HYDROLOGY

MINISTRY OF AGRICULTURE

UNITED REPUBLIQUE CAMEROON

SWISS ASSOCIATION FOR TECHNICAL ASSISTANCE

BUILDING TRAINING CENTRE KUMBA

CONTENTS

1. Dafinition of hydrologic cycle HG 1
2. Climatic pattarn HG 3
2.1 Wuantity of rainfall HG 3
2.2 Variation of rainfall HG 3
2.3 Intensity of rainfall HG 3
2.4 Table of monthly rainfall HG 4
3. Rainfall, runoff and infiltration HG 10
3.1 Infiltration HG 10
3.2 Runoff HG 10
4. Drainage in Cameroon HG 10

LIBRARY IRC
PO Box 93190,2509 AD THE HAGUE
Tel.: +31 703068980
Fax: +31703589964
BARCODE: 18901
824 CM 71

1. DEFINITICN AND HYDROTOGIC CXCIE

Hydrology is the science of dietribution and behaviour of water in nature. Hydrology is a part of climetology. The cycle of water or Hydrologic Cycle is without beginning or end and consiats of the following:

- Precipitation: All water from the atmoephere deposited on the surface of the earth aa either rain, snow, hail or mist..
- Surfece Runoff: The water which is derived directly from precipitation and passes over ground into water courses is known as Surface Runoff. The Surface Runoff then consists of the precipitetion less the losses from infiltration and evaporation.
- Eyaporation, Transpiration: Combined loss of water from land and water-Burface by Evaporation and plant Transpiration.
- Pexcolation: The term percolation discribes the passege of water into, through and out of the ground: The texm infiltretion is frequently used to describe the entrance of water into the ground and its vertical movement down to the ground watertable, while percoletion or ground waterflow is applied to the movement of water after it has reached the watertable.

2. CLIMATIC PATMERN

The main features of the climate are the 4-5 months long dry season from November to March and the corresponding rainy season of 7-8 months.

Notes on the climatic characteristics of the various areas are hased on inadequate records in terms of duration and number of stations. Nevertheless, an idea of the main climatic zones can be found considering some basic factors:

- Throughout most of West-Africa, the rainfall and the humidity decrease with increasing distance from the const, but in South-West and North-West Province this pattern is sharply modified by the topography.
- The main rain-bearing winds come from South West. Wherever these are interrupted by high land, heavy precipitations result over all South West facing slopes with complementary rain shadows in the N.E. For example, Dibundcha on the South Weat gide of the Mount Cameroon averages 10.4 m of rein per annum, wheras Mpundu at the northern side receives only 1.5 m p.a. Similarly Fontem, at the South Weat of the high plateau averages 4.3 m compared to Ndop with 1.6 m p.a.

2.2 QUANTITY OF RAINFALL

Rainfall quantities can be mapped with Isohyetes, i.e. all points of the same amount of annual rainfall are linked and the resulting lines give us an idea of the repartition of the rainfall in a region. (see 1.2.4., Fig. $2+3+4$.)

2.2 HARTATION OF RAINFALIT

The rainfall varies greatly throughout the year and from one year to the other as well as from one station to another (see map annual rainfall). The monthly variations have been analysed by Brown and Clarkson for the Bamenda Station records 1923 - 1953 and the results shown in Fig. $5+6$. In the diagram, the upper and the lower ends of the monthly pillar show the greatest and least rainfall recorded during this period. In four out of five years the monthly rainfall may be expected within the dotted lines. The black line acrose indicates the arithmetic means of 30 years of recorde.

2.3. INTENSITY OF RAINFALL

The intensity of rainfall tells us how much rain falls within a certain period. (10', $15^{\prime}, 30^{\prime}, 1^{\text {h }}, 24^{\mathrm{h}}$.). Records of intensity are essential data for the calculations involved in designing bridges, oulverts, dams and soil conservation earthworks.
(see Fig. 7)

2.4. TABLES OF MOXYHIY RAINFALL

$\begin{array}{llllllllllll}\mathbf{J} & \mathbf{F} & \mathbf{M} & \mathbf{A} & \mathbf{M} & \mathbf{J} & \mathbf{J} & \mathbf{A} & \mathbf{S} & \mathbf{O} & \mathrm{N} & \mathrm{D}\end{array}$

Bamenda meteo station

1965	3	88	64	221	127	381	497	486	361	183	-	24
1966	25	-	131	301	291	131	463	408	480	170	163	-
1967	1	47	100	182	100	387	392	352	591	355	36	5
1968	55	50	302	223	154	456	428	395	366	145	140	1
1969	-	19	234	151	214	309	546	569				

Tole Tea Estate

1965	46	61	90	199	186	266	1144	1506	410	342	39	21
1966	40	-	108	103	54	123	459	910	290	219	80	4
1967	-	47	215	141	162	236	676	835	441	155	69	10
1968	25	1	89	200	167	620	1450	750	570	166	52	12

Acha Tugi Presbyterian Hospital

1966	-	-	133	401	371	326	511	353	441	307	112	-
1967	12	40	100	203	98	222	370	357	380	360	55	19
1968	.33	45	170	145	216	232	297	227	389	194	57	12
1969	-	63	308	175	295	353	378					

Wum Agric, Fary

1968	20	65	169	262	378	453	406	446	497	356	102	-
1969	-	27	161	274	391	430						

Ndu Tea Sstate

1969 - $\begin{array}{llllllll}36 & 115 & 138 & 150 & 146 & 272 & 372\end{array}$
工denar 10556 mm
$\begin{array}{lllllllllllll}1967 & 11 & 212 & 288 & 518 & 547 & 1952 & 1817 & 1396 & 1490 & 1513 & 574 & 238\end{array}$
Bota 4226 mm
$\begin{array}{llllllllllll}1967 & - & 23 & 161 & 91 & 177 & 692 & 1361 & 930 & 383 & 181 & 193\end{array}$
Mernis 1650 mm
$\begin{array}{llllllllllll}1967 & - & 47 & 140 & 54 & 54 & 234 & 293 & 315 & 170 & 128 & 191\end{array}$
Kumbo Baptist Hospital Nso 1957 - 1966

| min. | - | - | 38 | 87 | 118 | 79 | 186 | 126 | 196 | 118 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$-$

| Max. | 33 | 87 | 216 | 295 | 395 | 266 | 466 | 428 | 454 | 380 | 208 | 136 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllll}\text { av. } & 9 & 13 & 116 & 176 & 196 & 188 & 310 & 270 & 316 & 224 & 76 & 16\end{array}$

Monthly Rainfall
Year 1967
Idenau $\longrightarrow \longrightarrow$ Tole Tea
Bota \longrightarrow M Meanja
$\rightarrow-\infty$

Monthly Rainfall
Year 1968

Bemenda

Wum Agriom $\rightarrow-\infty$
Acha Hospital. . . .

MG 7

CAMEROUN, Distribution of Annual Rainfall

VARIATION OF RAINFALL AT BAMBNDA STATION MONTHLY VARIATION OF RAINFALL 1923 - 1957

Annual Variation of rainfall 1920-1970

3. RAINFALL, RUN OPF AND INFILTRATION

The quantity of water running from an area into' etreame and finally to the sea is not the same as the rainfall.

The quantity of rainfall will be shared into:

- direct evaporation
- tranepiration through vegetation
- infiltration
- run off

3.I INPILTRATED WATER

Infiltrated water forms the ground water and through ite natural filtration it cn be used directly as drinking water (as far as protective measurements for catchments are adopted.)

The characteristics of the yield of a spring depend on the type of soil and subsoil. From rocky areas the quantity of water will directly depend upon the rainfall. Surface springs will also dry up shortly after the rainy season and supply again after the first rains.

Springs from deep lateritic covers or from far distant catchment arecs are more regular but their lowest supply quantity does not correspond with the lowest rainfall.

3.2. RUN OFF

Similar characteristics can be found in streams. Rocky areas provide flood and low wer according to the rains. Lateritic or otherwise porous and water-helding soils supply the streame with underground water and the quantity may still decrease after the first rains.

4. DRAINAGE IN CAMEROON

The principal Cameroon watershed begins in the Rumpi Mountains north of Kumba and continues through Kupe, Manenguba, Bambutu, Bamenda Banyo and Ngoundere to Ubongi-Shari across the frontier. It is the main source of the country's rivers, which flow in four main directions: North into lake Chad, North-west into River Benue (Niger), South-west into Gulf of Guinea and Southeast into Kadei, a tributary of River Congo. These correspond nearly to the five main drainage basins: Chad Basin, Benue Basin (Niger), Sanaga Basin, Congo Basin and Basin of Coast Rivers.

