioeconomic, biological, financial, and management inputs on fish farms;
- How to implement research findings to increase income on rural farms;
- Development of an interdisciplinary method for analyzing integrated fish farming in China and elsewhere in the world.

The centre also provides an annual 4-month training course in integrated fish farming for aquaculturists from developing countries.

Potential users

Aquaculture farmers, co-ops, extension workers, researchers, and scientists interested in maximizing use of available resources and land on fish farms.

Contact

Mr Guo Xianzhen
Freshwater Fisheries Research Centre
Asian Pacific Regional Research and Training Centre for Integrated Fish Farming
Wuxi, Jiangsu Province, People’s Republic of China
Tel.: 667424 or 667892; Telex: 362002 WXHBCN
Cable: 3225 WUXI CHINA
Fish Spawning Kit

Aquaculture has been practised in China for thousands of years. An old problem that continues today is the reluctance of fish to breed in captivity, due to their high density in the ponds. It is essential to induce spawning of cultured fish to produce fry for stocking the ponds, because the lack of fish fry limits production.

Canadian and Chinese researchers have now developed a fish breeding kit that will reduce the costs of aquaculture and increase efficiency in fish production.

The technique — called the Linpe method — induces ovulation in female fish by injecting them with a combination of a synthetic hormone and the drug domperidone. The hormone stimulates the sex organs of the fish while the drug inhibits the action of dopamine, a substance produced by the fish that inhibits ovulation.

In traditional fish spawning methods, carp are raised and killed to produce a pituitary extract used to induce spawning. Many fish are sacrificed in the process and the extract has a poor shelf life. This technique also requires that the fish be injected at two separate intervals to induce ovulation.

The new method reduces the cost of production, increases the supply of seed fish, and is more convenient. The rates of spawning, fertilization, hatching, and survival were significantly higher in the trials than could be achieved with pituitary injections. The hormone and the drug can be given together in a single injection, which means that the brood fish stock are handled only once, reducing the risk of disease or damage to the fish. The new method does not alter the reproductive cycle of the fish, and the fertility

The carp held by this Chinese researcher is one of many species whose reproductive cycles have been brought under control.
and viability of the offspring are normal. The solution does not require refrigeration and has a long shelf life. It has been tested on a wide range of fresh, salt, and brackish water species, including carp, bream, salmon, catfish, loach, and others.

The kit consists of a vial of the synthetic hormone, a vial of the drug domperidone, saline solution, and a syringe.

The kit has been distributed in the People's Republic of China through commercial outlets as well as through extension services by Zhongshan University, Guangzhou. Workshops have been held in fish hatcheries and with Chinese farmers to promote acceptance and proper use of the new method.

Potential users

Fish farmers, breeders, and hatcheries around the world. The kit has been introduced in a number of developing countries, including Bangladesh, India, and Pakistan, as well as countries in South America.

Cost and availability

The kit has been commercialized by Syndel Laboratories under the name Ovaprim. The company has distributors in several countries and the cost of the kit varies depending on volume, import duties, distribution costs, etc. Syndel will refer enquiries to the local distributors. Ovaprim is available in 10 mL and 100 mL vials.

Contact

Syndel Laboratories Ltd
9211 Shaughnessy St.
Vancouver, BC, Canada V6P 6R5
Tel.: (604) 321-7131; toll-free line: (800) 663-2282
Telex: 0636700394 MBX CA; Fax: (604) 321-3900

Dr Lin Hao Ren
Department of Biology
Zhongshan University
Guangzhou, People's Republic of China

Dr R.E. Peter
Department of Zoology
University of Alberta
Edmonton, Alberta, Canada T6G 2E9

Rice–Fish Culture

Cultivating rice and fish together has been a 2000-year-old tradition in some parts of Southeast Asia. However, this beneficial cultivation system was gradually abandoned due to population pressures, decreasing stocks of wild fish, and the “Green Revolution” which emphasized high input, monoculture using high-yield rice varieties, pesticides, and herbicides (which are toxic to the fish). The practice, however, has been spontaneously returning, for example, in Northeastern Thailand, where
poor farmers cultivate under difficult conditions and use pesticides sparingly.

Rice–fish culture can actually increase the yields of rice (up to 25 or 30% in some cases) while providing farmers with an important source of protein and extra income. It is a low-cash-input, low-risk technique.

To incorporate fish in a rice paddy, farmers must do the following:

- They begin by digging a small pond or trench 0.5 to 1 metre deep in a low-lying area of the rice field. This trench becomes a refuge for the fish during planting and harvesting, or when there is little or no water. This also allows the farmer to keep the fish alive well after the growing season.

- The excavated soil is used to raise banks around the field for better water control. These banks provide some land above water level, which can be used to grow other crops such as vegetables or fruit trees.

- After flooding, the rice is planted.

- Fingerlings of carp, tilapia, catfish, or other species are introduced into the trenches.

- After 3 weeks, once the rice is well established, the fish are let into the rice fields.

- Supplemental feeding varies from none at all to frequent feedings, depending on the farmer and the local conditions.

- At harvest, or if chemicals are used, the water is drained and the fish collected from the trenches.

Benefits of the system include:

- The recycling of nutrients by the fish through feeding and depositing feces in the soil; this increases the
uptake of nutrients such as phosphorus and nitrogen by the rice;
• An increase in rice yields;
• An increase in income both from the rice and the fish;
• A reliable source of protein food for the farmers, countering the decrease in available wild fish in many countries;
• A reduction in insect pests (such as leaf-hoppers, stem-borers and aphids) and weeds, which the fish eat;
• A reduction in the use of fertilizers.

Some constraints to the system include:
• The uncertainty of rainfall and limited irrigation water;
• The possibility of water contamination by pesticides, herbicides, and chemical fertilizers, which are toxic to the fish and the organisms on which they feed;
• Fish predators such as snakes can lower the fish yield.

There are many different methods of rice–fish culture, which vary in terms of the types of trenches used, the stocking rates, the fish species used, and the supplemental feeding. It is important to base rice–fish culture on local farmers' current cultivation methods.

Advantages, drawbacks, and stocking rates for various species of fish can be found in the Sustainable Agriculture Newsletter (see Resources and Publications, below).

Prerequisites
Availability of good water (uncontaminated by pesticides and chemicals). Availability of fish fingerlings of the right size and at the right time, as the timing of the introduction of the fish is critical to the success of the system. This means that rice–fish culture will be more successful in areas where there are local fish hatcheries. However, some farmers allow nature to stock their fields with wild fish, or use various types of traps. If supplemental feeding is necessary, it usually consists of locally available rice bran, termites, vegetables, leaves, etc.

Potential users
Rice–fish farming is a low-cost, low-risk option for poor rice farmers in rice-farming countries, including Bangladesh, China, India, Indonesia, Korea, Laos, Madagascar, Malaysia, the Philippines, Thailand, and Vietnam.

Contact
Dr Achmad Fagi, Director
Sukamandi Research Institute for Food Crops
JI Kaya 9, Sukamandi, Subang
West Java, Indonesia

Mr Niran Tongpan
Farming Systems Research Institute
Department of Agriculture
Bangkhen, Bangkok 10900, Thailand
Tel.: 579-5595, 579-0053; Telex: 84478 INTERAG H
Acadja

Fish Rearing in Lagoons

Fish consumption in Côte d'Ivoire is increasing. However, most of the fish is imported since existing stocks can no longer meet demand. Researchers at Côte d'Ivoire's Centre de recherches océanographiques discovered fish-rearing techniques in Benin that had been adapted to the country's ecosystem, especially the 1200 km² of lagoons suitable for fish rearing. They were looking for a cost-effective system designed around local materials that would enable the villagers to engage in fish rearing on their own, without outside help.

Acadja fishing is traditionally practised in Benin. The acadja or "fish pen" is an artificial reef made from branches in about 1 metre of water.
The system has been adapted in Côte d'Ivoire for more modern, intensive rearing with the following modifications:

- The branches were replaced with bamboo, which is more durable (it lasts for approximately 4 years, whereas one-third of the branches have to be replaced each year). In addition, algae and other organisms can easily cling to the bamboo, providing natural food in sufficient quantities for the fish and eliminating the need to feed them. The yield using bamboo is double that using branches (8–10 tonnes per hectare compared with 5–6 tonnes when using the traditional enclosure). Bamboo grows naturally along the lagoons, where it can also be planted in large quantities.

- The enclosures are surrounded by a net that prevents the fish from entering or leaving. The net also stops other fish from being trapped in the acadjas. The system avoids possible conflict between the owner of the acadjas and the traditional fishermen who depend on the other fish.

- The lagoon Tilapia is ideal for rearing in acadjas. It can live solely on the algae growing on the bamboo; this reduces the system's demands on the villagers. The rearing of other species, such as Arius gambensis, requires additional food input, which can account for up to half the production costs.

The first stage in building the enclosures is setting up the nets. After this, the bamboo is spaced every 50 cm around the net, but a small section is left free of bamboo poles. This section gives the owners access to the pen for net fishing. Then the enclosure is stocked. A 2500 m² enclosure may be stocked with 25 000 fry (10 fry per square metre). The enclosure can be stocked artificially or left in a natural state. The fish can be harvested in one of two ways: a single harvest at the end of the year or selective fishing throughout the year using nets that let small fish slip through. According to research results, the preferred method is selective fishing, without moving the bamboo. Acadja fish-rearing generates work in the construction of the enclosure (this requires a lot of manpower for collecting and staking the bamboo) and in fishing — about a dozen people are needed for 5–10 days. At Adiapoté in Côte d'Ivoire, the villagers paid about 60% of the costs, excluding the net.

Prerequisites

Lagoon water about 1 metre deep, bamboo, and nets. The construction of the enclosures is highly labour-intensive (approximately 700 person-days per hectare of acadja) and requires some capital expenditure. Some sort of collective organization (cooperative or other) is necessary, given the amount of construction work, capital, and manpower required. A system to protect against poaching is also useful.

Potential users

Governments, NGOs, and groups of fishermen in countries where the necessary conditions exist. The enclosure
Artisanal Oyster Farming

Jamaican researchers have adapted and improved oyster farming methods to provide the rural population with an alternative income and employment and to help solve the problem of depletion of natural oyster stocks due to overfishing. Local materials (used car tires, bamboo) and local marine skills can be used for the artisanal farming of mangrove oysters (*Crassostrea rhizophorae*), which grow naturally in coastal waters on the roots of the red mangrove tree (*Rhizophorae mangle*).

Oyster farming has the potential to create new or supplementary employment, balance the local economy's dependence on tourism, and provide an alternative source of protein in the local diet. As well, oyster racks attract more fish closer to shore.

To provide oyster seed, hatcheries were initially determined to be too costly. The technique is to collect oyster spat (young oysters) in the wild by hanging strings of "cultch" (usually 15 x 10 cm pieces of cut rubber tire), separated by 2.5-cm hose spacers, from mangrove and bamboo racks in the intertidal zone. As the tide moves, the spat are caught on the strings and left to feed there and grow to a size of about 2.5 cm after 6–8 weeks.

The young oysters are then sold to the oyster farmer, who suspends them from racks to "grow out" or "fatten." The large oysters are harvested after 3 months, and the others left to grow for 2 more months. They are sold to restaurants and to local vendors.

The mangrove and bamboo racks are built in areas where the water depth is 2–3 metres. Nylon strings are hung from the racks with cultch separated by 15-cm spacers along the string. Bamboo spacers were originally used, but were replaced with old drip irrigation tubing which is available in large quantities, can be reused, and is dura-
ble and inexpensive. Racks can accommodate some 200 to 400 strings, with eight cultch pieces on each.

To control the fouling of the spat by other organisms, such as barnacles, colonial ascidinas, and encrusting algae, the oysters must be "exposed" to the air every 2 weeks for 4–6 hours. This kills the organisms that have attached themselves to the cultch and are competing with the oysters for food. This is essential to produce a good yield of quality oysters. The strings are hung over a single upper beam, which causes less damage than the previous method of laying out the strings on rafts.

Present production is approximately 400 dozen oysters per rack, with a ratio of small to large oysters of 4:1. Market prices in 1990 were J$5 (Can $0.30) per dozen (small oysters) and J$10 (Can $0.60) per dozen (large oysters). Damaged oysters represent between 5 and 15% of the total harvest. Although these were once discarded, they are now processed to make a delicious oyster "punch" blending oyster, boiled roots, alcohol, eggs, and milk products. The drink is becoming very popular among Jamaicans.

Because these oyster farming techniques produce mainly small oysters, several marketing strategies are being implemented to increase farmers' profits from small oysters. These include offering catering services for various events, which use all sizes of oysters and encourage organization and cooperation among farmers; and various processing options, including oyster punch.

Research into oyster farming in Jamaica is ongoing, in an effort to further increase incomes and yields.

Prerequisites

- Access to sufficient, good-quality oyster seed.

- An adequate market demand for the oysters. Tourist areas often provide higher prices and a higher demand for oysters.

- The water quality must conform to official standards of safety (maximum of 14 fecal coliforms per 100 mL of water).

When in the water, these lines of cut rubber act as anchors on which oysters can grow and be harvested.
• Oyster farming requires appropriate sites, protected from rough seas.
• Materials needed are mangrove or other hardwood poles and bamboo for the racks, used irrigation hose to make spacers for the strings, monofilament fishing lines, and used car tires to cut cultch and to make floats. Cultch pieces can be cleaned and reused, and even recovered from the sea floor by divers.

Potential users
Fishermen living in coastal areas appropriate to oyster farming.

Cost and availability
It is estimated that an oyster farmer needs 10 racks per season to earn a living, and must hire one extra person for the growing-out period and two people for the harvest. As a supplement to other income, about four racks are needed. A four-rack oyster farm cost J$3000 to J$4000 (Can $180 to $250) in 1985.

Contact
Karen Roberts
Ministry of Agriculture
Hope Gardens, Kingston 6, Jamaica
Tel.: 809-927-1734; Fax: 809 927-1904

Gary Newkirk
Mollusc Culture Network
Biology Department, Dalhousie University
Halifax, Nova Scotia, Canada B3H 4J1
Tel.: 902-494-2284; 902-494-3610;
Fax: 902-494-6899; 902-494-3736
Telex: 019-21863 DAL UNIV

Resources and publications
• Oyster Culture in the Caribbean, Proceedings of the Oyster Culture in the Caribbean Workshop, Kingston, Jamaica, November, 1990. Published by the Mollusc Culture Network.

SWIMTOP
A Natural Piscicide to Protect Shellfish Culture

Shellfish farming, such as shrimp and prawn culture, is an important industry in Thailand, both for the provision of protein in the local diet and for export. However, up to 40% of the crop can be lost to predatory and competing fish such as eels, mullet, sea bass, and tilapia that invade the growing ponds on the coast. A natural fish poison called teaseed cake is used to clear the ponds of fish, but it gives unreliable results and must be imported from China.
Researchers have now developed an alternative natural piscicide from a local plant. Given the trade name SWIMTOP, it is inexpensive, nontoxic to humans and most other nontarget organisms and is effective in killing the invading fish in the pond.

The product is made from the dried crushed leaves of a local small tree which can be cultivated. It is easy to grow and use and readily available to local fishermen. The active ingredients are called saponins, which are harmless to mammals, do not irritate the skin and do not render the fish inedible.

The commercialized poison comes in the form of a fine powder. A calculated amount of 15 grams per tonne of pond water must be soaked in water for 2 hours. The mixture is then spread into the pond. The poison is absorbed by the fish through the gills. It destroys the gill surface, disrupting the exchange of oxygen. It does not affect the shrimp because of differences in physiology. SWIMTOP is a natural fish poison that breaks down quickly, leaving no toxic residues in the fish or the water. The dead fish are safe for eating. It has the same effectiveness as teased cake but is more reliable.

SWIMTOP can be used in both freshwater and brackish water ponds. At a sublethal concentration, it will slow down the fish, which can then be easily harvested from the ponds.

Potential users
Shellfish and fish farmers.

Cost and availability
SWIMTOP has been patented in Thailand and Canada. A company is being established to handle its production, and it is expected to be commercially available in 1993.
Fish Attractors to Increase Tuna Catches by Small-Scale Fishermen

Artisanal fisheries account for almost 50% of Brazil's fish catch. In terms of value, tuna is an important resource for these fishermen, who are responsible for an important proportion of Brazil's total tuna catch. Researchers are helping to increase tuna catches by small-scale fisheries along Brazil's Northeastern coast through a better knowledge of tuna distribution and abundance, and through the use of improved technologies such as artificial fish attractors.
Fish attractors have been used successfully in Asia by artisanal fisheries to catch live bait and tuna. The principle is simple: a structure is placed under the water and as algae begins to grow on it, it attracts small fish which in turn attract larger fish. Fish attractors are extensively used by commercial tuna fisheries. Simple, inexpensive structures are now being used by small-scale hook and line fishermen.

The fish attractors built in Brazil are floating rafts made of bamboo sticks in a cylindrical form 3 metres long and 1 metre in diameter. From this construction hangs a comb-like array of dried coconut leaves and pieces of discarded fishing nets. The fishing nets provide more surface area for drifting organisms on which small fish feed. A 200-litre drum, filled with concrete, acts as an anchor for an individual attractor or group, and is tied with steel and polypropylene ropes. The attractor is installed at a depth of 100 to 300 metres.

Once a concentration of tuna and tuna-like species occurs, fishermen can harvest as much as 100 to 200 kg per day using hooks and lines. Larger-scale fishermen use a boat with a light at night to keep the fish concentrated under the attractor. At dawn, the “light boat” detaches the line of coconut leaves and lets them drift away from the attractor. Another boat with purse nets surrounds the “light boat” with nets and pulls in the catch. The line of coconut leaves is returned to the attractor to produce another concentration of fish.

Fish attractors can also be made in different shapes and with different materials, such as steel rafts or marker buoys.

They can be used in fresh water lakes and rivers to catch species such as catfish, mudfish, and carp.

In Brazil, data is being collected on tuna distribution, abundance and seasonality, and training is being provided to local fishermen’s cooperatives in implementing a tuna fishing program using the fish attractors.

Prerequisites

Fish attractors can be made from local materials such as bamboo, coconut branches, steel drums and concrete. A good knowledge of local tuna distribution and abundance is needed, as well as training in the use of the attractors.

Potential users

Small-scale fishermen, particularly of tuna and other pelagic species.

Contact

Mr Geovanio Milton de Oliveira
Centro de Pesquisa e Extensao Pesqueira do Nordeste
Ministerio da Agricultura / Superintendencia do Desenvolvimento da Pesca
Praia de Tamandaré, Pernambuco, Brazil
Tel.: (081) 527-1090; Telex: (081) 4461 SUDP BR

79
Improved Technologies for Artisanal Fishing

Lake Victoria, the world's second largest fresh water lake, is shared by three East African countries: Kenya, Tanzania and Uganda. The lake is surrounded by lake-shore savannah, which is characterized by low and unreliable rainfall. There is little arable land and agriculture is at the subsistence level. Fishing, and the processing and marketing of fish are therefore important economic activities for the people living around the lake. The fishery is a primary source of food and employment in the area.

The fisheries in Kenya's portion of the lake have changed in the last 10–15 years, due to changes in species and the discovery of export markets for frozen Nile perch filets. The resulting increase in commercial fishing has transformed the fisheries. For example, women, who represent 75% of those engaged in artisanal processing/trading of fish, are increasingly being marginalized. Production, processing, and marketing have become more and more technology-dependent, making it difficult for women to stay in the industry. The fish species of interest to both commercial and artisanal fisheries are Nile perch (*Lates niloticus*) and omena (*Engraulicypris*).

The export of local fish has also reduced the supply of locally available, relatively inexpensive protein.

IDRC is supporting research by the University of Nairobi to determine the condition of artisanal fishing in the region. The researchers are looking at ways of improving the earnings of rural women fish processors and traders, through improved processing methods. The research also focuses on the socioeconomic status of fishermen and fish traders, why they succeed or fail, their linkages to other parts of the economy, and marketing channels.

The small-scale processors and traders must acquire new skills and tools to compete effectively with larger, export-oriented fisheries. Improved processing techniques will increase both the shelf life and the value of the various fish products. Longer shelf life in turn allows for market expansion and increases the economic value of the fish as well as nutrition levels in the population.

At the level of improved technologies, efforts are being made to identify new strategies for the participation of women's groups in Nile perch processing and marketing, and to develop improved techniques for fish handling, smoking, and marketing. More efficient Nile perch smoking kilns appropriate and acceptable to the fish processors are being field-tested and adapted to local conditions. Improved drying and smoking kilns that use only one third as much fuelwood as traditional practices were developed in a previous project.

Omena is preserved by sun drying. Several constraints to effective and hygienic drying indicated a need for improved drying racks. Substantial reduction in post-
Enhanced fish smoking kilns are part of a project aimed at improving techniques and incomes in the fishing communities around Lake Victoria.

harvest fish losses can be obtained from the improved omena drying technology currently being tested.

At the training level, an effort is being made to train fish processors in special skills, such as business management, that are relevant to development in fishing communities. Components of the training are improved market distribution, accounting and bookkeeping, better organization and stability in women's groups, cooperatives, and bank loans.

Artisanal processing is not proposed as a replacement for large commercial-scale processing. What is needed is to establish the conditions for both to coexist.

Potential users

Artisanal fishermen and fish traders/processors, mostly women, along the coast of Lake Victoria. The results will be applicable to the Tanzanian and Ugandan shores of Lake Victoria. Improvements can be transferred to fishing communities on other lake fishing areas in East and Southern Africa.

This project will forge links with personnel in Tanzania where work on artisanal fish processing is being supported through the UK-based Natural Resources Institute (NRI). Links with similar activities in West Africa are being pursued.

Contact

Dr Gilbert E.M. Ogutu
Department of Religious Studies
University of Nairobi
PO Box 30197
Nairobi, Kenya
Tel.: (2542) 334-244
Resources and Publications

Energy
Micro-Hydroelectricity Potential in Rural Areas

In the remote and poor Northeastern province of Misiones in Argentina, the Instituto de Economía Energética has developed a method for identifying micro-hydroelectricity potential over large areas of remote countryside and matching it with the electricity required by rural households.

The method was developed to identify the lowest cost option for providing electricity to rural areas, as well as to provide economic information and policy recommendations for policymakers.

Although the importance of energy to rural communities is recognized, the provision of electricity has been hampered by low population densities and the limited purchasing power of rural people. The research undertaken by the Rural Energy Technology Assessment and Innovation Network (RETAIN) in Misiones showed that decentralized micro-hydro plants can be an attractive alternative to trying to integrate rural areas into a "central grid" system.

Three alternative micro-systems were studied:

- Micro-hydro systems, consisting of easily built dams on small rivers and streams (using earthfill and rocks), connected to a micro-turbine and generators. The capacity ranges from 4 to 50 kilowatts (enough for one family or a few households).
- Thermal systems, fueled by diesel or gasifiers using charcoal (capacity 4 to 50 kilowatts).
- Wind systems, using a three-blade design, direct current generators and storage batteries.

The method for identifying the potential of these small energy sources consists of six modules:

- A "diagnosis" of the region's socioeconomic and energy situation, including the underlying processes of wealth creation and their effect on energy consumption;

![Diagram showing micro-hydro power distribution](image-url)
• A survey of energy requirements, based on an analysis of people's energy needs as distinct from their ability to pay (up to 70% of electricity needs can't be paid for by rural users);

• An assessment of the potential of the area to supply energy from different sources;

• A map of electricity needs overlaid with the locations of potential micro-plants, as well as existing power stations and distribution lines;

• An evaluation of alternative packages, i.e., central grid electricity, decentralized micro-plants (thermal, hydro, or wind), or combinations of the above, with cost comparisons;

• Development of preliminary policy recommendations, including the impact of different options on elements of the macroeconomy, such as employment, the development of local industry, and the use of foreign exchange.

The project has gone on to a second phase to look at the legal, institutional, and financial mechanisms for using decentralized micro-hydro plants, as well as potential markets and the necessary planning for organizing and managing decentralized systems. This includes looking at the availability of credit from financial institutions, the availability of local suppliers and the ability of people to install and maintain the equipment.

As well, research is being done on how small-scale micro-hydro plants can be replicated over larger areas, and how they can be integrated with a central electricity system (for example, by transferring subsidies from the central system to users of micro-hydro plants). They are looking at how to overcome opposition to decentralized provision of electricity and have already had an impact on policymakers and energy companies in the country.

Potential users

Rural people would be the main beneficiaries of a small-scale electricity supply system. The method for assessing its potential can be used by governments, utility companies, NGOs, and policymakers wishing to expand micro-hydro projects to a full-scale rural system of electricity supply, and to overcome resistance to integrating small-scale systems within the central grid. Some interest has already been shown by policymakers and utility company officials in Argentina.

Contact

Mr Daniel Bouille
Instituto de Economía Energética
Piedras 482 - 20H, 1070
Buenos Aires, Argentina
Tel.: 54(944)22050
Fax: 54-1-34-5437
The Partial Carbonization of Peat to Make Domestic Fuel

Like many other African countries, Burundi suffers from a shortage of firewood, which accounts for 90–95% of the energy used in the country. The price of charcoal is rising steadily and deforestation is a serious problem. However, Burundi has peat reserves of up to 1 billion tonnes. Peat is already extracted in small quantities for use as fuel in some institutions, including the armed forces and small factories. However, untreated peat is not readily accepted as domestic fuel because of the thick smoke and unpleasant smell it produces.

With the assistance of the Société d'ingénierie Cartier (Canada), Burundi's national peat marketing agency, the Office national de la tourbe du Burundi (ONATOUR), has developed a small-scale procedure to transform untreated peat into an acceptable fuel for small industries and household use. Peat coking (total carbonization) is a costly process that requires sophisticated equipment, whereas partial carbonization is considerably less expensive and can produce acceptable fuel. This method, which can by used both by small and large industries, consists of the following stages:

- The peat is cut, macerated and dried in the sun.
• It is put into an oven and pyrolyzed until partial carbonization occurs.

• This procedure produces biomass charcoal that is then cooled, sifted to remove any particles that are too large, mixed with water and a binder (such as molasses), formed into briquets using a press, and dried. The biomass charcoal produced using this method contains 40–45% peat.

The combustion of the bricks was greatly improved by mixing the peat with agricultural byproducts, such as rice husks, coffee hulls, and wood shavings. The briquets now consist of at least 50% vegetable products and are accepted by customers.

The pilot factory in Burundi can produce up to 4 tonnes of biomass charcoal per hour. Biomass charcoal is clean and efficient. Given the poor reputation of untreated peat as a fuel, an education program is required to convince users that the briquets do not have the same drawbacks as untreated peat.

This new technology might help reduce deforestation in the country. The pilot factory created 75 new jobs as well as work in the peat bogs.

Prerequisites

Peat reserves; binder (such as molasses or manioc flour). The pyrolysis oven can be made using local methods and materials. The pilot oven, made from fire brick and cement, covers approximately 18 square metres and costs about Can $25 000 to build. The press for forming the briquets is imported and costs about Can $60 000. An improved version, made in Niger, has a completely sealed metal outer layer and an interior made from fire cement.

Potential users

Small rural industries in countries that are experiencing energy problems and have peat reserves (including Bangladesh, China, Rwanda, Senegal, Sri Lanka, and Zaire).

Contact

Mr Léonce Sinzinkayo
Office national de la tourbe
PO Box 2360
Bujumbura, Burundi
Tel.: 26480/26748
Telex: 5082 CTPUBL BDI

Mr Paul Courteau
Société d’ingénierie Cartier
2045 Stanley
PO Box 6086, Station A
Montreal, Quebec
Canada H3C 3Z9
Tel.: (514) 499-4571
Telex: 055-6120
Fax: (514) 499-4515
The Ceramic Jiko Stove

In Kenya, 80% of urban and 10% of rural families use the traditional metal "jiko" charcoal stove for cooking. The remaining rural households use firewood on a three-stone fireplace. Wood is the main energy source for cooking, light, and heat in many East African countries (80% in Kenya, 96% in Tanzania, 90% in Uganda). To help address the deepening deforestation crisis, researchers at KENGO (Kenya Energy and Environment Organisations) have developed a more energy efficient jiko.

The new stove uses up to 50% less fuel and is light (3–6 kg) and portable. Ideal for low-income families, it reduces the cost of fuel while decreasing cooking time. For example, water can be brought to a boil faster and for a longer period using the improved jiko. Because of its shape, the stove's heat is directed only to the desired location, right under the cooking pot.

The ceramic jiko lasts approximately 30 months with intensive use, longer than the traditional jiko. The outside casing is made of metal and produced by local craftsmen. The ceramic inner lining is produced by large and small enterprises, including several women's groups.

Since the new stove costs slightly more than the traditional version, there is a need for educating people on the savings in fuel costs. The cost of the jiko can be recovered in fuel savings in 2–3 months. Savings to the country's forests have been estimated at 206 000 tonnes of wood or 570 000 hectares of trees per year, with some 70 000 improved jikos in active use.

Aside from KENGO, several NGOs, including CARE (Kenya), have worked with women's and community groups on the production, demonstration and dissemination of the stoves.

With the success of the domestic ceramic jiko, researchers have developed an improved institutional stove for rural hospitals, clinics, schools, and prisons. These institutions traditionally use fuelwood and charcoal as their main energy sources, and thus contribute to the country's fuel-wood crisis. Increased costs of fuel put a major strain on their resources.

The institutional ceramic jiko is based on the same model as the domestic jiko, with a metal outer shell and a ceramic or vermiculite inner lining. It measures 30 to 50 cm in diameter and can last for up to 5 years. Fuelwood savings can reach 50%. Cooking time is reduced and there is less gas emission than with other types of institutional stoves. As well, a water jacket can be added to the stove to warm water and prevent heat loss from the metal sides of the stove, allowing it to be handled even while in use.

Prerequisites

The use of the stove requires access to fuelwood or charcoal. Production of the stoves requires ceramic material and scrap metal. Training has been provided by KENGO to other regional NGOs in the manufacture of the new
jiko. Quality control is an important factor in maintaining the improved efficiency of the stove.

Potential users

Domestic ceramic jiko: rural and urban low-income families.

Institutional ceramic jiko: hospitals, schools, prisons, and any institutions that use fuelwood or charcoal as their main energy source.

Cost and availability

The trade name of the new domestic jiko is Kimathi Jiko, and it sells for 55 to 75 Kenyan shillings, or Can $2 to $3. The institutional stove sells for 25 000 to 30 000 Kenyan shillings, or close to Can $1000. The institutional stove is designed to cook for at least 100 people, using 50-litre or larger cooking pans.

Suppliers of the stoves include:

Domestic jiko:

- Program Officer, Wambugu (Central Highlands), PO Box 5069, Nyere, Kenya
- Mr Richard Kimani, Jerri International, PO Box 52747, Nairobi, Kenya

Institutional stoves:

- Mr C.J. Davey, Bellerive Foundation, Ngong Road, PO Box 42994, Nairobi, Kenya
 Tel.: 254.2.720 274; Fax: 254.2.726 547
- Charles Gitundu, Rural Technology Enterprises, PO Box 28201, Nairobi, Kenya, Tel.: 796352

Contact

Kenya Energy and Environment Organisations
PO Box 48197, Nairobi, Kenya

Resources and publications

Integrated Wood-Based Energy System

In remote areas where electricity is unavailable and where other fuels are too costly, people meet their energy needs by using wood for fuel or to make charcoal, both of which are environmentally damaging. Charcoal kilns can cause serious air pollution. In response to this situation, the government of the Philippines is seeking to reduce deforestation by establishing tree farms using fast-growing *Leucaena* species.

The Forest Products Research and Development Institute in the Philippines is using the potential of the tree farms to develop a small-scale biomass energy system that provides rural areas with small decentralized electricity plants. The technology centres on a charcoal-producing kiln and is appropriate for areas where fuelwood is abundant and lump charcoal production is already an industry. Combustible waste gases emitted by the kiln during carbonization, which otherwise pollute the air, are captured, cleaned, and used with about 50% diesel fuel to run a power generator.

In a first system, four sets of charcoal kilns are used to generate the combustible gases and heat energy. The simplified second system adopts a biomass pyrolyzer that produces charcoal and combustible gases using agricultural wastes such as sawdust, rice hulls, coffee bean hulls, cocoshells, and wood chips. Both systems are backed up with a gas cleaning and cooling train and an electric generator run off a diesel engine.

The setup also generates byproducts such as better-quality charcoal, wood tar, and heat energy to operate a dryer. Ashes from the kilns are used as fertilizer. The system can also be adapted to run small buses, fishing boats, rice threshers, irrigation pumps, and small ice plants.

Prerequisites

An established source of agricultural and forestry wastes to supply the system and available technical support to operate the system. The annual fuel requirement to sustain the first system (charcoal production) is 2700 cubic...
metres of wood. It produces 200 tonnes of charcoal per year, and can run a 12.5 kW electrical plant. The second system (biomass pyrolyzer) uses 20 kg per hour of agricultural wastes. It produces an estimated 9.6 tonnes of charcoal per year and can run a 12.5 kW power plant. The initial capital cost of setting up the plants is approximately Can $1600 for the charcoal kiln system, and Can $1400 for the pyrolyzer system. It is estimated that these costs can be paid back within 2–4 years.

Potential users
Communities in remote regions without electric power, particularly where there is abundant wood from tree farms and where charcoal production industries already exist; small businesses or government services, such as rural hospitals and clinics; and villages requiring a reliable, low-cost energy system.

Contact
Dr Emmanuel D. Bello, Director
Forest Products Research and Development Institute, College, Laguna 4031, The Philippines
Tel.: (63) 2377; (63) 2586; (63) 2360
Telex: 40860 PARRS PM; Fax: (63) 94 - 3630
Environment
Iguana Farming for Food and Tropical Forest Preservation

The green iguana (Iguana iguana), indigenous throughout Central America, has been traditionally used as a source of food by Latin American farmers who refer to the tasty reptile as "chicken of the tree" (gallina de palo). Unfortunately, over-hunting of their eggs and meat and the destruction of their tropical forest habitat has caused a sharp decrease in the iguana population. They are classified as endangered in some countries and are extinct in others.

The Fundación Pro Iguana Verde (FPIV) in Costa Rica is implementing a program for the conservation of green iguanas by successfully breeding and raising them in captivity for reintroduction into natural areas. Iguana farming offers an alternative source of food for local consumption and can increase the income of farmers with secondary production activities using skins and other products, such as fat and eggs for medicinal purposes.

The green iguana is the only iguana that lives and feeds on trees. Iguana farming offers an economic alternative to cattle ranching while protecting the natural habitat of the iguana — the tropical forest. Iguana management is designed to be one component of other productive activities in Latin American farming systems. It provides incentives for reforestation, which in turn counteracts erosion, conserves water resources, and enhances soil fertility.

The key elements of iguana farming are reproduction in captivity, controlled incubation, and raising hatchlings in captivity. Once the hatchlings are 7 months old they are released into forested areas on farms, where they grow to harvestable size in two additional years. It is estimated that iguanas can yield as much protein per unit area as cattle. Essential components of iguana farming are the restoration and protection of the tropical forests for food and habitat.

To create the farms, enclosures are constructed with sheet-metal walls sunk 30 cm into the ground. Inside, the animals sleep in shelters made of bamboo and vegetation. Each shelter has an adjustable entrance slit through which young lizards can slither, but predators, which are
usually larger, cannot. Most are set on stilts and food is served in the shade underneath. With this system, 20 to 60 young iguanas are kept in an area of 10 m² (0.5–0.17 m² per individual). In another "high density" design, 30 hatchlings are kept in cages 1 m² (only 0.05 m² per animal). The iguana farms also include an artificial nest consisting of a "tunnel" leading to a sand-filled egg-laying chamber. Both tunnel and chamber are made of predator-safe material and are easily accessible by the farmer.

Artificial nests increase the number of hatched eggs and their survival rate to 90%, versus 50% in the wild. Using food supplements (iguana chow) it is estimated that the population can be maintained at 6 to 10 times the level possible in a rainforest, or around 50 adult iguanas per hectare. Iguana chow is a mixture of broken rice meal, meat meal, bone meal, fish meal, papayas, mangos, bananas, avocados, and a variety of leaves and flowers. Smallholders can erect simple feeding stations and keep them stocked with table scraps or weedy vegetation. This makes for very low-cost production before the iguanas reach harvesting size.

Presently work is being carried out to study existing legislation, land use, natural resource management policies, and socioeconomic settings in target areas in Costa Rica, Panama, and Guatemala. The goal is to establish optimal conditions for sustainable production and marketing of the green iguana to benefit the small farmer.

Cost and availability

The main investment is the cost of the enclosures. The cost of raising the iguanas to usable size entirely in captivity is too high to be profitable. Releasing the iguanas at 6–10 months into forests, farmland with scattered trees, or into village backyards considerably reduces costs. The economic feasibility of iguana management will vary according to social and environmental circumstances.

FPIV will establish collaborative projects for the transfer of technology providing that environmentally beneficial conditions are met. A farming manual will be made available to collaborators.

Potential users

Farmers living close to tropical forest areas from Mexico to northern Brazil and Peru, including a number of Caribbean islands. Small patches of remnant forest encountered on farms and
buffer zones surrounding protected parks provide adequate habitat.

Contact
Dr Dagmar I. Werner
Fundación Pro Iguana Verde
Apartado 692-1007
San Jose, Costa Rica
Tel.: (506)40-6712
Fax: (506)35-2007

Resources and Publications

Industrial Waste Exchange System

In the Philippines, pollution problems are compounded by the fact that most pollution control equipment and methods are too costly for the Philippine economy. Disposal of industrial wastes is becoming a major concern. As an alternative to costly and environmentally unsound disposal schemes, the Environmental Management Bureau of the Department of Environment and Natural Resources, with assistance from the Geotechnical Research Centre of McGill University in Canada, has developed an industrial waste recycling system, based on reusing the wastes in-house or transferring them to another industry. The idea is to use production residues that are in fact raw materials in the wrong place.

The project, called Industrial Waste Exchange — Philippines (IWEP), provides a contact point between industries that want to exchange materials. It is also an information centre providing lists of companies, as well as technical information and assistance on waste management. Project staff will also collect and analyze waste samples when a company is unable to do so in-house.

The system works through a directory of available and wanted materials, that is published twice a year. The entries are coded for confidentiality, and classified into the following categories: acids, alkalis, solvents, plastics and rubber, metals and metal sludges, wood and paper, other inorganic chemicals, other organic chemicals, oils and waxes, textiles and leather, and miscellaneous. Each
material listed has a location code, a company code, and technical specifications such as its physical state, pH, colour, contaminants, etc.

Companies can fill out a listing form, free of charge, to be included in the directory. Although IWEP will put two companies in touch with each other, all agreements are negotiated directly between the generator and the potential user of the waste. In 1989, some 40 negotiations were underway in the Philippines.

Some examples of exchanges include:

- Using calcium carbide sludge as a neutralizing agent in wastewater treatment plants;
- Using pineapple pulp waste for cattle fattening;
- Using waste shrimp heads as an animal feed component;
- Using gypsum waste for wall boards and for cement production.

Two conferences on waste exchange were organized in 1988 and 1989, bringing together government and industry. The purpose was to explain the system, introduce new technologies in waste recycling, provide information on waste exchange and utilization, and encourage participation. The conferences were seen as essential elements in the success of the system.

The system has the potential to reduce environmental pollution, improve the economy through the recovery of usable resources, and reduce disposal costs as well as the costs of raw materials.

Potential users

Environmental ministries and organizations. Industries of all kinds can benefit from the system.
Recycled Plastic Sheets for Greenhouses

In the past two decades, the use of polyethylene (plastic) films for greenhouses and for mulch has increased dramatically in the Third World. Between 1967 and 1987 in Jordan, for example, the use of plastics for greenhouses doubled every 2 years, then doubled every 3 or 4 years. Jordan began producing its own plastic films, but this entails importing plastic pellets to make the sheets. As well, the sheets are now causing a major environmental problem regarding their disposal: lasting only 1–4 years, they are then either discarded in neighbouring land or burned. Discarded plastic has been responsible for the deaths of cattle who have ingested it while grazing.

Researchers in Jordan have now developed a process to recycle used plastic sheets in the production of comparable quality, less expensive films for mulch and greenhouses. The new process will lower costs for farmers, decrease pollution from plastics, and reduce imports. As well, it has the potential to increase employment, both in production plants and in the collection of the waste plastic.
The process used is called coextrusion, which allows for the combining of layers of different materials to create a stronger and more resistant plastic. The new recycled plastic film is made up of two layers: a highly stable upper layer made from virgin plastic, and a bottom layer made from recycled plastic. In Jordan, used plastic sheets are readily available for recycling, reducing the need for imported plastic. It is estimated that a reduction of 20 to 50% in material costs occurs when using recycled plastic. The new sheets contain up to 50% recycled plastic, and have properties similar or better than virgin plastic films.

Prerequisites

Access to used greenhouse plastic films. The production plant requires a coextrusion machine, a fairly expensive item (US $240 000 to $400 000), 620 Kwh of electrical power, and 25 m of water to clean each tonne of used plastic. To save on water costs a closed system is recommended with a water recycling plant. The plant employs 10 people: two operators, two assistants and six labourers.

Potential users

There are plans to disseminate the technology to small and medium-sized plastic film producers in Jordan, Syria, Iraq, Turkey and Egypt. Currently the technology is being used in Jordan and Egypt, where it is being adapted to local materials and conditions. Researchers in Egypt are investigating as well the potential for using polyvinyl chloride (PVC) instead of polyethylene, which could reduce costs by as much as 45%.

Cost and availability

Raw materials (used films) cost about US $57 per tonne in Jordan. Total production costs for making regenerated plastic pellets from the used sheets is US $215 per tonne. Actual production of the two-layered recycled sheets runs from US $960 to $1150 per tonne for materials (depending on the thickness of the different layers), with production costs (covering salaries, water and electricity) at $500 per tonne. The coextrusion machine is the most expensive item, ranging from US $240 000 to $400 000.

Contact

Mr H. Khadra
Royal Scientific Society
PO Box 6945, Amman, Jordan
Tel.: 844802 or 844702; Telex: 21276 JO RAMAH;
Cable: ERRAMAH

Professor M.R. Kamal
McGill University
3480 University Street
Montreal, Quebec, Canada H3A 2A7
Tel.: (514) 392-5432; Telex: 05-268510

Professor A. Yehia
Polymer Department
National Research Centre
Tahrir Street, Dokki, Cairo, Egypt
Tel.: 701 211; Telex: 94022 NAREC UN
Electronic Networking for African Environmental NGOs

Many obstacles exist in Africa which hamper the effective inter-communication of nongovernmental organizations (NGOs). This in turn prevents African NGOs from providing effective input as a group to international consultations such as the United Nations Conference on Environment and Development that was held in Brazil in 1992.

Electronic communications have the potential to strengthen NGO networking by increasing their capacity to exchange mail, discuss issues, and share information rapidly and at lower cost than through mail, fax, telex, and phone calls. The poor quality of voice telephone lines, the slow implementation of phone systems with packet switching, and fluctuations in the availability of electricity have all caused Africa to lag behind Asia and Latin America in electronic communication. As well, governments may not be supportive, seeing computers and modems as a security problem or as a source of revenue through high import duties and fees.

The Environment Liaison Centre International (ELCI), in Nairobi, has become a focal point of a networking project that will build on initiatives to develop a resilient, expandable, and directly interconnected NGO network in Africa. Through the use of microcomputers, modems, and common communications software, the network has, among other things, strengthened NGO capacity for information-sharing and advocacy work, and given NGOs access to new information, including documents and inputs of the preparatory meetings leading up to the UNCED Brazil 92 conference.

Participating institutions share responsibility for the risks and investments of the network. The aim is to develop self-sustaining networking nodes at the national level in several countries, which are linked to regional as well as international networks.

The African network was begun by creating or strengthening electronic links among organizations in Dakar, Harare, Nairobi, and Tunis, which can then be linked through the UK-based network GreenNet to NGOs around the world. In each of these cities, independent but interconnected low-cost DOS-based bulletin boards can be accessed by the NGO "end-users" participating in the network. These bulletin boards need only a small user base to be cost-effective, and they run on regular telephone voice lines.

Modems and software have been provided to some 40 users, along with training and online support. The network hopes to expand by building the capacity in end-users and operators to train new users. A short course and installation manual for the bulletin boards have been developed in English; French and Arabic versions are planned. Half-day workshops and users' manuals have
also been developed for the end-users of the network. Each user is expected to pay their telephone costs.

Prerequisites

To participate in this or similar networks, an organization needs a microcomputer, a modem, a telephone line that works at least part of the time, and appropriate communications software. The small bulletin boards require an IBM-compatible computer with the DOS operating system, 40 to 100 Mbytes of hard disk space, and one telephone line, as well as the services of a part-time systems operator.

Potential users

African NGOs, particularly those involved in environmental work. The network could serve as a model for establishing other networks in Africa or elsewhere.

Contact

The Director, Environment Liaison Centre International PO Box 72461, Nairobi, Kenya Tel.: 254(2) 562015; Cable: ENVICENTRE Telex: 23240 ELC KE Fax: 254 (2) 562175 E-mail: FIDONET: 5:731/1 APC: GN:ELCIDWR

Costa Rica's New National Account System for the Environment

The current increase in environmental awareness is highlighting the deficiencies in the United Nations System of National Accounting (SNA), which overemphasizes consumption in national output and fails to account for the environment in income estimation. Conventional national income figures record only the consumption value of natural resources and do not account for losses of natural capital such as standing timber or fish stocks.

The ongoing destruction of forest, soils, and water — basic resources of the country's economy is a loss in the productive value of the economy which is not reflected in national accounts. For instance, when a forest is cut down and sold, the country appears to grow richer, even though the depreciation of the natural capital — both in regard to the forest and the increased erosion of farmland — may create future losses several times greater than the present gain. The result is that, in the existing system, those responsible for economic policies make decisions based on inadequate information. It is therefore urgent that current national accounting procedures be revised.

An IDRC-supported study by the Tropical Science Center
Costa Rica's agricultural product before and after natural resource depletion.

of Costa Rica and the World Resources Institute of the United States, had as its main objectives to:

- Analyze a number of Costa Rica's natural resources in physical terms and assign them an economic value;
- Treat natural resource assets consistently with other tangible capital so that resource depletion is treated as capital consumption.

The first step in the study was to develop physical resource accounts for each sector based on available data. These accounts were designed to record and identify the sources of either an increase in or depletion of the stock. The second step was to assign economic values to the resources using appropriate economic evaluation principles which allowed for the availability or unavailability of data. The physical accounts and economic values were then combined and aggregated to the national level. Finally, the completed natural resource accounts were used to adjust the conventional national income aggregates to arrive at a net, rather than a gross, national product. For example, the results of the study estimate that, when resource depletion is taken into account, the net national product in the fisheries sector between 1982 and 1987 was on average 51% of gross national product. In 1987, it was only 37%.

The Costa Rican natural resource accounting study represents a substantial advance over previous efforts. New techniques, such as remote sensing and satellite imaging, were used to estimate changes in forest cover, mangrove area, and other land uses. Both the data and analysis of the physical accounts were detailed and systematic. The economic analysis also represents a significant methodological advance, in that it used new bioeconomic models for fisheries accounts and assigned consumptive versus nonconsumptive use values for mangrove accounts.

The results confirmed that the national accounting system in Costa Rica is inadequate in its treatment of natural resources. The lack of knowledge within both the private and public sectors of the many secondary values of natural resources results in the wasteful destruction of
important environmental assets. The methodology developed in this study can be used to confront economic development issues realistically.

These studies can be performed at the national or regional level, provided that basic information on economic parameters is available. As well, sectoral studies can be carried out to integrate environmental and economic policies.

Cost and availability

The developed methods to incorporate the depreciation and appreciation of natural resources in national accounts can be transferred and applied in other countries. Both the Tropical Science Center of Costa Rica and the World Resources Institute will provide technical support to interested groups. The collaboration of relevant government agencies is essential.

Potential users

Direct beneficiaries are planners, economists, and policymakers in all sectors of government and industry. In addition, this demonstration, along with WRI's earlier case study for Indonesia, will help build support among other governments in the region, international agencies, and other official bodies for a much-needed reform of the SNA.

Contact

Dr Raúl Solórzano
Tropical Science Center
Apartado 8-3870, San José, Costa Rica
Tel.: (506) 25-26-49; Cable: SCIENCE

Resources and Publications

103
Tannin Produced from Pine Bark

Tannin powder is an essential ingredient in the leather industry. Used to treat or “tan” hides, tannin preserves the leather’s flexibility and makes it resistant to rot. Chile imports up to $1 million of natural plant tannin yearly, mostly from Argentina.

Being a coastal nation, Chile is subject to serious corrosion problems from sea water. It imports rust transformers and inhibitors for steel at considerable cost. Researchers have now demonstrated that tannin solutions can be used as anticorrosives at much less cost.

Chile’s radiata pine plantations are providing a new source of natural tannin for both the leather industry and for producing anti-corrosives. Large volumes of pine bark are available as a waste product of the timber industry. The bark contains 15% tannin, and can be used to produce a tannin mixture suitable for commercial use. The bark is crushed and heated with water at 80°C, then cooled and decanted. An evaporator removes the excess liquid. Tannin can be produced in liquid or powder form.

The DITECO tannin plant in Chile is now producing tannin from pine bark provided by local sawmills. Local tanneries are mixing the tannin with imported tannin for use in treating leather. The plant employs approximately 40 people, with an additional 20 people gathering bark.

Two anticorrosive products manufactured from tannin have now been developed and patented in Chile and Brazil. The first is a rust converter for metal. It can be used as a primer before painting steel, and will convert existing rust into a smooth, sealed surface. Tests demonstrated that the pine tannin rust converter works better than commercial converters and as well as sandblasting, the most common but expensive method for cleaning steel surfaces before painting. When applied to buried pipes, bridges, and docks, the rust converter eliminates the need...
for sandblasting, reducing the cost of surface preparation and cleaning by 30 to 40%.

The second product is a mineral oil–tannin compound used as a rust inhibitor for cold-rolled steel. Cold-rolled steel exposed to the elements during transport and storage is generally protected from corrosion by being immersed in mineral oil after lamination. Protection from rust lasts up to four times longer when tannin is added to the mineral oil. This reduces the cost of cleaning rusted steel before use.

Solutions of another tannin-based product can also be used to prevent corrosion of boilers and other equipment used to produce steam.

Potential users

Small and medium-scale industries with access to natural plant tannin.

Contact

Guillermo Matamala Rivas, Facultad de Ingeniera
Universidad de Concepción
Casilla 53-C, Concepción, Chile
Fax: 56-41-222712; Telex: 260157 INCON CL

Low-Cost Extraction Techniques for Essential Oils

The Programa Agroquímicco of the Faculty of Sciences and Technology of the Universidad Mayor de San Simón (UMSS) in Cochabamba, Bolivia, has applied steam-extraction technology to make Bolivia self-sufficient in the production of several essential oils such as menthol, citral, and eucalyptol. Oil extraction using steam is a comparatively simple and inexpensive process that is readily adaptable to rural areas. The primary steam-extraction techniques can be learned easily by the rural population in a matter of weeks and do not involve sophisticated industrial technologies.

This technology has the potential to create jobs and generate incomes in rural areas. Within 5 years, the project has almost eliminated Bolivia's annual Can $800 000 of imports of menthol, citral, and eucalyptol oils needed for the production of detergents, soaps, ointments, and other domestic products that have a combined Bolivian market value of $3.5 million. Since 1990, Bolivian manufacturers have obtained almost all the oils they need from the Programa Agroquímicco. In the long term, the project could make Bolivia an exporter of the oils (some exports to Brazil, France, and the US have already begun).

The use of the simplified extraction techniques is creating jobs and generating incomes for many disadvantaged farming families in Cochabamba province, one of the poorest in Bolivia. Ten cooperatives are at work gathering the leaves and grass for extracting oils and processing the natural extracts. Each co-op has obtained a steam distillation
unit from the program. Each unit is associated with a community of 80–430 families. The crude oils they produce are sold to the university, which in turn refines them into higher grade oils. The purified oils are sold to Bolivian manufacturers of candles, soaps, and other products.

The program is successful enough that an additional 36 communities have approached the researchers to start the processing of eucalyptus and lemon grass. At current prices, average profits from each distillation unit are estimated at $30 000 per year.

Each co-op has control over how their profits are distributed. A women’s co-op has been the most successful so far. A detailed study is currently underway to assemble all the necessary information to transfer the technology to other regions and countries.

Production of eucalyptus oil can also contribute to mitigating erosion and environmental damage by maintaining the natural tree cover, since the process only involves cutting the tree branches, which regenerate quickly.

Prerequisites

Availability of oil-bearing renewable resources, such as eucalyptus trees, lemon grass, and mint, and the conditions for growing them.

Each distillation unit comprises a 5-cubic metre extractor, a steam-boiler, a condenser, and a separator. Constructed from local materials, the equipment costs about $10 000. The pay-back period is estimated at 3 to 4 years.

Potential users

Rural or small-town communities with available supplies of oil-bearing plants or trees, such as eucalyptus or lemon grass, and the right conditions for growing them. Eucalyptus, lemon grass, and mint can all grow in poor agricultural conditions, on land that might otherwise remain unused.
Carmine Dye Extraction
Process for Rural Enterprises

Peru is the major supplier of carmine dye, a natural, red colouring agent derived from the cochineal insect that is used in foods, drugs, and cosmetics. Global restrictions on artificial colorants in food and other consumer items is giving Peru a considerable advantage in the world market. By 1991, many synthetic red dyes were prohibited in the United States, which put Peru in a unique position. Currently, Peru furnishes 80% of the world’s cochineal supply — about 40% as a dye and 60% in insect form.

The Peruvian government wants to increase the processing of the carmine dye in Peru, given that cochineal are plentiful, rural people are experienced in harvesting the insects and drying them, and extraction techniques are comparatively simple. By locating processing plants close to cochineal production areas, rural industry and local employment will increase. Currently cochineal “farmers” earn an estimated 10% of the revenue generated by cochineal. An estimated 50 000 people harvest the insects by hand, dry them in the sun, and sell them through intermediaries to carmine processors in Lima.

The extraction process is available to small-scale enterprises and NGOs including information on how to improve management of the cochineal insects during infestation, harvesting, and drying. Extraction of carmine dye from the cochineal insects comes from the red pigment they secrete as a defense mechanism against predators. The pigment is harvested when the insects are dried in the sun.

The cochineal bugs that inhabit these cacti are a major source of the world’s red dye. Peruvian researchers have developed a process to increase the percentage of dye extracted from cochineal.

The cochineal bugs that inhabit these cacti are a major source of the world’s red dye. Peruvian researchers have developed a process to increase the percentage of dye extracted from cochineal.
powder from the insects involves boiling the insects in water, followed by filtration, precipitation, and washing and drying of the final product.

The Instituto de Investigación Tecnológica Industrial y de Normas Técnicas (ITINTEC), in collaboration with Simon Fraser University, has improved the carmine dye extraction process to give a 24% yield of 72% pure carmine. Other commercial processes give 20–23% yields of 52% pure carmine. A new phase is exploring improved infestation, harvesting, and drying processes. A pilot production plant with a capacity to produce 5 kg of carmine per day has been successful. The technology is now being made available to the private sector, with the following criteria:

- Production units should be in rural locations close to cochineal producers;
- A system such as producer co-ops should be used to share benefits with the cochineal "farmers";
- Plants must be owned and run by Peruvians; and
- Owners should have the ability to sell the carmine dye abroad.

Prerequisites

Access to cochineal and markets for the red dye. Cochineal grow on prickly pear cacti in the Andean region. The processing plant requires a fairly substantial capital investment, around US $400 000, suitable for medium-scale enterprises, but high for small-scale companies.

Potential users

Cochineal exporters and producers as well as current producers of carmine who are interested in improving yield.

Cost and availability

ITINTEC can provide a cost analysis for implementation of the technology. The process is available by competitive bid to ITINTEC.

Contact

Dr A.C. Oehlschlager,
Department of Chemistry,
Simon Fraser University,
Burnaby, British Columbia
Canada V5A 1S6
Tel.: (604) 291-4884
Fax: (604) 291-3765

Ing. Guillermo Salas,
Director-General
ITINTEC,
Lima, Peru
Tel.:71.17.77
Fax:51-14-71.16.17
Telex: 20496 PE
Usable Lumber Made from Waste Wood

A technique originally developed and patented in Canada in the 1970s is now being adapted to help address China's current lumber shortage and use residual wood from mills and logging which would otherwise be wasted.

The technique developed in Canada involves "finger-jointing" mature green lumber using specially-formulated adhesives. This technique can be used on short, small, and crooked thinned-out logs that are currently thought to be useless. The bent wood is cut into sections, the wood ends are profiled into finger shapes and bonded together with adhesives to form a piece of straight and useful lumber.

The Canadian patent holder has waived the patent in China, and Chinese researchers have developed a similar method using immature green lumber as well as dried lumber and locally-made chemicals to produce the glue. Advantages of this technique are that it is relatively inexpensive, easy to adapt and use in small factories, and the products can be handled immediately for manufacturing operations. Although green lumber must be redried after joining to be useful to industry, this process can result in some deformation, depending on the type of wood used. Therefore, whether the finger-joints should be made of green wood or dried wood depends on wood species, uses of the end products, and local production and technical conditions.

The glue developed by the project is weatherproof, durable, stores well, and works especially well for bonding coniferous trees. The major species tested with the glue are poplar, Chinese fir, masson pine, and larch. Tests continue on other tropical wood species.

The technique could add 15 million cubic metres of wood annually to China's production of lumber, while using waste material and providing part-time income to rural
people supplying wood thinnings from their farms and community woodlots. They can make up to 45% more selling the small-diameter wood for finger-jointing than selling it as firewood. This increases the economic value of the wood and stimulates farmers' interest in planting trees.

In 1990, local Chinese factories produced Can $1 million worth of finger-jointed products. Several pilot plants were established for testing the finger-joint technology and glue production; two commercial plants were set up to build components for truck loading beds; and a factory using the new technology produced laminated beams used in the construction of the 1990 Asian Olympic Games building.

By using waste wood to meet needs for lumber, the technology can contribute to reducing deforestation.

Prerequisites

Supplies of otherwise unusable lumber and appropriate resin adhesives. The lumber can come from thinnings, fast-growing wood stands, crooked logs, used timber, and large branch wood, so long as there are no dead knots, decay, insect holes, or bark pockets on the ends to be finger-jointed.

To set up a finger-jointed lumber mill with an annual output of 3000 square metres, approximately US $4000 in capital outlay is required, as well as a US $2000 circulating fund and 80 to 100 employees.

Potential users

NGOs, government, and the private sector interested in promoting small-scale rural industry. The technology could be useful in countries of the Asia Pacific region where there are shortages of timber.

Contact

Zhu Huan Ming
Research Institute of Wood Industry
Chinese Academy of Forestry
Wan Shou Shan, Beijing, People's Republic of China
Tel.: 2582211 ext 431; Fax: 2581937

Bamboo Mat Board — A Replacement for Plywood

Bamboo mat weaving is a popular tradition in India and other parts of Asia. Rural dwellers, particularly women and tribal people, weave millions of square metres of mats. Although some of the mats are for household use, most are sold in the market to supplement family income. Over the last decade however, some of the largest consumers — commercial packers and house builders — began switching to plywood and synthetic materials causing a
decline in the mat cottage industry and affecting the livelihood of the mat weaving community.

The production of boards from bamboo mats glued together constitutes a sound alternative to plywood made mostly from imported timber. The use of bamboo also conserves natural forest, which is being depleted at an alarming rate in India. The fast growth and maturation of bamboos and their easy propagation make them an important and inexpensive local substitute for plywood.

The Indian Plywood Industries Research Institute has developed a low-cost low-input technology using local raw materials (bamboo) and adhesives from industrial waste (black liquor) for the production of commercial bamboo mat boards. This technology produces a better product at a more affordable price for the consumer and stable prices for the mats will ensure better wages and living standards for the mat weavers.

This technology can be easily adapted by small-scale rural industries employing local labour with minimum skills. Bamboo mat board will supplement plywood, which is presently made mostly from logs and veneer imported at high cost.

The black liquor from pulpmill waste is being used to produce lower-cost adhesives for the bamboo mat board. This approach will decrease the amount of phenol needed to make the resin adhesive, thereby reducing the cost.

Testing of manufactured items, such as packing cases for horticultural products, especially apples, showed that up to 75% of the plywood could be replaced with the new bamboo mat boards. The cases are estimated to cost 15–20% less than the equivalent wooden packing cases. Bamboo mat boards will be used for low-cost housing, for crates, and for building grain storage rooms and bins presently made out of wood and plywood.

Cost and availability

Initial estimates indicate that the cost of resin for bamboo mat board is reduced by about 75% by using modified phenolic resin. Further reduction in cost is foreseen when
black liquor-phenol-formaldehyde resin, which is being developed in the project, is standardized.

The Indian Plywood Industries Research Institute (IPIRI) provides technical assistance in establishing small bamboo mat board production units in rural areas. Negotiations for technology transfer to the Philippines and other interested countries are underway.

Potential users

The rural housing industry and many cottage industries such as construction of packing cases will be the primary beneficiaries of this inexpensive alternative to plywood. The production of bamboo mat board will create employment for rural women and will generate additional income by reviving and expanding the bamboo mat weaving cottage industry.

Farmers will be encouraged to grow bamboo on their land, community property, and home gardens, benefiting from the short rotation of bamboo cropping (3–5 crops per year) and better prices.

Because of the increase in quality and the reduction in costs in bamboo mat production, entrepreneurs can now establish small-scale bamboo mat board factories. The production of bamboo mat boards is a labour-intensive process compared to plywood production and will therefore generate more employment.

Contact

Dr P.M. Ganapathy
Indian Plywood Industries Research Institute
PB No 2273, Tumkur Road
Bangalore, India 560-022
Tel.: (812)394 231 and 394 341
Fax: (812)396 361

Resources and publications

Copies of the following technical reports are available from the institute on request:

Synapse
A System for Microcomputer-Based Instrumentation

The National University of Singapore, together with Total Recovery Systems International in Toronto (formerly SCADA), have developed a user-friendly, flexible hardware–software system for monitoring and controlling industrial processes using inexpensive personal computers. The system, called Synapse, provides accurate, online measurement for quality control in small industries such as soap manufacture, cheese production, and other chemical processes. It is also useful for teaching and research.

The software package and an interface module allow the computer to be linked to instruments — such as data loggers, spectrometers, and pH meters — that monitor and control a wide range of processes such as adding ingredients, regulating temperature, and checking for colour and consistency. The system has many potential applications including such things as accurately measuring heavy metals in the environment, pH in fish ponds, and soil nutrients.

With Synapse the user can use analytical instruments by computer without any previous expertise or training in computer programming or electronics. The system is also easy to maintain, which makes it particularly applicable in developing countries. It reduces costs for small industry, where each measuring and control instrument has to be bought as a separate package at anywhere from US $1000 to US $5000 each. The Synapse package links all these instruments to a basic IBM for about US $1000.

Several important technological advances were made in the development of the system, including the integration
of artificial intelligence techniques, object-oriented programming methods, and natural language processing. The operator uses a mouse to work out the basic structure of the process he or she wants to control. From a menu of icons, the operator can pull down pictures of valves, pumps, meters, liquid levels, etc. Each is automatically linked to a hardware interface. The operator then supplies the conditions that must be fulfilled for the equipment to operate. For example, someone might tell the program to open a valve when the temperature reaches a certain range. Once this information has been input, the system’s extensive database allows the computer to decide what to do, when, and how.

The system is not rigid or frozen into specific sequences of action. In this way, the computer can decide what to do, while leaving room for the user to incorporate rule of thumb and shortcuts into the operating characteristics.

Prerequisites

An IBM personal computer or clone. Most users are able to use the Synapse system without previous training. A detailed manual is provided to guide the user in mastering the system.

Potential users

A wide range of industries including metal finishing, aquaculture, environmental control and monitoring, and factory automation. Because of the low cost of the software, the system is applicable to small- and medium-scale industries. Universities, colleges and research institutions can use the package for teaching, research and improving their experiments; hospitals can use it as a teaching and diagnostic tool. The system is currently being used in a pilot scheme for improved tea-drying in some of Sri Lanka’s tea factories.

Cost and availability

The Synapse hardware and software is commercialized worldwide through Eutech Cybernetics. Total cost is approximately US $1000, excluding the computer, for selected institutions in developing countries (the commercial list price is higher). This includes the software and any required hardware interface cards that link electronic gauges, valves, and other devices to the computer.

Contact

Dr Hari Gunasingham
Eutech Cybernetics Pte. Ltd
55, Ayer Rajah Crescent
#04-21/24, Singapore 0513
Tel.: 7787995
Fax: 7730836
Low-Cost Dobby to Improve Small-Scale Commercial Weaving

Family weaving enterprises own 85% of the looms currently in use in India and Pakistan. These cottage industries are competing for a domestic and export market where consumers are demanding more and more sophisticated cloth. There is a need to increase self-sufficiency in fabric production for the national textile industry, as well as to modernize the equipment of textile producers.

Small weaving enterprises can now earn 20 to 25% more by producing designed (geometric or floral) patterns rather than plain cloth. These designs are produced on the loom using a mechanical selection device called a dobbly. Currently two types of dobbies are used: modern dobbies which are efficient, high speed (200 picks per minute) and expensive; and older, less efficient, cheaper dobbies used throughout the Third World. These local low-cost dobbies, copied from imports, are cumbersome, difficult to maintain and slow (100 picks per minute).

Pakistani and Canadian researchers have now developed a new dobbly that is fast and efficient, while still relatively inexpensive and easy to make locally. Called PAKCAN, the dobbly can reach speeds of 130 to 160 picks per minute and can be used on 82% of the shuttle looms in use today. Its advantages over dobbies in current use include:

- Superior stability;
- Perfect alignment of knives and hooks;
- Fewer components;
- Vibration-free;
- Lighter and consumes less energy;

The dobbly mechanism (grey box) allows the weaver to produce patterned cloth.
• Streamlined appearance and easy to manufacture, maintain, and operate.

The PAKCAN doby provides a superior performance with low cost and low maintenance, and has the potential to increase incomes and productivity for the cottage weaving industry.

Prerequisites
The PAKCAN can be used on shuttle looms with speeds up to 160 picks per minute.

Potential users
Small and medium-scale weaving enterprises. There is already a demand for the doby identified in Brazil, China, Egypt, Indonesia, Malaysia, Peru, the Philippines, Thailand, and Turkey.

Cost and availability
The doby is expected to sell for as little as Can $800 (based on 30% profit margin and production of 100 units per month). Although this is still higher than current local dobbies (which sell for Can $250), the low maintenance costs and higher quality fabrics made possible with the PAKCAN doby make it attractive to small weaving enterprises. A licensing agreement will be pursued once successful field trials in India are completed.

Contact
Pakistan Council for Scientific and Industrial Research Laboratories Complex Lahore 54600, Pakistan Tel.: 873866; Telex: 47115 PCSIR PK Cable: CONSEARCH LAHORE
Mr Trevor Cornell Mechanical Engineering Division Manitoba Research Council 129 Niakwa Road Winnipeg, Manitoba, Canada R2J 3T4 Tel.: (204) 945-6000/6619; Fax: (204) 945-1784

Inexpensive Bricks Made from Bauxite Waste

In Jamaica's rural areas, there is a shortage of affordable housing, mainly because of the high cost of building materials. The Jamaica Bauxite Institute, in collaboration with the University of Toronto, has developed an inexpensive building brick made from the waste generated by the country's aluminum industry, as well as from noncommercial bauxites.

The bauxite waste, or "red mud," when impregnated with a sodium silicate solution, hardens naturally without the need for firing. Its use has many advantages: the raw material is easily available; it requires little energy; it
develops local skills; it can be used more cheaply than cement to build schools, community centres, health centres, etc.; it lessens dependence on imported materials such as steel; the bricks are strong when dry; and there is little need of sand or cement. The bricks have the potential to provide cheaper housing and increase employment in rural areas.

A model building has been built to demonstrate the use of the bricks, and training of local people in the brick-making technique has been undertaken. Because labour costs are not significantly different for building a house from cement blocks or from bauxite waste bricks, training in self-help building is also important to keep costs down.

Another Jamaican organization, the Construction Resource and Development Centre, is developing cyclone-resistant housing using the bauxite waste bricks. Red mud could be used for other purposes such as water pipes and floors and could become an export item to other Caribbean islands.

The technology is environmentally friendly, uses waste from a major industry, and requires little energy (unlike production of cement blocks), thereby decreasing deforestation and dependence on imported oil.

Prerequisites

Availability of “red mud” produced by the aluminum industry or access to other noncommercial bauxites. Sodium silicate is used as a bonding agent. Two major pieces of equipment are used: a pulverizer to grind the

After being impregnated with a sodium silicate solution and pressed, the bauxite waste becomes bricks which can be used for housing construction.
mud to the required particle size and a compactor to compress the mixed mud into the mould.

Potential users

Rural people, governments, NGOs, and small businesses close to aluminum processing plants or other noncommercial bauxite material.

Contact

Dr Carleton Davis
Executive Chairman
The Jamaica Bauxite Institute
Hope Gardens, PO Box 355
Kingston 6, Jamaica
Tel.: 92-72070/1; 92-72073/9; Fax:(809) 92-71159
Telex: 2309 JAMBAUX JA.; Cable: JAMBAUX

Dr J.W. Smith
Department of Chemical Engineering
and Applied Chemistry
University of Toronto
Toronto, Ontario, Canada K5S 1A1
Tel.: (416) 978-4020

Resources and publications

• It is envisaged that booklets, books, and video materials will become available after a proposed workshop on bauxite waste bricks planned for February 1992.

• Radio Québec has produced a video program on the project. For information contact Françoise Bertrand, Radio Québec, Société de Radio-Télévision du Québec, 800 rue Fullum, Montréal, PQ, Canada H2K 3L7. Tel.: (514) 521-2424; Fax: (514) 873-7739.

Low-Cost Wall Panels from Blast Furnace Slag Cement

In Brazil, as in most of Latin America, increased costs of building materials — especially portland cement — have compounded a housing crisis affecting the country’s low-income population. In the search for alternative low-cost building materials, researchers are investigating the use of industrial and agricultural wastes.

Slag is the product of purifying iron ore into pig iron. It sits in huge mounds outside iron furnaces. Blast furnace slag (BFS) is the water-quenched slag that has a high vitrous phase. Brazil produces some 3 million tonnes of BFS per year, and its disposal is a crucial problem for the steel mills. Sold for about Can $5 per tonne, it is an inexpensive source of cement material.

A suitable cement is obtained by mixing ground slag with hydrated lime and gypsum (0.88: 0.02: 0.10 — BFS: lime: gypsum). Researchers in Brazil have designed and manufactured hollow wall panels and a prototype house using the BFS-based cement reinforced with coir fibres, which
are widely available in Brazil and other Latin American countries. The hollow panels are 395 cm long and 90 cm wide, and are strong enough for use in load-bearing walls in single-storey buildings.

The process for making the panels is suitable for small scale industrial plants or even for manufacture on the building site. An ordinary pan mixer is used to prepare the material, which is poured into moulds that are placed on a vibrating table.

In a small plant, the cost of each panel is US $5.70 or an average of US $6.30 per square metre of wall, including labour and grout. This is considerably less expensive than ordinary brickwork, which costs US $8.00 per square metre. These savings may be increased with the development of better manufacturing plants, faster construction time, and the reduction of waste materials on the building site.

In a new phase, the Brazilian researchers are promoting the technology to small-scale panel manufacturers, contractors, housing authorities, architects, and civil engineers. A manufacturing and construction manual will be developed, as well as a video to promote the technology as an alternative for the provision of shelter to low-income people. A manual on the process has been prepared for the public in Portuguese.

Prerequisites
Iron industry producing blast furnace slag; availability of good-quality lime and gypsum; coir fibres.

Potential users
Government, NGOs, construction companies, producers of precast components, and local people building low-cost housing in iron-producing countries such as China, India, Indonesia, Mexico, and others.

Contact
Mr V.M. Joh / Dr Carlos Eduardo de Siqueria Tango
Divisao de Edificacoes
Instituto de Pesquisas Tecnologicas do Estado
de Sao Paulo
Cidade Universitaria 05508 Sao Paulo
CP 7141 (CEP 01000), Brazil
Tel.: (011) 268-2211
Fax: (011) 211-4308
Telex: (011) 83144 INPT BR
Cable: TECNINST

Dr Vahan Agopyan
Escola Politecnica
Universidade de Sao Paulo
CP G1548, 05508 — Sao Paulo SP, Brazil
Tel.: (011) 815-4322 ext. 3364/3452
Fax: (011) 2114308
Improved Methods for Firing Bricks

To ease Rwanda's housing crisis, attempts are underway to develop construction methods that use cheap, durable local materials. Technologies using minimal energy must be developed because of the increasing shortage of firewood.

Rwanda currently produces some 70 million fired clay bricks; 60 million are produced by cottage industries that are not mechanized, have no financing, and make inefficient use of materials and energy. Their workers have no training, so the quality and size of the bricks varies. Losses of up to 40% can occur using primitive ovens and supply is irregular.

With the cooperation of researchers from the University of Sherbrooke, Canada, researchers at the National University of Rwanda have developed methods for improving local production of fired bricks. These methods reduce losses, improve the quality of the bricks (they are stronger and of a standard size), reduce energy needs, protect the environment, and create new jobs.

Methods developed

- An improved oven that optimizes firing. It gives an even temperature and uses peat as well as wood for fuel;
- Additives to the clay, such as rice husks and sand;
- Locally manufactured manual presses;
- Drying bricks in the sun or the fresh air in sheds; and
- Locally manufactured insulation bricks (for oven construction and other purposes).

The improved oven is made from bricks. The walls are three bricks thick, two of them being insulation bricks. The vault is a semicircle covered with a grill onto which a
Portland cement parging is fixed. A metal clamp collar surrounds the oven.

The first bricks to be fired in this new oven were an improvement over the previous homemade ones — they are one and a half times more resistant under compression.

Using rice husks in brick manufacturing produces a number of advantages:

- They strengthen the clay, which can be too malleable, and prevent cracks from developing during drying;
- They prevent the bricks from becoming misshapen when stacked up in the oven; and
- They improve firing in the middle of the brick.

In an initial comparison, brick losses dropped 40% to 0.2% with the improved method. The cost of building a simple inner wall using the new bricks was reduced by nearly half.

Prerequisites

Deposits of acceptable-quality clay; rice husks or sand; the construction of the oven requires simple tools and the services of approximately five bricklayers. Regular and insulation bricks as well as steel bands and portland cement are needed.

Potential users

Small producers of fired clay bricks, especially in Burundi, Kenya, Tanzania, Uganda, and Zaire.

Cost and availability

For the construction of the oven and fittings: RWF 300 000; ancillary costs (moulding, handling, fuel, and heater): RWF 1.768 per brick (compared with RWF 2.5 per brick using the traditional method).

Contact

Jean-Baptiste Katabarwa, Dean
Faculté des sciences appliquées
Université nationale du Rwanda
PO Box 117
Butare, Rwanda
Tel.: 30272/30273
Telex: 22605 UNR RW
Fax: 250-30858

Pierre-Claude Aitcin
Faculty of Applied Sciences
University of Sherbrooke
Quebec, Canada J1K 2R1
Tel.: (819) 821-3105
Fax (819) 821-7903
Quake-Proof Adobe Housing

A collaborative effort between the civil engineering department of the Pontificia Universidad Católica del Perú and the architectural faculty of Concordia University, Montreal, has produced safer adobe housing for the poor in a major earthquake zone. Adobe houses are built of earthen brick. They are popular because adobe is easily available, inexpensive, the houses can be built by unskilled workers, and they are fire resistant. However, adobe lacks the strength to withstand earthquakes.

Earthen buildings house 65% of the rural and 35% of the urban population in Peru. In the 1970 earthquake, 50,000 people died and 60,000 houses were destroyed — a level of destruction that can largely be attributed to traditional housing styles. When an earthquake occurs, the walls of these houses collapse outwards and the roof of dried mud, which can weigh up to 10 tonnes, crushes the occupants.

The new construction methods that have been developed include several improvements such as reinforcing the walls with inexpensive bamboo or eucalyptus poles anchored to the foundation together with horizontal canes tied to the poles at every fourth row of bricks. The poles are secured to parallel wooden beams on top of the walls, which also act as roof supports. These structural changes allow the walls and roof to react to the vibrations of an earthquake as a structural unit rather than as separate elements.

The improved methods were tested at the Universidad Católica on a “seismic table” which simulates earthquakes. The improvements have succeeded in making the adobe constructions resistant to the force of Peru’s strongest earthquakes.

Several prototype models of schools, health outposts, a small cheese-making enterprise, and community centres were built in cooperation with the Ministry of Health, the Ministry of Education, the FAO and community organizations.
Several methods of information dissemination, such as manuals, radio shows, and videos, were also tested. Scale models and photos proved the best means of illustrating the new technology.

Prerequisites

The improved adobe housing requires the availability of soil, straw, sand and cane material. The practical application of the techniques requires no special skill other than that of a common mason.

Potential users

NGOs, community groups, governments, and local people who use adobe as a construction material in earthquake zones.

Contact

Gladys Villa Garcia, Laboratorio de Estruturas Antisísmicos Pontificia Universidad Católica del Perú
PO Box 1761, Lima 100, Peru
Tel.: (51-14) 622-549 ext. 259
Telex: 20300 PE PB SMGL
Fax: (51-14) 611-785

Professor Cedric Marsh
Centre for Building Studies
Concordia University
1455 blvd de Maisonneuve West
Montreal, Quebec, Canada H3G 1M8
Tel.: (514) 848-3196

Resources and publications

- The Universidad Católica has developed educational materials including manuals, videos, photos, and scale models. A technical report on the research was produced in Spanish under the title *Ensayos de Simulación Sísmica de Viviendas de Adobe*, Pontificia Universidad Católica del Perú, 1989.

Low-Cost Cement Made with Volcanic Ash

The Centro de Investigaciones de Ingeniería at the Universidad de San Carlos de Guatemala and the Department of Civil Engineering at the University of Calgary are testing pozzolan cement as a substitute for portland cement in such applications as blocks and masonry mortar. Traditionally, portland cement is used in building. This is an expensive option given the high energy costs involved in producing it — it needs to be fired at high temperatures — and transporting it to its final market.

Twenty-five percent of Guatemala is in a volcanic zone that contains large surface deposits of a volcanic ash called pozzolan. Mixed with lime at a ratio of 80:20 or 70:30 (pozzolan:lime), natural pozzolan behaves like...
cement. Although some grinding is required to make it fine enough to work with, the pozzolan mix does not require firing which reduces production costs. In Guatemala, pozzolan cement currently costs approximately 60% of the cost of portland cement.

Pozzolan cement can be used for blocks, plastering, masonry mortar, and as a stabilizer for adobe walls and road bases. The project has tested the cement for strength and resistance to earthquakes. Four demonstration houses will be built using pozzolan and workshops are being used to encourage small pozzolan cement production plants in rural areas near pozzolan deposits.

About 50% of Guatemala’s population lives in inadequate housing, mostly because of the high cost of building materials. Pozzolan cement production has the potential to both generate employment and reduce housing costs.

Prerequisites

Supplies of usable quality pozzolan and lime, some skilled workers, building standards, and quality control. Efficient and low-cost local lime production is essential to keep the cost of pozzolan cement low.

Potential users

Local building contractors and government agencies are building low-cost housing in regions of Africa, Asia, and Latin America where there has been volcanic activity resulting in accessible pozzolan deposits of usable quality. Processes and materials will differ slightly from one region to another.

Volcanic deposits

North and Central America

South America

Africa

Asia and South East Asia
Contact
Ing. Javier Quinones
Centro de Investigaciones de Ingeniería
University of San Carlos
Guatemala
Tel.: (502-2) 76.39.92
Fax: (502-2) 76.39.93

Dr Robert Day
Civil Engineering Department
University of Calgary
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Tel.: (403) 220-7489
Fax: (403) 282-7026

Resources and publications

An International Network to Promote Ferrocement Technology

Ferrocement technology, in which mortar (cement, sand, and water) is spread over a steel and wire or bamboo skeleton, is a simple and inexpensive new building method, with a wide variety of uses.

In the Philippines, ferrocement is being used to build cylindrical rainwater catchment tanks. Although the walls of the cisterns are only a few centimetres thick, they can withstand the water pressure because of the internal reinforcement with large-gauge welded steel mesh covered with fine wire mesh. In various countries, ferrocement has also been used to build silos, biogas holders, boats, roofing elements, biogas digesters, canal linings, and latrines. The technology is currently applied in more than 50 countries including India, Indonesia, Malaysia, and the Philippines.
The International Ferrocement Information Centre (IFIC) at the Asian Institute of Technology (AIT) was established in 1976 to ensure transfer of ferrocement technology, which has wide application in rural areas. Although the technique is simple in theory, the centre recognizes that translating it into a technically sound, socially acceptable, and affordable village technology requires detailed research and testing. It is therefore looking at novel approaches to teach the use of this technique to rural people.

Training is complemented with “do-it-yourself” brochures and booklets in local languages adapted for use by villagers. Technical information is repackaged to target specific groups, such as women (who are usually involved in construction) or extension workers in each country.

IFIC has agreements with 141 universities in 50 countries to teach ferrocement technology. IFIC has also created 50 reference centres in 32 countries and is seeking to create another 30.

A Ferrocement Information Network (FIN) was established in 1985 to facilitate and accelerate the flow of information among ferrocement users in developing countries. A directory of men and women and organizations knowledgeable in ferrocement technology is available. Network members also organize training programs and demonstrations in rural areas.

Prerequisites
Adequate supplies of cement, aggregate (usually sand), and reinforcement (usually steel mesh, but other materials such as bamboo are also used). The technique is easily explained by demonstration, pamphlets, and videos.

Potential users
Villagers and technicians working in low-income rural and urban areas. Technicians and engineers can access specialized bibliographies, directories, and computer software for the design of ferrocement structures, such as water tanks and roofing elements. As well, newsletters, brochures, and audiovisual materials are available through FIN and the various reference centres.

Contact
Arthur Vespry, Director
Library and Regional Office Centre
International Ferrocement Information Centre
Asian Institute of Technology
PO Box 2754
Bangkok 10501, Thailand
Tel.: (66-2) 529-0900-13
Telex: 84276 TH
Cable: AIT Bangkok
Fax: (66-2) 516-2126 or (66-2) 524-5870
Inexpensive Blood-Screening for HIV

The spread of AIDS through blood transfusion has largely been eliminated in the North through routine screening of blood supplies. However, in many countries of the South, there is a lack of resources and facilities to screen blood for the human immunodeficiency virus (HIV). In Africa, 5–10% of HIV infections occur through blood transfusions, which are very common. Freshly-donated blood is used to treat life-threatening anemia in children (common in areas where malaria is endemic). The lack of routine testing of donated blood is hampering efforts to prevent the spread of AIDS.

PATH Canada (Program for Appropriate Technology in Health) and PATH International have developed a simple, rapid, and inexpensive test ideal for areas where sophisticated equipment and trained staff are not available to do the kind of HIV screening done in the North. The HIV ImmunoDot Test is a plastic dipstick in the shape of a comb (which allows the user to test up to eight samples at once) that is dipped into serum, plasma, or whole blood samples for 10 minutes. It is then rinsed and incubated for 10 minutes in a reagent solution. If HIV antibodies are present, a red dot appears at the end of the stick.

The method uses a synthetic peptide which is immobilized on the comb and which "captures" the HIV antibody. A solution of colloidal gold conjugated to protein A is used to produce the red dot.

The new process has the following advantages:

- It is ideal for remote areas where only a small number of tests are done at one time (current tests are geared to high volumes);
- Electricity or special equipment not needed;

A red dot appears at the end of the stick if HIV antibodies are present.
• Minimal training is required;

• The whole process takes about 20 minutes, as opposed to the 2–4 hours needed for conventional tests;

• The testing material doesn’t require refrigeration, and will remain stable for up to a year at temperatures typical of equatorial Africa;

• The method costs US 50 cents or less per test, as opposed to current tests that cost at least US $2, and sometimes as much as US $7.

Laboratory trials in Canada, the US, and Europe, and field trials in Brazil, China, Kenya, Thailand, and Uganda confirm that the new test performs as well as the best available commercial screening tests and has a sensitivity (ability to detect antibodies) approaching 100% and a specificity (ability to detect the absence of antibodies) of 98%. The test can be used to detect antibodies to the HIV 1 virus. Work is currently underway to adapt the dipstick for combined HIV 1 and HIV 2 testing, as well as for the hepatitis B virus.

PATH itself does not commercially produce the test. It has prepared the documentation and master files necessary to transfer the know-how for manufacture to the public and private sectors in developing countries. Plans for local production of the test have begun in Brazil, Cameroon, China, Indonesia, and Zimbabwe, and it is hoped that the test will eventually be widely available throughout the South.

Potential users

Blood banks in developing countries, clinics in poor areas, bush hospitals, and other blood transfusion settings, especially in remote areas.

Cost and availability

The test is not being produced commercially in the North, but will become available through the public sector of countries in the South.

Contact

Dr Milton R. Tam
PATH
4 Nickerson Street
Seattle, WA, USA 98109-1699
Tel.: (206) 285-3500
Fax: (206) 285-6619
Telex: 4740049 PATH UI

NB: PATH is not a supplier of the test. It is assisting countries of the South with local production.
Solar-Powered Infant Scale

Monitoring children's growth is generally accepted as one practical way to assess their general health and nutrition. Children who are seen to have poor growth can be targeted by health workers for special attention. In developing countries, community-based child-weighing programs are an integral part of community health strategies. A variety of weighing scales is used, from simple spring scales and locally made balances to heavy-duty hospital balances. However, most of these devices lack one or several important characteristics such as low cost, ease of use, portability, high accuracy, and durability.

In response to the need for an appropriate scale for field use, Sensor International Inc., — a joint venture between the Program for Appropriate Technology in Health (PATH) and Masstech Inc., an Australian corporation — has developed the electronic Sensor Scale. An earlier prototype scale, called PATHweigh, was a battery-operated hanging scale developed by PATH and field-tested in Bangladesh and Indonesia in 1985. The new version, the Sensor Scale, is a solar-powered electronic scale that provides a digital display of the weight in 100-gram increments. It was developed in a stand-on version and a hanging version. Prototypes of the stand-on Sensor Scale were field-tested in 1989 by UNICEF in ten countries. The trials showed the scales to be easy to use and widely acceptable to health workers.

The prototype electronic Sensor Scale has the following features:

- It is compact and lightweight;
- It provides an easy-to-read digital display;
- The hanging scale can weigh up to 45 kg (children up to 5 years);
- It is accurate within 100 grams;
- It reduces operator error by automatically taking into account the weight of the person or container holding the child;
- The scale offsets errors due to the child's movements by averaging weights and providing one final reading;
- It displays the weight in 100-gram increments, making reading and recording the weights easier;
- The scale is solar-powered;
• It can operate at high temperatures and humidity levels;
• It is durable; and
• It will shut off automatically after 5–10 minutes, if not in use.

Potential users
Primary health care workers in rural areas (the scale is very portable) and health clinics.

Cost and availability
Public-sector developing country rights are held by UNICEF. Large-scale production of the stand-on version is proceeding, and it is expected that the scales will be available in mid-1993 through the UNICEF Copenhagen warehouse. A rough estimate of the price is US $95.

Contact
Program for Appropriate Technology in Health (PATH)
4 Nickerson St, Seattle, Washington, USA 98109-1699
Tel.: (206) 285-3500; Fax: (206) 285-6619
Telex: 4740019 PATH UI; Cable: PATH

PATH can also be contacted at the following addresses:
37 Petchburi 15 (Soi Somprasong 3)
Petchburi Road, Bangkok 10400, Thailand
Tel.: (662) 251-7338-9; Fax: (662) 253-9171
Telex: 788 20327 PRPRTY TH
PO Box 57046, Ole Odume Road, #30, Nairobi, Kenya
Tel.: (2542) 566714; Fax: (2542) 566714
Tifa Building
11th Floor, Suite 1102
Jl. Kuningan Barat No.26, Jakarta, Indonesia
Tel.: (6221) 5200737; Fax: (6221) 520-0621
Telex: 79662851 TIFA IA

Hand-Held Scale for Identifying Low-Weight Newborns

Millions of underweight infants are born each year. These babies are at increased risk of illness and death and need special care to survive. Midwives and traditional birth attendants must be able to identify which newborns are in need of special care.

The Program for Appropriate Technology in Health (PATH) has developed a simple scale for use by midwives to identify babies with a dangerously low birth weight. The scale, called BIRTHweigh, is a stainless steel spring scale which is colour-coded, inexpensive and portable. The scale is held by hand and a 100-gram cloth sling is suspended from it. If the small window on the scale has yellow showing, the child weighs less than 2500 grams and needs special care. If the window is entirely blue, the
child weighs more than 2500 grams. Weight less than 2500 grams is considered to be the international standard for low birth weight.

The scale is accurate to within 100 grams. In field trials in Egypt, Malawi, and Yemen, the scale was shown to be durable and very well accepted by its users. It can withstand 10 kg of overweight without any serious distortion.

Potential users

Midwives, nurses, and other birth attendants.

Cost and availability

The scales are currently being produced locally in Egypt and Malawi, and are in use in Bolivia, Guatemala, Yemen, Pakistan, and Zambia. Scales and slings can be ordered directly from the UNICEF Copenhagen warehouse catalogue by NGOs, governmental agencies, and UN agencies, for approximately US $4.50. Small orders of scales and patterns to make the slings locally can be coordinated through PATH.

Contact

Program for Appropriate Technology in Health (PATH)
4 Nickerson Street, Seattle, Washington, USA 98109
Tel.: (206) 285-3500; Fax: (206) 285-6619;
Telex: 4740049 PATH UI

Director, Supply Division, UNICEF
UNICEF Plads
DK-2100, Copenhagen, Denmark
Tel.: 45-31-26-24-26; Fax: 45-31-26-94-21; Telex: 19813

Other addresses for PATH:

37 Petchburi 15 (Soi Somprasong 3)
Petchburi Road, Bangkok 10400, Thailand
Tel.: (662) 251-7338-9; Fax: (662) 253-9171
Telex: 788 20327 PRPRTY TH

PO Box 57046
Ole Odume Road, #30, Nairobi, Kenya
Tel.: (2542) 566714; Fax: (2542) 566714

Tifa Building
11th Floor, Suite 1102
Jl. Kuningan Barat No. 26, Jakarta, Indonesia
Tel.: (6221) 5200737; Fax: (6221) 520-0621
Telex: 79662851 TIFA IA
Colour-Coded Test Strips for Detecting Urinary Protein

The detection of protein in urine, called proteinuria, is a method used to identify several medical problems, including schistosomiasis, urinary tract infection, and renal disease. Although accurate test strips for urinary protein exist, they are often too expensive for Third World health programs and must be imported.

The Program for Appropriate Technology in Health (PATH), has developed inexpensive, accurate test strips for use by health workers with minimal training. Called PATHstrips, these tests are durable, easy to use, and able to withstand tropical conditions.

PATHstrips are supplied in a tear-off form in boxes of 50 strips each. After the strip is dipped in urine, its colour is compared to a reference chart printed on the box.

Independent tests have shown the strips to be as accurate as other available proteinuria tests. They have been field-tested in Malawi, Yemen, and Zambia.

Potential users

Laboratory technicians, health clinic staff, and community-based health workers.

Cost and availability

PATH has provided production equipment and technical assistance for the production of the strips to Central African Pharmaceutical Suppliers (CAPS) in Harare, Zimbabwe. A subsidiary of CAPS, McDonald Scientific (Pvt) Limited, is currently producing the strips, at a price of US $1.25 for a pack of 50 tests. CAPS also intends to distribute the strips through the UNICEF Copenhagen warehouse catalogue.

Contact

McDonald Scientific (Pvt) Ltd
PO Box 3590, Msasa, Harare, Zimbabwe
Tel.: (263-4) 48191/48101; Telex: 24224 MMDS ZW;
Cable: McDent; Fax: (263-4) 48196

PATHstrips will be available through UNICEF, beginning in 1992.

Director, Supply Division, UNICEF
UNICEF Plads
DK-2100, Copenhagen, Denmark
Tel.: 45-31-26-24-26; Fax: 45-31-26-94-21; Telex: 19813
Equipment and Training Packages for Health Workers

The Centro de Investigaciones Multidisciplinarias en Desarrollo Rural (CIMDER) has developed a health care package consisting of simple and innovative materials and equipment for primary health care workers.

The package contains the following items:

- Tricoloured tape for measuring arm circumference identifies malnourished children and acts as a guide in assessing the health of children. The tape has also spurred community groups to improve community health services and to work on improving health and nutrition by forming cooperatives to increase crop production. Women particularly like the tape as it allows them to identify for themselves the nutritional state of their children.

- Microlab for diagnosis of simple ailments. The microlab contains such elements as microstix for urine cultures and analysis, sterile bags, etc.

- Microhealth post, with first-aid equipment and drugs for common illnesses, enables primary health care workers to manage 60% of the illnesses they encounter.

- Master file, with its colour-card information system, allows the health worker to assess the health of the community, and includes a health flag to inform the community of its progress.

- Other components consist of a backpack; a well chlorinator for small wells and water tanks; and manuals on primary health care, maternity and child care, sanitation, community organizing, and immunization.

CIMDER, which designs, implements, and evaluates health technologies and programs (primary health care, social participation in health, health education, the management of health centres and institutions) emphasizes strong community organization and participation in its own health processes through training programs for family leaders, rural volunteers, community workers, and health promoters. For example, mothers receive training that enables them to practise effective health care at home, to increase their knowledge in informal community...
settings, and to assume an active role in community health care activities.

CIMDER is becoming a reference centre for other Latin American countries — including Bolivia, Ecuador, Guyana and Paraguay — are interested in adopting this health care model. The Colombian government has replicated parts of this model in other regions of the country.

Prerequisites
Training in the use of CIMDER's approach and technologies.

Potential users
Community leaders, community health workers, volunteers, health officers, NGOs, government, and others involved in health care delivery in Latin America. Materials could be translated and adapted for use in other countries.

The health kit is available to interested groups and NGOs, for a cost of approximately Can $42. CIMDER is interested in sharing its experience with other institutions.

Contact
Ligia Malagon de Salazar, Director, CIMDER
Universidad del Valle, Facultad de Salud
AA 3708, Cali, Colombia
Tel.: (57-23) 56.45.05; Fax: (57-23) 56.25.75;
Cable: 4B # 36-00

Resources and publications
CIMDER has produced handbooks in Spanish on basic health care, administration of health care centres, and guides for the primary health care worker and for the use of the micro health post. They have also published a book for women on health care in the home and in the community entitled Escuela de Madres para el Autocuidado de la Salud Familiar y Comunitaria, as well as other publications on health issues. These and software for the management of health institutions are available to interested groups.

Training Materials in Health Systems Research

Health services in developing countries are undergoing many changes to improve accessibility to quality services and to encourage effective community participation in the promotion and maintenance of good health. Countries are constantly having to decide on the best approaches to take in terms of planning and policy, administration of health services, financing, and appropriate technologies. They need detailed and accurate informa-
tion on needs, possibilities, and the consequences of proposed actions to make effective decisions.

Health systems research (HSR) aims to improve the health of a community by enhancing the health system, which is seen as an integral part of the overall socio-economic development process. HSR seeks to provide community leaders, health workers, and managers at all levels with the information they need to make good decisions.

The main characteristics of HSR are:

- It focuses on priority health problems;
- It is participatory in nature;
- It is action-oriented;
- It is multidisciplinary;
- It is multisectoral;
- It emphasizes cost-effectiveness;
- It seeks to provide practical, timely solutions;
- It evaluates proposed changes.

After some years of sponsoring workshops on health services/health systems research in developing countries, IDRC, along with the World Health Organization, decided to support the preparation of a set of training materials in HSR aimed at specific target groups. The result is a five-volume set of publications, aimed at five target groups.
The first addresses the need to promote the use of HSR as a management tool among decision-makers. Based on an analysis of experience in developing countries over the last 10 years, it provides an overview of how HSR can lead to better decisions, as well as information on how to foster effective research programs at a country level. It also includes descriptions of specific strategies for promoting HSR among policymakers and senior managers.

The second volume, in two parts, is the core course, presented in a modular format. Part I covers the development of research proposals of a participatory nature and the implementation of a field study. Course participants select a priority health problem that cannot be solved without additional information, then carry out the planned research as a team. Part II deals with data analysis and the dissemination of results.

The third volume is a review of strategies to assist universities and research institutes to integrate HSR concepts into health and social sciences degree programs. It includes important guidance for those in the research community who want to involve their institutions in multidisciplinary HSR programs.

The fourth volume is a course outline in a modular format for managers of health systems research programs. It includes topics such as the processing of research applications, funding and coordinating research projects, and utilizing research results.

The fifth volume is also a course outline in a modular format to assist those who organize and conduct training in HSR. Intended for short courses, it contains 15 modules on the basic concepts of HSR, educational methods and training strategies. The teaching methods outlined have general application for training health staff in a variety of topics. Users of the manuals are encouraged to look at the materials critically, and to choose and adapt whatever elements fit their needs. The course outlines are meant to be used in a flexible manner, with the trainer adapting the scheduling, sequence of modules, and content to fit the needs of the participants.

Potential users

Policymakers, health care managers, health workers, researchers and research managers, trainers and facilitators in health systems research.

Cost and availability

Each volume costs Can $12.95 with the exception of volume 2 which is priced at Can $19.95. All volumes are available free of charge to developing countries. The five volumes will be published in Spanish in 1992–93, followed by French versions. To order publications (see list below) write to IDRC's Corporate Affairs and Initiatives Division.
Contact
Coorporate Affairs and Initiatives Division
Marketing and Distribution
International Development Research Centre
PO Box 8500, Ottawa, Ontario, Canada K1G 3H9
Tel.: (613) 236-6163; Fax: (613) 238-7230
Telex: 053-3753; Cable: RECENTRE OTTAWA

For further information on the project, contact the Health Sciences Division, International Development Research Centre, at the address above.

Resources and publications

Poisons Information Package

The World Health Organization (WHO) through the International Programme on Chemical Safety (IPCS) in collaboration with the Canadian Centre for Occupational Health and Safety (CCOHS) and the Centre de toxicologie du Québec (CTQ), and with the participation of poisons information centres around the world, has developed a poisons information package for developing countries.

Every year around the world, 100 million tonnes of chemicals are produced; 4000 industrial chemicals are currently in common use. Some 565 generic pesticides are in circulation, and account for 1 million poisoning cases each year, of which 40 000 cases in the Third World are fatal. Poison information centres are springing up all over the Third World, but lack the necessary technology to handle the data or simply don't have access to the information they need.

The package consists of two parts:

- A global database of information on substances that are commonly involved in cases of poisoning; and
A database management software program, called IPCS/INTOX, for poison information centres.

The global database is an internationally-compiled bank of information on toxic substances. The information is packaged in the form of poisons information monographs (PIMs), which give detailed information on the physico-chemical and toxicological properties of substances including chemicals, pharmaceuticals, and plant and animal poisons, as well as information on how to diagnose, manage, and prevent poisoning by these substances. PIMs are available in English, French, and Spanish in hard copy or on compact disc read only memory (CD-ROM).

The software program allows each poison centre to develop two interrelated databases, according to their own needs. The first is a database of substances and products; the second is a communications database to record cases and treatments.

The software is available in English, French, and Spanish. System manuals and user guides in English, French and Spanish are planned.

The package will be in use in mid-1992 by poisons information centres in Algeria, Egypt, Sri Lanka, Uruguay, the Philippines, and Zimbabwe. CCOHS will provide training, follow-up, and maintenance on a fee-for-service basis.

Prerequisites

The software package requires a 286 or 386 compatible microcomputer. Best performance is achieved with a 386 running at 20 Mhz or greater, with 4 Mb of RAM and a 80-Mb hard disk. It also requires a "super VGA" video card and a VGA colour monitor for the presentation of pictures with optimum clarity. A DOS 5.0 or higher operating system is recommended, along with Windows 3.0 or higher and a suitable mouse. A CD/ROM player is needed to access the database of PIMs and other material.

This terminal in Sri Lanka gives the user access to a global database of information on poisonous substances.
Potential users

Poison information centres in developing countries, as well as doctors, nurses, pharmacists, and other professionals such as firemen, police, and first-aid workers who deal with poisonings or accidents involving chemicals.

Cost and availability

The package will be issued by WHO on behalf of the project partners. WHO will hold the copyright.

Contact

Dr John Haines
International Programme on Chemical Safety
Division of Environmental Health
World Health Organization
1211 Geneva 27, Switzerland
Tel.: 91 35 73; Fax: 41-22 788 1949; Telex: 27821 OMS;
Cable: UNISANTE-GENEVA

Dr P.K. Abeytunga
Canadian Centre for Occupational Health and Safety
250 Main St E., Hamilton, Ontario, Canada
Tel.: (416) 572-2981; Fax: (416) 572-2206; Telex: 061-8532

Dr A.J. Nantel
Centre de toxicologie du Québec
Le Centre Hospitalier de l'Université Laval
2705, boul. Laurier, Quebec, PQ, Canada G1V 4G2
Tel.: (418) 654-2254; Fax: (418) 654-2754

Uruguay:

Dr Eva Fogel de Korc
Centro de Información y Asesoramiento Toxicológico
Facultad de Medicina
Montevideo, Uruguay
Tel.: 804000; Telex: 26991 BINAME UY
Fax: (00598) 23 70 11 / 47 03 00

Egypt:

Dr. Bahira Fahim, Director
Poisons Control Centre — Cairo
Ain Shams University
Abbassiya, Cairo, Egypt

Sri Lanka:

Dr Chandina de Mel
Senior lecturer,
Faculty of Medicine
University of Colombo
Kynsey Road, Colombo 8, Sri Lanka
Tel.: (94-1) 686142 / (94-1) 694016

The Philippines:

Prof. Nelia P. Cortes-Maramba
Department of Pharmacology
University of the Philippines College of Medicine
547 Pedro Gil, Manila 2801, The Philippines
Tel.: 521 8251 / 500 011
Improved Housing to Fight the Spread of Chagas' Disease

Chagas' disease is one of the more serious diseases in Latin America, with some 15 to 20 million people infected, 10% of whom will develop chronic Chagas' disease. The disease has an asymptomatic acute phase right after infection, and a chronic phase that only appears 15 to 20 years later. The chronic phase affects the heart, oesophagus, lower intestine, and peripheral nervous system.

The disease occurs mainly in rural areas, but is spreading to the cities through rural migration and through blood transfusions. The loss of work productivity is important, and rural migrants to cities can be refused employment if they are infected.

The disease is caused by a parasite (Trypanosoma cruzi), which is transmitted by the blood-sucking insect Triatoma infestans. The insects infest and breed in cracks in the walls of homes, in thatched roofs, and in cracks and spaces between wooden boards. They thrive in dark, poorly ventilated, humid environments. They also live behind furniture and wall hangings as well as in chicken coops and other animal shelters. Animal reservoirs of the vector are also common.

Because of the absence of effective drugs or vaccines, the disease must be controlled through preventive measures, such as controlling the vector insects inside people's houses. In Paraguay, a research team has studied the effects of two types of intervention in rural areas:

- Spraying, using the insecticide Deltametrine; and
- Housing improvements to create a hostile environment for the insects.

The housing improvements consist of modifying the existing structures in each house using improved materials to ensure smooth, flat, crack-free inside and outside walls and ceilings. Four main methods are used:

- Plastering the walls and filling the joints between wood boards;
- Smoothing the roof and ceiling;
- Using light-coloured paint on the walls to help in the detection of insects;
- Improving ventilation and light through better doors and windows.

Some examples of effective techniques used for housing improvement include:

- Plastering and painting brick walls; plastering adobe and wattle walls using nails or small twigs to hold the plaster;
• Using bamboo cane as supports for the ceiling, which is then plastered with a cement and soil mixture;

• Finding the best natural locally-available additives to add to paint (such as cactus juice) to prevent cracking;

• Finding the best plaster combinations and proportions (cement, sand and lime) to prevent cracking;

• Incorporating a window in the kitchen for the smoke to escape; bamboo canes in a netlike structure in the window can keep insects out while letting smoke escape;

• Mosquito netting can be used to keep insects out of the house.

Most of the modifications can be done using locally available, low-cost materials.

The use of insecticides is a helpful and fast solution, but it can be too costly for rural people and is not permanent. However, it does provide 2–3 years of protection for the family while other interventions are being implemented.
The advantages of the housing improvements over building new houses are:

- The improvements respect the original home, lifestyle, materials, and techniques of the inhabitants;
- Beauty and variety are maintained, and changes are more easily accepted;
- The value of the house increases; pride in their work increases the self-esteem of the inhabitants;
- New houses are often not adapted to the needs of the inhabitants.

These interventions adapt and combine known technologies to solve a problem affecting both health and housing quality. Results of the research show that although the interventions can help reduce the incidence of Chagas' disease, they do not provide total control of the insect vectors. The key to their success is community involvement and cooperation from the outset. Because of the late onset of symptoms, Chagas' disease is not taken seriously by rural communities, who are more concerned with day-to-day survival than with a problem that will only emerge 15 to 20 years later. Strategies to combat the disease must be part of a holistic approach to community health, including interventions on such immediate concerns as maternal and child health and treatment of diarrhea and other infections. They must be an integrated part of general development initiatives undertaken by the community and incorporate other community goals and cultural values.

Potential users
Communities and organizations working in the areas of health and housing throughout Latin America. In Paraguay, the idea has been "bought" by the Ministry of Health and the Council on Housing.

Cost and availability
During the course of the study, costs for housing improvements averaged US $12 per square metre, or about US $400 per house (not including the owner's labour). This is well below the national average cost for improved housing in Paraguay.

Contact
Dr Luis Rios
Centro de Tecnología Apropiada
Facultad de Ciencia y Tecnología
Universidad Católica de Paraguay
Asunción, Paraguay
Tel.: 913865

Dr Antonieta Arias
Instituto de Investigaciones en Ciencias de la Salud
Rio de la Plata y la Gerenza
Asunción, Paraguay
Tel.: 81312/82069/83618
A Community-Based Approach to Schistosomiasis Control

Schistosomiasis affects more than 300 million people in Africa, Asia, and Central and South America. Another estimated 600 million are at risk from the debilitating water-borne disease. The disease is caused by a tiny parasitic flatworm that lives part of its life-cycle in humans where it causes rashes, abdominal pain, fatigue, fever, and diarrhea as well as damage to the liver and spleen. The eggs of the worm are passed through urine and feces and hatch in water, where they live inside snail hosts. Once they become infectious, they leave the snail for water and infect humans through the skin.

Schistosomiasis impedes growth, school performance, and productivity, especially among women and children. It aggravates anemia, malnutrition, and parasitic diseases. Of Zimbabwe's 9 million people, it is estimated that more than 2 million suffer from schistosomiasis. In rural Zimbabwe, infection rates can be as high as 80%.

Drug treatment for the illness exists but people simply get reinfected when they come into contact with contaminated surface water: bathing, swimming, fishing, washing clothes, or simply crossing an infested river or stream. Chemicals used to kill the carrier snails are expensive, toxic, and provide only a short-term solution. The cost of both drugs and commercial molluscicides and the need to

Researchers continue to search for new ways to kill snails which carry schistosomiasis.
import them has meant that most countries have drastically reduced or abandoned their schistosomiasis control programs. As a result, prevalence of the disease is rising.

The Blair Research Laboratory (Ministry of Health), which developed the Blair Ventilated Improved Pit Latrine and the Blair series of PVC handpumps, has tested an integrated community-based program to control schistosomiasis within the primary health care system in two rural communities of Zimbabwe.

The program incorporated the following features:

- Community sanitation and water programs were implemented, including latrine building, a hand-drilling rig for shallow wells, simple pumps, and slabs next to the pumps and wells for washing clothes.

- Health education activities were undertaken to increase awareness of the disease cycle and to encourage use of latrines, pumps, and washing slabs. Drama, an important part of local culture, was the most popular and effective educational tool, in the form of yearly school drama competitions on schistosomiasis and water and sanitation topics.

- Testing and treatment of infected people with the drug praziquantel was undertaken.

- Mollusicides were used to kill snails in nearby surface water.

Research on the impact of these measures showed the potential viability of an integrated approach. Village women were involved in evaluating the pumps and latrines, and in describing changes in water contact habits. School children were tested on their knowledge of schistosomiasis and its transmission. Results of the research were fed back into the communities. A second evaluation phase has produced recommendations for a national control program, and highlighted the need for further research to develop mollusicides derived from local plant sources to kill the carrier snails.

Prerequisites

Community structures, involvement, and interest in an integrated effort; appropriate water and sanitation technology.

Potential users

This approach could be adapted in countries where schistosomiasis is endemic. Its practicability on a large (or national) scale is still under evaluation.

Contact

Dr S.K. Chandiwana
Blair Research Laboratory
PO Box 8105
Causeway, Harare, Zimbabwe
Tel.: (263-4) 79.27.47
Fax: (263-4) 79.24.80
An Environmentally Friendly Means of Malaria Control

Coconuts may provide a major boost in the battle against malaria. Coconuts are proving to be a simple, inexpensive medium in a new and economical way to check the spread of the disease. In 1988, malaria accounted for 2.5 million deaths and 489 million clinical cases in the Third World. The disease has been on the increase in recent years despite the wide use of chemical insecticides. These chemicals are expensive, have a short-term effect, are damaging to the environment, and pose additional health hazards to people.

Biological control of mosquitos has now become possible. Bacillus thuringiensis var. israelensis (Bti) is a spore-forming bacterium that produces a toxin lethal to mosquito larvae. It has been shown to be safe for people and the environment; Bti is now being produced commercially, but is expensive to import.

The Instituto de Medicina Tropical Alexander von Humboldt of the Universidad Peruana Cayetano Heredia (Peru) is devoted to research, training, and service in infectious and tropical diseases. The researchers have developed a new, simple, inexpensive method to produce Bti locally using coconuts. In many tropical areas, coconuts are both cheap and abundant. The coconut can be used as a medium for culturing Bti, which is then applied to ponds where malaria-transmitting mosquitos breed. The mosquito larvae eat the bacteria along with algae and are killed. Coconuts that have fallen naturally to the ground and may be unsuitable for eating can also be used to grow Bti.

The toxic strain of Bti fermented in coconuts, when applied in the field, kills virtually all the mosquito larvae and stops further larvae development for up to 45 days. A Bti kit, which requires minimal instruction, has been prepared for use by local people. Other techniques are being explored for use in areas where coconuts are not plentiful.

The kit contains a plastic bag full of swabs doused in Bti and cotton plugs. The villager inserts one swab into each coconut through a hole drilled at the top and plugs it with cotton. After the coconuts have fermented 2–3 days depending on their size and the local temperature, the villager takes them to a nearby pond, breaks open the
fruit over the water and throws it all in. A typical pond needs 2 to 3 coconuts for one treatment.

In a second phase, the project is focusing on the active participation of the community through a comprehensive education program. The kit offers the advantages of low cost, sustainability, and the use of a local resource to combat malaria.

Prerequisites

- Preparation of Bti kit for field coconut inoculation: microbiologist and technician; culture medium; 2-litre fermenter; Bti H-14 strain. Production time required: 72–96 hours. Quality-control period: 24 hours.

- Proper use of Bti kit in the field: trained local people; dependable source of coconuts; small bench area for preparation of kits; educational efforts for community sensitization and dissemination of technique; distribution system for Bti kits and for inoculated coconuts.

Potential users

Combined with a major educational effort, this technique can be used by rural people in any area where malaria is endemic and coconuts are plentiful.

Contact

Dr Jumberto Guerra, Director
Instituto de medicina tropical Alexander Von Humboldt
Universidad Peruana Cayetano Heredia / Centro de Investigación en Salud Hugo Lumbreras Cruz
Instituto Nacional de Salud
AP 5045, Lima 100, Peru
Tel.: (51-14) 823-401; 823-903; 823-910;
Fax: (51-14) 823-404
Fertilizer-Producing No-Pit Latrine

Fecal contamination is a major contributor to mortality among children. The double-vault dry alkaline fertilizer family (DAFF) latrine was adapted from the successful Vietnamese double-vault latrine by the Centro Mesoamericano de Estudios sobre Tecnología Apropiada (CEMAT) in Guatemala. The Guatemalans call them LASF: letrinas aboneras secas familiares. Besides contributing to an improvement in health by breaking the cycle of fecal contamination and the spread of diseases such as diarrhea, hepatitis, typhoid, and parasitic infections, the DAFF latrine also provides farmers with fertilizer for their crops. This economic incentive has provided a major breakthrough for CEMAT in overcoming resistance to latrine use by the rural population, who believe that defecating in the fields improves the soil's fertility. The high-quality organic fertilizer produced by the DAFF latrine reduces farmers' costs and helps to avoid the long-term environmental problems caused by chemical fertilizers.

Other advantages of the DAFF latrine include the fact that it requires no digging, uses local materials, does not pollute soil or water (a hazard of pit latrines), and produces fewer microorganisms than pit latrines (thereby reducing the risk of disease).

The DAFF latrine is an aboveground, two-chamber system. A portable toilet seat is placed over the opening of one chamber. Each chamber funnels off urine into a special container. The urine is mixed with water and allowed to stand for 3 days, at which time it can be used as a liquid fertilizer. After each defecation, wood ash or a mixture of soil and lime is placed in the chamber. This keeps the deposit dry, inhibits odours, reduces the presence of flies, and helps speed composting to fertilizer. The toilet seat is moved to the empty chamber when the first is full. The first chamber is sealed for 6 months, while heat and evaporation eliminate the moisture, thereby killing the bacteria. The contents are transformed into a safe, rich fertilizer. An opening in the back wall of the chamber gives easy access to the fertilizer.

During 1982–86, CEMAT transferred the DAFF latrine technology to 10 national and international NGOs and five public national institutions working in the field of sanitation. At the international level, the technology was transferred to Mexico, the Dominican Republic, and Panama. At a session in Mexico, 43 community leaders from seven countries were trained in DAFF latrine technology.

Later in 1986–87, a survey conducted in Guatemala showed that 16 institutions had installed 3000 DAFF latrines in different parts of the country. CEMAT has implemented a project to provide support to these groups in the promotion of the latrines, including: how to promote social acceptance; sanitary control and maintenance; and research on the performance of the fertilizer.
National workshops have been organized to discuss the benefits and limitations of the latrines; videos and demonstrations have been used to inform farmers.

Prerequisites
Local materials for building (soil, adobe, brick, cement or stone, bamboo or cane, grass); availability of ash, lime, or dry organic soil. Community involvement and training is essential for social acceptance.

Potential users
Rural farmers anywhere; NGOs and community groups concerned with health promotion and agricultural improvements. The technology is especially useful in areas where it is difficult to dig pit latrines.

Cost
Cost depends on materials used. The entire unit can be built with cement, mud, and grass for less than $100.

Contact
Dr Edgardo Caceres
Executive Director, CEMAT
1a Av. 32-21, Z. 12, AP 1160
Guatemala 01012, Guatemala
Tel.: (502-2) 762-355; 762-018
Fax: (502-2) 762355

Resources and publications
In Mexico as in many countries, there is a lack of awareness and action relating to occupational health. Haphazard complaints are rarely sufficient to get an effective response from management. There is a need for hard facts to reinforce demands for better working conditions. In response to this situation, researchers at the Universidad Autónoma Metropolitana in Mexico City developed and tested participatory techniques that enable workers in developing countries to measure for themselves occupational hazards and their impact on workers’ health.

The method was tested in a steel factory called SICARTSA, in collaboration with the local union and 830 union members. The methods used included collective questionnaires, site inspections, analysis of health data obtained from the union, environmental measurements in the workplace, and data analysis using epidemiology techniques.

The study began with the premise that a useful methods must be accessible to groups of organized workers, produce reliable information on health risks and damages, be
action-oriented, and use preventive and epidemiological criteria.

The main technique used and evaluated was the collective questionnaire on the assumption that the day-to-day experience of a group of workers is a rich source of knowledge that needs to be systematized. The process provides a global diagnosis of the main risks and health effects of the workplace, how they are produced, and where they are concentrated in the labour process. The collective questionnaire also provides a forum for collective consciousness-raising and concrete action proposals, and doesn't require many technical resources. It increases workers' confidence by involving them in the identification of problems and their solutions.

Workers are divided into groups according to work stations, and information collected from them. Only information that is recognized by the whole group is admitted, and there is some verification of the information in the work areas, through medical examinations or with other groups of workers. The information is tabulated and a "risk map" drawn up, which illustrates the labour process, risks, disease symptoms, protective measures already in place, and proposals for new actions. The risk map is an instrument for action that allows workers to see relations as well as changes that are made.

Information is divided into five risk groups:

- Risks from temperature, noise, light, humidity, etc. inside and outside the factory;
- The work environment (dust, fumes, gases, vapours, radiations, vibrations);
- Intense physical activity and forced positions;
- Psychological strain (shiftwork, night work, danger, tight supervision, monotony, high work speed);
- Insufficient security in the machinery and installations.

The project has produced a manual (see Resources and Publications, below) in a popular format for use by workers and unions. The manual is divided into three sections:

- Information on work-related health problems and what workers can do;
- The advantages and disadvantages of different methods for studying health effects in the workplace;
- The results of the study done in the SICARTSA steel mill, including the characteristics of the workplace, the health risks of metal work, preventive measures, and the demands made by the workers to solve the problems.

This very detailed manual also includes sample questionnaires.

Potential users

Workers' organizations and unions in developing countries. The first of its kind, the manual is being used by unions in several countries including Brazil and Spain. In Mexico, the package was used by the 45 000-member
Mexican electricians union to organize a study on occupational health.

Contact
Profesor Cristina Laurell
Universidad Autónoma de México, Sede Xochimilco
AP 70-212, CP 04510, Mexico, D.F., México
Fax: 52-5 6711621

Profesor Mariano Noriega
Prolongación Narciso Mendoza
No. 24, San Miguel Ajusco 14700, Mexico

Resources and publications
- A video has been produced recording the process undertaken at the SICARTSA steel mill. Contact the researchers above.

Fog-Water Catchment for Water Supply in Arid Areas

Various regions around the world suffer from chronic water shortages. In some, such as the Pacific coast of South America, the Atlantic coast of Southern Africa, and some Arab countries, there are persistent fogs coming in from the sea that do not provide rain but that could be a source of good-quality water.

The Northern part of Chile is one of the driest areas in the world. There is a lack of good groundwater, very little rain, and practically no rivers that can be used for irrigation and human needs. In the coastal fishing villages of Northern Chile, potable well water has to be trucked in from as far away as 50 km at great expense. It often arrives contaminated. The local people use very little water, and the lack of water is a major contributing factor to the migration of people to the cities.

Researchers have now developed a means to use the local fog (called camanchaca) as a source of good water. Along the coast of Chile, there is a persistent and extensive cloud deck (but little or no rain) that creates fog in the slopes and peaks of the coastal mountains, where the ground intercepts the low clouds. Small natural forests have developed using only the camanchaca moisture for survival. Artificial collection of water from the camanchaca is believed to have been an ancient native tradition that has now been lost.

The fog moisture can be caught using large rectangular...
water collectors, some 40 square metres in area, made of a nylon mesh called Rashell. This mesh is available locally at low prices and performs well. The installation of the collectors is straightforward and relatively inexpensive. Little maintenance is required, and it can be done easily by local populations. With simple chlorination, the water is of much higher quality than the treated water of Santiago.

The collected water can then be channeled to local villages and afforestation projects. A dependable source of water has the potential to increase human settlement in the area, reduce urban migration, and develop local resources, such as fishing and mining.

For the villagers, fog-water catchment will mean 10 to 20 times more water available at a much lower cost. Currently, villagers in the area use an average of 14 litres of poor-quality water per person per day; fog-water catchment using 60 water collectors can produce for the same village from 25 to 50 litres of better-quality water per person per day. In 1988, trucked-in water cost US $8 per cubic metre (partially subsidized by the government). Fog-water catchment is estimated to cost significantly less, perhaps as little as $2 per cubic metre.

Currently 50 collectors are in place, providing up to 7200 litres of water per day. The pipeline to the village of Chungungo was inaugurated in May of 1992. Meanwhile a new prototype collector, easy to construct and maintain, has been developed and tested. Twenty-five collectors based on the new design are being installed on a new site in 1992. It is expected that they will be able to produce an average of 10 litres of water per square metre of mesh.

Fog-water catchment is now also being used in Islay province on the coast of Peru, in collaboration with the Instituto Nacional de Investigación Agraria y Agro-Industrial of the Ministry of Agriculture. Seven collectors have been installed, providing an average of 4.5 litres of water per day per square metre of mesh, for a total of about 120 litres of water per day.
Prerequisites
Consistently available fog that can be intercepted on land. Other than a persistent cloud deck, four other conditions are important:

- A mountain range with an average altitude of 500 metres or more;
- The principal axis of the range should be perpendicular to the prevailing wind (this increases the amount of water collected);
- The site for water collection should be close to the coast;
- The presence, on the other side of the mountains, of a broad basin with high daytime temperatures helps to suck the ocean air through the mountains.

Cost and availability
The cost of each water collector was approximately US $285 in 1988. Sixty collectors plus reservoirs, pressure-relief stations, and pipes was estimated at $27 000. This implies a cost of approximately $8 per cubic metre of water over 1 year, and $2 per cubic metre of water over 5 years.

Potential users
Coastal communities in Northern Chile and Peru and others around the world in coastal areas or islands with little rainfall and similar atmospheric conditions. These include: the Atlantic coast of Southern Africa (Angola, Namibia); Cape Verde; China; Haiti; and Oman and Eastern Yemen.

Contact
Profesor Pilar Cereceda
Instituto de Geografía
Pontificia Universidad Católica de Chile
Casilla 114-D, Santiago, Chile
Tel.: 5522375 ext. 4721; Fax: (56-2) 552-5692

Dr Waldo Canto, Director
CONAF-SERPLAC, IV Region
La Serena, Chile

Dr Humberto Fuenzalida
Departamento de Geología y Geofísica
Universidad de Chile
Santiago, Chile
Tel.: 6968790

Dr Robert Schemenauer
Atmospheric Environment Service
Environment Canada
4905 Dufferin Street
Downsview, Ontario, Canada M3H 5T4
Tel.: (416) 739-4606; Fax: (416) 739-4211

Resources and publications
Plans are underway for the production of a booklet and two 20-minute videos to promote the technology.
In Malaysia, as in many other countries, testing the quality of drinking water is essential to protect people from water-borne diseases such as cholera, typhoid fever, dysentery, polio, and hepatitis. Standard methods to test bacteriological water quality are costly, time-consuming, and require well-trained staff and laboratory facilities. This makes it difficult to routinely test water sources in remote areas.

Researchers in Malaysia have now developed a prototype portable water-quality testing kit that is inexpensive, easy to use, and effective under field conditions. The kit uses an adapted version of a test called APHA 919C, for the detection of coliphages in water samples. Standard tests measure the presence of coliforms in the water, which is a more complex process. Coliphage testing is simpler, less expensive, and has been shown to be a useful indicator of the level of fecal contamination in the water. The test involves incubating the sample in a host culture. Various changes to the test have simplified the process and allow for incubation at ambient temperatures (25 to 35°C).

The method is useful for testing water in open wells, tube wells, rivers, and other surface waters, and small-scale water supply systems. The quality of untreated surface waters can be determined rapidly with a 6–8 hour incubation time. Standard water quality tests need a 24-hour incubation time for an accurate assessment.

The prototype kit consists of a styrofoam box in a canvas sheet, which protects the contents from sun and rain, and maintains a constant temperature inside the box. With a capacity for eight tests, each kit contains: media in bottles in stainless steel trays; the bacterial host in dried form; petri dishes; syringes; receptacles; a camping gas burner; a lighter; and a pair of tongs. It can be carried by hand.
on a bicycle, or in a vehicle. It measures 38 cm × 25.5 cm × 33.5 cm and weighs 6.4 kg.

The kit has proven to be reliable. The design is currently being modified for mass production. Further improvements may include: reducing the weight by using plastic bottles instead of glass; replacing syringes with pipettes; finding a less expensive gas burner. A manual and training course are also being prepared. The kit has the potential to develop self-sufficiency of communities in testing their own water.

Potential users

Health and environment government departments and other organizations involved in monitoring water quality.

Prerequisites

About half a day of training is all that is required to use the kit.

Cost and availability

The kit is still at the prototype stage. It is estimated that it will cost about US $95 for an 8-test unit, and US $175 for a 24-test unit. This amounts to US $7 per test with 44 cents per test for replacement items (media and syringes). This compares favourably with existing field kits which cost US $1000 to $1700 for a 24-test unit or about $50 to $75 per test.

Contact

Dr Wang Chee Woon
Department of Microbiology, Faculty of Medicine
University of Malaya
Pantai Valley, 59100 Kuala Lumpur, Malaysia
Tel.: 03-574 422; Telex: UNIMAL MA 39845

Solar-Powered Desalinators to Provide Drinking Water in Arid Areas

Providing potable water is a major problem in many areas across Africa. Years of drought in desert regions have meant that surface water and shallow wells are not being replenished by rainfall. Climate changes in the fragile ecosystems can affect the survival of entire groups of people. In Botswana, 80% of the population depend on boreholes for their water. However, drilling for water is expensive and often disappointing. More than half the boreholes in some areas of Botswana result in scarce or salty water. Some 70 communities depend on trucked-in water, but this system is expensive and often unreliable.

The Solar Energy Section of the Rural Industries Innovation Centre has developed and tested several prototypes of small-scale desalinators for areas with water that is too salty for human consumption. Saltwater can come from
boreholes or salt pans (surface depressions that collect water).

The desalinators are simple to operate and maintain, are relatively inexpensive, and can provide drinking water under harsh conditions. They produce clear, good-tasting water and also provide salt for cooking, preserving meat, and curing game skins.

The desalinators have been well accepted by remote communities in the Kalahari desert, where they have contributed to community spirit and served as a basis for other development initiatives.

As opposed to trucking in water, desalinators promote self-sufficiency of communities in relation to water supply. Although the desalinators don't meet all the water needs of a community, especially in the winter, the people have assigned them a high social value. They also reduce migration to other areas because of an unreliable water supply.

The desalinator is a glass-covered airtight basin with a black base that absorbs the sun's radiation. The salty water is introduced into the desalinator and left in the sun to evaporate; the air becomes saturated with water vapour and condensation occurs on the coolest surface: the glass. The glass is set at an angle so that the condensed water flows down it rather than dropping back into the salty water. It is collected in gutters and directed to storage tanks, leaving the salt in the basin.

Two types of solar-powered desalinators have been developed. The first, the Mexican modified still, gives good performance and is simple to use. Its fibreglass basin is strong, flexible, does not corrode or leave a taste in the water, is easy to clean, and remains stable at high temperatures. It is small and portable (1.6-m² long and 62-cm high), can be stacked, and is designed to withstand transport over unpaved roads. The installation of the stills does not require skilled labour. The main drawback, however, is that fibreglass can be expensive.

The second model, the brick still, is much less expensive but is less durable and portable and produces less water. In Botswana, the brick stills were cracking because of the low quality of sand for plaster. Skilled labour is needed.
for installation or the effectiveness of the still will be compromised.

During the study, the Mexican still yielded 8 litres of water per day in summer and 2.5 litres per day in winter; the brick still yielded 4 litres per day in summer. Supplementary water had to be trucked in in the winter.

The distilled water is virtually salt-free. Because humans need some salt in their drinking water, the distillate has to be mixed with some of the salty water before being used as drinking water. An educational effort is often needed to persuade people of the importance of this step, which can seem superfluous or self-defeating.

The desalinators should not be seen as an end in themselves but as a means to an end. They are complementary to other water technologies and can serve as a base for other initiatives in a settlement. They can relieve human hardship in areas with harsh climatic conditions, while developing within the community a sense of purpose and self-sufficiency.

Potential users

NGOs and community organizations working in desert areas where water supply is difficult and where salty water is available. The desalinators can be used communally, domestically, or for schools, clinics, etc.

Prerequisites

A reliable supply of salty water. Training in installation, operation, and maintenance is essential for the stills to be effective. A sense of participation and ownership of the technology by the community is also essential. They must see the technology as important for their survival or they won't maintain it. Building materials must be robust and resistant to corrosion by salt and degradation by sunlight and heat. All the materials used are locally available in Botswana and include: vermiculite-cement for insulation from the ground, cement, silicone sealant, fibreglass, resin resistant to sunlight, bricks and mortar for brick stills, PVC or cement for gutters, polypropylene pipes, nylon joints, clamps, weatherstripping, brass bolts, galvanized pipes, and standard 4-mm window glass (thinner glass will not resist hailstorms).

Cost and availability

The desalinators are not being produced commercially, but the RIIC will provide information and technical assistance to organizations wanting to undertake similar projects in other countries. While the desalinators can be expensive, other methods of supplying water to remote arid areas are usually more expensive. Estimated total cost per still is US $340 plus US $230 for materials (storage tanks, fencing to keep out animals, etc.) for the Mexican still; and US $53 per square metre (or approximately $150 per still) for the brick still. The Mexican still pays for itself within about 2.5 years; the brick still pays for itself in less than a year, but requires more skill for repair.
Ferrocement Rainwater Catchment Tanks

Once the steel and mesh frame is finished, the next step will be to anchor it on its foundation and apply the cement.

The problem of the availability of potable water in rural areas is an ongoing challenge in many countries. Where there is adequate rainfall, the harvesting of rainwater for domestic use can be an inexpensive alternative providing relatively safe drinking water. Although rainwater catchment is not new, the technology is not widely used, in part because of the high cost of concrete to build catchment tanks. With the development of ferrocement technology, tanks can now be built that are durable and much less expensive.

In the Philippines, in the province of Capiz, 90% of the people have no access to safe, reliable water. The groundwater table is low and often salty. A low-cost, simple tank design using ferrocement technology has now been developed; it is accessible to the villagers, who can build the tanks themselves using materials commonly available throughout Southeast Asia.

In the Philippines, villagers expressed a strong interest in and acceptance of the tanks, which they built themselves after undergoing training. The technology has the following advantages:
Materials are easily available;
The tanks can be built in various shapes and sizes;
The construction skills are easily acquired;
Construction requires only simple tools;
Ferrocement is cheaper than concrete;
The tanks require little maintenance (traditional tanks require overhauling every 2 years);
The tanks are durable (they are expected to last up to 30 years), water-resistant, and have a high impact resistance.

The tanks can be built to hold from 4000 to 10,000 litres of water. The walls are only 3–10 cm thick, depending on the size of the tank, but because they are reinforced internally with a framework of large-gauge welded steel mesh covered with fine wire mesh, they can support the water pressure.

The building of the tank consists of four major steps:

• Preparing the foundation (a concrete pad covered with a polythene sheet or waterproof cement bags);
• Constructing the mesh “cage,” made of two layers of large-gauge welded steel mesh, each covered by fine wire mesh held in place by short lengths of wire;
• Plastering the cage with mortar, made of 10 parts cement, 15 parts sand, and 4 parts water;
• Curing the tank, which takes one full month. The tank then be checked for leaks, dried out for 3 or 4 days and the inside painted with nontoxic paint. The tank is then connected to the roof gutter and household pipes.

A builder’s manual that can be used by semiliterate villagers has been published in Tagalog by Kabalikat Ng Pamilyang Pilipino, a Philippine NGO (see below). Training for the villagers of Capiz included clean water usage, community organizing, how to choose an appropriate technology, site selection, and building and maintenance of the tanks. A revolving fund has been set up to finance the building of the tanks.

Prerequisites
A tank can be built in about 1 week by three to five masons. Materials needed are concrete (for the base), large-gauge welded steel mesh, fine wire mesh, mortar, and pipes.

Potential users
Individuals, communities, schools, clinics, etc. in areas where potable water supply is a problem but where there is adequate rainfall.

Costs and availability
Cost of materials (but not labour) will vary from about Can $300 to $1200, depending on size.
Contact
Mr Cornelio L. Villareal, Jr
Vice-chair and Chief Executive Officer,
Capiz Development Foundation Inc.
PO Box 57
Roxas City, Capiz Province, The Philippines
Tel.: 704202 / 781471

Resources and publications

- Ferrocement Rainwater Catchment, a builder's manual based on drawings and minimal text in Tagalog and Ilonggo. The manual can be obtained from: Kabalikat Ng Familyyang Pilipino, MCPO Box 189, Makati 3117, Metro Manila, The Philippines; tel.: 8184158; telex: 722-23102; cable: PIACTMNL.

(Refer to technology 59 for more information about ferrocement).

The PVC Handpump

For many years, handpumps installed in rural areas of the Third World failed because they were not adapted to the rugged conditions (they were often used continuously for up to 18 hours a day by different people at different rhythms, with little maintenance). In 1978, IDRC supported research at the University of Waterloo which resulted in a new prototype shallow-well handpump.

The pump's innovation was that certain underground parts (piston, cylinder) were made from an inexpensive plastic material called polyvinyl chloride (PVC). This highly resistant material is used extensively both in the North and the South and is easier to handle than metal (PVC parts are glued rather than soldered). PVC does not rust, which gives water obtained from a PVC pump a better taste and odour. The new pump was light, sturdy, easy to transport and install, needed little maintenance, and was inexpensive.

Researchers in various countries have adapted the model to suit local conditions and needs. The most successful model to date, the UNIMADE handpump, was developed at the University of Malaya, Malaysia. This model is being used and adapted in 13 countries. Organizations in Ethiopia and Sri Lanka have developed their own prototypes. Feedback from pump users in various countries has been taken into account in the design of the latest models, which represent state-of-the-art plastic hand-pump technology. Currently some 7500 PVC pumps are in use around the world.

In Sri Lanka, a modified pump is being used in a program to train women pump technicians. The Sarvodaya Shramadana Movement, Sri Lanka's largest NGO, has developed a unique training program that provides young, rural women with the opportunity to become self-sufficient economically while providing a much-needed service to their rural communities. A division of
This cut-away model reveals the extensive use of PVC plastic in this highly successful pump design.

Sarvodaya, the Sarvodaya Economic Enterprises Development Services (SEEDS), provides training to the women in handpump technology, metal work, carpentry, masonry, shallow well-drilling techniques, health and sanitation, management, accounting, and village-level economics.

These “women of the handpump” operate workshops for the manufacture of pump components as well as tools such as axes, knives, and coconut scrapers, thereby ensuring themselves an income and increasing their technical skills for other village-level work.

Prerequisites
Adequate groundwater supplies; willingness of villagers to accept and use the handpump; ability to build, install, maintain, and repair the pump (the pump should be adapted to local conditions and availability of materials and parts).

Potential users
NGOs, governments, community groups, women’s groups, and others working in the area of water provision from groundwater in rural areas.

Network
The University of Malaya is the headquarters of a network in PVC handpump technology that links China, India, Indonesia, Malaysia, the Philippines, Sri Lanka, and Thailand in Asia; Cameroon, Egypt, Ethiopia, Kenya, and Mali in Africa; and Costa Rica in Latin America. It has become a forum for research, information-sharing and training for small businesses and community groups on all aspects of the technology, including manufacture, installation, maintenance, evaluation of performance, financing, and community organization.
Cost and availability

The UNIMADE handpump comes in four models ranging in price from US $70 for a lift type pump with a depth capacity of 12 metres, to US $135 for one with a depth capacity of 50 metres. The most commonly-used model, with a depth of 30 metres, costs US $120, a third to a fifth of the cost of similar handpumps on the international market. Various other adapted models have been developed in other countries. Information on these can be obtained through the PVC handpump network, at the address below.

Contact

UNIMADE Handpump, Professor Goh Sing Yau
Department of Mechanical Engineering
University of Malaya
Lembah Pantai, 59 100
Kuala Lumpur, Malaysia
Tel.: (0-3) 755-3466, ext. 260
Fax: (0-3) 757-3661; 757-8308
Telex: UNIMAL MA 39845
Cable: UNIVSEL

For information on the Sri Lanka women's handpump project, contact:

Mr Dulan de Silva
Servodaya Economic Enterprises Development Services
41 Lumbini Mawatha
Ratmalana, Sri Lanka
Tel.: (94-1) 71-4577 or (94-1) 72-3597
Fax: (94-1) 72-3091

Other members of the handpump network:

- Mr Vernick Barthelus, CARE Project Manager, BP 26, Bertoua, CAMEROON
- Mr Feng Bingyuan, Director, Chinese Academy of Agricultural Mechanization Sciences, No. 1, Beishatan, Deshengmen Wai, Beijing, People's Republic of China
- Mr Elias Rosales E., Fundación Tecnológica de Costa Rica, Apdo. 159-7050, Cartago, Costa Rica
- Mrs Samiha El-Katsha, American University in Cairo, 113 Sharia Kasr El Aini, Cairo, EGYPT
- Mr Aseged Mammo, R&D Engineer, Ethiopian Water Works Construction Authority, PO Box 1008, Addis Ababa, Ethiopia
- Dr Ranjit Singh, Reader, Mechanical Engineering Department, MR Engineering College, Jawahar Lal Nehru Marg., Jaipur, Rajasthan, India
- Ms Christina Aristanti, Assistant Director, Yayasan Dian Desa, 7 Km Jalan Kaliurang, Bulsumur, Yogyakarta, Indonesia
- Mr Mohamed Karama, Research Associate, Medical Research Centre, Kenya Medical Research Institute, PO Box 20752, Nairobi, Kenya
- Mr. Mamadou Diallo, Vice President, AMRAD, BP 1647, Bamako, Mali
Water Disinfection Using Solar Radiation

Obtaining clean drinking water is a continual challenge in many countries. Often the only water available is rife with disease-causing bacteria, and must be disinfected to make it safe. Conventional methods for disinfecting drinking water, including boiling and the addition of chlorine compounds, can be time-consuming and expensive. There may be procurement and distribution problems for chlorine compounds can also give the water an unpleasant taste. In many areas there is no fuel for boiling water.

The main part of the solar reactor is a transparent serpentine tube.
Researchers in Lebanon have developed a low-cost, practical means to provide safe drinking water to rural and urban areas, using the ability of sunlight to destroy bacteria. Solar radiation is a form of renewable energy that is abundant and accessible in most Southern countries.

The researchers began by exposing water to sunlight in batches, in plastic bags and clear or blue-tinted pyrex glass containers. The bacteria in the water were destroyed in about 75 minutes. Water in regular glass containers required 175 minutes. They also tested a process called the halosol technique, where relatively high doses of sodium hypochlorite (chlorine) are used to disinfect small volumes of heavily polluted water. The water is then dechlorinated through exposure to solar radiation, which removes the bad taste and smell. In pyrex containers, 99% of the chlorine was removed after 110 minutes of exposure. In plastic bags, only 35 minutes of exposure was required.

After confirming the success of exposing water to the sun in batches, the researchers designed a flow-through system for continuous disinfection of larger quantities of water. In this system, a storage reservoir is connected to a tank, from which the water is directed by gravity at the desired rate through a solar reactor. In one prototype, the reactor is a serpentine pyrex tube resting on a metallic surface angled at 35° facing South, for maximum exposure to the sun (this angle may vary according to the location). The second prototype uses a solar reactor made up of four pyrex glass containers and one pyrex glass helix, which increases its total capacity. The disinfected water is then conducted to a distribution tank.

The flow-through system can also be used with the halosol technique, to remove excess chlorine from heavily-treated water. The researchers continue to work on improvements to the system. These improvements may include increasing the system's capacity by increasing the diameter of the pyrex tubes, and installing a radiometric device to synchronize the water flow with variations in the intensity of sunlight.

Prerequisites

The system can be made locally from pyrex, which is a good transmitter of solar radiation, durable, and locally available in Lebanon. In areas where pyrex is unavailable, other durable plastics that are relatively inexpensive and can be locally molded can also be used. In the first prototype, called type I, the glass tubing is 13.4 m in length, 22 mm in diameter, and 1.5 mm thick. In the type II prototype, the glass helix is 10.5 m long, 12 mm in diameter, and 1 mm thick.

Potential users

Primary health care workers and technical people working in the areas of solar energy and water disinfection. The system can potentially be used in small communities, refugee camps, institutions, and in disaster situations where water supply is interrupted.
Contact
Dr Aftim Acra
Acting Chairman
Faculty of Health Sciences
American University of Beirut
Beirut, Lebanon
Telex: AMUNOB 20801 LE

Resources and publications

Rice Husk Ash Filters for Potable Water

In India, 80% of public health problems come from water-borne or water-related diseases. There is a strong need for low-cost, indigenous technologies to help in the provision of potable water to the rural and urban poor.

Indian researchers have developed a family-size filter, using rice husk ashes, that is simple, inexpensive, and easy to build at the village level.

Rice husk ash (RHA) is an agricultural waste product that is abundant all over India, and costs almost nothing. It can be bonded with cement, moulded and shaped into any form, and does not require firing.

The researchers compared three filter models (using RHA bonded with prefired clay, RHA bonded with portland cement, and RHA bonded with cement in a pebble matrix). The performance of all three was acceptable, as they were able to remove nearly all suspended matter in the water as well as 99% of the bacteria. However, the filter design with the pebble matrix gave the best results.

The pebble matrix filter using RHA bonded with cement is a new concept. A cylindrical container is filled with pebbles, and the RHA mixed with 7.5% ordinary portland cement is then poured into it. The use of fine RHA (212 micron, but no finer) increases the efficiency of the filter. The pebbles, preferably small, support the filter material and provide the following advantages:

- Filtration is improved as the water has to follow a tortuous course;
- The pebbles prevent cracking and shrinking of the RHA-cement filling when it dries;
- The weight of the pebbles compresses the filling, decreasing the porosity continuously from top to bottom, which is an ideal filter characteristic.

The RHA-cement filter can be poured into a container of any shape, and does not require firing, only a few days of
setting. The pebbles can be washed and recycled when the filter is clogged.

In tests, the filtered water was well within World Health Organization standards. Although it does not provide 100% bacteria-free water (it removes 99% of bacteria), it is argued that water that is completely bacteria-free could lead to the loss of natural immunity which is the first defense of people living in areas with inadequate sanitation and a lack of access to medical services.

Prerequisites

Availability of rice husk ash, portland cement and pebbles.

Potential users

NGOs, government services, and people living in rural or marginalized urban areas in countries where rice is grown.

Contact

Dr A.C. Subbarao
Tata Research and Development Design Centre
1 Mangaldas Road
Pune 411001, Maharashtra, India
Education
Community-Run Preschool Centres in Low-Income Areas

Preschool education and child-care development are rare in poor and marginal areas in Chile; government-funded programs have limited capacity and privately-run programs are out of reach for the "poblaciones"—the people living in poor communities.

The Centro de Estudios y Atención al Niño y a la Mujer (CEANIM, Centre for studies and care of children and women) has developed and tested a model to enable poor communities to run their own preschool centres. The preschools are seen as one way to reduce failure and drop-out rates in elementary schools.

The main characteristic of CEANIM's model is the participation of mothers in the development, administration, and organization of the centres, as well as teaching of the children. The mothers receive training in workshops where they learn about socialization, health, hygiene, and nutrition. The centres are a low-cost alternative for these mothers, who need only to give one period of duty per week and bring in cleaning supplies once a month.

Each centre is developed in three stages:

• During the first year, CEANIM sets up the centre and ensures its basic functioning.

• During the second year, mothers and the community as a whole participate in teaching at and running the centre, as preparation for operating the centre themselves, with human and material resources provided by CEANIM.

• In the third stage, the centre functions autonomously, with occasional help from CEANIM to solve specific problems.

The main objective of this initiative is to transfer the project from the hands of the institution (CEANIM) to the hands of the "pobladoras," the women from the poor barrios of Santiago. An evaluation of the program showed that the women's confidence was significantly increased by their participation at these centres, both as administrators and as educators of their children. The quality of the children's education was improved when mothers were involved, and the children's verbal communication and psychomotor skills were also improved. Children from these centres were better prepared to enter the formal school system.

CEANIM has established some 15 preschool centres in poor areas of Santiago. As well as providing improved social services for the children and mothers, the centres facilitate community participation in deciding on the objectives and the content of their children's education. CEANIM has also developed an evaluation model that can be applied to assess these preschool programs.
Due to the efforts of low-income parents like this mother, poor children now have the opportunity to attend pre-school.

Potential users

Government agencies, NGOs, and other organizations involved in preschool education and child-care in poor communities.

Contact

Dr Maria Angelica Kotliarenco
Centro de Estudios y Atención al Niño y a la Mujer
Bueras 182
Santiago, Chile
Tel.: 380-043 or 330-514
Fax: 56-2-383-040

Resources and publications

- La Comunicación en el Proceso de Aprendizaje — Una Experiencia Preescolar, CEANIM, 1988, 195 pp. (an evaluation of the impact of paraprofessionals and mothers in preschool teaching).

80

A School–Community Integrated System for Literacy

Under the auspices of the Institute for Teacher Education, Kyambogo (Uganda), a system to promote literacy in the schools and community has been developed and implemented in four primary schools. MINDSACROSS is not a structure or organization, but rather a concept that can be interpreted and put into practice in many different formats and contexts.

MINDSACROSS gets students to compose, write, read, discuss, and publish indigenous literature that can then be shared in small learning networks with classmates, schoolmates, and the community. The purpose is to provide a forum for all participants to be active teachers and learners, cooperating to make literacy a powerful tool for social and intellectual development and change.
Years of political conflict, instability, and economic mismanagement in Uganda have led to the deterioration of social services including education. There is a lack of affordable, available, and culturally relevant material. Literacy is not taught in the schools in the context of the students' daily lives; as a result a majority of graduates with few prospects of further education lose their literacy skills once they leave school. MINDSACROSS seeks to promote literacy as an individual and collective meaningful skill for the acquisition and sharing of knowledge to improve life in the schools and the communities.

MINDSACROSS has two main objectives:

- To encourage school management, parents, teachers, and pupils to practise and consolidate pupils' developing skills in reading, writing, and drawing;
- To build confidence among pupils as innovators and as capable and permanent communicators with themselves, their peers, and other audiences.

MINDSACROSS consists of four basic activities, designed to broaden the teachers' perception of their roles as literacy teachers, and to get children to practise and consolidate their developing skills. The four basic activities include the following elements:

- Discussions with teachers to help them to reconceptualize the process of teaching and learning literacy within the core curriculum (English, social studies, math, science, and health);
- Professional assistance in implementing creative writing in the classroom;
- Development of a forum for pupils to share and discuss their writing with their peers within and outside their classroom, school, and community;
- Assistance to compile, duplicate, read, discuss, display, and disseminate the writings and drawings to other
children and other audiences. This includes publication of booklets and displaying texts in classrooms and on notice boards.

Some 70 booklets have been published so far, containing stories, poems, texts, and drawings both entertaining and educational. Examples of titles include: Peoples of Uganda; Mr Bee and His Good Friends; My Small Book About Seeds; AIDS: From 7th to 1st Killer Disease; Water: A Miracle by God; Accidents at School. The texts can be used for children at other levels in school, children in preschool centres, drop-outs doing practical training, and adult literacy learners.

The children's responses suggest that their involvement in the creative writing activities helps them to understand concepts and knowledge relating to themselves and their communities. They are given the power and the opportunity to reflect on what they know and believe, or as one pupil explained: "of telling in my own words on anything I want."

Potential users

The MINDSACROSS concept can be adapted for use in schools and communities anywhere where literacy skills are low or become lost from lack of use. The materials produced by MINDSACROSS have application mainly in Uganda but could be useful in other East African countries.

Contact

Dr Katherine Namuddu
MINDSACROSS
PO Box 6577
Kampala, Uganda
Tel.: 233595 or 257792

Resources and publications

- **MINDSACROSS: A School–Community Integrated System for Living Literacy; Case Study of Uganda Primary School Pupils As Authors**, Katherine Namuddu, 1990, 195 pp.

- **MINDSACROSS: A School–Community Integrated System for Living Literacy; An Overview of the Status of the Project**, Katherine Namuddu, 1990; a 38-page booklet giving an overview of the project.

- Some 70 booklets of texts by Ugandan schoolchildren.

Educational Games for Preschool Children

In the Andean countries of Latin America, rural and urban indigenous children suffer various socioeconomic and cultural constraints which result in low educational achievement and high drop-out rates at the primary school level.
The rich cultures of the Andean countries include numerous educational traditions whose potential to increase children’s abilities and confidence is now being recognized. Children’s games are one of them. Once transmitted from generation to generation, the world of indigenous knowledge is rapidly disappearing under the influence of foreign cultures.

The Centro de Investigación sobre el Desarrollo Infantil (CIDIE), with IDRC support, has researched and collected traditional Indian games from communities in four Andean countries (Bolivia, Colombia, Ecuador, and Peru), for use as inexpensive, easy-to-use techniques to prepare indigenous children for school. The games have been adapted to develop competence in language, math, abstract thinking, and social learning, and to develop cultural values.

In a second project, CIDIE is developing and testing a complete package of both indigenous and nonindigenous games and materials, with a practical guide to their use for mothers and child-care workers. The package complements the work of an alternative community-based program for preschool education run by the Instituto Colombiano de Bienestar Familiar in rural communities and in centres for disadvantaged children.

Prerequisites
Manuals and a brief training program.

Potential users
Educational and preschool child-care organizations (governmental or nongovernmental) working with rural and urban indigenous preschool children throughout Latin America.
Cost and availability

Two manuals describing the games are available from CIDIE (see below). As well, a package of 60 games for children 4–6 years old is being assembled for use by mothers and child care workers in rural and marginal communities. The package costs about US $320.

Contact

Dr. Cecilia Bustamante
Carrera 19, No.74-44, Bogotá, Colombia
Tel.: (57-1) 217-5067
Fax: (57-1) 13.92.19 or (57-1) 13.91.81

Resources and publications

• A Spanish-language VHS video describing the application of traditional games in children's centres and a package of games and materials to develop cognitive and language skills.

Spanish-Language Software for Basic Education

The Instituto SER de Investigación (Colombia) has developed and tested a software package to help disadvantaged children at the elementary level to improve their math and Spanish skills, two major stumbling blocks experienced by rural indigenous children. The pilot program resulted in an improvement in creativity, reasoning skills, self-esteem, and achievement among the school children.

The software was developed after an evaluation of the impact of computers in rural Colombian schools undertaken by SER. They concluded that Spanish-language, culturally appropriate software adapted to Colombian needs had to be designed. The software was developed in
collaboration with teachers, and is flexible enough for them to adapt it to different grades and individual skill levels. For example, teachers can increase or decrease the level of difficulty of the exercises or even incorporate subjects from their social or cultural environment.

The programs take the form of games which enable students to master the basic concepts of math and Spanish. For example, one game consists of a series of simple addition, subtraction, division, and multiplication questions. If the player makes three errors, the computer wins the game. The game can be set at different levels of difficulty. Another program provides a short text for reading, then asks a number of questions to assess the child's understanding and encourage word associations and the identification of synonyms.

Two math and two Spanish programs were originally developed, followed by four additional programs.

Students who took part in the pilot program have shown a higher interest in school, remain in school longer, and get higher grades. Their confidence in their learning abilities has increased as they can learn at their own rate.

Currently more than 5000 students in Bogotá have access to the programs, through the Ministry of Education. Each program comes with a teacher's manual.

Prerequisites

There are two versions of the program. The first requires an Atari (130 XE or 65 XE) computer. The newer version is used on IBM or DOS compatible computers with graphics cards.

Potential users

Elementary schools with Atari or IBM compatible computers in Spanish-speaking Latin-American countries, particularly those with indigenous or disadvantaged students; ministries of education and others working within the formal education system.

Contact

Carlos A. Rojas C.
Instituto SER de Investigación
Carrera 15A, No 45-65, AA1978
Bogotá, Colombia
Tel.: (57-1) 288 01 00; Cable: SERIN
Fax: (57-1) 245-5248 or (57-1) 226-803

Resources and publications

- VHS video (15 min.) in Spanish, which shows the program undertaken by the Secretaría de Educación de Bogotá to provide computers and software to 40 public schools in Bogotá.
The rural community-based system for university-level education is rooted in the Fundación para la Aplicación y Enseñanza de las Ciencias (FUNDAEC), founder of the Rural University located in Perico Negro near Cali, Colombia. This institution holds a philosophy that rural populations should not only benefit from higher education but should actively participate in the creation and generation of knowledge and technologies to improve their quality of life and standard of living. FUNDAEC aims to dispel the image of the poor farmer whose life must be planned and managed by the more privileged members of society.

The Rural University is a community-based system for the development of human resources. A general strategy of research-action-learning permits scientific knowledge to be directly linked to the application of technology and to channel what has been learned back into the curriculum. The University’s strategy includes strengthening of community structures, application of science and technology to the rural economy, and formal training.

The Rural University’s plans and strategies for the development of human resources in the rural areas include the training of rural youth as promoters, technicians, and high-school graduates in rural well-being. This training is realized through the Sistema de Aprendizaje Tutorial (SAT), a tutorial learning system with an innovative educational curriculum recognized by the Colombian Ministry of Education. Students, who live and work in their communities, join the system as they begin to study.
service to the community, mathematics, language, science, and technology with the tutors that are trained by the Rural University.

The rural youth who finish high school, be it through the SAT or traditional high-school programs, can continue their university studies in rural education. During their course of study the university students, who are being trained in an innovative program that integrates the educational, productive, and organizational aspects of rural life, undertake joint research and development ventures with members of their communities. They also participate in the activities of the agroindustrial centre on the university campus which provides training and support to small local agroindustries, such as soy milk, fruit juice, and chocolate production. The centre has developed courses in rural agroindustry for potential entrepreneurs and is intimately involved with the development, support, and dissemination of agroindustry in the region.

Prerequisites

Training and use of educational materials developed by FUNDAEC. Agricultural and animal production techniques are linked to community organizations and initiatives. FUNDAEC provides training by means of seminars and workshops for interested organizations.

Potential users

Ministries of education, institutes for the improvement of agricultural and animal production, NGOs, agricultural or microenterprise policymakers.

Contact

The Director
FUNDAEC
AA 6555
Cali, Colombia
Tel.: (57-23) 536-489
Fax: (57-23) 536-491

Resources and publications

- Numerous textbooks on math, science, agricultural techniques, etc., produced by FUNDAEC.

- Rural University — Learning About Education and Development, Farzam Arbab, IDRC, 1984, 72 pp., $7.95.

- To the Heart of the Campesino, VHS video, FUNDAEC.

- Footholds, a film showing different innovative educational models in Latin America, including the Rural University, IDRC, 1984, 28 min.
Materials to Improve Rural Primary Education and Counter School Leaving

In Mexico, as in many countries, the educational system has deteriorated with the advent of economic crisis. The problem of academic failure and school leaving is especially acute in the rural areas and among the indigenous population. The rural education system is still not fully relevant to the realities of peasant life. As a result, between 1980 and 1986, only 10% of the children in rural primary schools completed their sixth year.

To address this ongoing problem, researchers from the Centro de Estudios Educativos (CEE) have developed an integrated community-based education program to overcome academic failure among rural children. The methods and materials invite the participation of children, teachers, parents, school authorities, and community leaders. The basic assumption behind the program is that academic failure is rooted in the gap between the educational system and the ways disadvantaged children communicate, learn, and interact. It is also linked to the generally poor preparation of rural teachers.

Three separate programs have been developed. In the community preschool program, Conociendo a Nuestros Hijos (knowing our children), a model for a preschool curriculum has been developed, based on activities that involve the family and the community. Teaching materials are aimed at preschool teachers, mothers, and community participants, and the goal is one of prevention of school leaving and academic failure. The pilot program proved very popular. A package of materials was prepared for mothers of preschoolers, on health, hygiene, nutrition, parent-child interaction, and on how to create a good home environment for learning. A package for teachers on working with parents' groups to foster good home environments includes manuals on research methods, how to interview mothers on their child's development, how to
plan work sessions with mothers, how to systematize models for health, hygiene, nutrition, etc.

The community primary school program aims to adapt curriculum to make it relevant to rural conditions. An upgrading program for rural teachers has been developed, focusing on strengthening basic reading, writing, and math skills, and encouraging innovation in their teaching methods and curriculum. The program seeks to involve the community in the educational process and link the curriculum to the socioeconomic activities of the community.

The training program lasts two years, at the end of which the teachers become part of the process of developing new primary education methods integrated with rural life. The program has three components: theory, which is presented in 16 independant study manuals; research and learning on the problem of school leaving and academic failure, with research exercises in each manual; encouraging innovation through the integration of theory and practice. This component includes workshops on Spanish language skills and math, where the teachers learn about child development and the learning process; use of research tools to identify problems and make changes; and teacher-led programs for parents, to encourage a better home environment for learning.

Results of the pilot program for teachers showed an increase in teachers' motivation, a greater pride in their role and their ability to identify and solve problems, a better understanding of rural realities, and a reduction in the turnover rate. Eighty-five percent of the teachers enrolled in the program completed it.

The study guides for teachers are on the following topics: learning theories; academic failure; interests, expectations and images of the teacher; characteristics of the rural population; rural schools in Mexico; educational planning; authority and discipline in the classroom; personal interactions between education professionals; child development; pedagogical methods; personal history and career development; teaching, the school and the education system; philosophies of education; values and daily life; values and the curriculum; the role of education in society.

A basic education program for primary school drop-outs is aimed at 9 to 14 year-olds, and is based on an alternative curriculum model that is flexible and adapted to the children's situations. The program suffered from a lack of interest in the community and a lack of belief in the value of basic education for drop-outs. A manual was prepared on diagnostic tools and educational strategies for recuperating school drop-outs and reducing absenteeism.

Potential users

Educators, school authorities, community groups in rural areas in Latin America. The materials should be adapted to local conditions.
Teaching Building Techniques with Picture-Scripts

The poorest people in India do not have access to either the technical know-how or the financial resources to build effective housing. The Communication Centre of Scientific Knowledge for Self-Reliance has developed a novel approach to teaching low-cost house-building techniques to the urban poor. "Picture scripts" offer a simple way to communicate knowledge directly to those concerned, even if they cannot read; the scripts are easily understood, easy to copy by hand, and adaptable to different skill levels. The scripts represent technical information translated into simple drawings accompanied by short explanations.

The project in India disseminates information on house-building techniques, with special emphasis on the roof, which is the most difficult and crucial part to build. For example, one script shows how to flatten tin cans to turn them into sheet metal. Another shows how to use old bottles to let light into the house. The picture-script booklets, in Hindi and Tamil, address different climatic conditions. They focus on bamboo and aluminum foil, two inexpensive materials that are readily available and provide excellent insulation from heat and humidity, respectively. Local craftspeople can easily prefabricate the bamboo structures.

The manuals will be combined into a Popular Encyclopaedia of Survival, which is being used by India's Directorate of Adult Education in its national literacy programs. Besides Hindi, Urdu, and Tamil, they are translated into several local dialects. The manuals are adapted to suit each audience and change form from place to place. They are estimated to have reached some 10 million people.
Potential users

Individuals and community-based organizations involved in low-cost housing; literacy programs.

Contact

Mr Yona Friedman
Communication Centre of Scientific Knowledge for Self-Reliance,
33 Boul. Garibaldi, 75015 Paris, France
Tel.: (33-1) 47.83.20.24

Rural Information and Training Services

NADES-Formation Cameroon is exploring ways to collect and communicate both traditional knowledge and new technologies to literate and illiterate people in rural areas. The most popular activities in its information and training program are correspondence courses in agriculture, animal husbandry, and health. It also conducts seminars in villages to discuss traditional and new farming techniques and health practices.

NADES-Formation Cameroon publishes a lively, popular English-language magazine, Rural Development Review, written in an informal style that encourages a sense of ownership among its rural readers by speaking directly to them. Rural Development Review is complemented by a variety of question-and-answer booklets in French, English, Fee-fe, and Ewondo. A popular radio show, Rural Rendez-vous, reaches a large audience in North-West Province.

Disseminating information is made more complex by the close to 200 languages spoken in Cameroon besides the two official languages (English and French). For this reason, INADES-Formation Cameroon uses Pidgin (the lingua franca of the western and coastal areas) as well as
English in its radio broadcasts and publishes materials in French, English, and several local languages.

One of the strengths of INADES-Formation Cameroon is recognition of the essential role women play in agriculture and development. Their publications and seminars acknowledge this by directing specific material to women and seeking information from them. INADES also addresses environmental issues such as the devastating effects of bush fires and the importance of trees.

The close links of INADES-Formation with farmers, the two-way dialogue, the emphasis on disseminating both traditional knowledge and innovative technologies, have helped to ensure the popularity and success of this process of learning and development in the farming regions of Cameroon.

Potential users

NGOs and community groups working in the area of rural information dissemination could learn from INADES's extensive experience and successful techniques. The materials themselves would need to be adapted to local needs and realities.

Contact

The Director
INADES-Formation Cameroon
BP 11
Yaoundé, Cameroon
Tel.: (237) 23.15.51

For Rural Development Review and information on the Bamenda program, contact:

INADES-Formation, Bamenda Delegation
PO Box 252, Bamenda
North-West Province, Cameroon
Tel.: 36-11-80

Resources and publications

• Numerous educational booklets, including a series on farming (how to sell products; how to use credit; animal husbandry; information on different crops; etc.); and a series on development (African history; development and international relations; rural development; industrial development; etc.). French only.

• Textbooks for courses in small project management. French only.

• Rural Development Review, a publication of the Bamenda Delegation of INADES-Formation. Contains articles on agriculture, health, and social issues of local concern, as well as practical information and a question-and-answer column for farmers. English only.

• IAgripromo, a quarterly inter-African magazine promoting rural life is published by INADES. French only. For information or subscriptions contact: INADES-Formation, 08 BP 8 Abidjan 08, Côte d'Ivoire; tel.: 44-31-28; telex: 20 21 39 F RCINF (ATTN IF17 INADED FO).
Education Materials for the Consumer

The Consumer Association of Penang (Malaysia) or CAP, does grassroots work linking consumer issues with environment and development issues. It has produced many educational materials and held workshops, seminars, and rural information programs. For programs in rural areas, CAP produced four-page brochures consisting mostly of sketches and using few words. CAP is helping people to become more responsible consumers and it is also helping to protect them from marketplace malpractice and abuse.

CAP has produced a series of pamphlets with detailed information and analysis for use by teachers, women's groups, university students, youth leaders, and workers. The pamphlets are used in teacher-training courses to help in the teaching of "life skills" — what to buy, spending and saving, health, nutrition, and safety — and as resources for consumer clubs in schools.

The pamphlets are printed in English, Chinese, Malay, and Tamil. Among the titles and topics included in the series are:

- Safety at Home, at Work, and on the Road;
- Advertising: The Price You Pay;
- Protect Your Money;
- Sugar Destroys Your Health;
- Towards a Non-Smoking Generation;
- The Third World Environmental Crisis: A Third World Perspective;
- Be Healthy: A CAP Guide for Malaysian Women;
- Good Nutrition, Good Health;
- Product Safety for Women;
- Malaysian Environment: Today and the Future;
- Stand Up for Your Rights!
- Breast Feeding: The Best Start in Life;
- Medicines: Some Do's and Don't's.

Potential users

NGOs, community groups, government, and schools in Southeast Asia.

Cost and availability

The pamphlets are available from CAP. They range in price from US $1 to $3.
We are becoming ever more aware of the power of television to convey messages to large segments of the population. In many countries, concern is mounting about the content of the programming, the negative impact of TV messages on children, and the lack of mechanisms to educate the TV audience to make more active and critical use of this media. In Chile, the Centro de Indagación y Expresión Cultural y Artística (CENECA), has developed a comprehensive program of education for television view-
ing, to encourage a more democratic and participatory use of TV by parents, teachers, and children.

CENECA has been working on the theme of education for TV viewing, with IDRC support, since 1982, and has now developed an educational package for schools and community organizations, based on its extensive experience.

The two main objectives of CENECA's educational program are:

• To provide different social groups with the capacity to create their own interpretations of TV messages. This includes the ability to view TV programs critically, and to define one's own interests and needs and compare them to what TV has to offer.

• To strengthen cultural expression among different social groups so that they can participate in influencing TV programming to better suit their needs.

The program has the following characteristics:

• It is flexible, and can be used in different educational settings (schools, families, community groups, etc.).

• It is adaptable to different age groups and sociocultural backgrounds.

• It is a low-cost program which requires little or no outside financial help.

• It is decentralized, and can be incorporated into existing organizations.

• Strategies have been developed to incorporate the program into different institutions and groups, such as schools, unions, women's groups, etc.

The program is composed of the following elements:

• Educational materials and activities (simulations, games, etc.). See Resources and publications below for a list of the manuals that have been published. These include manuals for working with children and adults, low-income youth, and low-income women's groups. The manuals have been very much in demand and have been reprinted several times.

• Training. CENECA has organized workshops, courses, and seminars with teachers, parents, community leaders, labour groups, women's groups, and youth. The activities aim to encourage creativity. For example, in the schools, the manuals can be adapted to different ages and grades; they can be added to the regular courses or used in extracurricular activities. Workshops can be organized for parents, out-of-school youth, and other groups.

• Evaluation and monitoring.

• Dissemination of the methodology within local and regional organizations in Latin America. The aim is to decentralize the program, adapt the methodology to different contexts, and set up institutional bases to provide continuity.

• Research into the concrete relation of different groups of viewers to TV messages. This provides scientific information and contributes to theoretical knowledge.
about the effects of TV on society. A manual has been produced to help educators (both formal and informal) find out how TV affects the group they wish to work with. The results can help to decide on how to develop an educational program for a particular group or class (see Resources and publications below).

- A program to enable viewers to demand the kind of programming they want from TV producers. This involves both educating viewers to the possibilities and limitations of TV production, and educating TV producers to the real social needs of their audiences.

Potential users
Schools, community groups, popular education practitioners, church groups, unions, parents’ groups, women’s groups, etc., in Latin America. CENECA has organized workshops in Argentina, Colombia, the Dominican Republic, and Uruguay. The materials could also be adapted for use in other regions.

Contact
Valerio Fuenzalida
Centro de Indagacion y Expresion Cultural y Artistica
Santa Beatriz 160 — Providencia, Santiago, Chile
Tel.: 43772; Telex: 346386; Fax: 2233355

Resources and publications
- Módulo de Educación para la TV, Valerio Fuenzalida, Paul Edwards. A manual for teachers and parents on how to teach children and youth to watch TV critically and selectively. Includes nine units, with games and activities that don’t require technical infrastructure or special knowledge. CENECA-CENCOSEP, under the auspices of OREALC-Unesco, 1984, 170 pp. In Spanish only.
- Mujer TV — Guía de Trabajo en Educación Para la TV con Grupos de Mujeres Pobladoras, Paula Edwards, Soledad Cortes, Maria Elena Hermosilla. A guide for working with low-income women’s groups. CENECA, 1986, 180 pp. In Spanish only.
- Explorando la Recepción Televisiva, Maria Elena Hermosilla. A manual containing 15 simple techniques for discovering the relation between TV and a group of viewers. CENECA-CENCOSEP, 1987, 150 pp. In Spanish only.
- TV-Padres-Hijos, Valerio Fuenzalida. A manual aimed at parents and educators, showing how the influence of TV can be managed within the family, in school, and in youth groups through special activities. CENECA-Ediciones Paulinas, 1984, 205 pp.
A Program and Materials for Street Girls

In many Latin American cities, a large portion of poor children live in the streets. They survive through activities such as watching and waxing cars, begging, thieving, drug trafficking, and prostitution. Without family guidance, political consciousness, or education, they are vulnerable to exploitation and are destined to remain marginal and poor.

A number of educational programs and shelters have been set up throughout Latin America, with an emphasis on street boys. However, there are few social and educational programs for girls that take into account their special needs, in spite of the fact that in Bogotá (Colombia) alone, there are approximately 15,000 street girls, most of them prostitutes, under 12 years of age.

In Colombia, the Fundación de Servicio de Orientación Juvenil (Youth Orientation Service Foundation) has developed and tested an educational model aimed at enhancing the lives and future educational options of young girls involved in prostitution.

The strategy uses scientific information in such areas as humanistic psychology, health, and the law, to help the girls develop social skills to communicate with others, and enhance their self-respect and personal autonomy.

Called Ambiente de Mutuo Apoyo (Environment for Mutual Support Program) or AMA, the method seeks to provide an atmosphere where the girls can learn to value themselves and others, develop social skills, and increase self-esteem and cooperation through group problem-solving.

The system seeks to build an alternative positive culture for the girls, teaching them the importance of mutual support and responsibility for identifying and solving their problems.

Some of the main strategies used include: providing the girls with an open and trusting environment; creating an atmosphere that promotes change rather than complacency; addressing the girls' problems in the here and now, valuing each person as she is now rather than analyzing or dwelling on the past; using problems as opportunities for learning and change; expecting mature behaviour from all participants (girls, educators, administrators); using values as the basis for establishing rules, with the basic value being that of mutual help and support; using the concept of responsibility as an essential factor for change.

The researchers concluded that the best results were obtained in groups of 9–10 members of the same age. The success of the method depends to a great degree on the training and motivation of the group leaders, and their ability to develop an alternative environment that is pleasant, participatory, and creative, with a positive moral atmosphere. Their relation to the youth must not
be conflictual or complicit, but rather that of a guide helping to rechannel the girls' energy in a positive direction.

Illustrated manuals, written in a popular education style, have been produced for the teachers/facilitators of the program and the "students." They include detailed descriptions of the method as well as numerous exercises and techniques. (See Resources and publications).

As well, a series of short booklets has been published as educational tools that can be distributed directly on the street or used in the program. Focused on women, they deal with topics such as mental health, women's rights and dignity, women in the workplace, and health issues.

Researchers have found that the program has been successful in increasing the girls' self-esteem, and reducing anxiety and negative attitudes toward themselves and their environment. The strategy was effective in helping the girls to internalize the concept of personal and social responsibility, leading to more constructive behaviour. It promoted reflection on the moral aspects of daily life without using moral "recipes" or abstract concepts. Although the program does not produce overnight transformations, it has been shown to be an educational technique of great usefulness for working with troubled teens.

The basic strategy has been adapted for use by organizations in Argentina, Chile, and Venezuela.

Potential users

Educators, social workers, psychologists, and others working with young girls aged 12–18 years, involved in prostitution, abandoned, or living on the street.

Contact

Carlos Canon
Fundación de Servicio de Orientación Juvenil
Carrera 30 No. 78-12
AA 080470
Bogotá, Colombia
Resources and publications

- **Ambiente de Mutuo Apoyo**: a general description of the method and its philosophical base.

- **Acogida**: how to create a welcoming environment and get a group started.

- **Personalización**: promoting personal development and self-esteem.

- **Socialización**: training in social skills; the process of socialization; difficulties in adolescence; support techniques; value formation through social relationships.

- **Interiorización de Valores**: activities for group discussion; group problem-solving; promoting values of mutual support, responsibility, etc.

- **Jurídico**: human rights and responsibilities in judicial terms and in relation to the realities of street children; developing the children's awareness and decision-making capacities concerning rights and obligations in the areas of life and personal integrity, personal identity, family, sexual activities, and work.

- **Educación Sexual**: human sexuality, reproductive responsibility, health and human ecology.
Communication and Information
Trilingual Training Package for Video Production

Video has become a new and important tool used by many Third World groups for popular education, information, and training. With portable video, groups now have an inexpensive and manageable medium with which to create their own material according to their own cultural tradition and needs. Lack of or poor training of users of the medium, however, often makes video ineffective.

Montreal-based Vidéo Tiers-Monde collaborated with the Instituto para América Latina on a trilingual training package (English, French, and Spanish) for using portable video. This self-training package includes a 45-minute video on all aspects of production and distribution, supported by three illustrated booklets containing technical information.

The kit can be used in the classroom during training seminars or be a "teacher" to people who are learning to use video on their own.

The training package was developed in Canada and Honduras and has been tested in Chile, Peru, and Zimbabwe. More than 600 copies have been distributed in Algeria, Argentina, Benin, Bolivia, Burkina Faso, Mali, Niger, Senegal, South Africa, Uruguay, and Zaire.

Prerequisites

Adequate power supply and access to a video unit and a television screen.

Potential users

NGOs and community groups that want to use video as an organizing/development tool.

This training package provides basic instruction in video production so Third World educators and information groups can introduce the powerful medium to their work.
Cost and availability

The kit is available in English, French, and Spanish. Italian and Swedish versions are in the works. Approximate prices (Can) are as follows: English: $250; French: $120; Spanish: $75. Orders from developing countries for English and French versions are also about $75.

Contact

All languages in NTSC standard:
Alain Ambrosi, Vidéo Tiers-Monde
3575 Saint-Laurent, Suite 608
Montréal, PQ
Canada H2X 2T7
Tel.: (514) 982-0770; Fax: (514) 982-2408

French or Italian kit in PAL standard:
Jean-Paul Guillet
Organisation catholique internationale du cinéma et de l'audiovisuel
Pal 220 San Calisto, 00120, Città del Vaticano
Rome, Italy
Tel.: (39-6) 698-7255; Telex: (504) 2014 C.I. VA OCIC;
Fax: (39-6) 698-7335

In Spanish for all Latin American countries (NTSC or PAL):
Instituto para América Latina
AP 270031, Lima 27, Peru
Tel.: (51-14) 61.79.49; Telex: 25202 PE HCSAR;
Cable: IPALC; Fax: (51-14) 46.63.32

Using Video to Introduce New Technologies

Community participation and organization are essential to the effective introduction of new technologies. Based on the experience of introducing UNIMADE handpumps in several communities in Costa Rica, the Fundación Tecnológica de Costa Rica (FUNDATEC), in collaboration with the villagers who participated in the handpump project, developed a set of dynamic participatory strategies for introducing new technologies (particularly water supply and sanitation technologies) in rural areas. Out of this process they produced a series of video training modules in Spanish entitled Con Calor de Amigos.

These training modules do not constitute a “how-to” package, but are designed to promote reflection and discussion, to encourage development workers to look critically at their own attitudes and methods, and to help in the development of effective strategies. They stress the importance of building awareness, self-esteem, and confidence as a prerequisite to technical and material development. For FUNDATEC, “appropriate technologies” imply
that both technical and social aspects are considered in any technology dissemination project.

Each module comprises a short video in NTSC format, accompanied by printed material — an easy-to-read pamphlet providing a synopsis of each module and a manual for animators to lead discussion. Using TV-style situation dramas, the videos dramatize key human elements in the relations between field workers and communities that can contribute to or prevent the success of community-based interventions. The videos are designed to be presented in a discussion format.

The following eight modules make up the package. Two narrative voices provide the perspectives of the NGO and of the community.

- **Los Expertos**: this video looks at the NGO world, the handpump project, and the theme of community participation on a theoretical level. It covers the setting up of a multidisciplinary team, and the problems that arise when people from different career backgrounds work together.

- **El Arranque**: this video looks at the community, its living conditions and health conditions, and the decision by the NGO and the community to undertake a common project. It covers the new experiences coming out of the first visit of the project team and the community.
• **Encuentros**: this video shows initial contacts and reactions, convocations and meetings, as well as the human and professional reactions of team members from various fields.

• **Los Bigotes de la Pulga**: this video covers health education, the discovery of the microbial world (using a microscope), and the need for handpumps. Because it is difficult to understand the existence of something you can't see, it is also difficult to correlate some diseases with water. The microscope becomes a tool to open people's minds to a new concept.

• **Enredados**: the community doesn't accept the rules of the game. The local committee matures with experience and takes the project into its own hands. They present their own decision to the community rather than the project team's choice.

• **El Turno**: there is a shift in attitudes, an increased emphasis on larger realities. Both the community and the project team have many other concerns in their lives other than the project.

• **Mi Bomba**: this module shows the appropriation of the technology and training in handpump installation and maintenance. When someone is able to understand how the technology works, can change that technology, and teach others about it, one can speak of true appropriation.

• **La Instructora**: the final video looks at the training of instructors from the community, from both NGO and community perspectives. It demonstrates, through the real process lived by a local woman, that local people are better able to reproduce the project experiences in their own daily language, using their own examples. The "instructora" learns that she is able to go beyond her traditional housewife role.

Local actors took part in the videos as well as professionals. The production provided training to local people in the use of video and became a catalyst for further drama activities in the community.

The project reached the following conclusions regarding the strategies used for introducing the handpumps:

• It is essential to look at community participation, health and hygiene, and cultural values when introducing any new technology;

• It must be possible to repair and maintain the technology locally to create a real sense of local "ownership";

• Community participation must be real and direct in the planning, implementation, and evaluation of the project;

• The technology becomes a key element that must be clearly linked to related topics, such as preventive health care, environmental sanitation, reforestation, community organizing and administration;

• Training of local instructors returns the capacity for knowledge-sharing to the community, and increases self-esteem and humanitarian values;
• Community participation is a dynamic process that can't be summarized in a rigid "format."

Potential users

Community field workers, for use in their organizational and promotion activities; NGO staff and government fieldworkers, to sensitize them to the process of community involvement in the introduction of new technologies, especially water supply technologies.

Contact

Elias Rosales Escalante
Fundación Tecnológica de Costa Rica
Apartado 159 — 7050, Cartago, Costa Rica
Tel.: 51-53-33 ext. 2335
Fax: (506) 51-5971; (506) 51-5348; or (506) 51-1552

Resources and publications

• As well as the videos and related materials, four manuals in Spanish were developed by the project, on the following topics: health and hygiene; rehabilitating hand-dug wells with ferrocement; handpump installation, repair, and maintenance; work manual for community instructors on how to organize and lead workshops on health issues, community organizing, and administration.

• The final report submitted to IDRC on the production of the videos provides detailed information on the community participation process.

Children as Agents of Change

During the 1980s, there was a growing recognition among educators and health workers that children can be effective change agents in the areas of health and hygiene. Children often communicate and share more than adults, and in some cases are more literate than their parents. Many children also have responsibility for younger siblings while their parents work.

The "child-to-child" approach was developed and named during the Year of the Child (1979) by a group of health and education professionals. The goal was to improve health and reduce infant mortality by engendering positive health practices among children. Based on activity-oriented learning methods, the approach is now used in programs in over 70 different countries. These range from structured programs in schools to the participation of children in community health programs in urban slums.

There are two main goals in the child-to-child approach:

• Making children competent through activity-based learning that can be applied in their everyday lives;

• Using children as change agents in the environment
(through sanitation or tree-planting programs), with other children (by using positive health practices in sibling care), with their families (by sharing their knowledge with parents), and in their communities (through plays, participation in immunization campaigns, etc.).

Programs in different countries emphasize different aspects. For example some programs emphasize community activities, while others will focus on teaching children effective sibling care. People in each community know best how to adapt the concept to local conditions.

The following are examples of programs using the child-to-child approach in India, where the concept is being widely applied.

• In Malvani, a health clinic uses local children as outreach workers in community health programs. These "mini-doctors" take younger children to the clinic for examinations and check them for scabies. They apply simple treatments under the supervision of a health worker and explain to their charges the importance of cleanliness. Responsible for some six families each, they encourage mothers to bring in their babies for vaccinations. Other community activities include plays and skits (for example on malaria), storytelling, action songs, puppetry, and the sale of nutritious snacks to replace fried or sweet street snacks. In an IDRC-sponsored evaluation undertaken by the Aga Khan Foundation, it was found that child-volunteers were instrumental in identifying 477 cases of scabies, 233 cases of vitamin deficiency, 979 cases of anemia and 150 cases of tuberculosis. They performed 289 demonstrations of oral rehydration therapy.

• The Mobile Creche program runs some 20 daycare centres on construction sites. They have incorporated activity-based teaching of health and nutrition into their programs. An evaluation of this program showed that parents were accepting their children's messages about oral rehydration therapy, and the negative impact of alcohol and chewing tobacco.

Communities benefit as a whole with older children teaching the younger ones about health and hygiene.
A number of schools in Bombay and New Delhi have begun teaching health topics in science class using child-to-child approaches. In New Delhi, the project began in 82 schools in 1987, and expanded to 108 schools in 1990.

In rural India, various programs including nonformal education given to children before school and in daycare centres, provide training to the older children who bring their younger siblings to the centres. In Rajasthan and Gujarat, the Centre for Health and Nutrition Awareness provides training and technical support to local NGOs in teaching children basic health skills and encouraging their dissemination through skits, neighbourhood clean-ups, and the recruitment of infants for vaccination.

The programs offer particular opportunities for girls to develop self-confidence and be more visible in the community. They also can be helpful in disseminating important information to out-of-school youth.

In Honduras, IDRC has also been involved in a similar program. In the urban slums of Tegucigalpa, a program using child-to-child techniques is being used to improve health and sanitation. The children observe the relation between sanitation and health through visits to clinics, and “clean” and “unclean” sites. They are taught the importance and methods for handwashing, boiling water, maintaining latrines, etc. They prepare skits and plays for families and school, and draw posters to take home and post in their communities.

Prerequisites

Organizations wishing to incorporate the child-to-child approach in their programs will require training in activity-based learning methods.

Potential users

Schools, daycare centres, health clinics and community organizations that have access to children and want to have an impact on the health of the community.

Contact

Rajni Khanna, Program Officer Health and Education
Aga Khan Foundation
Sarojini House, 2nd Floor, 6 Bhagwan Dass Road
New Delhi 110001, India

Judith Evans
Aga Khan Foundation
Rue Versonnex 7, 1211 Geneva 6
Switzerland
Tel.: (022) 360344
Telex: 27545 AKF CH
Cable: AKFGVA Geneva

In Honduras:

Douglas A. Matamoros
c/o Project HOPE/Honduras
AP 1587, Tegucigalpa, Honduras
Tel.: 22-4806
Telex: 1501 HOPE HO
The Institute of Child Health of London University (UK) collects and shares information on the child-to-child approach around the world. They can be reached at:

Child-to-Child
London University Institute of Child Health
Institute of Education
20 Bedford Way
London, WC1H OAL, United Kingdom

Resources and publications

• Activity sheets and readers in English, Arabic, French, and Spanish (some titles) are available from: Teaching-Aids at Low Cost, PO Box 49, St Albans, Herts AL1 4AX, United Kingdom. Tel.: (0)727 53869. English materials produced in India are available from the Aga Khan Foundation, India (see address above); French materials available from L’Enfant pour l’enfant, Institut Santé et Développement, 15 rue de l’École de Médecine, 75270 Paris - cedex 06, France; Nepali readers available from Centre for Health Learning Materials, TU Institute of Medicine, PO Box 2533, Kathmandu, Nepal; Urdu readers available from Jamil Foundation, Pakistan, Hamdard Centre, Nazimabad, Karachi 18, Pakistan.

• One free set of activity sheets (English; Arabic and Spanish available in 1992) can be requested by overseas groups. Contact the Child-to-Child Trust at the Institute of Child Health, above.

• Aga Khan Foundation (India) has produced a video about the child-to-child projects they have sponsored (1988), see address above.

Policies to Limit Effects of Volcanic Disasters in Latin America

The 1985 volcanic eruption of Nevado del Ruiz in Colombia left 22,000 people dead and 6000 families homeless. The high losses were not inevitable. They were due to several factors including a lack of systematic volcano monitoring, the absence of public policies for disaster prevention and preparedness, and insufficient coordination among the various bodies responsible for hazard assessment and emergency planning.

Researchers who studied the El Ruiz eruption concluded that while there was sufficient scientific information to point to the likelihood of an eruption, a number of social and institutional factors prevented both effective communication of this information to the communities at risk,
and the elaboration of specific emergency plans to deal with a possible disaster.

Researchers in Peru and Colombia have now developed specific policies for volcanic zones in Chile, Colombia, Ecuador, Nicaragua, and Peru based on existing scientific, technical and organizational capacities in each country.

The researchers began by studying the 1985 El Ruiz eruption and the response of local and national governments and international agencies, as well as the inhabitants of the region. They assessed the scientific, technical, and management capabilities needed to limit the effects of volcanic eruptions, as well as the capabilities already existing in each country, and made policy recommendations. They also produced a video aimed at educating communities at risk, organized an international workshop in Bogotá, and identified ways to share expertise and resources throughout the region.

Policy recommendations are in the areas of prevention of casualties (through education and use of the media) and reaction to eruptions (using civil defense measures). The researchers have identified specific volcanoes that pose the greatest risk and have evaluated existing volcanic maps.

Specific recommendations deal with, among other things, the need to decentralize administrative responsibility for emergency planning and response; the need to establish better linkages between the scientific community and the mass media; and the importance of ongoing geological and historical analysis of high-risk areas, including, where warranted, the elaboration of detailed volcanic maps.

The recommendations stress the need for equipment as well as political will to implement permanent monitoring of high-risk volcanoes, and encourage international organizations to support this capacity in developing countries.

Potential users

Governments and organizations involved in emergency planning in volcanic zones.
Contact
Dr Alberto Giesecke, Director
CERESIS (Centro Regional de Sismología para America del Sur)
Postal address: apartado 14-0363, Lima, Peru
Street address: Av. Arenales 431, Of. 702, Lima, Peru
Tel.: 247421; Fax: 51-14 336750
Telex: 20053 PE PB LIMTC Atención CERESIS
Cable: CERESIS

Resources and publications
• El Nevado del Ruiz y el Riesgo Volcánico en America Latina, CERESIS, 1990 (Executive summary).
• A la Sombra del Volcán (In the Shadow of the Volcano), Spanish video, 36 minutes.

Procedure to Obtain Infant Mortality Rates in Marginalized Areas

The infant mortality rate provides useful information on levels of development, child rearing behaviour, sanitation and health, and communities at risk. However, it is often difficult to measure accurately and inexpensively.

Areas where the infant mortality rate is high are often the most difficult to assess, due to the lack of hospitals, records, and health infrastructure, as well as the isolation of communities and low literacy levels. Retrospective surveys are expensive and time-consuming, and mothers

New techniques of estimating infant mortality rates have been adapted to marginal areas.
often don't remember specifics about pregnancies and deaths. The average time between the collection of the information and its analysis is 2 years.

Three organizations in Argentina, Chile, and the Dominican Republic have tested a new procedure to obtain infant mortality rates in poor areas. The method is simple, fast, and inexpensive.

When a woman delivers a baby at a hospital, a clinic, or at home with the help of a midwife, she is asked three simple questions on the results of her previous pregnancy:

- Have you had a previous baby born alive?
- If yes, is that child now alive or dead?
- If the child is dead, did he/she die younger or older than one year of age?

With this method, health officials can accumulate accurate indirect estimates of the infant mortality rate. The method goes directly to the mother for information and reduces memory errors. It can be incorporated into a permanent system of data collection using hospitals, clinics, and midwives; or it can be used in routine census surveys.

Accurate estimates using this method were obtained in Argentina, Bolivia, the Dominican Republic, and Honduras. The results were comparable to those obtained through traditional survey methods. Further research is being undertaken in Brazil to refine and test the method in different contexts, and look at ways to disseminate it for general use.

Potential users

Health and development planners, government ministries, NGOs, local governments, and communities.

Contact

In Argentina:
Eduardo Ramis, German Pollitzer, Jorge Somoza
Fundación Cruzada Patagónica
Gines Ponte s/n
Neuquen, Argentina
Tel.: (0944) 91286/91295

Centro de Estudios de Población
Avda. Corrientes 2817 Piso 7
Buenos Aires, Argentina
Tel.: (0541) 9610309/9618195

In Chile:
José Miguel Güzmán
Centro Latinoamericano de Demografía, Casilla 91
Santiago, Chile
Tel.: (0562) 485051 up to 485061

In the Dominican Republic:
Bienvenida Rodríguez
Consejo Nacional de Población y Familia
Avda. San Cristobal esq. Avda. Tiradentes
Santo Domingo, Dominican Republic
Tel.: (01809) 5665866
An Information System for Child Protection Agencies

The problem of abandoned street children in the cities of Latin America is becoming more acute. Child protection agencies and other organizations working with children are overburdened. In 1987, the National Children's Institute of Uruguay (INAME) had some 10,000 children (abandoned, orphaned, and young offenders) in its care, and the number keeps growing. Lacking resources and accurate records, the organization can sometimes take days to track down a child in care. As well, there are no inventories of foster homes and available adoptive parents and their characteristics.

With the help of the Inter-American Children's Institute, INAME is now using a computerized information system to keep track of the children and the services available to them. As well, statistics and records generated by the system help to identify trends and problems and to improve services.

The system, called SIPI, is based on Clipper and dBase III+ software. Manuals describe step-by-step procedures for data collection, validation, and correction. The package includes a pilot database with access through telephone lines. Currently some 150 institutions (daycare centres, rehabilitation centres) call INAME at a pre-arranged time to transmit information on the children's whereabouts. The database includes some 300 variables (name, birth date, height, date of registration, reason for being in care, etc.).

The system was developed in consultation with child protection agencies in Argentina, Bolivia, Brazil, Costa Rica, Ecuador, Jamaica and Peru. The information structure developed through this process is therefore more universal and independent of the administrative structure of different organizations. Negotiations are currently underway to transfer the system to Brazil and Ecuador.
Prerequisites

IBM or compatible microcomputer. The system works in a network environment.

Potential users

Child protection agencies and other organizations working with large numbers of children.

Contact

Julio Max Rosenblatt, IIN-OAS
Casilla de Correo 16212
Montevideo (11600), Uruguay
Tel.: (5982) 47 — 2150
Fax: (5982) 47 — 3242; Telex: 23119 IIN UY

MINISIS
Multilingual Software for Information Management and Research

Organizations involved in information management in the South need appropriate tools. This includes having access to software that can produce and manage information in their own language and character set.

MINISIS is a versatile, multilingual, easy-to-learn information management system developed by IDRC for use on the Hewlett Packard 3000 family of minicomputers.

The system is flexible enough to handle many different applications. For example, IDRC uses MINISIS to manage the operations of the library, the Centre’s mailing list of some 30 000 names, and a research project data bank, called IDRIS, which contains information on research activities by IDRC and other donor agencies. The system can be used to search for information on thousands of topics, and computer specialists can use it to develop their own specialized information tools.

Other examples of applications supported by MINISIS include: registries of correspondance; directories of consultants and experts; land data banks; press clipping services; record and music libraries; legislative assembly documentation systems; germplasm registries; meteorological information databases; student record systems; chemical toxicology databases.

One of MINISIS’s most useful attributes for international organizations is its capacity to operate in and process data stored in a variety of Roman-based languages as well as Arabic, Chinese, Greek, and Thai, through the use of “dialog files” that are independant of the software. IDRC distributes the software in English, French, and Spanish. The Arabic version is distributed in cooperation with the Arab League, which has translated the dialog files into Arabic. A Chinese version has also been produced.
First developed in 1978, the system is now being used by 350 organizations around the world, some two thirds in the South.

The MINISIS Users' Group is a forum for users to share ideas as well as specialized software they may have developed. This international group meets once a year, and several regional groups hold regular meetings. As well, IDRC manages a library of software tools developed by users, and distributes the software to all MINISIS users. Regional MINISIS Resource Centres provide training and assistance to users in their region (see addresses below).

Organizations can acquire MINISIS by signing a licence agreement. The software is provided with documentation in English, French, Spanish, Chinese, or Arabic, and training in the use of the system is also provided. Each user then receives any new enhanced versions of MINISIS and any repairs that have been made to correct reported problems. Users also receive a newsletter with articles relating to MINISIS activities.

MINISIS version G.01 is the one currently in use. IDRC is developing an improved version (Version H) which will enable MINISIS to be used on low-cost DOS-based microcomputers used by most nongovernmental organizations. It is expected to be available in the spring of 1993.

Prerequisites

For Version G.01: Hewlett Packard series 3000 minicomputer, with 256 K of memory, and the following software: Version IV or later of MPE, HP FOS including EDITOR, FCOPY, SORT/MERGE, and KSAM.

Version H, to be available in 1993, will require an IBM or compatible PC/XT/AT microcomputer with 640K RAM and a MS or PC DOS 3.3 or higher operating system.

Potential users

Documentation centres, information centres and departments, universities, research agencies, and any organization involved in information management.

Managing libraries is one of MINISIS' many possible applications.
Cost and availability

The software is available at no cost to organizations in the Third World. Elsewhere, it is licensed through commercial distributors.

Contact

MINISIS Outreach
Information Sciences Division
International Development Research Centre
PO Box 8500, Ottawa, Ontario
Canada K1G 3H9
Tel.: (613) 236-6163; Fax: (613) 238-7230
Telex: 053-3753; Cable: RECENTRE

Regional Resource Centres

Arab speaking countries:
• M. Mohamed Gasmi, Directeur du département, Technologie de l'information, Arab League Documentation and Information Centre, Tahrir Square, Cairo, Egypt

Latin America:
• Ing. Enrique Barreto, Coordinator, Centro de Recursos MINISIS-América Latina, Centro de Información Científica y Humanística, Ciudad Universitaria, AP 70-382, 04510 México D.F., Mexico

China:
• Mr Jiang Xiang-Dong, Computer Centre, Scientech Information Centre, Ministry of Machinery and Electronics Industries, 1 Nanli Baiwanzhuang, Beijing 100037, People's Republic of China

Francophone West Africa:
• M. Dieudonné Kameni, Organisation africaine de la propriété intellectuelle, BP 887, Yaoundé, Cameroon

Information on Human Rights

Human rights violations affect large numbers of people around the world. Many organizations collect vast amounts of data on these events, to assist imprisoned, ill-treated, and displaced people, or to locate those who have disappeared. Accurate information about rights, laws, processes, and evidence of violations allows individuals, groups, and organizations to take action. However, when each organization uses a different format, it becomes difficult to make comparisons and cross-check information, a problem which, for example, hindered the processing of cases involving disappearances in post-military Argentina.

The Human Rights Information and Documentation System International, or HURIDOCS, has developed a system of standard formats for recording human rights events and cases that will allow faster and more efficient exchange of information among organizations. This follows on the development, in 1985, of standard formats for
the recording and exchange of bibliographic information on human rights, now used by some 50 documentation centres.

The standard formats are designed to:

• Be a practical aid to documentation for action;

• Provide a coherent and compatible system within an organization;

• Provide for rapid, effective, and precise retrieval;

• Interface with both manual and computerized systems;

• Enhance networking;

• Be flexible enough to meet the needs of different organizations;

• Provide “action material” to the more formal information channels;

• Provide a basis for higher-quality statistical research.

APPENDIX
SAMPLE COMPLETED FORMATS
EVENT INFORMATION
130. PROJECT/TITLE: Fenestras Bombing (This field is added from the long Event Information Format in Chapter IV)
101. GEOGRAPHICAL TERM: EL SALVADOR
102. GEOGRAPHICAL CODE: E622
103. DOCUMENT #: #6222
104. TYPE OF EVENT: 801 / 910/19 / 813 / 825 / G
105. EVENT DESCRIPTION:
At 12:20 P.M. on October 31, 1989, a powerful bomb destroyed the headquarters of FENASTRAS, the Salvadoran trade union federation - Federacion Nacional Sindical de Trabajadores Salvadorenses. Eight people were killed immediately in the explosion and another thirty-six were injured. Six of those killed were senior trade union officials, while two executive board members were severely injured. Two others later died due to severe injuries, including the international affairs director and a thirteen-year-old girl.

Although early reports said the bomb was placed in a pick-up truck parked in front of the office at midday, later witnesses reported that the bomb was placed inside the building's metal sliding door as the Committee of Propaganda was meeting.

The scene at the office was described as macabre. The dead could not be identified right away because bodies were decapitated and dismembered. The headquarters Casa del Pueblo or House of the People, was completely destroyed except for one wall erected after the last attack on FENASTRAS the previous February. Six vehicles surrounding the office were also destroyed.

106. ROLE OF AUTHORITIES:
Although no specific evidence exists, it is believed that the bombing was the work of the tandanos of the paramilitary forces linked to the ARENA government. This attack follows numerous other attacks on trade union and human rights activists during the course of 1989. These extreme right-wing death squads seem to be attempting to eliminate every major trade union, human rights and civic leader who opposes the ARENA government. Suspected to be associated with the government of President Alfredo Cristiani, the tandanos are following similar campaigns of violence to those used in the early part of the decade. Thus the present government and President Cristiani are being held indirectly responsible for the bombing due to their failure to control the terrorist activities of para-military groups.

108. GENERAL REGION: Centre of San Salvador, Capital of El Salvador.
109. EXACT LOCATION: 19 / CASA DEL PUEBLO, FENASTRAS headquarters, 10 Avenue Norte, #120; SAN SALVADOR.

112. CHARGES or STATED REASON:
The bombing of the FENASTRAS headquarters was the third such attack on this building and it is believed by the international free trade union movement to be an attempt at curbing, if not totally eliminating the activities of those organizations which are opposed to the ARENA government in El Salvador. As the bombing took place in the middle of the day while women and children were gathering at the building to eat, it appears that the attack was calculated to have maximum effect.

For these reasons, trade union organizations, such as the ICFTU, ACTIJ, CLC, IUC, ICEF, IFPAW, ORIT, IMF, IUF, and the AFL-CIO hold the present Government and President Cristiani responsible for failing to stop terrorist attacks against trade unionists. Such allegations refer to the increased violence and harassment against independent trade union organizations, since President Cristiani was elected in March, 1989.

On account of the above reasons, the ICFTU has called for economic and political sanctions against El Salvador by the OAS and the EEC.
The system can be used manually or by computer. A manual in English has been published, and there are plans to translate it into French and Spanish.

Although the formats can be used for any violations, their emphasis is on torture, arrests and detentions, deaths and killings, displacements and destruction of property, disappearances, deportations, external exile, and banishments. The following formats are included in the package: information on the event, on the victim, on the source, on the alleged perpetrator, on interventions, and on additional details.

The formats can be used separately or in combination. They are a tool to be integrated into systems by each organization, according to its needs. They are fast and easy to complete, but not simplistic, and aim to facilitate analysis.

Each organization is free to develop its own software for using the formats. For organizations using computers but unable to develop their own software, a HURIDOCS software program called EVSYS will be available in English, French, and Spanish as soon as translations are complete. An earlier version is available in English and Spanish.

EVSYS, like the formats themselves, is a tool that will allow organizations to develop their own systems according to their own needs. The software can be used on microcomputers using the DOS operating system, and will eventually be able to run under other operating systems.

The next step is the development of a training program that can be used worldwide. Already one member of the HURIDOCS Task Force has provided training in the standard formats and the EVSYS software to 17 human rights organizations in Colombia and five in Ecuador.

Potential users

All organizations involved in human rights work can use the formats. Small legal and human rights groups can improve their effectiveness through cooperation and exchange with larger international organizations such as the United Nations High Commission for Refugees and Amnesty International. Human rights include the right to development. This makes the formats potentially useful to other groups involved in a wide range of social issues such as housing, consumer rights, refugee work, and disaster relief.

Contact

HURIDOCS International
Torggate 27, 0183 Oslo 1, Norway
Tel.: 47-2-20-02-47; Fax: 47-2-11-05-01
Telex: (051) 918023 geonet G (quote on first line: "Box:GEO2:HURIDOCS")
E-mail: Geonet: GEO2:HURIDOCS
REDATAM
Software Package to Access and Use Small-Area Census and Other Data

To plan adequate services and development initiatives at a local level, planners, policymakers, and researchers, among others, need access to the wealth of information generated by the census process. However, it can be difficult, time-consuming, and expensive to access specific information on small areas such as townships, city neighbourhoods, or even particular blocks.

In 1985, the United Nations Latin American Demographic Centre (CELADE) in Chile developed a user-friendly interactive software package that helps to introduce disaggregated population and housing information into development planning. It provides organizations with a simple means to store and access large amounts of census or other data on a microcomputer. Called REDATAM (for Retrieval of Data for Small Areas by Microcomputer), it stores all the original census or other microdata on a hard disk or laser disk in a hierarchical database. Users can obtain tabulations to their own specifications rapidly, at low cost, and without the assistance of a programmer.

A new version, called REDATAM-Plus, has been developed and incorporates the following features:

• The database structure will be changed into a multidisciplinary database that can include microdata from two or more censuses or surveys as well as aggregate information from sectors other than population and housing, such as rainfall, clinic services, or population projects in specific areas;

• The system will be able to interface with the Geographic Information System, or GIS software, which will allow the user to define easily the areas being analyzed, as well as to produce graphs and maps;

• The system will be able to operate in a Local Area Network, allowing several people to use it simultaneously;

• It will have the capacity to produce camera-ready tabulations for publication.

REDATAM-Plus allows the user to create self-contained sub-databases that can be moved to regional offices. There are also various facilities for the administration and editing of the databases.

There are certain limitations to the software that users should be aware of. REDATAM-Plus is designed to work with data that is relatively stable (such as data from a census or survey, or vital statistics) and will not be changed once it is in the REDATAM database. It cannot replace commercial database systems for information that must be updated or corrected frequently, nor does it replace conventional statistical packages such as SPSS, SAS, etc. Its main function is to facilitate the rapid manip-
ulation, selection, and processing of subsets of data on the microcomputer.

The previous REDATAM 3.1 package has been used in over 25 countries in Latin America and the Caribbean, as well as in Egypt, India, Indonesia, and Zimbabwe. A French version of REDATAM 3.1 is being distributed in African countries. During 1991, a number of countries in Latin America and the Caribbean began using test versions of REDATAM-Plus.

Prerequisites

An IBM or compatible microcomputer with 640K RAM memory and a DOS 3.0 or higher operating system. If the area of interest to the user is likely to have hundreds of thousands or millions of cases, or if a GIS will eventually be employed, a 386 running at 20 MHz or faster is recommended along with a coprocessor. The software and tutorial database occupy about 5.2 Mb. A single census with one million records will normally compress into about 20 Mb.

A programmer may be required to convert a large census database into a REDATAM-Plus database, but once it is created, users can work on the system without assistance. The demonstration package includes a tutorial based on a ready-made population and housing database with about 7000 people living in a hypothetical country.

CELADE can provide technical assistance and training on the creation of REDATAM-Plus databases and the use of population-related applications with GIS to Latin American and Caribbean countries, and possibly elsewhere.

Potential users

Development planners, municipal and provincial authorities, researchers, statisticians, housing authorities, health planners, economists, demographers, etc. Some examples of uses of REDATAM include: detection of pockets of poverty at the municipal level and identification of possible social investments (Chile); a study on the geographical distribution of poor communities (Paraguay);
the elaboration of a demographic map (Uruguay); the availability of health workers (Pan American Health Organization); and a database for road maintenance (Costa Rica). The English-speaking Caribbean countries and various Latin American countries have, or are planning to disseminate their 1990 census data using REDATAM-Plus.

Cost and availability

The software and user manuals for REDATAM 3.1 and REDATAM-Plus are available in English and Spanish. REDATAM 3.1 will be discontinued around March 1992, except for the French version. A demonstration disquette for REDATAM-Plus in English and Spanish will be available free on request after March 1992. If the requestor decides to use REDATAM-Plus, the software will be provided with a user manual in English or Spanish at a low cost (estimated at US $50 to $70 plus postage and handling) to governmental organizations and NGOs in developing countries. A French version of REDATAM-Plus is planned.

Contact

Dr Arthur Conning
Chief, Population Information and Technology Area
Mr Ari Silva, Head, Data Processing Section
Latin American Demographic Centre
United Nations Economic Commission for Latin America and the Caribbean
Casilla 91, Santiago, Chile
Tel.: 011-56-2-208-5051 or 206-1519
Fax: 011-56-2-208-0252 or 228-1947
Cable: UNATIONS

Resources and publications

- *REDATAM Informa*, a newsletter for REDATAM users in Spanish, produced by the Instituto Nacional de Estadísticas, Chile, Casilla 498-3, Santiago, Chile; Fax: (562) 696-1929.

- Various papers on REDATAM and REDATAM-Plus have been written by CELADE and published in various periodicals. Contact CELADE for more information.

Information System for Juvenile Courts

In Colombia, delays in juvenile (or family) courts have created a crisis of confidence in the system. Citizens feel alienated, defenseless and fearful due to the inefficacy and delays in the courts. For example women have to wait up to 5 years for a judgement on child support. The inefficiency of the courts can also lead to corruption and prevent timely information from reaching judges, lawyers, social workers, and litigants.

The Instituto SER de Investigación has developed a soft-
ware package to address this problem. Designed for civil court cases involving minors (child support, parental rights, custody, adoption, etc.), it enables the court or judge's office to record daily information on cases and schedules and improve notification processes. It can assist in analyzing bottlenecks and provide statistical information on caseloads for the Ministry of Justice. It can help court staff with scheduling and make information more accessible to the public, which in turn should help to improve the public's perception of the legal system.

The package is currently in use in a family court judge's office in Bogotá, and has shown excellent results. It is used for data entry on child support requests, division of assets, etc., and to manage information on court processes and outcomes. Since the system was adopted, the productivity of the judge's office has increased by about 68%. This has had a direct stabilizing effect on what can be a confusing judicial process.

The system not only increases the quantity of work that can be done, but also improves the quality. For example, staff have more time to keep abreast of the latest developments in legislation and jurisprudence, and show increased motivation.

The software and user’s manual are available in Spanish. The system is easy to install and use.

Prerequisites
An IBM or compatible microcomputer with 20 M capacity.

Potential users
Juvenile courts and judges' offices in Spanish-speaking countries.

Cost and availability
Use of the software is negotiated on case by case basis. Users normally require modifications to the system for it to meet their specific needs.

Contact
Instituto SER de Investigación
Carrera 15A No. 45-65, AA 1978
Bogotá, Colombia
Tel.: 2880100; Fax: (571) 288-2106

CGNET
A Network for Agricultural Research

An effective research community can facilitate the search for appropriate solutions to the many problems facing agriculture and food self-sufficiency, especially in the South. The strengthening of crucial research linkages can contribute to this process.
The Consultative Group on International Agricultural Research (CGIAR), a grouping of international agricultural research centres in both the North and the South, has pioneered a computerized communication network called CGNET. The network was developed to address the need to improve the quality, quantity, and speed of communications. In light of increasing costs of conventional communication methods (phone, fax, telex, cable), and decreasing or frozen budgets, a lower-cost method was needed to enable CGIAR members to exchange information on research and solutions.

The result, CGNET, is a network that has been in daily use for the past 7 years. It began with a feasibility study on potential users' needs, technical possibilities, and potential means of implementation. A recommendation was then made on appropriate technology and procedures, and a pilot project designed. Initially, staff at seven centres were trained in the use of an internationally available computer-based messaging system.

CGNET now provides its users with the following possibilities:

- Computer messaging;
- The collection of data from field sites, which can be sent directly to research centres;
- Joint authorship of reports and papers;
- Easy distribution of surveys and reports (a text can be sent to several locations at once, replacing costly mail, fax, or telex);
- The use of news collection services maintained by the major wire services which are linked to the CGNET system; these services can also provide such things as the USDA's monthly statistics on wheat rust or accurate daily reports of world exchange rates;
- The ordering and publicizing of publications;
- A gateway to the World Bank electronic network;
- Gateways to other e-mail networks, such as commercial message services and academic networks;
- An alternative means of sending faxes or telexes: messages can be deposited for transmission to telex or fax.
machines in countries with lower fax and telex rates; CGNET will also try to deliver a telex or fax to a location with unreliable telecommunications systems until the message gets through, saving the sender much time and frustration;

• Easy communication with advisory boards;

• Easy communication with researchers who are traveling or on leave.

The network has been very successful. Before its implementation, CGIAR had been spending US $2 million annually on phone, telex, telegram, and postage costs. Savings from using CGNET have been estimated at US $3 million by 1990, and perhaps as much as a further $3.5 million in reduced travel. As well, the network quickly expanded to include users outside CGIAR. By 1991, there were over 300 CGNET mailboxes in 48 countries and nearly all of the CGIAR centres were online.

The network also provides a model of what is possible in computer communications.

A consultant who worked on setting up the initial system established a private firm called CGNET Services International, which provides administrative assistance, training, and consultative services to the participating network members in addition to overall network management.

Prerequisites

To join the network: a microcomputer, a modem, and a telephone line. In areas where telephone lines are very noisy, better quality modems are required. The situation will differ in each country and area. Some countries require special permits to operate a modem and e-mail. The electronic mail installation should include a few days of training for local staff.

Cost and availability

In areas where there are inexpensive data network services (mostly in the North and some Southern capital cities such as Mexico City), users use a local phone call to access the data network, which puts them in touch with CGNET. A low-cost (US $60 to $150) modem can be used. In some countries, the data networks can be expensive, because they charge high rates, or because a long-distance call is needed to reach them. This increases the cost per page, and a more expensive (US $200) modem is recommended to compensate for noisy telephone lines. In countries that do not have national data networks, users must dial a network in another country, which considerably increases costs. High-quality modems (US $600) must be used to ensure error correction.

Approximate costs for using the system have been estimated as follows: for users with access to low-cost data networks, US $30 per month in fees and $0.21 per page sent or received; for users with access to higher-cost data networks, US $85 per month in fees and $0.98 per page sent or received; for users who must dial another country, costs run from US $160 to $360 per month in fees and $0.68 to $2.18 per page sent or received. These costs can
vary a great deal according to the quality of local phone systems and the way the system is used.

Potential users

Researchers, scientists, planners, administrators, and others concerned with addressing the problem of food self-sufficiency. As well, donor agencies that fund agricultural research, scientific organizations in related disciplines (resource management, forestry, environmental studies), and national research institutions in developing countries could all benefit from a CGNET connection.

Contact

Consultative Group on International Agricultural Research Secretariat
1818 H Street N.W., Washington, DC, USA 20433
Tel.: (202) 4738951; Fax: (202) 3348750
Telex: 82987 WORLD BANK; E-mail: Dialcom 157:CGI001

CGNET Services International
1024 Hamilton Court
Menlo Park, California USA 94025
Tel.: (415) 325-3061; Fax: (415) 325-2313
Telex: 490 000 5788 (CGN UI)
E-mail: Internet Postmaster@CGNET.COM;
Dialcom 157:CGI100

Resources and publications

Computer Model for Analyzing Third World Economies

Researchers in Colombia have adapted an economic model used in the North for policymakers in the South, taking into account Third World economic conditions, such as high inflation rates and different financial systems.

The research was undertaken by the Fundación para la Educación Superior y el Desarrollo (FEDESAROLLO) to confront the economic crises brought on by debt and the deteriorating primary goods markets. The model allows policymakers to plan careful management of savings and investment.

In two previous phases, the project developed separate models of the "real" economy (savings, investment, balance of payments), and the "financial" economy (role of the central bank, the financial system, determination of interest rates). The third phase integrated the two models into a third that can be used to determine the influence of financial variables (money, credit, and interest rates) on the real economy (production, consumption, investment, and balance of payments), and vice versa.
The model can be used to address issues such as the taxation of primary goods exports, further devaluation of the peso, management of foreign debt, and import controls. It can also simulate the outcomes of monetary policies, interest rate controls, and sectoral credit policies. A number of simulations carried out to replicate the behaviour of the Colombian economy between 1980 and 1985 illustrated the model's ability to capture adequately the reality of the country's finances.

The technology is based on the adaptation of a Northern model — the computable general equilibrium (CGE) model — to meet the needs and requirements of the Colombian economy. Within the CGE model is a social accounting matrix, a tool used to assess the effects of policy changes on different income groups. These models are at the forefront of the development of new techniques for analyzing Third World economies.

Prerequisites

To run such models, reasonably powerful desktop computers are needed (with 640K RAM and a hard disk of at least 10M). Although the use of the model entails some degree of computer knowledge, there are several solution packages available that greatly facilitate the process. In Colombia, the package is used in connection with a program named GAMS (General Algebraic Modeling System), originally developed by the World Bank and presently distributed by GAMS Development Corporation (1520 New Mapshire Ave. N.W., Washington, DC, USA 20036). Researchers at FEDESARROLLO have been approached to provide training in the use of these models to researchers in the Dominican Republic and Uruguay.

Potential users

Policymakers and analysts in the public and private sectors. The Colombian government's planning department is currently using the model to evaluate the effects of macroeconomic policies and to make projections. It has also been used to evaluate the impact of specific agricultural policies, including changes in internal coffee prices negotiated between government and coffee producers. The United Nations Development Programme (UNDP) is using the model to evaluate the effects of structural adjustment on the poor. Although the program is useful mainly for Colombia and is not sold commercially, the experience acquired by FEDESARROLLO has enabled them to develop similar programs for other uses, such as one for macroeconomic programming in Nicaragua (used by the Central Bank and the Ministry of Economics).

Contact

Mr Eduardo Lora
Fundación para la Educación Superior y el Desarrollo
AA 75074, Bogotá, Colombia
Fax: 571-212-6073
Cable: FEDESARROLLO Bogotá
Index

Note: The numbers herein refer to the technology number, not to the page number.

A

abandoned children 89, 95
absenteeism 79, 80, 81, 84, 88
access to information 20, 23, 45, 66, 98, 99, 100
accidents 66, 80
accounting 12, 37, 46, 76, 101
acquired immunodeficiency syndrome (AIDS) 60
adhesives 50, 51, 76
adolescents 89
advertising 80, 85, 88
afforestation 72
Africa 8-10, 14, 15, 21, 22, 24, 30, 37, 39, 45, 58, 60, 68, 72, 76, 80, 96
Africa south of Sahara 15, 24, 37, 72
African languages 2, 9, 86
age groups 88
agricultural
chemicals 6
cooperatives 2, 4, 25
credit 7, 86
economics 7
equipment 3, 8
markets 12, 16, 19, 20
pest management 6
policy 101
practices (see cultivation practices)
products 17
research 7, 21, 100
wastes 39, 41, 55, 78
workers 2, 7, 83, 25
agriculture 1-27, 30, 32, 37, 48, 83, 86
agroforestry 7, 22-26
agroindustry 83
alcohol 34, 92
algae 33, 34, 36, 69
Algeria 66, 90
Americas 22
Andean region 18, 81
Angola 72
animal husbandry 86
animal production 5, 83
products 28
protection 24
animals 67
Antigua and Barbuda 20
apiculture 4
apricots 16
aquaculture 30-35, 52
Arab countries 72, 96
Arabic language 3, 27, 45, 92, 96
architects 55
architecture 57
Argentina 38, 47, 68-90, 94, 95, 97
arid zone 72, 74
Asia 1, 4-7, 21, 22, 30, 32, 33, 50, 51, 55, 58, 68, 75, 76, 87
Asia and the Pacific 7, 30, 50, 72
Asian languages 28, 75
attitudes 89, 91
audiovisual materials (see also cassette recordings, films, video recordings) 59
Australia 4, 7, 22, 61

219
Note: The numbers herein refer to the technology number, not to the page number.

B

bacteria 69, 70, 73, 77, 78
baking 11
bamboo 33, 34, 36, 42, 51, 57, 59, 67, 70, 85
bananas 20, 42
Bangladesh 31, 32, 39, 61
barley 17
bauxite 54
beans 1, 7, 16, 17
beekeeping (see apiculture)
Benin 21, 33, 90
bibliographic services 97
bibliographies 59
biogas 59
biomass 41
blood 60, 67, 68, 92
Bolivia 48, 62, 64, 81, 90, 94, 95
Botswana 10, 24, 74
Brazil 33, 36, 42, 47, 48, 53, 55, 60, 71, 94, 95
breast feeding 87
bricks 39, 54, 56, 57, 67, 70, 74
budgeting 7
Burkina Faso 10, 21, 24, 26, 90
Burundi 21, 39, 56
businesses (see enterprises)
by-products 39

C

calories 17
Cameroon 17, 21, 60, 76, 86, 96
Canada 10, 28, 31, 34, 35, 39, 43, 44, 49, 50, 52-54, 56-58, 60, 66, 90, 96
Cape Verde 10, 72
Caribbean 20, 42, 54, 98
case studies 29, 46, 74, 80
cassette recordings 3, 6, 8, 11, 14, 27, 54, 55, 57, 59, 70-72, 81-83, 90-93
cattle 5, 25, 26, 42-44
cement 39, 43, 54, 55, 56, 58, 59, 67, 70, 74, 75, 78, 91
Central America 68
ceramics 40
cereals 3, 5, 10, 14, 15, 17
charcoal 38-41
cheese 52, 57
chemicals 6, 32, 43, 50, 52, 68, 69, 70, 96
chickpeas 3
child
care 11, 79, 81, 95
development 61, 62, 64, 68, 84
mortality 60, 70, 94
rearing 94
children 2, 12, 17, 25, 28, 60, 80-82, 84, 88, 89, 92, 95, 99
Chile 29, 47, 72, 79, 88, 90, 93, 94, 98
China 4, 21, 30-32, 35, 39, 50, 53, 55, 60, 72, 76, 96
Chinese language 87, 96
cholera 73
church (potential users) 88
coasts 29, 34, 72
coconut palms 4, 7, 36
coconuts 41, 69
coffee 4, 7, 39, 41, 101
Colombia 18, 84, 81, 82, 83, 88, 89, 93, 99, 101
commodity prices 20, 101
communication 6, 45, 66, 66, 93, 100
communication systems 45, 66, 100
communities (potential users) 10, 12, 17, 19, 25, 28, 41, 48, 57, 58, 64, 67, 70, 72, 74-76, 80, 84-88, 90-92, 94
community development 12, 13, 41, 48, 63-65, 67-69, 72, 74, 76, 77, 91, 92
facilities 54, 57, 70, 75, 79
computer conferencing 45, 100
programmes 7, 52, 59, 66, 82, 95-99, 101
computers 7, 20, 52, 66, 82, 95-97
concrete (see also cement) 36, 75
confectionery 9
conference reports 21, 34, 37
conferences 21, 24, 43, 45
construction 14, 15, 24, 51, 55, 56, 57, 58, 59, 67, 75, 76, 85, 92
materials 34, 39, 50, 51, 54, 55, 56, 58, 59, 67, 70, 74, 75
consultants 7, 96, 100
consumer behaviour 88
demand 53
goods 11, 101
protection 97
consumers 2, 11, 17, 51
cooling 19, 41, 47
cooperatives 2, 4, 8, 10-13, 16, 20, 25, 30, 33, 36, 37, 48, 64
copper 19
coral reefs 28
corrosion 47, 74
Costa Rica 42, 46, 76, 91, 95, 98
Côte d'Ivoire 21, 33, 86
cottage industry 4, 51, 53, 56
cotton 1, 13, 69
courses 4, 7, 22, 24, 28, 29, 45, 65, 73, 83, 86-88
courts 99
cowpeas 2, 10
craftsmen 4, 9, 40, 85
credit 7, 12, 20, 38, 86, 101
crop yield 3, 4, 6, 18, 21, 22, 27, 32
crops 1-9, 16-18, 20-22, 24-27, 30, 32, 51, 64, 70, 86
cultivation practices 1, 3, 26, 27, 83, 86
systems 2, 5, 22, 25, 30, 32
cultural values 67, 81, 91
culture 68, 80-82, 88-90
curriculum 80, 83, 84

D
data
analysis 65, 71
banks 96
bases 20, 23, 52, 66, 94-98
collecting 7, 36, 52, 71, 94, 95, 97, 99, 100
processing 66, 98
retrieval 20, 98
day care centres 92, 95
debt 101
deforestation 21, 24, 26, 39, 40, 41, 50, 54
dehuller 10, 11
demography 94, 98
Denmark 62, 63
desalination 74
Note: The numbers herein refer to the technology number, not to the page number.

- desert (see arid zone)
- design 1, 4, 7, 10, 12, 30, 53, 59, 64, 65, 67, 76, 78
diagnosis 62, 64, 66, 71, 84
diarrhoeal diseases 67, 68, 70
diet 2, 3, 13, 25, 34, 35
directories 43, 59, 96
disaster prevention 93
disasters 77, 97
disease
 - control 4, 31, 67-69, 73, 77, 78
 - vectors 67, 68, 69
diseases 60, 63, 64, 68, 70, 71, 73, 80, 91
distilling 48, 74
distribution 9, 11, 23, 24, 31, 37, 69, 77, 90, 96, 98, 100, 101
Dominica 20
Dominican Republic 70, 88, 94, 101
dramatic arts 68, 91, 92
drinking water 72-78
drought 22, 74
drying 8, 12, 14, 16, 17, 19, 22, 23, 27, 37, 41, 49, 52, 56
dyeing 49

E
East Africa 9, 15, 37, 80
ecology 28, 89
economic
 - analysis 7, 101
 - conditions 101
 - development 46
 - information 38
 - models 46, 101
 - planning 101
 - policy 46
economics 76, 101
economists 46, 98
ecosystems 5, 28, 30, 33, 74
Ecuador 64, 81, 93, 95
edible oils 2, 9, 12, 13
education 39, 40, 57, 64, 65, 68, 69, 74, 79, 80-93
 - of women 6, 84, 86, 89
educational
 - material (see teaching aids)
 - facilities 79, 81
systems 65, 79-84, 89
Egypt 10, 33, 44, 53, 62, 66, 76, 96, 98
electric power plants 41
electricity 38, 41, 44, 45, 60
employment 13, 34, 37, 38, 44, 49, 67
 - creation 12, 51, 54, 56, 58
 - opportunities 30, 33
energy 19, 30, 38-41, 53, 54, 56, 58, 74, 77
 - consumption 13, 38
sources 38, 40, 41, 74
engineering 1, 2, 16, 19, 53, 54, 57, 58
engineers 55, 59
English language 2, 6-9, 14, 22, 24, 26, 45, 66, 80, 86, 87, 90, 92, 96-98
enterprises 2, 7, 11, 12, 17, 40, 41, 44, 49, 53, 54, 57, 76, 83
entrepreneurs 51, 83
environment 4, 6, 10, 15, 22, 24, 26, 40-46, 48, 52, 54, 56, 69-73, 86, 87, 91, 92, 100
equipment 1-4, 8, 12, 13, 17, 29, 38, 39, 43, 47, 48, 52, 54, 63, 64, 93
erosion 5, 21, 22, 25-27, 42, 46, 48
Note: The numbers herein refer to the technology number, not to the page number.

essential oils 48
Ethiopia 10, 21, 24, 76
eucalyptus 24, 27, 48, 57
Europe 22, 30, 60
evaluation 20, 38, 46, 64-66, 68, 70, 71, 76, 79, 82, 88, 91-93, 101
techniques 51, 71
evaporation 19, 47, 70, 74
Ewe language 14
exhibitions 6, 11
exporters 16, 49
exports 3, 9, 10, 20, 35, 37, 48, 53, 54, 101
extension services 1, 3, 5, 7-9, 14-16, 18, 21-23, 25, 27, 30, 31, 59, 92

F
factories (see industrial plants)
family 40, 84, 88, 89, 92, 99
law 99
farm management 6, 7, 20, 23, 86
farmers 1-9, 12-23, 25, 27, 30, 32, 42, 44, 50, 51, 70, 83, 86
farming systems 5, 21, 22, 25, 26, 27, 30, 32, 42
fats 12, 42
feed 2, 3, 5, 12, 21, 22, 30, 43
feeding 11, 32, 42, 57
fermentation 69
fertilization 31
fertilizers 2, 3, 6, 21, 22, 30, 32, 41, 70
field
activity 53, 60-63, 65, 91
research 12, 16, 100
films 10, 21, 22, 76, 83
fish 28-37, 46, 52
breeding 31
culture 30-33
meal 42
fishermen 28, 29, 33, 34, 36, 37
fishery 29, 35-37, 46
fishing 33, 34, 36, 37, 41, 59, 68, 72
fishing grounds 28, 29
flour 2, 10, 11, 17, 39
fodder (see feed)
food 1-4, 6, 8-11, 14, 21, 25, 37, 49, 100
preparation 40
preservation 16, 19
production 1-3, 7, 17, 20, 42
storage 14, 15, 18
supply 28, 30
forage crops 5, 24
forestry 7, 22, 24, 25, 26, 41, 100
forests 4, 22, 40, 42, 46, 51, 72
France 48, 92
French language 14, 45, 65, 66, 86, 90, 92, 96-98
fruits 4, 16, 19, 27, 51, 42, 43
fruit
juices 83
trees 25, 27, 30, 32
fuels 16, 38-41, 77
fuelwood 16, 21, 22, 24, 25, 27, 37, 40, 41, 56
furniture 22

G
Gambia 10
games 81, 82, 88
gardening 6, 10, 51
Ghana 10, 21
goats 5, 21, 25
government (potential users) 4, 11, 17, 23, 33, 41, 46, 50, 54, 55, 57, 58, 75, 76, 78, 79, 81, 82, 83, 87, 93, 94, 98, 101
grain 3, 14, 15, 27, 30, 51
grain processing 10, 12
grasses 5, 25, 48, 70
grazing 7, 25, 44
greenhouses 44
groundwater 72, 75, 76
groups 2, 4, 10-12, 21, 25, 26, 33, 40, 46, 57, 64, 65, 70, 71, 76, 84, 86-90, 96, 97
Guatemala 18, 42, 58, 62, 70
Guyana 64
H
Haiti 72
harvesting 2, 3, 6, 8, 14, 19, 32
health 2, 6, 12, 17, 28, 61-71, 73-80, 91, 94
 centres 2, 40, 41, 54, 57, 60, 61, 64, 74, 75, 92, 94
 education 64, 65, 68, 79, 80, 84, 86, 87, 89, 91, 92
 personnel 5, 61-64, 66, 71, 77, 92, 94, 98
 planning 65, 94, 98
 risks 6, 28, 69, 70, 71
 services 65, 98
 statistics 71
hedges (see shelterbelts)
Hindustani language 85
Holy See 90
Honduras 90, 92, 94
honey 4, 5
hospitals 2, 40, 41, 52, 60, 61, 94
housing 51, 54-56, 67, 85, 97, 98
human immunodeficiency virus (HIV) 60
human rights 87, 89, 97
humid zone 14, 21, 67
humidity 19, 27, 61, 71, 85
hydroelectric power 38
hygiene 15, 79, 84, 91, 92
I
illiteracy (see literacy)
immunization 64, 92
import
 restrictions 101
 substitution 10-13, 19, 24, 33, 44, 47, 48, 51, 54
 tax 31, 45
imports 2-4, 35, 39, 53, 54, 63, 68, 69
income 2-6, 8-14, 17, 20, 22, 25, 27, 28, 30, 32, 34, 40, 42, 46, 48, 50, 51, 53, 55, 59, 76, 79, 88, 101
India 5, 6, 10, 11, 17, 22, 31, 32, 51, 53, 55, 59, 61, 76, 78, 85, 92, 98
Indonesia 4, 5, 8, 28, 32, 53, 55, 59, 60, 61, 62, 76, 98
Indonesian language 28
industrial
 development 86
 plants 16, 50, 51, 52, 71
 processes 52
 wastes 43, 51, 55
industry (see also small-scale industry and cottage industry) 35, 37-39, 41, 43, 44, 46-55, 66, 74, 96

224
Note: The numbers herein refer to the technology number, not to the page number.

infant mortality 92, 94
infants 2, 11, 61, 62, 92, 94
infectious diseases 60, 63, 67-70
information 23, 29, 38, 46, 48, 49, 52, 65, 66, 71, 86-91, 93-98
dissemination 21, 24, 25, 57, 59, 70, 86
exchange 21, 23, 43, 45, 66, 76, 97, 100
management 96
networks 59, 76, 100
systems 20, 64, 95-100
insecticides 67, 69
insects 6, 14, 15, 18, 25, 27, 32, 49, 67, 69
intercropping 2, 7, 21, 22, 25
interdisciplinary research 30, 65, 91, 98, 100
interviews 84
Iraq 44
iron 13, 55
irrigation 27, 32, 41, 72
Italian language 90

J

Jamaica 34, 54, 95
Jordan 3, 44
judges 99
judicial system 89, 99

K

Kenya 7, 10, 12, 21, 24, 25, 37, 40, 45, 56, 60-62, 76
Korea 32

L

laboratories 10, 31, 53, 60, 63, 68, 73
labour 21, 51, 71, 74, 88
costa 1, 3, 16, 54, 55, 67
intensity 4, 8, 9, 33, 51
lakes 36, 37
language teaching 79-84
languages (also listed under individual names) 2-4, 6-9, 14, 22, 24, 27-29, 45, 57, 64-66, 70, 71, 75, 80-82, 84-88, 90-93, 96-99
Lao People's Democratic Republic 32
Latin America 22, 30, 42, 45, 55, 58, 64, 67, 76, 81, 89, 93, 95, 96, 98
latrines (see toilets)
law 89, 97, 99
lawyers 99
leather 43, 47
Lebanon 77
legislation 29, 42, 96, 99
Leguminosae 2, 3, 5, 10, 11, 17, 21
lentils 3
Liberia 21
libraries 96
licence agreements 53, 96
lime 58, 67, 70
literacy 75, 79-86, 92, 94
lumber 27, 50, 51

M

macroeconomics 38, 101
Madagascar 32
maize 1, 7, 10, 14, 15, 17, 18, 22
malaria 60, 69, 92
Note: The numbers herein refer to the technology number, not to the page number.

Malawi 9, 10, 21, 24, 62, 63
Malay language 4, 87
Malaysia 4, 6, 28, 32, 53, 59, 72, 76, 87
Mail 10, 21, 76, 90
malnutrition 2, 17, 64, 68
manuals 1, 4, 7, 8, 9, 11, 12, 14, 16, 17, 21, 28, 30, 42, 45, 52, 55, 57, 64-66, 70, 71, 73, 75, 81, 82, 84, 85, 88, 91, 95, 98, 99
manufacturing 1, 8-10, 12, 13, 19, 40, 47, 48, 50-52, 55, 56, 60, 76
maps 29, 38, 71, 93, 98
market (see also agricultural markets) 38, 49, 53, 76, 101
studies 11
marketing 19, 20, 34, 37, 39, 42
cooperatives 20
maternal and child health 64, 67
measurement 52, 61, 62, 64, 71, 73, 88, 94
meat 42, 74
medical examination 71
medicinal plants 22, 27
medicine 4, 42, 63, 78, 87
metals 40, 42, 43, 52, 54, 55, 76
Mexico 42, 55, 70, 71, 74, 84, 96, 100
microcomputers 7, 20, 45, 52, 66, 82, 95-101
Middle East 30
midwives 62, 94
migration 67, 72, 74
millet 10, 11, 15, 22
milling industry 10, 17
mineral oils 47
mines 72
mixed farming 5, 21, 22, 30, 32
molluscs 34, 68
monetary policy 101
money 87, 101
mortality 70, 92, 94
mother 2, 64, 79, 81, 84, 92, 94
multidisciplinary research (see interdisciplinary research)
multiple cropping 7, 16
mung beans 1, 16
music 96
musical instruments 22

N

Namibia 72
national budget 46
networks 1, 20, 21, 23, 34, 45, 59, 76, 80, 95, 97, 98, 100
newsletters 21-24, 29, 32, 59, 70, 76, 96, 98
Nicaragua 93
Niger 10, 90
Nigeria 2, 21
nitrogen 3, 21, 32
non-governmental organizations (NGOs) 2, 4, 5, 12, 17, 20, 21, 23, 25, 33, 38, 40, 45, 49, 50, 54, 55, 57, 62, 64, 70, 74, 75, 76, 78, 79, 81, 83, 86, 87, 90-92, 94, 96, 98
Norway 97
nurses 62, 66
nutrition 2, 11-13, 17, 25, 37, 61, 64, 68, 79, 84, 87, 92

O

oats 17
occupational safety 66, 71
oils and fats 2, 9, 12, 13, 43, 48
oilseeds 12, 13

226
Note: The numbers herein refer to the technology number, not to the page number.

Oman 72
out-of-school youth 79, 80, 81, 84
oyster culture 34

P

packaging 12, 19
Pakistan 13, 22, 31, 53, 62, 92
Panama 42, 70
paper 43
Paraguay 64, 67, 98
parasites 67, 68, 70
parents 80, 84, 88, 92, 95, 99
patents 35, 47, 50
peanut oil 9
peanuts (see groundnuts)
peat 39, 56
Peru 17, 18, 42, 49, 53, 57, 72, 81, 90, 93, 95
pest control 4, 6
pesticides 6, 32, 66
pests 15, 18, 32
pharmacists 66
Philippines 4, 6, 8, 18, 23, 28, 32, 41, 43, 51, 53, 59, 66, 75, 76
phosphates 3
phosphorus 32
pilot projects 17, 39, 49, 50, 52, 82, 84, 95, 100
pineapple 4, 43
pines 24, 47, 50
planners 7, 23, 46, 94, 98, 100
planning 38, 65, 84, 91, 93, 98, 101
planting 1, 2, 6, 8, 18, 22, 25, 26, 27, 32, 50, 92
plastics 14, 27, 43, 44, 73, 74, 76, 77
plywood 22, 51
poisons 6, 28, 35, 66
police 66
policy making 6, 38, 46, 65, 83, 93, 98, 101
pollutants 30, 41, 43, 44, 70, 77
population 21, 25, 32, 36, 57, 58, 83, 84, 88, 89, 98
population censuses 98
Portuguese language 55
post-harvest
losses 19, 37
systems 8-19
potatoes 17, 18
poultry 5, 30, 67
pregnancy 94
preschool education 79-81, 84
price lists 24
prices 13, 16, 17, 20, 34, 39, 48, 51, 52, 61, 63, 65, 72, 76, 87, 90, 101
primary
education 80, 81, 84
health care 61, 64, 68, 77
prisons 40
processing 2, 8-14, 16, 17, 24, 30, 34, 37, 47-50, 52, 54, 55, 58
producers 2, 3, 14, 18, 20, 44, 49, 53, 55, 56, 88, 101
product safety 87
production
cooperatives 18, 48, 49
costs 20, 44, 58
planning 20, 101
productivity 1, 8, 9, 21, 25, 53, 67, 68, 99
products 2, 7, 11, 12, 16, 17, 19, 66, 86
prostitution 89
protein rich food 1-3, 8, 12, 17, 21, 28, 32, 34
Note: The numbers herein refer to the technology number, not to the page number.

proteins 22, 30, 32, 35, 37, 42, 60, 63
psychologists 89
pulp and paper industry 51
pumps 19, 41, 52, 68, 76, 91

Q

questionnaires 71, 86

R

radio 6, 20, 25, 27, 57, 86
rain 3, 4, 15, 25, 27, 32, 37, 42, 59, 72, 73, 74, 75, 98
rainy season 25
rapeseed 13
recipes 2, 11, 17
recordings 3, 6, 8, 11, 14, 27, 54, 55, 57, 59, 70-72, 81-83, 90-93
reefs, coral 28
reforestation 26, 42, 91
refrigeration 19, 31, 60
refugees 77, 97
remote sensing 29, 46
renewable energy sources 74, 77
reports 3, 7, 20, 51, 57, 58, 65, 68, 71, 91, 100
reproduction 30, 31, 42, 89
reptiles 42
research workers (potential users) 30, 65, 96, 98, 100
reservoirs 72, 74, 75, 77
retail marketing 2, 20
rice 1, 6, 11, 17, 18, 28, 32, 39, 41, 42, 56, 78
risk 6, 31, 62, 68, 70, 71, 93, 94
rivers 36, 68, 72, 73
roads 58, 98
rodents 6, 14, 15
roofs 14, 19, 57, 59, 67, 75, 85
root crops 17, 18
rubber 4, 6, 34, 43
Rwanda 21, 39, 56

S

safety 34, 66, 87
sales 1, 2, 4, 8-11, 16, 18, 20, 40, 49, 50, 53, 86, 92
salt water 74, 75
salt water fish 31
sand 22, 27, 42, 47, 54, 56, 57, 59, 67, 74, 75
sanitation 64, 68, 70, 76, 78, 91, 92, 94
sawmills 47, 50
schistosomiasis 63, 68
school attendance 79, 80, 81, 84, 88
school-community relationships 80, 83
schools 25, 40, 54, 57, 66, 74, 75, 79-84, 87, 88, 90, 92
scientists (potential users) 30, 100
sea 27-29, 34, 47, 72
seeds 1, 3, 5, 8, 12, 13, 18, 21-27, 80
seismology 57
self-help 25, 54, 59
self-instruction 90
self-reliance 24, 29, 45, 48, 53, 73, 74, 76, 100
semi-arid zone 5, 12, 22, 25
seminars 4, 83, 86-88, 90
Senegal 10, 21, 39, 45, 90
sex education 89
sexual behaviour 89
sheep 21, 25, 30
shellfish 28, 35
shelterbelts 22, 25-27
shrimps 28, 35, 43
Sierra Leone 21
silk 30
silkworms 30
simulation 7, 57, 86, 101
Singapore 62
slides 6
small-scale industry (see also cottage industry) 9-13, 37, 39, 44, 47, 49-53, 55
social workers 89
soil
conservation 22
erosion 5, 21, 25-27
fertility 5, 21, 24, 42, 52, 70
pollution 70
types 1, 22
soils 1, 2, 32, 46, 57, 67
solar energy 17, 61, 74
solar radiation 77
Somalia 10
sorghum 10, 11, 15
South Africa 90
South America 31, 68, 72
Southeast Asia 5, 7, 21, 32, 33, 75, 87
sowing 1, 2, 3, 6, 8, 14, 26
soybeans 1, 2, 16
Spain 71
Spanish language 29, 57, 64-66, 70, 71, 81, 82, 84, 88, 90-93, 96-99
Sri Lanka 4, 18, 39, 52, 66, 76
standards 9, 24, 34, 51, 56, 58, 62, 78, 83, 97
statisticians 98
statistics 29, 95, 97-99, 100
steel 16, 19, 36, 47, 54-56, 59, 71, 75
storage 2, 4, 10, 12, 14-16, 18, 19, 23, 24, 47, 50, 51, 59, 74, 77
students 25, 68, 80-83, 92
Sudan 10
sugar 20, 87
sunflower seeds 12, 13
Swedish language 90
sweet potatoes 22
Switzerland 66, 92
Syrian Arab Republic 44

T

Tagalog language 6, 75
Tamil language 85, 87
tanning industry 47
Tanzania 12, 21, 37, 56
taxation 101
teachers 65, 79, 80, 82, 84, 87-90, 92
teaching
 aids 6, 28, 57, 65, 80-92
 methods 52, 65, 68, 79-84, 89, 91, 92
 technicians (potential users) 59, 63, 77
television 1, 88, 91
termites 15, 25
testing 57, 59, 60, 68, 71, 73
tests 50, 60, 63
textile industry 53
textiles 43
Thai languages 8, 96
Note: The numbers herein refer to the technology number, not to the page number.

Thailand 1, 8, 16, 19, 32, 35, 53, 58, 60-62, 76
Timber 15, 22, 46, 47, 50, 51
Tobacco 92
Togo 14, 21
Toilets 59, 68, 70, 92
Tourism 28, 34
Tourist areas 34
Toxic substances 28, 35, 66, 68, 69
Trade 8, 16, 20, 37
Trade unions 71, 88
Tradition 42, 51, 62, 72, 81, 86
Training 1, 6, 7, 9, 12, 16, 20-25, 28, 29, 36, 37, 40, 45, 54, 59,
64-66, 69, 70, 75, 80, 83, 89, 91, 92, 96, 98, 100, 101
centres 30
courses 22, 30, 65, 73, 79, 87, 88, 90, 91
Programmes 4, 10, 11, 21, 59, 64, 76, 81, 84, 86, 97
Transport 16, 19, 47, 58, 74, 76
trees 4, 5, 7, 14, 21-27, 30, 32, 34, 35, 40-42, 48, 50, 86, 92
Trinidad and Tobago 20
Tunisia 3, 27, 45
Turkey 44, 53

U

Uganda 10, 21, 37, 56, 60, 80
Unemployment 28
United Kingdom 37, 45, 92
United States 4, 29, 46, 48, 49, 60, 61, 62
Universities (potential users) 7, 96
Uruguay 66, 88, 90, 95, 98, 101

V

Vatican (see Holy See)
Vegetables 6, 16, 19, 26, 27, 32, 39
Vegetation 25, 42
Venezuela 89
Video recordings 3, 6, 8, 11, 14, 27, 54, 55, 57, 59, 70-72, 81-83,
90-93
Viet Nam 4, 32
Volunteers 64, 92

W

Wastes 30, 41, 43, 44, 47, 50, 51, 54, 55, 78
Waste waters 30, 43
Water 14, 17, 21, 25, 26, 27, 33, 34, 35, 36, 40, 69, 80
Conservation 42
Pollution 70
Quality 29, 34, 72, 73, 77, 78, 92
Requirements 32
Resources 46
Reuse 44
Shortage 72
Storage 59, 64, 75
Supply 68, 72-78, 91
Utilization 10, 19, 30, 39, 40, 44, 47, 49
Wax 4, 43
Weaving 51, 53
Weeds 3, 21, 26, 27, 32, 42
Weight 61, 62
Wells 64, 68, 72-74, 76, 91
West Africa 14, 37, 96
Wheat 10, 11, 18, 22, 100
wind 19, 22, 27, 38, 72
wine industry 7
women 2, 4, 6, 10, 11, 25, 28, 37, 40, 48, 51, 59, 64, 68, 76, 79, 86-89, 99
women's organizations 2, 4, 10, 11, 25, 37, 40, 87, 88
wood 4, 5, 9, 15-17, 19, 21, 22, 24, 25, 27, 34, 37, 39-41, 43, 50, 51, 56, 57, 67, 70
workshops 31, 34, 37, 45, 54, 58, 65, 70, 76, 79, 83, 84, 87, 88, 91
Y
yams 2
Yemen 62, 63, 72
youth 6, 83, 87, 92
organizations 4, 88, 89
Z
Zaire 21, 39, 56, 90
Zambia 21, 24, 62, 63
Zimbabwe 10, 15, 21, 24, 45, 60, 63, 66, 68, 90, 98

Note: The numbers herein refer to the technology number, not to the page number.
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support technical and policy research designed to adapt science and technology to the needs of developing countries. The Centre’s five program sectors are Environment and Natural Resources, Social Sciences, Health Sciences, Information Sciences and Systems, and Corporate Affairs and Initiatives. The Centre’s funds are provided by the Parliament of Canada; IDRC’s policies, however, are set by an international Board of Governors. The Centre’s headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

Head Office
IDRC, PO Box 8500, Ottawa, Ontario, Canada K1G 3H9

Regional Office for Southeast and East Asia
IDRC, Tanglin PO Box 101, Singapore 9124, Republic of Singapore

Regional Office for South Asia
IDRC, 11 Jor Bagh, New Delhi 110003, India

Regional Office for Eastern and Southern Africa
IDRC, PO Box 62084, Nairobi, Kenya

Regional Office for the Middle East and North Africa
IDRC, PO Box 14 Orman, Giza, Cairo, Egypt

Regional Office for South Africa
IDRC, Ninth Floor Braamfontein Centre, Corner Bertha and Jorissen Streets, Braamfontein, 2001 Johannesburg, South Africa

Regional Office for West and Central Africa
IDRC, BP 11007, CD Annexe, Dakar, Senegal

Regional Office for Latin America and the Caribbean
IDRC, Casilla de Correos 6379, Montevideo, Uruguay

Please direct requests for information about IDRC and its activities to the IDRC office in your region.