71

BRALU7I

WHO
Intarnotionel Reference cenite个OP
Commenify Wafer supplyy
Bureau of Resource Assessment and Land Use Planing (BR:IUS)

$$
346
$$

Research Paper 20

GATER SUPPLY

Proceedings of the

Conference on Rural inter Supply, 5-8 Δ pril 1071 , University of Dar es Salaam, Tanzania

Edited by
Gerhard Tschannerl

为酸

This rolume shovid be seen as the second one in a serics on mural water supply in Bast..frica. It contains the Procoolings OI the Conforence on Ruisol .i.ter Supply in Bast Africa hele 5-8 Luril 1971 at the University of Dar es Salana. The carlior voluac contains the Proccecings of the rorkshop held 17-19 Decelber 1969, also at the Jniveraity. ilthough the workshop was intendea to ve preparatory to the coniorence, the papers which were prosented at the 1969 Uisshop hardly ovierlap with those of the recent conference. Tie 1969 workshop was held soon ofter the covernaents of Kenya and Tonzenia hod comitiod thernselves to vastly accolerated wator supply procrames, and the neetings concentrated mainly on rejorts on ficld research, health, and the worir of the different ovcincental, intemetional, and voluntcer oremizations.

The developuonts which took place botwoen the holding of the 1969 workshop and the 1971 conference shifted the attention to other topics. The Eollowing aight be seen as some or the principal advances. The role of the watcr development departo. ronts of the respccitive roveminats increesed to such an crient that the efforts of other agencies, although izportant in fheir own risht, have receded into the backround; the need to talie health fectors into account when desioning water sujplies has been recognized in jrineiple, with a corresponding adjustiont in dosien of newer projects; ways ond teans are now being wonted oi:t in the attenpt to cone to grips with the enormous tesk of implomentine the sigantic water supply prograzes; the preparation of alaster plans for wator devoloprient hes bozzu.

The conforenec soneontrated therefore priwarily on plaming and policy issues, cnc on studies in iycremetoorolozy and hycrolocy at the most fundaciol cine of the required injuts for wator devolopinent plans.

Te wish to ac-mande the help received from any poople in the Unirorsity of Dai as Selear and the finistry of fater Developuent and Poycr, botl bofore and ciering the conforence. Special thenks go to Jui Derry, the former Diroctor of BELUP, to Ulf Riise for tacin; on a sizeable shoro of the organizin:; worl, and Pu-Chin Daice fo: sorvine as adinistrative assistant to the Conferonce. ic also wish to achomlodge the enerons orent recoived fron the Poic poundation which covered :ast of the costs of the conference, including this volure.

[^0]
IV. Desigin aid inflummiatial
(4 Basic Consicerations for the Design of Zuml :Tater Supplies by Andre Harlaut

6 Intermediate Tecinolozy and Rumal Fatcr Suplics by Gorclon H. Baterian

Maji na liaendeleo Vijijizi: The Exoerience with Rural Selir-ielp Vater Scheres in Lushoto Bistrict by R.E. inatanco and D. Fayerle

Sare Problems of Water Rescunce Development in Developing Countries by Z. Jalon and D. Mezer

A The Use of Windpower in Rural Water Supplies by Frane van de Laja:

Field Investifations on Friction Losses of "Siriba" Plastic Pipes by F.il. Tocorov

APPETUIX A.

Final Reccurendations

APPETDIX B.	Conference Programae
APHETDIX C.	List of Participants

List of Bralup Publications

Largely because o: the toporraphy and geology of East Airica, water is not roaily available Irom traditional sourcos in the rural areas. It must often be fetchod from several miles array; a 3 to 5 mile distance from the house to the water sourco is not uncomon. Zvon then the quantity of water available in the dua hole or well ing!nt be very 10%, and in sone areas thero is a severe water quality problea.

As a consequence, the quantity of water used for clonestic purposes is relatively sall; the per coitha daily consumption
in lanzania averazes only about 15 litreso evicience to sucgest that this is inadequate from the health stiandpoint. The lons distance which has to be covered to fetch the water takes up a lot of time - adding to the already heavy burcen on the wonen - and consumes a lot of physical energy. The Genorally low quality of the water itseli, due to bactereolorical and cherical pollution, has an adverse effect on health.

Comparine the vater availability in the three countries of the East African Comunity, the situation appears to be similar in Tanzania and Keivo, were the whole ranee of probleus - quartity, quality, and convenicice $0: 2$ location of sources for donestic vatcr supply - is present, but not necessarily always cocurine to,jetlyor. Ugoind is by and large wore fortumate with quantity and location, but has to deal with screic quality problens.

Recognizine that \because ve veliare of the mural population uicently requires the provision o: Emproved vater supplies, and hoping that the provision of thesc suples will be a driving force for econonic and social development, the countries of Bast Africa have Eiron rural water supply a licin priority in their national developient plans.

The Kenyan covemment ains at providinc water supplies thiough courmal outlets in all parts of Kenya within the next 20 years, and at installing house connections for the entire population in the 10 years aiter tiet. To 'achieve this, the Five-Year Devolope.
 outlay fron 10 million sivillings in 1969 to 38 million shillings in 1974.

The ifater Developient Departient. of the Ministry of dijriculture is in charic of all aspects of rural water develop. nent, including the deciju of schones and the proparation of a aaster plan for the 30-year period. λa a durther boost to mater developnent, an Inteministerial Comattee on Rural Tatea Developnent was set up in 1969c

Tanzania has rocentiy shortoned its pericd within which to provide an inproved voter supply to all the people in the country from 40 to 20 yoars. Tho budect allocation in the Second Five-Year Plail O witer devoloment and irrigation is 187 willion shillins, $0: 6.8$ percent of total development exponditure.

This figure is aproristen' J the average of the results from sevaral Water supily Gitliios. Winey are Iistod in "later Dovolopment Tanzania", BRiJUP Rescaxcis Daper Ro. 12, In comparison, the por capita daily donestic va'icr use in USix is about 300 litres, 30,' of which is disposed of an vaste vater.

The investment in ruacl water supply during fiscail 1970/71 rosencd 19.1 willion shillin, w, wich represents a 35% inerease over fiscal 1969/70.

The importance aibuchod to rater supply in Tanzania found expression in the becianiny of 1971 by the creation of the nev iijinistry of Mater Develomont and Irrigation Division (Ninistay of ixriculture) and the iater and Drainage Division (Ministry o: Iands) and will to sowe critent regulate the Tanzania Electric Supply Company. One $0:$ the tasiss to be unuertaken by the now ilinistry is the propeation oi vater master plans for each of the Rogions.

Research on Tate: Developnent has bocn one of the main activities of the Bureal of Resource issessuent and Iand Use Ploming (BRiLUP), University of Dar es Salarn, ever since its inception in 1967. Closely cooperating first with WDe ID and nove with the linistry of Fater Developnent, BRidup has conducted and sponsored a number of short-range and lons-range research projects on rural vater supply. This includes research on (i) design criteria, quantity and quality of mater to be supplicd, location and frequency oi standpipes, and population forecests; (2) lydrologic atudics (flow sinulation, sionll catchuent characteristics, sedinent transport); (3) project selection and plauning (standardize.tion oi procedures, cost curves, computer usc); and (4) the rolo of yater in integrated planning (rogionil developuent plans, sefticiont patterns, land use, soil erosion, trainsportation, etc.)

In lige with Bridup's interest in vater studies, a Foxishop on Rural Tator Bupply in East ifrica was held in Decenber 1969 at the University of Dar es Solaan; it was organized jointly with the Economics Research Bureau, University of Den. es Salam.

The Objectives of tile Workshop were es rollows:
(1) to acquaint the perticipants with the various existing programies of rescarch and inplenentation on rural water supplies in East Lirica;
(2) to identify comin probleirs faced by the participants;
(3). to compare illons ond expuriencos denling with these problens; and
(4) to set out the major issues for ieliberation at the 1970 East iffican Coniterence on Rural Iator Supply.
4. number of papua mere presented at the 1969 workshop and a list of recomence:tions drawn up, which have been publisiod as BRLSUP Research Paper Ho.11. The topics of the worleshop were: field research, health, technical aspects, implementation, comunity development, aild planning. One of the recomendations arising out of the womsiop, was that a Pollowap conference bo nold because a nuber on unsolved questions had been raised which needed further ettention.

Ti. list of BRiLUP publicaitions is given in the back of this volune.

Consequently the Conterence on Rurol "rater Supply in Tomeania was called for $5-8$ dipil 1971 uncer the joint sponsoislin of the University oi Dar es Salian and the ilinistry of Tater Develophent and Pover. Sowe 120 delecates participated, iost of whon cane from Tanzania. They were affiliated with a varicty of govermmental, acadeisic, intemeitional, and privatc incititutions. ${ }^{7}$

The diversity of institutions wich were represented was perinaps one of the nost fruitiful aspects of the conference, as delegates discussed cach topic fron a variety of viewpoints denending on their back, round and the kind of institution they served. That led to a better understanins of the different roles that institutions inad to plan in regard to water research plouing, design, implcientation, and operation. Such discussions took place, for excrele, between regional water engineers who wisht be keenly avarc of day-to-day problens, university rosearches who wight be minusiastic about what long-term research can offer, and consultait entineers who wight concentrate on bringing in the experionce sained irom others not always partinent, situations.

The conference was divided into four main themes: plaming and policy, health, hydiolozy and netcorology, design and inplanentation. Because of a cricater number of papers subnitted anc: the considerable interest in the subject, the thene called planine vas sub-divided into naster plans, plaming procedures, and the broader context of plaminc. The progrorme of the conference called for the presentation and discussion of papers under the different themes, iollowed by sevoral workshop sessions for closer discussion in interest groups. The discussion groups also drafted recomencations which wero approved at the last session by the conference as:a whole.

The renainder of this introduction is an attenpt to highlight some of the main points raised during the conference. Any such surmary is nativally biased towards what its author Finds the nost strikinc end iuportant in the context of his own worit and backeround, aid camot do justice to the various contributions made by the participants. ds a partial renedy, the papers which were presented at the conference are printed in this volume in thoip catirety ${ }^{2}$ and some of the points raised during discussions found their way into the final reoomendations of the conference.

Plouning - Mastor Plons
Thile the decision of the roverments of Tanzania and Kenya to prepare nasuer plons for water developrient found wholehearted support, wile vords of caution were raised as to the nature and netiod on preparation of such planse

Hee the list of delcefates
$Z_{\text {Threc }}$ out of twenty-three papers presented at the conference could not be included in this volurie, For the reason either that the author had vithdrawn it or that it was not available by the tine the procoelin;s went to print.
 choice in the plans. تives eave a number of dexples tolstow bou piesent estiantos, ains, and projoction minht change witin the next 20 years, wid hovine axster plan fhopld lend itseli to periodic revisions to tisc account of these changes. Dine process of arrivinc at ticse plans olso mustre it possible that the inportent choices be nade by tho se tive. This point wis also stressed by the Developnent and Power in his opening adare further to say that most decisidns, even i in the realn of encincerinc or фconorices, content which nust bc icali with by politie ones responsible for policy artters.

Data needs and ho:t they might be fulfilled are discussed by Berry and Conyers. They ftress an inderrated approach to plaining, whereby water development is only an integrated apmoach to plaminç, vinercby pater devclow many developnent aspects, all fof which mus虏 bo considered toceiter. Axiculture, settlenent programes, cattle marketing, all iniluonce the denand fon wator with difforent uses, and are in fim closely affected by watef schemes. piens, should therefore be dram up for all $0:$ bivese pointly, ratier than for each ois the activities in isolction.

In the course $0:$ the qiscussion, the Principal secretary of the inistry of Fator Developnent and Power, Government of Panzania, explained tiat the first task on the teams preparing master plans is to assess the quantity, quidity and location OF the available watoi, as foll as the likely water demand fois the different uses iquas from other invited to prepare thoce jqns (except ron the ijnistry itselif hes alicedy takon up), countries will be Dodona Region whicn should be liaited to lactorls which can be measured and studied in some systenatic woy, ine continued. Socio-cconomic and political factors should noft be decided by the teans, whose tasi in that respect would be to provide the relevant inforiation with which such decisions cian be made by the right persons in accordance with nitional policy.

Ploming - Policy

Burton offerod vonc fefloctions on the desirable level of
 piesently in the first wesg of a long-te prograne, during Winch the provision $0:$.imilifal water requirenents, prinarily For reasons of health anc. adcial welfare, is the nain objective anc: requires heavy rovamant expenditured Howntains that in the next phase tho incicasel incomo of the boueficiarios wili cnaile the: to finance iunther investment in inproved water surily theaselves, se thet ogvermant capenditure for this investrent will dirinish. furton's analysis brincs the old aicurent of ivater suajy as a social sefore to bo provided frce of charge to the peple (Manzanie's policy)" versus itwater as an econoric. good for with people shou did pe asked to pay (fomya's policy)" in e. wew perspective.
 intoration for the estoblishment of poldey. Onc inportont itou, about which not caouch is knom, a de the actual benciits
 0 : categorics of buncios wich are seneghliy assumed to arise Inom misal water musice with the evicone availaiole for each
 $0:$ suplosed bencisis.

Harlaut proseitice a functional division of the planning and dicsign process accooding to the neture of the work involved and according to whet jody (local or contral) should carry it out. This geve risc to a lively discussion, which eaphasized that arintenance, oil schones rust be an intecral pert of the.t procoss and must bs considered already at the dirferent desify stajes or a project. dinotier point emphasized was the importance of Peeding the rosulcs row the schenc back into the design process. There was dizkiocinent about whether desiog oncinocis s:ould take the tise io oariy out that lengthy task.
\therefore project selection procedure which differs frow that advanced by Kates :ras jiesented by Tschannerl. It relies on expressing the cherccteristics of a project in the form or a mathematical ancol, and on soae special properties of such a formuation in ordor to arrive at a prelininary selection of projects to be inipletonted in one time period for which a speciric budget allocction has been aade. The apeed of that conputation allows the exploration of zany altemative policies and alternative projections for the inputs (such as future population or crop specializationd

Finalth

One of the highlichts of the conference was Bradley's brice sumary of whit is ghowm about the effects of water supply on hoalth. He outlinca the relationship between water quantity ari quality on the une hoind, and the occurrence of different diseases on the other. The supporting evicence that he presented suegests that a signiaicont inproveront in health can be reached only, through the provision of houschold connections. Questions were raised from the ilvor about the cost of carryind out the studies which would turnish nore conclusive ovidence on that relationship and wiether this expenditure would be justifica. Questions were also caiced about the cost of house connections as coipared to cominual taps.

Hydrolozy and heteorolow

The lons districe betreen rain gauges nakes it difficult to study rain showers. Based on some previous experiments, Korth computed several wiological measures of stome in Tanca Rogion: intensity, Prequency of occurrence, and spatial distribution. Hicurrolt analysed the couses for rainfall variability in Zaibia. The nedd for tore preciec and relieble data for meaningful hydro. neterologic studies was sitronjly eaphasized in the course of tinc aiscussion.

Project plans art orton be wade on the basis of scarce data. Bear, Issar, aid Iitqin gave a detailed description of how they dealt with sucl: a situation in thwir work on the proparation of wator developnent plans. They zive a nethod for supplenenting scarce data with othor, rolated, data, which is an cxample of hov ceristine data of various description con be usod optianlly for the analysis of a particular vater resource problca.
/been reciorge which have/successiul in the sudan, and sugrested tiant
Hasan discussed cifferent form of ertificial groundwator reciorge should be nore closely considered in East difica.

The successful desicn oi Groundwater recharso vas stiructure, he meintaine?, iancaile where stomis are curation.

Desigm ¢riteria $: 0$ at sone length Harlaut fon soic projopt inputs, quautity per capita jex d pointed out durines the ai should vary wilth the tyise sco, rapinical location. especially into consumbie and specificelly procodu: ceriain levela of wowois

Two speci-je desin proposed a ldw-cost nctio tanlas based on experimont de Laak introduced a rince lirting watef under certai stressed the need for bett Peasibility studies on

Self-help for buil eovemment expenditu:c an liatenca and ifayerle rejort scheacs in fushoto Dievicict. Having achieved a good degreo of success in the constructiont of scheres with self-help labour, they analyzed the reasonis for possible failures and suggested so:se repedies. Similar to the earlier discussion on desim critoria, if was asain pointed out that no generally applicable staindard for self-help coulid be established. Results of oxporiaents on the Priction coofficient in SMBA plastic pipes weic reported by Todorov.

Conclusion
The donforence, to ${ }^{\text {chther with the }} 1969$ workshop, had a rather unique charactoi, Êeine focussed on the very specific topic of rural wator sumyin wast difrica, end brinfinc together people from al sorts of institations. It fulfilled a wreat need in that re, and aid has perhaps provided the push to continue this intakhance. Jith developaents in watcr supply in Enst Aricak happening at such a rapid pacc, the iocus of attontion icit soon shict to other topics frow the ones emphsized in $\because 2$ gevinfercince, but as the 1969 worls shop zade an inporiant confinibution at the tine it took place, the 1971 conference coat fifith soas of the rey issues in wator developient in Bast diriciọ at this tine.

Mr. Chairman, Your Excellencies, scholars, ladies and gentlemen:
It gives me much pleasure to have been given this privilege of addressing you at this opening session of this international Conference on Rural Water Supply in East Africa.

First of all, I should like, on behalf of the Government of the United Republic of Tanzania to extend to you all a very warm welcome to Tanzania. It is my sincere hope that the exchange of views and ideas among yourselves during the Conference, while you are also enjoying tine intellectually stimulating atmosphere of this beautiful Campus of tire University of Dar es Jalaam, will make this Conterence the success that we all believe it should be.

In most developing countries which are really serious about the development of their peoples, the vast majority of whom live in the rural areas, raral development, in all its various aspects, is being implemented very energetically within the limitations of manpower and material resources which are usually some of the constraints which developin; countries encounter in the implementation of their development prograumes. One very essential aspect of rural development in East Africa, including Tanzania, is the provision of water to rural areas. In fact, without the provision of adequate and wholesome water supply to our mural areas there can hardly be any rural derelopment in East APrica. Ihis, apart from causing a stagnation in our rate or economic growtin, would undoubtedly ag\&ravate many of the problems of rapid and unplanned uxban development, pariicularly unemployment and crime. Stated positively, the provision of safe and sufficient water to our people in the rural areas will lead to greater productivity through:
(i) the resulting reduction in illness and general debility;
(ii) the saving of effort and time previously expended on non-productive transport of water;
(iii) the reduction in the medical bill facing each family and Jhe nation as a whole;
(iv) the possibility of stabilization of settlements in which small industries and such social services as schools and health centres could be established;
(v) the use of irrigation ror agricultural purposes;
(vi) the availability of water for livestock.

Thus the provision oi water i or our rural population should be regarded as a social service mose miin objective is the improvement of their standa: d oi ivinç, health, and general productivity and is a prerequisite to ccononic and social development.

One of the factors which must always be considered in any programme of providing water to rural ${ }^{\text {freas }}$ is the cost involved. Ur. Chairman, as most of the participahts at this Conference know, Ianzania has decided that as many people as possible should live and work in Ujama Villages. Apart irdm this policy being an instrument of economic, social, and political development of the people, it also aims at minimising the cost of providing safe and adequate water to our rural areas in Tomzania. por, it is obvious that it is mucn cheaper to supply waten to people living in a compact village than to the same number of people living in homesteads scattered over a large rural area. I am very glad to report, Mr. Chairman, that the rural population of Tanzania, in general, are actively and practically supporting this fANU's and Government call urging them to live in Ujamaa Villages and which is already paying dividends.

The Government of tre United Republic of Tanzania nas recently decided that within the next 20 years all 'ranzanians living in rural areas should be provided with safe and adequate water supplies which should also be within reasonable reach of everyone all the year round. As at present only about 1 million out of 12 million Tanzanians living in rural areas are provided with adequate and wholesome water, the magnitude of the task remaining to be done is staggering. However, the Government of Tanzania is determined to accomplish this task within the next 20-year period. To this end, Mr. Chairman, participants at this Conference will be interested to know that a new hinistry of :ater Development and Power has been established in the Government of Tanzania and is being organised on a functional basis so that it could effectively implement this ambitious rural water supply development programme. To prepare the grourid Ior the design and execution of the thousands of rural water projects that will be constructed during the next twenty years, the Ministry will, in the next 3 to 5 years, complete the preparation of a Water Miaster Plan for the whole of mainland Tanzania. • This will be done largely with the technical assistance of a number of friendly countries.

Mr. Chairman, I notice from the programe of the Conference that among the themes ror discussion at the Conference are such topics as "water policy", "design standards and criteria", "equipment innovation", "construction and oper ation of water supplies" and the public health aspect of rural water supplies. .ith the exception of the first, most of tiese sound innocuous and appear of interest only to professional engineers and hydrologists. But, in my experience, the implementation of the recommendations of professionals and academics on such topics will always depend on political decisions. Hor instance, in Tanzania tre decision that all water supplied from a public domestic point or kiosk, whether'in town or in rural areas, snall be free of charge was a politicalidecision. the purchane or importation of equipment for rural water supplies, including its innovation, must also ultimately be the result of a political decision as will also be the provision of the necessary finance by governments for the manpower which will be needed for the construct-
ion, operation, and maintenance of a comprehensive rural water supply programme. Finally, Lr. Chairman, even tne public health criteria of rucal water supply must ultimately be influenced by political decisions based, ol course, largely on the advice and recommendations oi a country's public health autiorities. A case in point in Panzania

At this juncture, Mir. Chairman, allow me a brief digression so that I can, on behalf of the Government or lanzania, express our deep gratitude to the Government and people of Sveden, for tife very generous soft loans they nave made ivailable to us, through the swedish Intarnational Development agency (SIDA), for our rural water supply programme during the last seven yenrs. This generous swedish credit up to date amounts to 88 million swedish Kroners, sis. 123,000,000/= and symbolises, in practical terns, Swedish resolve to assist Tanzania in as many aspects of her development as possible for which tanzania is very grateful.

Finally, my binistry would also like to extend special gratitude to the Bureau of Resource Assessment and Land Use Planning (BizAIUP) of the University of Dar es Salamm waich, in addition to co-sponsoring tiis vonference, ine made a major contribution to the implementation of our rural water supply programme througil studies the results of which will greatly improve the affectiveness of tiac distribution system Irom Bulenya itills und iwamapuli Dams in Nortil Last Nzega and from otier rural water sources. As these piojecti will cost many
millions of Tanzaniu whillings when completed, BFLALUE's contribution is an example of the many ways in which the Nation's. University can, in a practical way, assist the Government to determine now it could most effectively utilise its scarece rosources

Mr. Chairmany as a laymin in tie area of rural water supply development, I can do no better than simply introduce the subject to the various experts, engineers and economists who are participating in this Conference. As I now feel I have accomplished my task, on . behalf of the Government of Tanzania. I have mứci pleasure in declaring open this "Conierence on Rural WateriSupply in East Africa'. ilr. Chairman, ladies and gentlemen, I wish your Conference every success and it is my sincere hope that the results of your deliberations will serve to advance East Africa further along the long and difficult path of development.

```
ution
_ can,
could
poly
&ct
pating
Trica".
ibera-
d
I. PIANNING AND POIICY
```


by
Robert ،. Kates
Clark University, worcester, Mass., U.S.A.

Two years has brought marked change in the commitment, organization and knowledge of \dagger lanzanian water resource planners. the returning scholar finds: a major national commitment for the provision of improved water supply to every Tanzanian, a good consultant review of the potential for a massive rural water supply programe, a ministerial reorganization providang for greater administrative unity in the development of this critical resource, an applied research programme yielding data and understanding unique for developing countries, and the launching of a series of water master plan stidies which are to provide the perspective fur regional water development over a twenty year period.

Upon these master plans rest the critical needs ior improved hydrological and geophysical data, for the orderly programming of the massive national objective for rural water supply, for the identification of new opportunities ior water based development, and for bringing the entire programme within the investment capacity of Tanzania. Indeed viewed in the context of the overall planning effort in Tanzania, the water master plans may be the most ambitious planning effort, to-date. Only one otner comparable exercise, that of high level manpower planning, had a long-term goal; other planning efforts being limited to the five year development plans. And planning for improved water supply for all Tanzanians twenty years hence, appears to be a more comple\% and difficult exercise, tnan the impressive and successful effort at long-term manpower planning. Phus, because of tineir key role in extending the planning horizon to longer-term perspectives, themaster plans should in their design benefit from the widest experience of"comprehensive water resource plannjng.

Some recent innovations in cotiprehensive water resource planning, particularly in North Americe, seem to be relevant. Not that the experience is simply transferrable, ior the differences in levels of resource development, aviilable dat:, manpower and investment capability, and criteria of social choice are well known. And the opportunities for socialist planning and choice in Tanzenia make unnecessary some of the peculiar gaines water resource planners play when they try to plan social investment by tie rules and standard of the private enterprise capitalist system. but what docs appearrelevant. are some of the experience and innovations reluted to triree apparently universal problems of longer-term comprehenaive regional planning exercises; problems of flexibility, coordination, and choice. This paper identifies these problems from the viewpoint of one knowledgeable about water and planning in Tanzania but lacking tie intimate knowledge of those with day-to-day responsibility in this field. ihe paper then suggests some adaptetions of new teciniques thin could be realietically applied in the Tanzenian context to help meet these problems.

To plan is to anticipate and to guide change. Independent Tanzania is ten years old, the master plan is ion a period twice that life. Reflect on the tremendeous changes of tieppast ten years and try to project those twice that distance into the future. How can tnat unusual vision be incorporated into the mas電er plans? And at the same time how can the flexibility to provide' ior unforseen changes be made part of the plan?

To plan is to coordinate, but now will the master plans, each a regional study carried out by teams of differing national origin and make-up, be coordinated? How will they relate to the ongoing economic and social effort and the growing need and capability for regional and district planning and development?

And finally "to plan is to choose", but consultant reports should not pre-empt the choices to be made by Tanzanians as to how, where and when their critical water resource developments should take place. And over twenty years, choices made now, should not pre-empt choices required in the future under differing conditions and needs. How cen the master plans present in understandable, non-technical form information ior such critical choices?

The problems, altiough posed in the Tanzanian context, are universal and a variety of tecnniques and innovations, many still under development, have been evolved to deal with them. To guide and anticipate change, the use of data banks, perspective planning, computer modeling and simulation, and the neo-science of futurology, have been advanced. To provide for coordination, water planners jncreasingly use standard tecaniques, assumptions, and projections, phese are frequently prepared by specialist agencies witii advanced knowledge of economic and demographic trends or by such specialists wio are part of interdisciplinary or interministerial teams. To provide ior choice, programme budgeting, cost-effectiveness and multiplt-objective-costbenefit tecniques have been developed. At the same time simpler, more readily understood medes of public presentation and discussion have been sought.

On reflection, this armory of techniques and innovations appears to be a mixture of tools and toys, science and fad, complexity prompted by necessity and complexity designed to conceal the critical cnoices of post-industrial societies. Hint, if any, of these teciniques mignt be useful in the ianzanian context ind now siould they be applied?

The Development of a Set of National Perspectives
Over twenty years very significant changes will or could take place in Tanzania affecting the planning of water development and the provision oi improved rural water supply. Changes over twenty years in income and population distribution, available investment, social and political needs and organizatiori, tecinnolngical change and industrial development, as well as changes in the standards of wat are considered impravednater supplies; will seriously affect plans designed over the nert two to four years.

To chart such changes it his been round useful to develop a set of perspectives, broad statements of direction ind possibility, as contrasted to more speciiic projections of future trends. In the present context they are needed as a iramework within which to fit the regional master pluns. And such perspectives need not be fuzzy extensions of present direction. Rather, ior a planned society, they should include visions of what ougnit to occur, what is needec, and wrat is socially desirable.

Consider some examples oi perspective changes and the questions these pose: Among the imitial master plans, will be studies of Dodoma and Shinyanga Regions, areas of highly contrasting patterns of population and water availability. Yet by the end of the plan period, Dodoma district is likely to have a population density equivalent to that found today in Shinyanga district, and shinyanga, a population density equivalent to such densely-populated areas as Arusha or Lusnoto district. Should the approaches to water supply adopted in these regions be expected to markedly change by tae end of the plan period?

Present allocations of regional development funds are on the basis of parity for all regions; the allocation of water development funds is proportional to the regional huwan and cattle population; more recently Devplan has suggested for discussion tne desirability of adopting a compensatory formula - more aid for the lesser-developed regions. What assumption as to regional investment capability should govern the programming of project?

The number of Ujamaa Villages has about doubled each year since the end of 1968. The impact of such villages on water developaent is considerable as they lead to great concentration of population and they are given preference in the development of water supplies. But such a growth rate as a yearly doubling obviously cannot be maintained. What perspective as to the rate of growtn, distribution and character of tiie Ujamaa village Xrogramme should govern the master plans?

The next twenty years will contain major advances in tecinnology related to water development, can any of these be expected to alter the present practices for providing rural water supply? For example, would a lowcost plastic material with the durability characteristics of butyl rubber shift the cost-curve away from pumps and gravity schemes in fawour of the now, relatively high-cost, rain catchments and charcos schemes? Or would low-cost power associated with major hydro-electric schemes make feasible rural electrification in selected areas and make available low-cost, lowmaintenance electric pumps, tube-wells and sprinkler systems?

Water planners assume a rising level of water demand over the plan period, an assumption well in accoid with most experience. But not only will total water denand change over twenty years but the standards of quality and delvery will change as well. Bu the end of the planning period, will supplies without chlorination and filtration be as acceptable as they are today? And will a distance of 400 metres to a water point be adequate as a measure of inprovemont? iill a movement develop in more tavoured economic and climatic areas for housenold self-supply by roof cisterns, hand pumps and wells, or house connection from piped supplies?

Hot all perspectives deal with external factors of population or technology that aifect plans for water development, there are important "backward" linkages as well. Hor example:

A twenty year plan opens up fresh possibilities for a specialized internal market for inchistrial golods. Bought as they are now in small quantities on an annual or project basis, they are with $i \in w$ exceptions (plastic pipe, concrete products) the products of ioreign manufacturet. But if one considers the entire plan period, a base market on which to build local industry can be assured, Providing water for $20,000,000$ people might require $50,000,000$ feet oí plastic pipe, 100,000 taps, 50,000 hand pumps and 5,000 diesel pump sets. Indeed, even water supply techniques might change to accommodate industrial development possibilities, as for example, if butly rubber could be produced cheaply in a petro-chemical complex. Water development commands between six and twelve percent of development spending, now can crucial supporting linkages to other sectors of the economy be identified and strngthened?

National perspectives of long-term trends and desired direction, such as the foregoing, can be developed by a study group or seminar representing the various ministries, treir planning units, the University and otner locally available experts. These national perspectives, in turn, can serve as a besis for tine preparation of region-by-region projections to guide the master plans.

Consistency Between Regions: Yrojections, Axeas and Design © Standards

Some common problems of coordination are lound in systematic water planning. The areal unit favoured by water planners, frequently river basins, do not coincide with either the administrative regions or the economic regions employed in developuent planning. Seldom is the water plan well-coordinated with the overall planning effoit, and the comparability betweon regions or river basins is difficult to insure especially when the planning teams vary in background and skills. Various stratagems have been developed to minimize these problems. Increasingly, tie river basin, an area or water supply, have given way to areis of water demand, these service areas conforming more readily to administrative and economic considerations. Liaison with the overall development plenners to prepare the specific projection of expected and desired growth and development that serve as the basis for deriving water dewand. And couparability between plans has been enhanced when the terms-of-reference suggest a standard set of subregional units, wate major economic and denograpnic projections are centrally provided, and wien a conmon set oi design standards and assumptions are adopted. Building-in consistency this way seems more efiective than the use of coordinating or liaison committees wrich in practice seldom seem to function well.

In the Tanzanian contest, consistency between regional plans, coordination with development planningy and with the regional and district administration can be enhanced in similar ways. A set of sub-regional areal units are now available for over hall the country.
group or iits, onal

dards

matic
fuently vgions dom is
\because and ;o nd skills. is.
ren way seadily be
of
sis
\% been
!ub-
are
ind
no more
ch in

These agro-economic zones, being prepared by BZALUP ior general planing use, conform to district, regional and census enumeration area boundary lines, are relatively homogeneous with respect to agriculture, ecology and economy, aind include a basic set of prepared data. An example of trese deta ior tine zone oi Eastern Kahama, is given in Appendix A along vitin a map of tie zones ior Sukumaland. If triese zones were adopted for vater planning a master plan for whinyanga region would contain fifteen sub-regional units.

A standard set oi regional projections can be prepared ior each region in a consistent manner by a specialist group such as the hegiondl Flanning Division of Devplan. This goup, with regional sconomic Secretaries and District rlanning Assistant in most regions, could construct the set of regional projections tilat should serve as a basis for deriving water demand. Ten and twenty year projections might include:

Regional population aind its distribution
Regional Income
Available investment trends
biajor economic activity
Urban growth and empnasis
Requirements ior social, educational and health services.
These projections will probably be required ior regional planning purposes in any event and can be prepared region-by-region on a rolling basis as arrangements for master plan studies are made. Preparing these projections externally would free the master plan team to concentrate on its major field of expertise - water development. It vould also use the eaisting knowledge or social and aconomic conditions currently available and provide automatic liaison with levplan and the regional planners.

New standards for design and assumptions oi mater denand are, lrom current reports, apparently being developed. The responsibility for providin' comparable assumptions and standards for each moster plan Nould seem to rest best with the ministry, perhaps witu the jorthcoming planning unit. In all, a healtny division oi labour can envisaged uith
 projections of major demograpitic and economic variables, BPALUP providing a set of viaiole sub-regional planning units, and the ministry offering guidelines us to vater lemand assunptions and design standards. These, if followed by the mister plan teams, would encourage a considerable standaru of comparabiltty for a minimu ffifort oi central control.

Information for Choice

That "to plan is to cnoose" has been widely recognized, tiat the planners should not necessarily be tie ciousers is also well-known, but theit the planned - for the people themelves might help to meke choices, ies only reccived belated recognition. Nonetheless, under a wide spectrum uf social sysiems, planners are seeking to find ways of public participation in the planning process, some seeking meaningtul ways, wile othess unfortunately seek to erect only the facade of participation.

One critical problem is how to provide information on projects in such foim thet the choosers, whether they are planners, designers, representatives of the people, or the people themselyes, can wake judgements. the problem sus been compounded by the fact tiait experts and professionals of all types frequently make judgement by experience, skill, intuition or cuen prejudice, witnout specifying to tinemselves or others the busis for the judgement. In most cases this may be adequate, for example, one goes to a doctor precisely to obtain his judgement. But in the case of wator development, the critical choices may well be non-technical, such as a decision to favour Ujamaa villages in providing water supply. Thus it is now increasingly realized tiat projects serve many purposes and have many possible scales. Emphasizing one purpose or scale may mean foregoing others. Mays, hopefully understandable should be devised to make such comparisons possible. The need to formally set out such information is not obviated by the master plans, for most of tiose wo prepare or approve the master plans today will not participate in the many revisions and updating of the plans that the iuture will require.

In one current effort seeking to specify the varijing objectives of water development and trade-ofis between these objectives, the effects of each project on national economic growti, regional economic growth, and environmental quelity are estimeted. In another proposed system, a fourth broad factor would be added, the well-being of people. In such exercises, a specific project, ior enanple a uydro-electric dan, is seen to aave varying impacts from each point or view and even thougid these impacts are not fully quantifiable or even known, tney do provide sounder basis ior choice than that of ienorance.

These criteria, of course, are not sensioly applicublc in trie fanzanian context. Criteria:oi choice in Tanzania shoula be related to the actual cioices beine made. Apart from the important choices of engineering design, most projects of a specific scale and phasing have triree critical aspects: the project has some service potential - to provide health and convenience for people; some development potential - to increase the productivity of the population; and a differing cost structure - money, time, supervision, and otiler scarce resources. Po balance these qualitios on service, development, and cost; is desirable - more service for less cost, service with development where possible, etc. But tne possibilitics are not always intuitively obvious. For example, the service potential of a given project con vary with the degree oi population density, but this need not be taken as given but can be changed as through the Ujamaa Village Programe, Or the developent potential can viry oreatly dependine whether ancillary investmeat, planning, and coordination takes place as has been shown in studies of North-East iJzega. The cost-eriectiveness of a project differs not only in total and unit cost, but in requirement for foreign exchange, mechanical equipment, technical supervision or the potential to employ seli-help.

Can tuese many possibilities be evaluated in is sensible and comparable way? Tables 1 and 2 set out such on analysis for a project which has received study roughly comparable to thut of the master plan. The format can be used in the design process to analyse ditferent alternatives, scales and phasing o. the same project or to display the qualities oi preiersed or recommended projects. jimple inaicators are used to measure service potential: population served by distance

ょ. 3 rts and nce,
ves or -quate, ent. -11 be
viding 3 ne
standable;
formally most of cipate 11
ives
-effects owth,
bm, a
.. iuch
is
in
zones, potential consumption, reliability, water quality, and tin number of facilities surved. Indicators of development potential include: Ujamaa villuges, cultivablt lind made accessible, iriigated land, livestock waterti, fishponds, and rural industry. Cost-effectiveness indicator: include: money, time, and the various constrants of scarce resources.

The example given in fables la, b, $c, 2 a, b, c$, the mpango Water Supply Project, illustr tes one use or tiese indicators. The project is in two phases and Table la, b, c, preseats data on Phase I to be compared with fablu $2 a, b, c$, which gives similar information for the two phuses combined. One possible comparison, therefore, is between building the project only to tie scalc of Phase I as against building the entire project (Phase 1 plus 2).

From the Tables we learn that the smaller project is considerably cheaper. Its total cost is but a third of the combined project, and tiic capital cost pur capita or per liter is two-thirds that $0:$ the lurger project. Furtuermore, tid operuting costs oi the smaller scale project are mucn smaller; while the demands on scarce resources are only sligntly more modest.

In service potential, the larger project will serve irom two to three times as many people with similar queltty and relicioility, dore facilities will be served by tile lareer project. and in development potential the largur project will nave considerable acope as it apparently provicies witer to those areas most in $t_{\text {ne }}$ need for new iacilities and with greater potential for development.

What should be the choice between tinese projects? There is, of course, no simple answer as it depends on the available resources, other alternatives, regional und national priorities at tie time the caoice needs to by made But the decision will not be made in totel ignorance of the consequences if tiese indicators are recidily available

Water Intake on perennial stream: gravity main 30 km . 35 km distribution line, domestic outlets in valleys

RNGIONAL/DISHRICT DEVLIOETENT PAIORITY: very high priority
A. COST / EHPECIVENESS

1. CAPIMAL COST

5 YEAR
10 YEAHS
20 YiAN
AVinizGE:

A 1 TER CONSTRUCHION

10 YAR;
20 YBA MiN
 -52 Shs. $\xrightarrow{-}$
$-$ \qquad SHE. SH心. Shs.
\qquad 1.7 Shs.

2. OPERA'SION \& MAINTERABCE: AGNUAI 14,000 BHS.
3. CaPILAL COM COMTENT:

\% 4 OREIGN PACHANGE	25%
MECFANICAJ EQUIPNEDIN CONSTHUCTION	68%
TECHNICAL WUPELVISIUN COMSTRUCTION	10\%
SEximbist mabouk Potantial	10\%

4. ESTIMNED HMB HOL COMPLURION:

1表 YEARS

* LITEir

TABIE Ic.
PROJECT TIRLA: MPANGO MAPER UUPPLY PHASE 1
C. DEVELOPLIETI POMANTIAL

RYFE
WITHOUT ADUI'IUNAL INVENPLEBT

NUNBER NUIMBER
HITH ADDITIONAL INVENTMETI,
PIANKING, OR COORDINATION
TYPE DA INVESTMENI $\frac{\text { ESTITATED }}{\text { COST OFADD II }}$ INVESTMENT (SHS)

1. UJAMAA VIILUGEN

NUABER	$\frac{5}{4}$	0
POPUTATION	4000	0

2. RELEASED LABOU:?

HOURO/ADULIS/DAY
0.7
3. CULIIVABLH LAND

AVAILABli IN
TOTAL-SEIVVICE AREA (hu.) 12,080
CULTIVABLE, BU'I NOW UNCUITIVATED (ha.)
$10,900 \ldots$ \qquad
SUBSISTENCE CAriZYING
CAPACIAY UNCUIRIVATED
38,000 0
4. IKriIGABLE LAND
poterilal (ha.)

\qquad Shs
5. PRODUCE GiARKE

CO-OP BUYING YOIN'SS
LOCAL DARKENS

\qquad Shs
\qquad Bhs
6. LIVEBTOCK ANIFAI UNITS FAIERED

DIPS
MARKLI'S

O ihs.
\qquad Shs.
\qquad
7. PISII PONDS SURHACL A。EA (H\&)

0

$-$ \qquad
8. MUALL INDUsidiY Eideyoyees

\qquad Shs
\qquad

PHOJEC'L TIRT: MPANGO WATHiR SUPi HY

DENCHIFTIOF: Water intake on perennial stream, gravity main 30 km . pump and rising main 35 km . e earth dam reservoir 75 kni . distribution line domestic taps and cattle troughs

REGIONAL/DISMnICA DEVELOPNENT PMIOKITY very high priority

1. CAFITAL CODir:

- Tomal conir	Aurer Coinstisucilon	7,000,000
	5 YEARS	-
	10 YERISS	-
	20 Y込に	-

AVERAGS:	$\therefore \quad$.	PGi CAFITA	PER M ${ }^{3}$	PEM LITER/DEY
	AFTER COINSTLSUCLIOIN	78 She.	Sins.	2.6 Shs.
	10 YEARS	-		-
	20 Years	$=$	-	-

3. CAYIIAL CONA CONCENT:
$\%$ MOREIGN PACLANG\&
27%

120
8
10%

$2 \frac{1}{2}$ YiARIS

Table $2 b$
PROJECT TITLE: LPPAIIG
B. SEHVICL FOTLNIAL:

PHiNG 1 NND 2

OJECT TINLE: $H P A N G O$ WATEK SUP $I Y$ DEVELOMVITM POTENUIAL
$\begin{array}{r}\therefore 1 \\ \hline\end{array}$
351
$\frac{5 \%}{50 \%}$ 450

\underline{x}	X
9\%	97.
$3 i$	$8 i$
慈	2%
\%	10\%
$=$	-
3\%	80\%

WITH ADOITIONAI INVEOTMEN PIANNING OiR COOKDINATION NURBER NUABER TYPE OH INVQSTLENT DSTHEATED COIT OE AROL INVESMEEITT (Shs.)
$16: 0 \quad=$
0.1

42,500

39,800

142,000

0	0	-	0
0	$\underline{2}$	Small godowns	50,000
2	0	-	- 0
0	0	-	0
\bigcirc	4	cattle dips	60,000
0	0	-	0
0	-	-	-
0	20	gnw mill	125,000

The indicators based in the analysis might be expected to improve as our understandirig of the dynumics of rural water development increases. For tie present, we do not know whetrer released labour is in practice productively-used or to wat degrec is disease reduced by increwsed water use. fnus ine cun only stite the possibilities and speculate on the effects. But current reseurch now underway.. promises to strungthen our knowledge of taese eixects.

mastering tie Master rian

A master plan is a document, planning is a contiming process. Increasingly, the concern oi planners is shifting irom the production of documents to the piovision of planning services. In the context of Tanzanian resources, consultant assistance in preparing the plans seem necessary. But long aiter the master plan teams departy tie planning unit of the iinistry will be colled upon to revise, update, and reschedule the programued efiort. Will the volumes of plans, many of tiem attractively printed and illustruted, lend taemselves to this tretment? If the usual experience with sucn reporta holds in the futuie, it is indeed unlikely. Even ais good and competent a report sis "hanzania Rural Water Supply Development does not lend itseli easily to ieprogramming its suggested twenty yeur programme for rural water supjly. It sinould seem reasonable to demand of eacil master plan the quality of easy revision and review. The use oi consistent projections, unit areas, and design stindurds will encourage these qualities but the 1 prmat oí presentation needs to be scrutinized as well with the view that the plans strngthen and reinforce the iuture planning capability of the ministry's own unit.

Conclusion

An essential skill in swort supply in developing countries is the ability to wisely use, guide, and direct consultants. Unfortunatly, this skill is not included in most cormal education, rutior it is acquired by experience, some oi it painful. It is furtineded by a comparative and curlent knowledge of the applicable techniques oi analysis. And it is maintained by the constont strengthening of tre nution's own internal plaming and technical services.

The deeply - held desire of lianzanians to provide improved water for all deserves the viry best oif consultant work. And the higin costs oi such work, comparable to building major dims or construcing irrigation works, argue for exercising the same care in the design of consultant efiont as in tue dessn of a major engineering structure. A smoll exfort now by the existing planning and tecinical services can insure thit the water mister plans are flexible to atet the changes of the future, aro consistent witi development policy, and are titlpiul in making nuedid and sonetimes difficult choicus.
especi settlu bignex the w muinl: is the incluc of the ares, tice w lives
C.
and, slope. wnile or ve: averis
D.
i.
is al
Sukue
means
not r
2.
althe
the 1
ares.
3.
is bl
otiacl
inpo
crop:
legu:
$1_{\text {Gee }}$
rep
$I_{\text {Bet }}$

LOCATIOR:

The zone includes all of Kanama Division, Ngongwa Sub-Division of
$1_{S e}$
See Introduction for scale oi population density used t'roughout this report.
3. Crops: Paddy the main casin crop, is grown by mosi farmers and is becoming incredsingly important. It is grown in tre valleys and otiler lov-lying areas. Cotton is cilso a major cash crop but it is less important than in zones 2 and 3 . Haize ind cassava are tie main food crops wiile other crops include groundnuts, crick peas and otner legumes, millet, sorgrium and sweet potatoes.
2. Parm size: The average area cultivated per household is medium ${ }^{1}$, although tirere are some vory large farms. On the smaller farms most of the land claimed is cultivated eveiy year but tiose who ovn a large area may leave much of it fallow. In wost farms the plots are scettered.
is already in use but lund shortage is not a problem as in much of Sukumaland. Land rignts are neld on an individial basis and the normal means of obtaining land is by inieritence; land is occasionally sold but not normally rented or loaned.

[^1]4. Planting: Host crops except paddy and cotton are intorplanted or planted in succession. Tire times oi plinting and narvesting trie major crops are as follows:-

	planting	harvesting
paddy	Dec. - Mar.	May - Aug.
cotton	Novize. Dec.	June - Aug.
groundnuts	Nov. - Jan.	Apr. - June
millet/sorghum	Nov. - Dec.	Marcin

5. Rillage: Ridges are normally used for all crops except paddy and chick-peas.
6. Seed: Improved seed is used for cotton (supplied free by the Lint and seed Marketing Bourd and distributed through the Cooperatives) and occasionally for maize.
7. Soil erosion and conservation: There is some soil erosion but it is not serious as in many part of Sukumalad. Conseration measures (other than ridging) are seldom practised, although sisal hedges are occassionally planted.
8. Soil Perility: Since this area has been cultivated for a long period of time measures to restore soil fertility are required. Those farmers with livestock use manure, particularly for maize and cotton, and a number of poople use artificial fertilizers. Other measures include intercropping (practised throughout ijulkumaland) ridging and, where enough land is available, the use oi fillow.
9. nater control: Apart irow the construction of bunds in paddy fields tu consurve water, there is isaally no form of water control.
10. Mecimnization: wost cultivation is probably aone by nand but a considerable number of farmers use ox-ploughs.
11. Grop protcction: The uprooting and barning of cotton plants after harvesting as a precaution against disese is conpulsory and most of trose people who use artiaical fertilizers also use insecticides. The other main means oi protection is individual or group scaring and Hunting of birds and animals.
12. Labour: Hired labour is not widely used but co-operetive labour between neighbours is very common. It is used ior many agricultural operstions and other activities and payment is in the form or food, beer or reciprocal labour.
13. Marketing: All cotton and much of tie marketed ricu, maize and goundnuts are sold through the ©o-operatives. Other procuce is sold on local marketa (including black marketine $)$.
rplented .ng trie
esting

- $A u_{g}$.
- Aug.
- June in
- July
pt. paddy
by the peratives)
sion but measures ses are
r a long

1. Those cotton, sures ag and,

2
ter
and

Inonts y and isecticides. ing and

;ive labour

iltural
food,
E. ANIMAL FUSBANDRY

1. Cattle: The proportion of firmers owning cattle is medium/low. ${ }^{1}$ The average herd is farly small (probably under 20 head) bit there are some large ones of sevral hundred nead. Cattle are an important indicator of wealth and are used for down, milk, majure and work but are seldom sold unless cash is urgently required. They are lebus and tilere are no improved stock.
2. Small stock: Tne number of houstholds owning goats and sheep is somewict less taan those witil c.nttle, They are used mianly for meat and for religious purposes.
3. Donkeys: A Pew farmers keep donkeys ior transport
purposes.
4. Poultry: Almost everyone has a number of poultry, used ior meat and eggs.
5. Husbandrry: When there are no crops in the fields livestock are grazed :nywnere, irrespective oif ownership of the iields. At other times they are grazed on permanent pasture (land unsuitable for cultivintion) or fiallowland. The low lying, poorly drained areas (particularly in the eastern part of the zone) are used moinly in tie dry season and there is considerable seasonal migrotion, especially of larger herds. Permanent pasture is owned cowmanally and animals are often herded coumunally amons neighbours, tended by youths and men. Herders are not nired but tis tending of cattle ormed by others in return for milk, manure or the use oi ozen is common.
F. POYULATION AND NELLELLM
6. Feople: The main in the zone are the Nyamweal, but there are also a number oi Sukume, Tusi ind jumbwa.
7. Settlement: luost settlenent is in the form or clusters of homesteads (inousenold units) scattered through the zone,
 features suca as shops and Co-operative buying posts. A homestecid consists of one or more buildings, often surrounded by a fence or hedge. The whoie are二 is diviaed into "villages" but a "village" is a unit for administrative and identificition purposes rether than a nucleated settlement.

$\frac{\text { TANLANLA }}{\text { by }}$
L. Berry and
D. Conyers

BraLup, University of Dar es Salaam

INTRODUCTION

Kural water supply has been a priority of tre Tanzanian development programme since Independence and in some areas even before that, but it is only in the last two or three yeers that comprehensive steps have been taken to reappraise the whole problem of providing an adequate supply to rural areus and to establish a detailed plan for meeting national objectives in tiis field.

We now have a policy decision wrich ains in the next two decades to achieve this very considerable goal. To tackle this task we have to derine our priorities in rural water supply and plan to meet tnem in the most econonical way. The engineering task in bringing water to millions of rural dwellers is immense and the planning task is no less daunting.. However some clear guidelines are being laid down and from the beginning it has been agreed that trie first focus of planning should be at tre regional level with work beginning almost immediately on the preparation of plans in some priority regions. Such plans are essential if the great investments to be made in the provision oi water during tais period are to yield maximum returns and if they are to be fully integrated into the country's development. iowever, to cid tineir success it will be importint to have a carefully designed general format within which all the plans would be drawn upy particularly since tney are to be prepared by a variety of difierent teams, most or whom are from overseas and so are relatively uniamiliar witn Tanzinian conditions.

In tinis paper we put roxward as a basis for discussion some suggestions for the formut oi a standard master plan. Ie consider tie factors on which we tinink tree plan could be based, the types of data required and their sources, tile formation of the plan and its integration into other development programmes for tie region and, linally, we consider brietly the coordination of the plans for all regions at tide national level.

Whe basis for a master plan

The aim of national water development policy is to supply the whole of the country with adequete water by 1990. however, "to plan means to choose" andi, in the context of water dovelopment, this means cioosing wich areas or projects snould receive priority and cioosing between alternative ways ö̈ supplying ubtem. The purpose or a water master plan iu to aid those decisions.

The first stage in tho preparation o．the plan is to identify
the ractors wifch will determine the cioices．These may be dividud into lour main groups：
（i）the quality of existing supplies；
（ii）the development potential and programmes for development；
（iii）nydrological conditions and potential；
（iv）manpower and financial resources．
The first two may be considered＂deraand＂factors and the second two＂supply＂factors．

On the demand side，the quality of existing water supplies in an area deterwines the basic need for improved conditions． Thus，on these grounds priority would be given to areas where the traditional water resources are most inadequate and on improvedsources have yet been provided．However，one must also take into account the development potential of an area and programres for its development，partly because one must obtain the maximum economic as well as social benefits from investment in water supplies and partly because adequate water supplies essential for the success of any developnent project．For example，given an equal need，a densely populated，highly productive area might be given priority over one with a sparse population and low productivity．The most difficult priority decisions are when the choice is between a project witi a lower need but a higher return and one with a real social need but no major economic return．However，in practice the issues are rarely so clearly defined．

The priorities in terms of the demand for water have， however，to be reconciled against the factors ariecting its supply．The possibility oi meeting any defond and the most feasible way of doing it are deturinined by，on the one nend， hydrological conditions and，on the other hand，the availebility of manpower and financial resources．

Thesc are the four factors which inust be taken into account if the master plan is to meet the greatest needs for water development in the region and to be implementable with the resources availeble．The next stage，therefore，is to collect the relevant imformation about these factors．

Data collection ${ }^{I}$

（i）Existing water supplies
It is necessary to understand existing patterns of water use in the region as a basis for evaluating future needs． For this purpose various categories of water use can be distinguished：
（a）rural
（i）domestic
（ii）livestock
（iii）irrigution
（iv）other（incl．mining，ruril industry，etc ）
（b）urban
（i）domestic
（ii）industisy，coumerce
（iii）other

[^2]for each category one requires infordation on tice sources of water, the area and approximate population served, the capacity and reliability, tile quality of the water and the perons or authorities responsible for maintenance (if any). The data will thus include both traditional sources ind any iorm of improved supply. In meny cases, particularly rural domestic use and livestock watering, it will also be necessary to distinguishl between dry and wet season sources.

:

The information on improved supplies can be obtained from local records oi the inistry of dater and power, District Councils and other bodies (for eximple, bissions) which may be responsible for their construction or maintenance. Data on traditional sources is less readily available. However, a general picture of conditions in different parts oi the region could be obtained irom discussions with local oiricials at the resional, district und divisional levels. lihis could be supplemented by simple sample surveys of water use (similirr to those used in the bureau or Resource Assessment and innd Use Planning studies in Geiro and Handeni)l in selected, representative areas or in areas where more detailed information is required.

(ii) Development potential and progranmes

The relationsinip between investment in water and otrier iorms of development is twofold. Pirotly, the provision or adequate water supplies is essential for the success of any development scheme, whether it be an Ujamua village, a state iarm, an extension prograwme, an industrial project or an urban housing scheme. Secondly, it is important that significant retunns are obtaincd from the large investments made in water developatnt. There will be many cases where the returns from particular small schemes cannot be quantified easily ind tile social and health benefits will be the major returns to the netion. But in major investments, projects ihich involve their own inirastructure and stadies, returns are to be expected and worked for. It is likely tinct in most cases substantial and visible economic returns from investment in water supply will only occur when such investment is accompanied by complementary inputs into otrer inirastructure, extension programus and so on. It is, therefore, essential tiat the water plan be related to the development potential of the region and the plans and programues which exist ior other sectors. Lioreover, equilly important is the need for planning in other sectors to toke into account tae water development programne. In other words, trie plan cannot be made in isoletion but must be an integral part oi an overall development plcin x or the regioil. This is cunsistent with tiee increising emphasis now beine placed on regional planning.

In preparing tie water plan it will tilus be nucessary to colluct a variety oi iniormation related to the generil development potential sud prospect.s of the region during tue plan period. The fiarst need will be to folulute sone brodd perspectives for óverall developaent, whicis would form inc trancwoik ion only for the moter plan but 1 or all forks of planning in ad for the region and in particulax, for the Third inve Ywar Plon. This would involve the identificetion oi:

[^3]（i）the potential lor development；
（ii）the main constritnts；
（iii）tize major policy gouls or objectives，including the activities on which attention would be tocussed （e．g．ranching，deirying，a particular crop or industry，etc．）；and
（iv）the types of strategy to be adopted to achieve these goals．

A large part（or possibly all）of this worls could be done not by the water team but by local personnel，especially the Regional Leonomic jecret．iry and otner members or the Regional Development Comittee，the Regional rlanning Division of Devplan and periaps BRALUP．

Within this rramework it will then be necessary to obtuin more specific material relating to individual sectors，including population，agriculture，urban and industrial development and infra－ structure other tian water．

As water supply projects have a long design period，probably 20 years in most cases，the current and design population is a most important factor．A vital component oi the plin data base will consist oi information on the present population ：nd its distri－ bution a_{n} estimutes oi its growtin rates and iuture distribution． Settlement patterns－bouh existing ones and the hoped－Sor future pattern－will also be important design iniormation．

Agricultural data may be divided into two types．First there is information on the existing agricultural systems and the general development potential of each part of the region． This will indicate the most productive agriculturel areas－ eitner at present or in the future－which should receive high priority for woter development because trey will yield the greatest returns to investment．Second，data is required on propos：ls for specific agricultural or related rural development projects during the plan period，so that the water programme con be designed to support thea．Examples of such projects include major extension progranmes（suci as the tea schemes or dairy extension projects），irrigation sciemes，state farms， ranching associations and，in particular，Ujanaa villages． In each case it will be necessary to know the timing，location and water requirements of the proposed projects．

For the planning of urban water supplies ons needs to know the present and éstimeted future demend for domestic，industrial， comercial or other purposes．One will therefore require informetion on present population，expected growth rates，existing and planned industrial and comrercial development and any other major activities．Pincse will be related to any plans wirica exist for tie overal development of the urban centre，especially in the case of the nine＂growthi towns．Connected to this is the need for iniormation on rural industries and any other major users of water outside the main towns，such as mines．Finclly one requires data on iniristructure otser than water，including communcations，marketins facilities，power，educution，health and otner social services．

IIt
えncili 0.11 － devel
obtc．j．
prese
1907
－～にi
3： $1.1 i$
lac？
rinowi
diょう。
collt
progi
ltat：
＂agr
exis
As \quad ？
the
（iさに
deve
arom
clth
part
มコเย
part
obtc
res：
sinol
are
herc
ardi
さに
to
$\therefore \mathrm{nd}$
cou：
for
Shi
By
jev
Qo：
コ「
Su：

20

If the maximum benefit is to be obtained from all investment, includine that in water, it is essential thet the plannigg of all forms of infrastructure be coordinated and related to other development programmes.

Information on development potential and programmes can be obtained from a variety of sources (sec Appendix I). Data on present population size and distiobution is availoble arom the 1967 Fopulution Census and some simple metnods are available ior making projections of future growth, as used, ior example, by Bradur in Handeni. ${ }^{1}$

Noine information on settlement patterns can be provided by local olficials while locel agricultural oificers nave considerable knowledge of tne existing agriculturel conditions und potential of diflerent parts of the region. , Much of this datc as already been collected by BialduP for about hili the country and plans are in progiess to cover remaining areas in the near future. In consultation with local Kilimo staff, districts have been divided into "agro-economic zones" and for each zone a brief description of the existing agricultural system ani settlement pattern is given. ${ }^{2}$ As well as supplying some of the dita required for the mester plan the zones could also provide a basis for detining planning areas within the region and a framework for the collection oi other data.
liost of the information on existing urban and industrial development und on tie location of infrastructure can be obtained from the relevant ministries or from the Regional Economic Secretary, although it may be necessary to carry out a fev special surveys, particularly in connection with urban facilities. Much of tiais material will be required ior planning the nine "growth" towns and part oi it ins already been gathered by Bhidut.

Details of development proposals in all sectors can be obtained tinrough discussion with tre ministries or other bodies responsible for their planning and implementation. The discussions should be a two-way process so that the otier sectoral progrcmmes are related to wuter development as well is the reverse. It is here that coordination between the various bodies is most important and tre Resional Development Committce could act as a forum for tne presentation and discussion of all planning proposals.
inuch of the inforution considered above is relevant not only to water development but also to the planning of other sectors and to regioncl planning in genexal. Considurable time and efiort could talereiore be saved ir at least part of the ditc. collection for ill iorms of planning in tine region was organised centrally. This could be done by the regional icunomic jecretary, assisted by the District Flunning Assistants and coordinated by the Regional Development vormittee. 'lite emphasis throughout should be on low cost metiods of collection, making meximum use of secondary sources of material - such as local oificials - and only undertaking nev surveys when absolutely necessory.

[^4]The incoumation needs to bu collectea for twe wale oi the plan period but obviously only very rough estibutes will be available ior tic latter part. The period could be divided into four five-year phases, ior which detiiled information will be avail:ble only for the iirst. for the remaining phases tue aim will bu to obtain a broad outline of the direction whici development will take and to identify the wiin fi:ctors winch will afect the planning oi woter development in the future, so that additions and adjustments can easily be made iss more dinta becomes available.

(iii) Hydrological conditions and potential

The possibility of providing any area with adequate water and the most feasible way of doing it are determined, to a large extent, by the hydiologicil conditions of the area. Knowledge of the existing resources anc their development potential is, therefore, required. As it is lisely that a large part O the skills of any planning team will be centred on the hydrological and engineering conditions it is necessary only to summarise a few points here. A recent Bitulup publication ${ }^{\prime}$ outlines in Chapter I some of the prevailing conditions in meteorological and hydrological data collection and tne bibłiography provides adequate supporting material.

While it is easy to get general rainfall data from the longer established precipitation stitions ${ }^{2}$ problems oiten arise in the interpolation of these results into otiler areas with shorter term and less eficiciently collected datc. In brief the rainfall data is less comprebensive tian it appeirs at iirst sight.

Tanzania sas an admirable gauging network on many oï ite major streams and for some of these there is a substantial period of data. Inrormation on ta craracteristics of small basins is naturally more scarce and this con be a problem as many rural water supply projects (especially tiose whicil could be undertaken largely on a seli-help basis) involve small basin hydrology. It might be worthwhile in some areas and as part of the planning process to obtain date. on representative small basins wirich then might serve as models for the region.

The greatest deficiency in bydrological dat: is at the moment the lack of iny oversll information on the potential oif sub-surfece water for the rural weter development programme. Steps hive been taken towirds a better data bise but at the regional level special studies are $1 i k e l y$ to be needed.

While we have suggested some investigations winich need to accompany the plen pioposils it is importint in our vicw to mise masimum use of the dota already available. The lirst stasu in the survey of hydrological conditions will thus be a study of the existing informution, including published, unpublished .nd orisl records and reports. hucir of this cin be obt:ined.inom tine publications and files oi tae Eust african metearological Departacnt and the ininistry of water ind power, irom surveys cerricd out by consultant firms and various other groups or individucIs and thirougn discussions with lucal ofisicicls. 'The acet stioge will be by making comparisons with similar areas in other parts of tile country for wiifch datio is available.

[^5]Ois the be icd into .1 be ine aim develop. 1 arfect additions vailable.
water S large ledge of , therefore,
s of any ineering here.
i tine data colmaterial.
he longer in the ter term 11 data
itb
1 period
ins is
dral
iertaken 3y. It
ling sin then

Ue moment

 ib-surfoce ve been special
ad to

io mare \because in
of the or:1
c publitrient out by nd will be by e country
jome additional survuys will inevitably be required. However, since they will consume a great dunl of time and resources, they should not be considerud until the iirst two stages hive been completed, thus revealing the major gaps in formation nueds. However, they should be integrated into an overall hitional programede for the imiroveilent of nydrologicil records.
(iv) Manpower and financial resources

The other iactor affecting the ieasibility of alternative methods of metting waief requirements is the availability of the necessary manpower (especially technical) and innancial resources How the planning, construction and maintenance of the schemes. One therefore requires information on the expected costs in term of manpower and finance oir all proposed projects and the availability of these resources. In the enrly stages of evaluation detioiled costing 01 the projects will not be necessury. In most casus it should be adequate to classify tinedinto three levels - these which could be corried out by seli-help througa locul agencies, those honded by the regional water development departuent or other section of government at the regional level, and those winch would require national or international assistance. These can tinen be compared with the availability of resouices at eich level. However, more detailed costing will be required when choosing between alternative projects ut similar cost.

Plan formulation

It might be useful to discuss what kind of weter development plan we need and what processes of plan formulation will best fit the particulir lanzinian circumstances.

It seems important to us tilit in each region the broad strategy of tre plan siould be formainted in tia contert or the overall development perspectives for tie region. Within such a broad strategy it will be necessary to outilne more specitic objectives aid projects tentutively for the rive-year plan periods of the progremme and more specifically for the first ifive yours. It would seem to be userul ii all projects were categorised into self-help, regional ind nationisl levels oï implenentation with appropriute combinations oi these where necussury. At least in the first phise of the progrcmac one would need specilic dati on costs, benefit implications and timing of caca major project or important set oi smell projects.

The first gtep in the formulation of such a programme will be to rank areas or projects in order of priority in terms of their demand for improved water supplies. l'is will involve comparing the areas which have priority bectuse of the poor quality of existing resources witin those where improvements will be of grestest benerit to otifer forms oi developmant, and producing a sutisfactory compromise between the two.

The noit step wial bu the identification of aliternative ways Oi supplying eaci of the priority arusis or projects on the basis of the hyarologicel conditions and potential. preliminary costings should of uade ior esch feasible alturnintive and tee projects then divided into the three possible levuls of implementution (self-help, regionil and national). These m:y be coupared with the availability of minpower ard linsincial rusouices at eacil level.

Pinally, a revised priority ranking oi projects can be drawn up, tioking into account both the demand for weter and the feasility and costs oi supplying it and allowing for alternative piojects or combinations oi projects, especially in the later phises. the projects woula be subdividud accordinf to the level of implementation and then grouped into five year phesus to produce tite final development prograwe.

In many cases tize cnoice and ranking of projects will be fairly straigntforward but in others it will not be so obvious and some form of cost-benefit anilysis will be required. In such cases simple analytical tecnniques, alone the lines discussed in other papers at the conierence, could be used.

Presentation and integretion oi the plans

We envisage that in most cases there will be close coordination between the planning teams and the various ministries at all planning stages, so tiat as wide a group as possible are involved in the plunning process. In particular the Regional Development Committees will have been involved in many stages. However, it will be important to present tac drait plans both to the Regional Development Committees and to the nitional Hinistry oi later and Power for comment and amendment so thit the plans are formally approved by both the future implementing bodies.

Abstract

At the national level a major task will be to establisn the right kinds of priorities and allocations between the regions. There will obviously be a high demand for finnnce and manpower resulting fiom the flurry of planning and mucin resolution of priorities between ragions will be necessary. The regional allocation the choice of projeots within a region; using the data presented in the plans, the needs and development potential on euch region should be compared with the feasibility find costs of the proposed scheres.

At tale regionil level the Regional Development Committees will consider tie feasibility of the plins in terms of regional resources and overall regional development proposals. They will also be responsible ior ensuring that any action required by other ministries to support the water programe is talken. . The need for this was illustr.tud in the case or north-east Nzega, ${ }^{1}$ where it has become obvious theit considerable investment in other infrastructure, agricultural extension programmes and so on will be required to support the investment in weter supplite if maximum benefits are to obtained. It would be advisable if, wherever a major water project - like thist in Nzega - is proposed, a mechanism were established to ensure that suci integrated development tikes place.

Manpower requirements

It appears that most of the regionill master plans will be prepared largely by outside teans. However, it the final plans are to be feasible in terus of netional and regional resources and if they are to form an integral part of overall developuent plans, as outlined above, it is essential that, through the Regional Development Conmittee, they maintain very close contect with locul offićals, especielly the Regional ivater Lingineer and the Regional Econowic iecretary.

[^6]t drawn feasility jects s. lhe lementsfinal
be ious In such sed in
ordinaat all ivolved spment \therefore it gional srand :11y
in the ins. wer f prioocation mine ented egion oposed

ees

 onal will y other ed for - it Erastrucequired lits- vater
=
' place.
ans
:نs and
plans,
1 Deve-
4
gional

In terms of the cumposition of these plinning teams it seems to us tart taey should be as broad-based as possible. This does not refer to the need for travelling many miles in a landrover but to the need ior a careful assessment of the economic and social aspects as well as the more obvious engineering and h_{j} drological aspects of tre operetion. Local conditions will determine some of the orientition or skills; for example, in some aseas a giound-water hydrologist is essential and in others possibly oi little usu. In fact the inal cumposition of a team migit only be determined after perhaps a three month period oi tecinical reconnaissance. In our view the range of simils needed could be met by a team including tre \mathfrak{f} ollowing specialisations: hydrology, engineering economics, geograpily or land use studies and regional planning. Any otacr skills - lor example, those of a demographer - could be coopted for short periods as and when necessary, probably from within the country.

Conclusion

We have attempted here to put forward soile idews on the roley content and metiodology of water master plans and, at the same time, to provide a guide to the sources of some of the data likely to be required in preparing the plans. We sope thit this will form a focus - if a focus is in fact needed - for a discussion of the new problews of plianing ior ruril water supply which hive arisen as a result of thu firm and ambitious progrumme whick has been launched. It may bu that viewpoints raised in our paper and the reactions to it from the various delegates to the conference may be helpful to the fanzania Government in its definition oi the planning process in this field.

Appendix: Sources or inta

1. Maps and air Photograprs
2. Base maps: Topographical maps at scales oi 1:50,000 and 1:250,000 for a considerable part of the country ..ni district beste maps it varying sciles for each district are available trom the surveys and riapping Division, Ministry of Lunds and Urban Development.
3. Geological maps at a scale oi $1: 125,000$ are available part of the country iruid the wineral lesources Division, IMinistry oi Commerce and Industries, Dodoma.
4. Air photographs are available ior ill aruas but at varying scales and dates; details my be obtained from the Surveys and mapping Division.
5. Population Census 1907 district Enumeration Area mapig irom Census Ofiice, Bureau of Statistics.

2. Published data

(a) BRALUP publicstions

Agro-economic zones of north-uastern 'danzania, Research Iitport No. 23, 2970

Agro-tconomic zonis of sukumaland, Reseurch deport No. Io, 1970

Agro-economic zones of wouthern Highlands, Rescurca Heport No 23, 1971

Extension of the Kisitwi-Rubeho pipeline. a planning Study, Researci Report No. 15, 1970 Landuni water supply - preliminary repoit on design criterin, Ruwtirch ieport No. 22, 1971

Heiinen, J., The river basins in Tanzania: a bibliography, ilesearch Nutus ifo. 5w, 1970

Jackson, I.J.y Rainfall otitions in Tanzania; Researcis Notus IJo. 5a, 1968.

Norti-esst Nzega planning project: ininl report, Research Repost iso. 6/10, 1970

Water developmunt in Tanzania: a critical review of research, Research Paper ivo. 12, 1971 (especially Ch. I and bibliograprites)
(b) Otrer publications

Bureau oi wtatistics, 1967 Population Census. Vol. I Stutistics ior Enumeration Are:s 1969; Vol. 2

Bureau oj. Statistics, Recorded Population Counges 1948-67. Tanzania

Burcau of Statistics, Directory of Industries, 1967

East African Heteorological Departrint, Various publications.

Ministry of Water and Power, Hydrological Yiar Book
3. Unpublished data

1. Ministry of Water und Pown (Ubungo and regional offices): records of existing improved supplies; hydrological data.
2. Regional, district and divisional ofiticials (especially Regional $\dot{\text { Leononic Secretiricis), District Councils, etc: }}$ miscellaneous data on existing conditions, activities and infrastructure and proposals for iuture developmint.
3. Inirastructure: Data on trie location of a wiáe variety of infrastructure - including administrative and political facilities, roud and tulecommuic.tions, commerce, social servicus and econouic facilities - hes been collected by A. de souzay University of Dar es salama, aid will be published by BKALUP in the near future.
4. Uxbin data: Dati on land use, population and numan characteristics hes been collected ior 15 towns by A.de jouziry University of Dar ws Billuing and will be available in tike noar iuture.

SUPPLY POLICY III DEVEIOPING COUNTRIES

by

Ian Burton
University of Toronto

The economic development literature gives only veiled hints regarding the desirable levels of expenditure on community water supply at different periods in the economic growth of nations, and some of the pints are flatly contradictory. Writers such as W. Arthur Lewis and W.W. Rostow ${ }^{2}$ have asserted the need for high levels of social overhead investment at an early stage of development. Others, notably Albert 0. Hirschaman, have argued the case for "development by shortage" as a safer way to avoid overinvestment. It seems clear that economic developnent theory provides little guidance for those who would make rational resource allocation decimions in the commuity water supply field. The way is left open for some to assert the prinary importance of water supply in ecom monic developnent and for others to downgrade its slgnificance. In neither case do the proponents have very convincing arguments.

A Policy Rationale

It is not the purpose of this paper to try to resolve a complex and intractable issue, but rather to present a possible rationale for water supply policy and to suggest scme of its merits.

The first proposition is that all people have certain minimal veter requirements for survival, health and livelihood and that it is the responsibility of the whole society, usually at the national level, to insure that these needs are met. Λ govemment charged with the task of bringing its population more firmly and securely into the modern world might therefore well accept as high priority item the provision of a safe minimal supply of water to all its citizens. In many countries this implies a significant allocation of resources to commuity water supply at an early stage in the developrient process.

The criteria for investment at this stage are primarily in the engineering design and health fields. The question is how a water supply system can best be designed at low cost to provide such a quantity and quality of water to the consumer that a substam ntial improvement in health can be realized. One danger here, at least in the East African area, is pointed out.by David Bradley elsewhere in this collection of papers. If the improved communty witer supply fis adequate either in quality or quantity to achieve the expected health benefits then the expenditures will be largely in vain. Granted the extrenely linited availability of capital there is otrong pressure to design systems at low cost.

[^7]Nevertheless, many low cost systems can add up to substantial sums of money and if no significant inprovenent in health occurs the money will have been wasted.

There is still very inadequate understanding of the relationship of water supply to health. In general it seems that in large aties where the danger of tyiphoid, cholera and other epidemic diseases is present the key factor is water quality. In some rural areas where population density is less and the number served by a single system is much smaller the diseases prevalent are more often associated with quanti.ty of water use. At the present time the Government of Tanzania has embarked upon a substantial rural wather supply programe largely upon the basis of the first proposition described above. It is vitally important for the success of the programme to gain better understandings of the relationship of engineering design to health and sone further research and possibly experimental work in this direction seens highly desirable.

Proposition two is that as the level of income rises and as the requirements of proposjtion one are met, then the basis for investment in commanity water supply must switah from engineering and health criteria to more strict financial criteria. At this stage additions to the water cupply systen would be based directly on a commuity's ability and willingness to pay. Thus the water supply operation would cone to function on the basis of raising its own capital and paying off the debts by raising revenue from those served.

Acceptance of propositions one and two should produce over tirae a growth of per capita water supply investment as shown in Figure 1. At Phase 1 a rather sharp rise in investment is needed to meet basic requirenents. This is the Phase now represented in Tanzania by the rural water supply programe. Phase 1 may last for a considerable period of years and ends only when basic requirements have been met. By this tine the substantial majority of the potential health benefits will have been realized. The outstanding questions during Phase 1 center around the design of water supply sygtens in relation to health benefits.

Further expansion and improvements in the quality and quantity of supply are required as inputs to productive activities and for convenience. At this point the criteria become financial. Can a cormunity afford an improved water supply? Will the revenue raised from productive activities cover the costs? or will the consumers be willing to pay? Λ s standards of iiving inprove the demand for better quality water in greater quantities may be expected to grow and per capita investment will slowly rise, he key questions during Phase 2 center around efficienty water utility management. During Phase 2 investment in vater supply is likely to rise very :: slowly, however, as more pressing needs are dealth with. As the economy approachea a roore arfluent standard the rise may eventually accelerate as shown in Stage 3 .

Consequences of Deviation?

It is a matter for research to fix the values and levels illustrated diagranatically in 1 gure I. As shown in Figure 2 there is a wide variety of stondards at present applied and no clear pattern energes. In sone countrics much higher levels of consumption are found at siniler levels of economic developnent than at others. Without knowine where the proposed curve in Figure 1 actually lies it seems thet it is not being generally followed.

What are the consequences of deviation? In the case of phase I some countries have not yet statred the substantial investment in community water supply that is needed for basic requirements. Λ consequence is that health standards remain relatively low and that national development is handicapped. It may also be that death rates remain relatively high and that the population pressures being generated are not as great las would otherwise be the case.

Another possible deviation Phase 1 will continue on up resulting in higher levels of investment at Phase 2 than would otherwise ge the case. This implies an overinvestment in water supply to the detriment of other needs.

Rural and Urban Differences
The curve in Figure 1 does rint reflect rural and urban differemone. It is perhaps usually the case that cities are further along the curve than small townsfor rural orommanities. The greater wealth accumplated in cilies may mean that there is a grem ater tendeney to continue Phase of trends into Phase. 2." Certainly the plans proposed for urban water supply systems in some large cities. in the developing countries suggest that a tendency to arexbuild
is not inionown.
The alloeation of considerable sum to urban water supply med $=$ be a sound rationale. Cities are the growing points of the econnmy, where new industries are being established and where the better educated concentrations of population demand higher quality services. In the design of urban water supôy systiems, therefores. it seems particularly important. that the financial conotraints of Phase. 2 be applisd and be reflected in the designs. Not to do so may deprive ruch nf a nation's populätion in the rural areas of basin. water needs.

IIPACT STUDILEO RUXI MATM SUPELY

By
J.D. Heijnen,

LIDEP, Soni
and
Lima Conyers
BRALUP, University of Dar es Dalaam.

NXISTING STUDIE

Impact studies are designed to examine the effect of new and improved domestic wator supplies in the rurcil area. Ideally, therefort, they snould be conducted over a number of years. A "base line" study ought to establisin the relevent facts before the construction od the improved supply, waile furtiier investigations, after the construction, siould measure the impact. Preferably these enanges should be traced over at least several years.

Applying these criteric, it should be codmitted that very few-if any - true impact studies nave been done in Tanzania. During twe pait sew years, nowever, sone attempts have been made in this direction, oltiouga the results are available only in a prelicinary form. lise main atudies are as follows:
(i) The nost couprehensive study ias been undertaken by D. Warner of tine Economic hesearci Bureau. Fie conducted a survey in 26 villages in 10 different districts. In 10 of tatese villages an iaproved supply was installed during the study, so thit observation could be cade before and aifter improvement. line fieldwork is now coupleted and preliminory reports nave buen issued.
(ii) Another study of this kind is being conducted in Ismani (Iring- Disitrict) by J.D. Heijnen oi BRALUY, in cooperation with lir. and wirs. D. ieldman (ERB) and the Iilax Planck Nutrition Unit. The baseline study, which attempts to measure water use before the construction of the pipeline, is complete. is first evaluntion of the changes in water consumption has been done, and a follow-up study is now in progress.
(iii) Bhaduy has undertaken a conprenensive survey in North-East Nzeg. District, combining an evaluation of the existing bulenya Hills pipeline eidd a planning study oir the arew to be surved by pipelines from the new hwimepuli lam. 'lisis coes not constitute a true "before-after" study and vally some oi the effects of the Bulenya dills pipeline were measured. hovevor, some conclusions can be drawn ind the dati. could be used as a base-line study, to de jollowed up aftur tae construction of the new pipelincs.
(iv) A short questionasire ars been given by J.D. heijnen to 100 respondunts in miole, Luwhoto District, where an iuproved weter supply nas just buen completed.

In addition, sume inionnction can be gained from otrer studies although these were not designed primurily as impuct studies. the most comprehensive of these is thet by G.F. Write, Bradey and A.U. Vhite. They studied water use in twelve sites in East Aifrica, including two in Tanzania, together witn an analysis of health statistics and the existing litercture. Another example is the planning study carried out by BRALUE for the extension of the Kisitwi - Rubeho pipeline in the Gairo Area oi Kilosa District. THis included a survey oi water use - both around the pipeline and in the area of the proposed extension.

Other sources of information are reports on the progress of certain rural development projects, which included improved water supply. One example of this is tine project of the liax Flanck Nutrition Researca Unit in Miyo village (Lusnoto District). From a research point of view, however, the problem is that, in these cases, water is only one of a wnole package of development inputs into the area.

PROBIELS OF EVALUATION

The minin problem in evaluating the sffects of improved water supply is that they are so manitold, and often present great problems to the researcher. This is particularly true since proper impact studies need a number of years, during which the situation in the area may change due to other inputs ... etc..

Furthermore, impacts need not necessarily be "positive"; for example, it can easily be imagined thut an influx of cattle as a result oj improved water supplies in North-iast Nżega could have a serious effect on the rate of soil erosion. Thus in each case, depending on the type of improvement and tile area, ont needs to set out with a number oi prasumed efiects and these hypotheses must then be tested.

In Tanzania the view is taken that rural watex supply is basically a social service although with some economic bentifis. Thus it becomes impertant to register what the sociel benefits are This does not mean, however, that the economic side con be neglected. Indeed, unless the economic ranificcitions are substantial, the question could be asked whetherg at the present stage of its development, Tanzania can afford to invest heavily in (largely) nonproductive projects. wost of the present projects are financed with swedish aid. Even though the terms are very liberal, sooner or later the loans and inturest will have to be paid back. Thus the present policy objective, to supply the wholu of rurcil Panzonia with iuproved moter supplies during the next twenty ycars, will place a great rinancial burden on the nest generation.

An additional problem in cvaluating the effects is thit Pew of these cire purely socicl or economic. Thus improved health leads to a. feeling of greitur well-bcing (social) as well as to greiater capacity to produce (economic).

Te shall now proceed to oxainina the most important hypotheses related to the social anc ecracmic benefits of improved rural supplies. The benefitus wich we consider are those wisch are most important in terms of nationcil goctes and aspirations and they theretiore form the basis ior justifying the rucal water supply progranme.

Kivothesis 1: The distance travelled to ouatin water
It is generally assumed thict improved supplies reduce the distances which people have to travel to fetch water. In part, the problem appears to be one of compacison. The improved supply will provide water all the year round (so that the distance travelled remains the same). Under the inaditional regime, however, in many areas there is a significant differenco between the distance travelled in the wet and in the drey season. From the economic point of view often the distanco trovolled in the wet season (which is the furming scasois) would he the most important measure. from the social angle, a decxrese in the cry season, especially as walking distances of one hcur rini more are frequently involved, is also an important bensín, Anotnen consideration is that, in some cases, the djstance tore od way sotually increase because nore trips are made. To :cme oxtent evidence is contradictory. Warner's preliminary figules. using averoges for the whole year, indicate a significant deorcise. The first Ismani results show (in so far as the people used the eupply) a decrease in the dry season, but an increase in the wos season.

Obviously, the situdiu. vom change by improving the distribution systen. But bringing the water to wisere the people are now might clash with enothcor government policy objective, namely villagisetion. There the people ars already living in villuges, however, substantial bcrefitis can often be gained. Unfortunately, dispersed settlement is the rule, rather than the exception, in Tanzania. The cost 0 a proper distribuiton system would, moreover, often be extremely inigh.

Lastly we would want to mention our strong impression that many schemes are construcued in settlements minere people are already better off than others in the sare area, who are not served at all by the new supply. The data collected in Ismani and illola appear to support this thesis. The explanation migint be, thet relatively dense settlement patterns will only occur in those areas where water is obtainable at a reasonablf. distance.

Hypothesis 2: The qualiyt; $\underset{\text { water nsed inproves: }}{ }$
At first sight, this appears alnost a truism, yet the findings of research dore worm indicate tatitunfortunately it is not. As for the notion of "quality", we must distinguisin between (i) chemical conter: (amount or Polxe wolids, etc.) and (ii) the degree of pollution. Fot orli toes tae cimenical content of the water insluerice the taste, but it wignt also have an important effect on nealth (ior e.auple, if certain elements are present in excessive amounts). Naturally, tie "improvementi as jar"as the chemical content is concerite, is wasily measurable and new water supplies are normally scmple! te see whether the vater is acceptable in this respect. The w.ll. C. Cuvaris are not applied in Tanzania as it is felt thit these rebes are too rigid. As yet, no definite standards have been set in hasmania itself

Bacteriological pollution, mainly oir animal origin, gives rise to soue further comments. In cases where surface water is used, this water is generally heavily polluted. In order not to make the supplies too expensive, a filtration plant is oiten onitted (as in Ismani and Bulenya Hillis). ${ }^{\text {a }}$ In Ismani, where Kreysler counted coliforms, tae purity of the supply at the taps was reasonably good, at any rate presumably much better than that of traditional surface water resources. However, the watior taken irom the overflows (which was also used by the people) was very heavily polluted. horeover, arter the witer irom the tups was carriud home (in debes) the coliloim counts indicuted a significant increase. jurthermore, untreated water may spread otier diseases e.s. Bilharzia (c.f. hypothesis 3).

Observations ace as yet too few in number to nake any difinite statement. Yet i.t is cleir that research cannot overlook this hypothesis.

Hypothesis 3: Hine and energy expended decreases

The time and energy expended on obtaining water is at least partly a function of the distance travelled, yet other factors may be important, such as the nature of the journey, the conditions of obtainins water, and otuer activities, such as queueing and talking.

White et al undertook a complex analysis oi energy expended by estimating distances, speed of travel and time taken and converted into energy requirements, in terms oi calories and costs.

A much simpler metnod was adopted by Marner and iicijnen and in lizega, when merely the time spent was recorded. As might be expected there is a jairly close correlation with the distance. However, in both Nzega dnd Ismani an important new factor was the time spent in queueing for water. Furthermore, in liola it was found thet people living less than five minutes irom the tap, in a number of cases spent more time collecting water than belore owing to increased corisumption.

Eypothesis 4: The quanity of water used increases
White et al did a detailed study of tic various factors affecting the quantities used. Thus the size oi thehousenold, wealtin, cost. (purchasing), season, distance and energy spent, type of source etc., may ariect the quantity as might also the quality in certain extreme conditions.

The results obtincd in the vanous impact studies vary considerubly. Jarner's study shows an increase in tine quantities used. But in Ismani (after one dry season) the.increase per head per day was statistically not significant, and in Elola the increuse was significant only for those living within 5 minutes of the tap. Finally, in Gairo poople using the taps claim to use leas water timn those using only traditional sources.

The question of quantities used is an important one. Apart from the health aspect (hypothesis 8), the expected rate of consumption is obviously directly relevant or the design of the supply. In Ismani, for instance, it was found th..t twe average quantity taken home amounted to just over 10 litres per day aid similar
> ives r is ot to n oinitted r couasonably tional overpolluted. n debes) hermore,

difinite

 hisleast ors nditions and
pended icon3sts.
1
in and. i be sce. :s the was
, in
re
s
d,
, type
ality
ities
head
ces
0

Apart :onsuupply.
quentities were recorded ior people using the taps in both Gairo and Nzega. Yet, tie design in Ismani is based on 22.5 litres; i.e. more tian twice thut amount, and the standaru estimate used by the Ministry of later and power is $j 0$ litres per head.

Again, more work needs to be done in order to establish proper criteria in tais respect. Fresumably, however, a fairly large sample would be required. Beiore anu aiter measurements have for practical reasons to be done with a relatively short period. Furthermore, the consumption per head tends to vary tremendously between individual families (in Ismani between 1 and 54 litres per person per day), so that large standard deviations must be expected, which will make it difficult to cone up with statistically meanin ful crianges.

Hypothesis 5: Improved supplies are more reliable

When the improved supply draws its water from underground water (boreholes), the availability becomes less dependent on ariations in climate. The same probably holds true for the larger surface reservoirs and perennial streans. The problem, however, is the distribution system. soth in Nzega and in Ismani the new supply is often interrupted bocause of pipe breakage and maintenance (cleaning of pipes and tanks). Also at times the pressure is insufficient to fill the stor ige tanks. In the case of boreholes the major problem is connected with maintenance. The pumps are frequently out of order and apparently it is orten a long time before they are repaired due to the shortage of technically qualifified personnel and, especially in the past wien the District Councils were responsible for maintenance of the supplies, lack effinance.

Hypothesis 6: All people who do not live too far from
 the improved supply will make use of it

In Ismani this undoubtedly holds true, although the full distribution network is not yet complete in tilis area. The ${ }^{\prime \prime}$ criticali distance appears to be somewhere between $1 \frac{\pi}{2}$ and 2 hours walking. But here the improvenent in the water (taste, smell, turbidity, etc.) is very noticeable and appreciajea by evciyone. Dats obtained in Nzega prove, however, tiat this hypothesis is not an axiom. Some jeople at least travellong distances to traditional sources, when taps have been installed much nearer. Similar results are rejorted by i'llman in lianangl. Varner does not mention this phenomenon in his ample villages.

Whitu et al suggest tiat the reisons ior using a particular source are compler, but based on rational crituria such as smell and taste; while many other factors, such as social relationships and expected rate of pollution also play an important part. If people are convinced thut the new supply is bettur, they will use it. This is supported by evidence from Nzega, where the frequency with which the pipeline breaks down is probably the main reason why it is not always used.

Cles.rly, the evidence obtained so for is insuificieft and in tiris riela also musa remins to be done.

[^8]Hypothesis 7: The additional time made available through improved water supdiy may be put to productive use.

There is a great problem herfe namely now to examine the hypothesis in practice. It is easy enough to compare the time used to obtain water "before" and "aftelr". But to investigate how the time saved (if any) is used, is quite a different matter. At a mininum it would require two separate time expenditure studies.

Warner attempted to evaluate this impact, by taking down stetements of the respondents. The question is, however, how much reliance can be placed on this. Pie results for (i) domestic work and (ii) shamba work could easily be biased in view of the prevalent positive attitudes of respondents in tnterview situations.

Obviously, there is a biég gap in our inowledge here. Anothor matter is whether White et al have, taken the right approach by simply assuming that the extra time is used productively. It is somewhut simplistic to contend that tie time spent on certain activities is and on certain others is not productive. ror example, how does one classify mort, tjme spent on cooking and cleaning the house? furtimermore, assuming thit there are health benefits, it would be reasonable to expect tinnt less time would be lost by visiting dispenseries, through illness. These "secondary eifects" also have to be taken into account, wining the problems of measurement even more complex.

We would here venture the thesis that any time sared, especiully by, women, has social and economic beneitits at the present stage of Tanzania's development, since at least the energy saved will make it easier to maintain the often precirious balance between nealth and disease, .threatening undernourishment, etc.

Hypothesis 8: Improved supply means butter lealth
In so far as the quelity of the improved supply is significantly better, it could easily be inigined thet this would be the case. As we noted earlier, hovever, particularly if the water is left untreated tie numbers of coliforms may still be very high by the time the water is actually consumed at home. Furthermore, it snould be noted thit many more consumers will now use the same source. If the surface weter supply is not treated, the dangers of sudden epidemics (e.g. typhoid) are thus very much greater. Watering points may become containated with hoolcwora itc., while diseases lize bilfrazio c:n be "distributed" with the water.

If the amount of water used increases, especially the quantity used for washing clothes and bathing the incidence of other diseases, such as lice born diseases; may decrease. Other possible benefits, such as the tial seved, may lead to improved nutrition and health.

The problem is finer, how to meowure the changing neilth conditions. Obviously two surveys - onc "beiore" and one "alter"will be required. i"ustrermore, again the sample will have to be ratner large - because of tíe likely observiational errors - so the costs will be high.

Even then, however, laboratory cunditions cannot even be approached. thus one cannot very well examine a thousand people without also treating the diseases fiound (bilharzia, hookworm, malaria etc.). These diseases would not disappear anyway, no matter how significant tine improvement. Therefore, at least one other sample - outside the sphere of influence of the pipeline but otherwise similar - will have to be included.

The only attempt in Tanzania so far has been in Ismani where Kreysler of the diax Flanck Researcin Unit conducted a baseline survey, comprising both villages supplied by the new pipeline and areas further away from it. This survey will hopefully be repeated in 1971.

Dispensary records have been used both in Ismani and Nzega, but their value is linited because of the fairly broad categories of diseases used and the possible diagnostic errors. liastly it should be mentioned that several studies of factors affecting specific diseases (e.g. bilharzia in Mwanza) may contribute evidence indirectly.

The limitec evidence available so far nevertheless allows one to draw some tentative conclusions:
(i) It is not suificient to supply "improvedi" water unless iealth education on aspects such as treatment of water, is also provided. 'the people in the rural area tend to think that if the new supply is clean, it is safe to drink etc. without boiling.
(ii) Presumably, in order to reap the maximum benefit in this sector it would be worthwhile to consider treating tie populations for existing water related diseases.
(iii) The contention tiat any "improved" supply has a positive impact - even if the water is not treated - does not seem to be true. While the incidence of cettain diseases may decrease, other health hazards like epidemics, hookworm and perinaps bilharzia may outweigh this benefit.

Hypothesis 9:
By providing more and better water ior
livestock an improved water supply increases
the returns irom animal husbandry.
Since lack of water is one of the main obstacles to livestock production in most parts of the country there dis a tendency to assume that the provision of better water ior livestock is desirable, because it will improve the coudition of existing animals and ullow larger numbers to be kept. This is reflected in the fact that one of the criteria used by the iininistry of iater and rower to justify a project is tie number of live,tock which it will serve, two livestock units being equivalent to one human.

However, when the question is examined in urore detaill; it becomes apparent trat this hypothesis is not always true. In the first place, altiough more trequent watering improves the quality of animals, improvements in uther aispects of husbandry, especially disease control, are equally if not more important. Secondly in many areas which already suffer from overstocking an incres.se in livestock numbers is not desirable since it will only result in a shortage of srazing (and, therefore, deterioration in the quality of animals) and erosion. Erosion is particularly likely whey animals concentrate around the new water points. Thifdly, even it improved water produces more and better livestock, this will have little economic value unless it is also accompanied by higher salies of animals or animal products.

There is very little evidence available to either confirm or refute tuese hypothesis. No direct studiles have been miade and, in any case, the effects are likely to vary greatly from one area to another, depending on the existing livesfock situation. The main source of information is observation in north-east Nzega. This area is already overgrazed and an increase in livestock is definitely undesirable. The effect of introducing watier on livestock numbers seems to depend on the part of the area concerned. In areas where cultivation is possible, the increase in cultivation is forcing livestock out but in grazing areas there is likely to be an increase in livestock numbers. In both cases, the pressure on grazing will increase and there is already evidence of greater erosion, particularly and water points. Very little information is available on the efiect of water on the quality of animals or livestock sales in the area.

Eypothesis 10: The economic benerits oz water supply. projects may be increased by using excess water for small scale irrigation.

Where an improved water supply is constructed primarily for domestic or other (such as flood control) purposes there is often excess water available and it may be argued that this can be used for irrigation, thereby increasing agricultural productivity and perhaps also improving nutrition.

The main impact studies do not consider this aspect. However, BPAIDF made a study of three such villages in Dodoma and Singida Regions to examine the way in which water wes used for irrigation. It was found that in none of the villages was the full potential for irrigation developed. The main reason for this was thit the inhabitants, wio are unfamiliar with irrgat da agricultureg received inadequate assistance in the form of organishtion, supervitsion and extension. Connected with this w.is the fact that irrigation is a form of intensification of agriculture and at present tinere is no population pressure in these areas to act as an incentive to intensification. Other important reasons include inadequate marketing and other infrastructure, poor soils and the fack of drainage facilities.

One may, therefore, conclude that, when considering trie use of excess water for irrigation, allowance should be nade for the variety of other inputs wiicin will be required in order dolotain benefits in tide forfi of increased productivity.

Hypothesis 11: The economic bemefits of surface water resources may be increased by using themior rishing.

This hypothesis is very similar to ticut relating to the use of water ior irrigation, being based on tie assumption that subsidiary benefits from surface water projects may be gained by using them ior fishing. ino systematic studies have been nade but some evideace is available iroin the BisiUf survey of irrigation villages and from experience in otier reservoirs. Three conclusions may be urawn irom tis. Firstly, some spontaneous fisning is likely to develop in most reservoirs but, in areas where fishing is not a traditional occupcition, the fishermen will usually be immigrants winile the local inhabitants will snow little interest in either catching or buying fisi, unless there is a major campaign of education and extension. Secondly, infrastructure in the form of transport and marketing facilities is required. Thirdly, if a reservoir is to be used ior fishing the vegatation should be cleured before the land is flooded to avoid both pallution of water and damage to nets.

Hypothesis 12: An improved water supply provides a
stimulus ior the development of secondary
economic activities.

One of the supposed benefits of a new water supply is that it encourages the growth of economic activities other than agriculture and fishing, especially water-using industries and commerce, and the acquisition of new skills. The only impact study to include this hypothesis in its initial terms of reference is that by Warner, for which results are not yet available. However, some evidence can be gaincd from obstrvations made by BiRALUP in north-east Mzega and by the Max Planck Unit in Mayo village, Lushoto.

In Nzega the introduction of water has been accompanied by a marked increase in both water-using industries (notably brickmaking) iad commercial activity. As the whole area is already Experiencing rapid economic development it is impossible to say how much of this is directly attributable to water, but it appears that at least part of it is since tiose villeges wich have water points are growing more rapidly twan others. In Mayo village the provision of witer, combined witi a campaign to build better houses, encouraged an increcse in brickrmaking, while the pipe installation piovided training in the fitting and maintenance of water pipes.

Hypothesis 13: A new water supnly will encour ge the clustering of settlement around the water point.
'Ihis is a hypothesis which is particulurly important in Tanzania at present because of the eifort being wade to bring people togetner into villages. A major policy issue with regard to the provision of water is whether watcrpoints should be located waere people live at present or where one would like them to live. This issue cannot be resolved unless one is able to predict tie effect of water points on settlement pattern and tat information required to do this is not yet available.

In order to test the hypothesis properly repeited observe tions for a considerable length of time are required and no such study his been made. some evidence can be griined from observition of settlement patterns in nortn-cist Nzega and from studies by Whice et al of factors affecting the location oi existing setthe ments. These results tend to refute the hypothesis In Nzega, rapid growth oï settleuent seems to have occurred around woter points located in existing villages, and more moderate growth around those located not in a villase but on a road, the combigation of road and water providing a nucleus. However, those points located elsewhere nave not yet attracted any noticeable settle $\frac{1}{3}$ ent. These observations were supported by farmer interviews in Nzege and by the conclusions made by White et al, both of wincr suggest hat water is not trie main iactor determining the locition of settlement.

However, the evidence is at present very meagre and furthier impact studies or this important aspect are urgently required.

Hypothesis 14: The input of improved water acts as an
One of the hypotheses often used to justify the installation of an improved water supply is that it will encourage otrer aspects or rural development, such as better living conditions, new agricultural practices, education, Ujamaa and so on.

Evidence on this topiccan be obtained from various sources. In the BRALUP study of irrigation villages and of settlements along the Bulenya iills pipeline in ivzega a number of criteria were used to measure the degree of "Community of the virlages. . varner is using these und other criteria in his studies but the results are not yet available. Other information is available from the observation of xarious projects in which water has been installed, including the pipelines in north-east Nzega and Ismani, the Shinyanga lift pump in Sukumaland and various Ujamaa viliages wich have been supplied with water. The othex wajor study in this field is that in liayo village, Iushoto District, where the circumstances were rather different. Here water was only one of a mimber of inputs, including improvements in healti, nutrition and education, which were introducted as a "packafe deal", and the villagers were involved in the plannine and implementation of the project from the atart.

The results of these studies suggest that water alone is not enough to stimulate rural development. Various resaons have been suggested for this. For example, Durfy attributes the failure of the Shinyanga pump to encourage development, to the lack of community feeling among the Sukuma, while Cunningham maintains that the key. io successiul Ujimaa is the quality of local leadersnip. However, .the most valuable results are those from Mayo village, where the combination of water and other inputs has resulted in a definite increc..e in the level of overall development. It appears, thererore, thit water must be provided as part of a "puckage deal" and tint the - lucal people should participate fully in the project from its inception.

COITCLUSIONS

In discussing each oil tine above hypothese it has oniy been possible to draw very tentative conclusions with regerd to the impact of new or improved water supplies, because of the lack of intormation. Consequently, large sums of money are at present being invested in rural water supplies on the basis of inadequate infoimation on impact benefits. We have seen that genuine impact studies are difficult and costly to plan and implement, but in view of tite size and long term nature of the rural water development programme, the rite of return on such studies will be high.

Berry, L. and K. $\underset{\text { if }}{ }$ Kites (1970), flanned Irrigation setitlement: a study of riour villages in Dodoma and ringida iegions Tanzania, BRAIUP Research aper No 10.

BRalup, (1969a), Benefits Irom Rural Vater Supply: the impact of the Bulenya iiills pipeline in north-east ivzega. Resuarcin Report, No. 5

Biallup, (1969b), North-east Nzega Planning Project - recomme ndations and comments on the optimal location or pipelines to serve the wwambiti and Wembere Plains area, hesearch Report No. 6/4.

BRALUP, (19690), Progress Report on iVorth-east Nzega planning Yroject-Research Report No. 6/6.

BRALUP, (1969d), The Ismani Fiped Water Supply: some suggestions for future extension and improvement, Research Report No. 6/4

BiaALUP, (1970a), Recommendations for the Development of trie Mwambiti and Vembere Plains, Research Report No 6/9

BRALUP, (1970b), A Report on Rural Hater Use Characteristics in Geographic Sub-areas of the Norti-east Nzega Study Area, Hewearch Reports Nos. 6/11 - 6/1\%.

BiLALUP, (1970c), The Reliability or rator Distribution in North-ec.st Nzega, Research Report No 6/14

Bizalup, (1970d), Water Use Records for Distribution Points of the Bulenya fills System - Research Report Kos 6/15-6/16.

Bralup, (1970e), the tixtension of the Kisitwi-Rubeho Pipeline: A planning Study, Reseaich Report No. 15.

Cunningham, $G,(1970)$ in D. Warner (ed.), Rural fater Supply in East Africa, Proceedings of the Worksioiop on kural Water Sunply, BiAliUP, Rescarch Paper No. il.

Ellwan, A.O., "Rural fater Supplies and the Ujamaa village Proframe," In D. Zarner (ed.) Rural iater Supply in jast Africa, Bindul', Research Heport fo. 11

Kreysler, J. (1968), Uhuru na in if: Ienlth, Gater Jupply and Selp Reliance in Piayo Village, Bralup, Research Paper No. 3.

```
Kreysler, J. (1970), "l'otal Coli Counts: a wethod to determine biological contamination of Rural water supplies; the Ismani exainple, "in D. Warner (ed.) Rural Vater Supply in East Africa, Proceedings of the forkshop on Rural Water Supply, BRALUP, Rese..rch Paper, No ll
Ladati, P.J. (1970), "Water Quality Standards in Tanzania,: in D. Warner (ed.) Rural Viater Supply in Bast Arrica, Proceedings of the Workshop on iural iater Supply, BRALUY, Research Paper, No. Il
WicCullougn, F. (1970), "Water Resources and Bilharziasis Iransmission in the Msungwi Area, Hwanza Disirict, Forth-West Tanzania, i" in 1 . Yiurner, (ed.) Rural dater supply in East Arica, Proceedings of tile forksnop on Rural :tater Supply, BtiALUP, Research raper Io. II
Warner, D. (1968), Planning anä Evaluation of iural iater Bupply Programme, ERB (Procedural) Paper 68/3
Warner, D. (1969a), Rural iater Supply and Development: A comparison of Nine villages in Tanzania, EHB Paper 69.17
Warner, D。(1969b), Project Planning ior Ruril Development: a case study of the manong rlains water bupply schemes, ERB Paper (Restiicted) 69/5.
Warner, D. (1970a), A proliminary Assessment of the Inpact of firial Water supily upon Househoids and Villages, E.A. Agricultural Economics Society Conierence, Dssi.
Warner, D. (1970b), A iummary of the Tanzania, Rural Tater Supply Impact Study, in D. Warner (ed.) Lural Water Supply in Eest Africa, Hroceeding of the Work hop on Rural Water Supply. BfALUP, Research Paper iNu. 11.
Warner, D. (ed.) (1970), Rural water Supply in Hist Airica, Proceedings of the Worksiop on Fural ater Supply, Bralup, Reseurch Paper No. 11
White,G.J., D. J iradley aild A.U. White, (1969), Drewers of Water Domestic iater Use in Bast iricic, Yreliminary Dratt.
Webbe G. (1965), Transmission of Bilharziasis, Bulletin of World Yealth Organisation 33; p. 141.
Webbe, G. and Jordan \(P\), Recent Advances in lnowledge of Schistosomiasis in tist Arrica, Trans. R. Soc. Trop. Me. Hygine, 6 a 279.
```


empirical work corried out suggests the．t a substantial portion of the benefits derived from such schemes arises from the use of water as a direct a．gricultural input．Nevertheless，let us maintain the disti－ nctions，even only as one of degree，and consider a number oi headings under which benefits and costs might be placed．

II（2）Benefits of Rural Domestic Iater Supply

The first heading under which benefits of water supply schemes are usually considered is that of health．Where existing water supplies are polluted，or simply unreliable，provision of extra water will have impo－ rant implications with respect to the number of man days lost through illness，the incidence of disease－or what may be more important，the relative incidence of different types of disease－and more generally on infant mortality rates，life expectancy，and ultimately the size and structure of village populations．Where we come to measuring such benefits，it is clear that starting from the question＂what is the value of a life saved？＂is unlikely to be helpful．Immediate benefits－those arising from the often dramatic short－term improvement in village health may be measured in a number of ways．Pirstly，in the form of increased output，though，of course，there are often multiple factors at work here． More water may mean more man days available－and this will be particu－ larly important where drought or contamination of existing water supplies coincides with peak labour requirements for subsistence agriculture－but it will alsamean an increased capacity to make use of otrer inputs complimentary to labour．Even in the short term，therefore，the increase in output arising from a change in the health and size of the work force may be only partly attributable to increased water supplies．Nioreover， there are the usual dynamic effects－e．g．a first．round of increased food output and consumption per capita will have furtioer impact on labour availability in tine second round，ard so on．Useful measurements of what we might call＂health induced＂benefits will therefore turn virtually on the ability of the investiga．tor to relate changes in the village production possibility boundary to changes in the availability of time－dated inputs，and to identify the sorts of input complimenta－ rities which may be at work，both in a static and dymamic sense．

An important component of total health related benefits may equally accrue as a saving in resources．Firstly，to the extent that lack of adequate water can be related to a serious shortfell in lacal production，investment in rural water may be a partial substitute for Government famine relief programmes．Better rural health will also ease the pressure on skilled medical resources，which in the short term may be extremely important given the differential gestation lags in the production of more wells as opposed to more doctors．While this sort of saving is extremely difiicult to measure on an individual project basis，it can hardly be ignored when speaking of a national prozramme．We are，of course，not arguing that these resources can or should be thought oi as fully substitutable．lore doctors and health workers will remain a priority item on the agenda of most national plans for a good many years．But for those who argue thot rural water schemes are particularly costly in terms of foreign．exchange，it is well to remember thet doctors，and the drugs they administer，sre almost pure foreign exchange costs．

The second heading under which we may consider the returns to rural domestic water provision is that of labour saving and leisure． It is often argued theit the labour freed from tine inefficient and a－ mbersome task of water－carrying would，witri the provision or ar imme－ diately accessible water source，be released for fore prodictive activity． Again，tris is one O tiose hypotheses whica is intuitively satisfying while apparently immune to enpirical valiantion．The short answer is that one can say little without reference to particular cases，and that the variety of experience encountered makes any generalisation difficult．
\qquad
n of the er as a distiheadings
schemes are upplies are have impothrough tant, the enerally on: ize and such s the value its - those lage health increased
\therefore work here. ? particu;er supplies inure - but inputs the increase work force Moreover, . icreased t. on labour nts of rn
in the lability imenta'e.

may

nt.that
a local
ute for
also
hort term
ys in
e this
ual
ional
3 can
ind health onal
:l water it is well Lmost
cns to isure.
ind cu-
l immere activity. tisfying iwer is and that difficult.
ater-carrying is in many African countries a sex-specific task - the range of alternative productive activities for which labour released from water-cerrying can be put is itself therefore likely to be delineated by social custom. While the labour released from watercarrying may anount to as much as several labour hours per day winch multiplied over the year and by tine number of village families may be substantial, tiel key question is usually one of timing. If, say, the shortage of harvest labour is serious and all members of the village participate, then the returns to marginal labour released from watercarrying may at this time of year be very significant. This is typically the case in an agricultural setting where peak labour demands are set by highly time specific operations - e.g. where the harvest must be got in and new ground preparad before the first rain falls. Miore labpur may mean not only bigger harvest; it may mean the possibility of later planting and higher yields, and a change in the cropping pattern and cropping calender will in turn have implications for the marginal returns to labour released at other times of the year. The point may sound unnecessarily esoteric for the general purposes of our argument nevertheless, it is precisely such dynamic effects which are crucial to evaluation and which tend to be ignored.

Even in those situations where the use or labour or watercarrying may have insignificant opportunity cost, some gain in total welfare will result irom the provision or rural water supplies even if time-saving is translated wholly into extra leisure. Quantifying the benefits arising from extra leisure time is, of course, difficult, though certainly not impossible. A rough guide to beneifit estimation in such a case is often best obtained where the family or village group is confronted with a choice of marginal investments - the Government will provide either more \underline{x} (where \underline{x} is a new well) or more \underline{y} but : at both! Assume theit \underline{v} is a project whose net benefits are more readily measurable than those of \underline{x}. If \underline{x} is chosen, net returns from \underline{x} can be assumed to have a lower bound set by the net returns on v. If some new choice option, \underline{z}, is now presented, and proves to be preferred to \underline{x} or \underline{v}, an upper bond for \underline{x} can be established. And so on until net returns from \underline{Z} can be assessed to lie within a reasonable interval. Although the use of such a roundaiout procedure for measuring intangible benefits by questions of the form "how rauch would you pay ior 즈 if you could buy it? ${ }^{i i}$ is usually highly misleading where provision of the service in quastion is thought to be a natural responsibility of Government. Nor can benefits accruine in the form of leisure be ignored simply because they are difficult to measure; while it may not be possible to devise a standard procedurefor quantification of leisure benetits, some guide is provided by reference to other fields of economic analysis where time-s:vings is a critical factor - vi.z., transport economics.

In addition to the types of benefits we have discussed so far, the provision of rural water, even if primarily intended for inousehold consumption, will usually have some use as a direct input into traditional farming. Pypical examples are the use of a village well or standpipe for the wetering of dornestic animaja, and where the installation permits, for providing a direct supily oif irrigation wator to nearby fields or garden plots. Even with the provision of quite modest installation, daily flow capacity is likely to be in excess of diily drinking requirements. ${ }^{1}$ Morcover, with few exceptions, the technology of water provision is such that fixed investatht cannot be traated as coninuously divisible, and mareinal costs of water will fall in the range betveen each new lump of required capital. In short, it will often be economical to provide capacity in excess of domestic requirements, even where the marginal return to water in non-drinking use is íalling.

[^9]Where existing water supplius are not only distent but unreliable i.e. subject to periodic "drying up", the impact upon the livestock econowy of assured water supply may be quite striking. Providing other complementary resources are cvailable, not only are yelds per head likely to increase, but the size and composition of the herd may change, Existing grazing practices, previously limited by the need to lead cattle to a distant source, can now benefit from a more rational rotation of existing pasture anc potential access to new pasture. 1 Water reliability may mean a gradual chande in nerd composition and the introduction of less haray but higher-yielding breeds. So, too, the provision of an immediately accessible source may have repercussions on the communal organisation of stock rearing, it now being possible to water - and therefore to keep - stock individually. Such changes are unlikely to be observed in the stort-term, given the complex nature of economic and social constraints governing the livestock economy.
Use of water for small-scale irrigation is an equally critical consideration in the planning of water supply. Jven in rainfed areas where totil seasonal rainfall is relatively high, the key problem is often tife timing of crop moisture requirements and the confidence which can be placed on rainfall at certain specific times of the year. The provision of small-scale supplementary irrigation facilities - e.g. designed to meet temporary moisture deficits, not the total seasonal moisture requirements of the crop - can be of decisive importance, particularly where local population pressure is starting to be felt in relation to land, and where food yields per acre are at a premium. The critical effects on yields of moisture deficits at particular times in the growing season for certain types of high-yielding staples is well known - particularly in passing from coarse food grains (sorghum, millet) to those of higher nutritive value (wheat, maize, rice). Inoreover, water reliability is critical to be effective use of complementary inpuis such as feitiliser which high yielding varieties require. In such cases, the return to assured water at the margin. will be extremely high. Horeover, if witer, even in small quantities, can be assured at $\mathrm{k} \in \mathrm{y}$ times oi year, not only yields, but the entire cropping pattern may be affectec. itaggered planting of subsistence crops a phenomenon which for years has dified the reasoned arguments of extension workers that highest yields are obtained by plenting as close to a particular date as possible, is a typical response to the vagaries of intra-year rainfall patterns. So, too, the mixing of low-yield drought resistent virieties with highur-yielding virieties, even where cultivation takes place on a very small scale. With the advent of reliable, water supplies, the rationale for these traditional forms of crop insurance is weakened, and a series oi practices which make more efficient use of land ranging from the selection of optional varieties, and the use of complementary inputs, to major changes in the cropping pattern become possible.
As with tine case of the livestock economy, changes in the crop econony typically take some time to rook thenselves out. Indeed, the whole notion of adjustment paths between equilibrium positions is misleadiag in an agricultural environment where small cianges can set off a cumulative serios of reactions which in turn alter the environaent in very dramatic ways. What is importint to recognise in any analysis
$\overline{1}_{\text {An }}$ interesting example is citud in the casc of the Ambaseli Basin in Kenya. Phis region has an eferllent tourist potential for geme vieving, but is also used for sersonal stock waturing by the hasai. By investing in an assured water source for stock outsicie the region, tinus brealsing the migratory patturn, the tourist potential of the refion could be more fully developed. Siee I. Carruthers, "Issues in selection and Design of Rural Water rrojects", Discussion Paper 88, IDij University Collegt, Nairobi, Deceraber 1969.
unreliable restock
ding other
head likely nge,
, lead cattle ation of reliabitroduction sion of

- and
ikely to
jnomic and
ritical d areas lem is nee which r. The e.g. asonal nce,
felt cemium. Lar
staples ; (sorghum, complerequire. e extremely ured at tern may non which
a that
c date
- rainfall
rieties cee on the ned, ranging entary
crop , the
a set
ironment alysis
n in viewing, :vesting eaking
be more ign of
of this kind is thot reaping the large potentiol benerits from a change apparently so innocuous as the provision of single village well or wateringi point will turn critically on the planners' ability to identify the complex nature of the constraints system governing present production, and to include water as onc element in a package of complementary resources. To take a simple example, while the return on an extra unit of water taken above may be x, and the return on an extra unit of fertiliser taken above nay be $2 x$, the return on both togetiner may be 5x. iecognising such complementarities will be critical if rull value is to be had for the resources invested. So, too, the planner must sense the agricultural environment as a carefully balanced set of inter-relationships in which small changes can have large cumulative repercussions. This is why the business of predicting responses in anything but the very short-term is so difficult, and in agriculture the very snort-term can be a notoriously misleaking guide to policy.

II (3) Costs of fural Water Supply

While estimating costs of rural water supply is less difficult than estimating benefits, the decisions which determine the cost structure require careful appraisal. The complex nature of policy alternatives facing the planner such as rate of buildap, scale of provision, input mix, andimport content makes for a situation in which whether or not the project is socially beneficial depends as much on how it is done as on how farmers respond to. it. while very elaborate models can be worked out to determine such matters as optimal scale and timing of investment and optimal technology on a regional or even village-by-village level, this sort of perfectionist approach has a significant cost in terms of skilled manpower, and even more important, in terms of delay. Not only is it important that the planner should carefully consider the alternatives oper to him, it is equally important thot he should fairly quickly be able to reủuce the choice set to manageable proportions, even at the risk of making mistakes.

A first choice in the provision of rural water is usually an engineering type decision concerning how best to capture available water resources. Where the water table is not too deep, a well or borehole may be perfectly adequate, estimated peak flow requirements determinine the number of holes sunk and depth required size of pump at each. Even within this limited area of consideration, there may be significant alternatives. several hand or draught powered wells may be prefersble to a single diesel or electric pump set where the water table is close to the surface, and hence digging costs per m 3 low. In other cases, however, where the locition of the water table makes individual village boreholes relatively expensive, it may be preferable to dig a centrally-located higin capacity well and pipe water to several villages from a single point. Again, there may be situations where domestic vater can best be provided as an odjunct of a multi-purpose river basin scheme by building suitable conduits. To some extent, these options will be determined by purely technical considerations. But where several options are techinically feasible, choice of system will usually then mainly depend on envisaged scale of operotion; e.g. if a high c:pacity system is envisaged, it mey be more sensible to provide a central pumping station than a large number of individual boreholes regardless of the averige depth or the woter table. In sone countries, where weter is very scarce in relition to land, high cost centralised systems are justilied purely on tne grounds of longterm water table managument, but this is unlikely to apply in the East African case.l

[^10]Another area of choice facing the planner is tite level of sophisticution of provision to be adonted. Is there a cisse for piped water to individual dwellings? or is not, for adopting standirds of mains design which will make sucin provision possible at a future date without having to dig up tite whole system? Or should a policy of ninimum basic provision be pursued - i.e. the nniversal adoption of rudimentary communal watering points; in order to spread benerits over as large number of villages as possible.

In addition to delimiting the area oi choice with respect to what we might call the engineerine-hydrological aspects of rural water supply, the planner will also want to have a clear idea of the implisations of using alteinative imput mixes in the construction of a particular project. A familiar argument for this type of scheme is that, given the general shortage or capital and foreign exchange which is thought to characterise the situation of most developing countries, wherever possible, locil labour should be substituted to the limit for these resources. Of course, it is true that where a pool of unemployed labour exists, or where the timing of construction can be organised to coincide with labour slacks, every opportunity must be taken to employ the low cost resource. But it must not be assumed thist highly labour-intensive methods are always best. It may be the case that, for instance, the indiscridinue uiopiion of a labour-intensive construction programme will lead to sub-optimal design of delivery systems which in the long term will prove more expensive. Shallow draught powered wells, earthen conduits, small barreges, etc., are not always preferable to more sophisticated systems, particularly where water is in short supply and efficiency of water use is at a premium. It is generally the case thet the bigher the delivery capacity per capita envisaged; the higher the real labour costs per m^{3} water at the margin - not only in construction, but in maintenance over the years. Wioreover, large labour projects talse time, and tend to ti- a up skilled engineering and. supervision resources - these costes too, must be considered. Since the economic life or a rudimentary construction may be assumed shorter than that of a more sopnisticated design, the former alternative may simply be a way of aeferring capital and foreign exchunge costs which will eventually have to oe incurreत. 'ihis shouid not be taken as in argument against using selfohelp schemes $=s$ a basis for rurol water provision the point is rather that what is at issue is not some simple process of substitution of labour ior capital at one point in time, but a rather mnme Aifficult question of estimating the relative present values of alternative time profiles of resource costs.

II (4) The Vosts and Returns of Integrated iural Domestic fater Supply and Irrigation

So far, the argument has proceeded on the assumption that the irrigation component of a rural water supply scineme can be taken us small or negligible. There is sowe evidence to suggest, however, that really significant returns from weter supply only begin where a portion of the flow is usedas a direct input into agriculture. ye have already argued that water reliability - and therefore supplementary irrigation nay be a critical question even in apparently rain-abundant regions. Where returns to supplementary iirigation are large, it obviously pays indeed it may be crucial to the scheme's economic viability - to design systems of high enough capacity to meet such needs. Undcr these conditions, design becomes very much more critical. The scasonally peaked nature of irrigrtion requirements often means a substantial investment in capacity which at many times of year will be under-utilised, or else provision oi elaborate storage facilities. Ghere an irrigation component is explicitly incluried in the scheme, it is no longer possible simpiy to estimate total water corsumption and provide low cost well to meet it. Rather, one must judge the potential for supplementiary
of sophi－ i．ped water of mains ite without imum basic itary com－ rge number

ct to

 ral water impli－ of a parti－ s that， ich is tries， limit for unemployed nised en to t highly that，for onstruction which in Ered wells， able to ort supply the case 2e higher a constru－ joursuper－ ：e the irter than iy simply will in argument vision－ rocess t a rather ues of
r Supply
t the بر： Er，that
12 portion
e already
cigation－
sions．
3ly pays－ co design ie condi－ peaked restment

```
, or
```

jation
possible ；well itary
irrigation at those times of year when a ${ }^{3}$ hortfall in water will be most critical，and tile likelihood that ibmers will in fact make use of this potential if it is provided．tho enoug capacity be provided to allow all farmers to irrifate simultaneusly？Can some system of water ritioning bu eniorced？Can simple wher storage systems be de－
 set off chenges in tile local economy whichalter the time profile or local vater use，and how far is it necessary to plan ior this in designing hichly ilexible systems？A复 of these are questions which have obvious bearing on how the configur䧹ion of technical and economic is perceived at the start．Such questions can，of course，be ignored if the terms of rererence of the study ane confined strictly to small－ scale water provision，but to do so may ratsult in an overall programme which，though relatively inexpensive in 期gregate，will fall short of realising the very much greater returns which could be had for a slightly greater cost．

III Distribution of Costs and Benefits of Rural Vater Supply
One of the important retunns to investment in rural water supply arises from the apparently redistributional nature of such investment． Since the basic investment is small－scale，a given lump or resources can be spread to the benefit of many people，with consequent gains in the credibility of Government＇s claims to be helping the worse－ofi members of the community．Whether or not the programe really is redistributive is another matter，As with nost agriculturel invest． ment，the operative question about redistribution is more likely to be＂How are investment resources divided amongst different classes of firmers？＂than simply that of whether or not transfer of resources takes place from town to country．Rural water supply schemes，dis－ regurding the irrigation component they may have，tend to do well by such a criterion if simply because rich and poor farmers alike have equal access to the benefits conferred；irrigation schemes，on the other hand，tend to benefit better－off farmurs only because it is these who can afford the complementary resources winch make irrigation fully profitable．Given the argument above for making tullest use of resources by linking rural water supply investrent to meeting some irrigation needs，there is an apparent dilerma here．For a given total of resources available nationaliy，an irrigation－linked approach not only means greater investment per capita（and therefore a smaller total population directly affected），but differential ability amongst those affected to make full use of irrigetion potential．

This argument neea not be telling，however，jf suficient care is taken in the first instance to place $\begin{gathered}\text { Wigh per capitio investment in }\end{gathered}$ low per capi，ta areas．Of course，irrigation investment is high per capita not only because of the need for wore water，more sophisticated delivary systems，etc．，but also becauselit requires otier elements to be included in the＂package＂if the whole thing is really to get off the ground．For poor farmers particulurly，it often means high cost back－up services in the fork of goog extension workers and administrutors as well as access to complumeatary agricultural inputs． Moreover，ever if the planner is successful in channelling tine right resources to those who must need them，sécondary cilects are sometimes such is to mitigate the primary redistributive gains．Where local conditions facilitate the development of onopoly sonditions in distri－ butions，the private marketing of cash c罡ops by ponr farmers enriches middemen；even where co－operatives exis the gains are not always equitably distributed．Unless care is then to assure the contrary， it is almost always the case that a part
n-off,
iter
wurns
r income sre
-'s one etween ith ?1. water
ng a man t such at _vide t costs ly. harged n̄antefor

1. most こharges
\Rightarrow is to
cases
illy,
bted
antial.
-oided.
ion
irìr
ner as
use
-stment iding return invo1 basis,

So, far, we heve been concerned with placing rural water supply investment within a feneral analytical iramuwork; e.g. raising some of the questions assuciated with the identification and measurement of costs and benefits. Successful planning is, however, much more than just a mattir of predication and measurement. Not only must the planner be aole to ask the right quastions, he must be in a position to relate information flows to the sequence of decisions trurough time which make up the plarining and eviluation process.

In an investmint programme which both cummands kigh prioiity, and is lixaly to involve heavy resource commitments over a longnmber of years - swai as is the case in Tanzania - the planner cannot afford to await cumpaete information upon every aspect of the subject before comintting resuurces to investment. Rather, the planning process itself must be gearea io identificition of the most urgent needs in the initial phases, using selection criteria information. As the programie gathers momentum, however, it will be possible to identify alternatives more clearly, drawing upon previous experience and more cuaprehensive data to improve decision-making. 'ro some extent, too, it will be an aim of policy-makers to ensure that as the investmert programnt develops, its efficiency in terms of skilled manpower use improves - that is to say, thit decision-making eriteria can be simplified and standardised to an extent which will abjit the burden of choice in all but the very broad areas of paics tomards the local level, thus freuing higher level manpower, For ctice plonmig tasks, or put anuther way, that the programme will become increasingly routinised. These two characteristics of what we might call a "mature" investment programme are not always strictly compatible. Particular care is needed in making sure that selection and design criteria are not overly standardised in the interst of efficiency, and trint some review procedure is adopted waich makes it possible to periodically re-assess the overall aims of the programe in the light of its achievements and failures.

What sorts of issues does this raise in the coatext of the Tanzanian programme? The aims of the rural water supply programme are laid out in the Second irive Year Plun; these are, broadly, to supply communal watering points to the vast majority of the rural population over the next twenty yeurs, a programme which will lay claim to something in the order of ten per cent or more of annual Hinisterial development expenàture, i and involve a very cignificant cost in terms of skilled manpower. To further this aim, the Goverrment has recently launched a series of regional inster plans for water resource development, and steps have been taken to co-ordinate the various administrative and technical services involved by bringing them togehter in a new dinistry. The impressive nature of this long-term commitment to water resource development as a social as well as an economic priority is backed by an aireudy considerable collection of dota on regionil hydrology, population concentration, resource endownents and economic

[^11]potential arisins irom the work of Government departments，consultants，
 seems well plack for launching a successful programne．

Some reflection is 界eded，however，fon how success of the pro－ gramme is seen at present，andhow tiis mi ${ }^{\circ} h t$ change over the future． At the moment，the goal bif universal watef provision as a social objective is selen as overididing limitations on resources dicate that in order for the programme to be fcasible；investment will nave to be spread thinly \oint ver the refral populution as a whole，this means，pra－ ctically speakfng，that per capita water consumption targets must be set at a fairly low levefy and that engineers will be asked to design schemes which fre low cost in tems of the use of presently limiting resources，often with some penalty in terms of economic life and maintenance requirementsif The political decision to provide rural water－at lonst at cominnal watering points－free of charge，while consistent with a policy which rightiy stressed the welfare of the neediast memhors of tho obmmunty，does effectively eliminote the possibility of income reaistribution through the＿financial structure of the scheme itself，and reinforces the tendency towards the adoption of design criferia wichisimply minimize present costs per cepita． The burden of redistribution is thus tiorown on selection criteria－ i．e．on evolving a set of rules which will ensure that investment is initislly channelled to the neediest，as identified by existing data on per capito income，population concentration，nature of existing water provisfon，incidence of pollution－related disease，etc．But， given that pipiority is ajso accorded to the co－ordinated development of rural water supply within the context ois the Ujamaa village programe， it is nut clear that even the redistributional aim of the programme can be followed with full consistency．

If it ins the case，broadly speaking，that the terms in which success of the programme are prestatly defined bias design criteria towarus miniqum standardised water provision using a technology which， while cheap in the short term may be inefficient in the long term， and if it is also true to．say that the natural momentum in the programme towards routfrisation oiddecision－making is likely to imbue initially policies with a certain sinctity，it remains fair to ask whether there is any recsonable alternative．In principle，such an alternative would be the design of water delivery systems which maximised net social benefits in each individuall caoe ratior than minimizing costs subject to providing pinimum standard benefits across the board．This wight imply，for ingtcince，the ？ individual house connections in curtain cases where it could be shown that really significant nidirinal returns to water were only possible far above the＂standard drinkingrequirement＂throshold．Distributional problens could then be sorited out by levying differential tariffs between benefieiaries．There are two objections to this，however．，one theoretical and one practical．irirstly，since we are considering the social returns to a whole investment prograrime over a very long period， it is not necessarily the coise that present value of the net benefit stream of a high－cost，discriminating provision programe over，say， forty years－supposing this to be the time period necessary to effect such a progrimiey to cover the wole of the ruril population－would be greater than tiaft of the stendardised＂cost－minimisation＂appruach． And the practical objection is simply tint，given all the difficultien of measuring potential net buwefits associsted with each bit of invest－ ment in the proghanme－i e．equating custs with sucial benefit at the margin in each cose fuch on approach is useless to the planner．

tants, •ia
roture.
that vo be prabe sign .ting

1
hile :he

- vare ioption
it is
${ }^{2} 2$ ta
3
ut,
ment
igramme, ne can
ria
which,
cugramme
ially
;here _ would $a .1$
ect
ht
07 Ghown e
-ional 3
one
the
veriod,風

While the strength of these objections is suficicient to dismiss the argument for totally recasting the terms in which the present rural watur supply programme is seen, certein pointis ore nevertheless worth retaining. Pirstly, present design criteria cannot be derived solely frum some notion of a universally valid target per capita water norm. for one thing, it is not known with any degree of precision how consumption standards adopted as the basis for present design will change with rising incomes and a changing agricultural environment in the next twenty years. And even if these norms can be set on a per capita basis, population moverents - themselves possibly arising from the attraction of permanent water supplies - will complicate the business of forecasting total water denands for each individual site. Secondly, it is not cleer to what extent a standardised minimum provision approach contributes towards the realisation of any of the alleged benefits of rurnl water provision over and above that of simply having a village standpipe. aor example, it has recently been suggested that real gains in rural health and hygiene my only come with individual house connections. The same is true for beneits accruing in the form of time-saving, not to mention benefits associated with such part of water supplies as might be used as a direct agricultural input.

In short, even in a $\hat{i} u l l y$ optimising policy is not practicable, much more needs to be known about the impact of small-scale rural water provision before the selection and design criteria now in use can be formalised or generalised with any degree of confidence. "Success" of the programme needs to be defined not merely in terms of the generel aim of providing adequate supplies of clean water to all or most of the rural population over the next tiventy years - success indicntors in the field of rural health, time-saving, and impact on agricultural potential will have to be worked out in detail, and an important role allocated in the progranme to a rescarch and monitoring function which has afeedback to the design and implementotion function.

Generally speaking, then, while a certain portion of the necessary information for successful design and implewentetion of Tanzanie's rural water supply programne already exists, and while additional research into such things as hydrulogy, population, health, etc., can be initiated on a fairly standardised basis for regions not already covered, research has not so inr been geared to tell the planner very much about the impact of rural domestic water supplies or to link such information to criteria of project design and a strategy of project location. This state cf ariairs reflects, in part, the inherently difficult nature of devising adequate measurements of the phenomena being investigited. ilore important, it reflects a problen in research strategy. Assessing the impact of rural water supply investment, both in terms of the categories of potential benefits enumerated above and in terms of the problems of complementority and dynamic repercussions outlined in the early part of this paper is likely to be, in the early stages at least, more op an exercise in gatnering new insights and formulating tentutive hypothesés than a rigurous quantitative exercise. To attempt to design a comprehensjve survey withuut suffisient attention to the complex nature of the interaction between water supply and tre local ecunvmy is likely to result in a situation where the obsorved variability of results is such that, even within an apperently horogeneous population, no conclusiuns can be drawn. 1

[^12]A practical ind not too costly way of providing suck a startin point fur research would be the establishment of a small research team including, say, an economist, a sociologist, a rural health specialist, and a statistician. Such a team would initially select a small number of villages and carry out a series of in depth studies over a periud of, say, six months. The team might initially be linked to an academic establishment, though at a later stage should have direct access to pulicy-makers in charge of the investment pro-, gramme. The terns of reference of such a research team would be to draw up a blueprint ior establishing a permanent munitoring system within the context of the investment progromme, as well as providing guidelines for further academic research which night be carried out. The report on the former would include provisions with respect to the sizt and location of a monitoring presence, the methudolugy and scope of dats collection, and the interpretation of results cnd their relevance to specific questions of design and implementition oi the progranme.

These suggestions are, of course, tentetive, and serve, at best, a partial function in providing. for the formalisation of an information feedback system within an investment programme as large as that presently being carried out in rural domestic water supply in Tanzania. Certain general points, however, need stressing. Design and location criteria cannot, by their very nature, be fully evolved before an investment programe of this sort is set into motion, but must be allowed to mature with the development of the programe. Identification of actual and potential bencfits of rural water supply, even where a programme cannot be based on a comprehensive principle of maximising net social returns, is still a key element in the development of adequate critcria of investment design. Thile the present emphasis on the formulation of regional master plens for long-term water resource use is laudable, and will provide a general framework in which regional rosource structure and economic potential can be related to priorities in the development of water resources with respect to domestic witer pruvision, irragation, power generetion, etc., it is unrealistic to expect that detailed criteria can be laid down in such plans. Such research is has already been carried out on the econowic and sucial impact of rural domestic water supplies, while raising a number of interesting issues, has failed to rel:te conclusiuns tu location and design policy, in part because firin conclusions have been hard to come by, and in part because no clear mechanism exists for integrating research - particularly where carried out by academic institutions - and policy-makers. If this state of affairs is to be remedied, a reseacch and monitoring function will have to be built into the investment progicmme itself. The suggestions presented above represent one way of making a start in this direction at minimum cost in manpower.

V Conclusions

The economics or rural water supply is a field in which serious work is only just beginning, though its inplicitions for raising the level of welfare in the cuntryside are ubviously very great. While special probleras exist in the identificotion and instruction of benefits, these are not so insurforable as to moke the exercise one of pure guesswork. Indeed, what is known suggests that very substantial returns are possible, particularly in the field of healtin, and in the direct and indirect contribution of assured and convenient water supplies to agriculture. the full estimation of such benefits, particularly where such schemes have a supplementary irrigntion component, requires a sensitive swareness to problems of dynadic response and complimentarity. Typically, the real source of benefit is not just extra time or improved health, but the set ori cumulative chinges which thest make possible.

On the cost side, the area of choice in the provision of domestic weter, as with the provision ol irrigation w.tury is typically very complex. In the case of investnent projucts where substitutability exists between inputs at a given mument in time as well as between inputs now and in the fufure, no simple guidelines exist. While technical constraints, may severely limit the area of choice in particular cases, the tomptation to ovolve simple rules such as "lobour intensive capital siving technolugy in all casesii con sometimes result in choices which in the long term cre ineficient with respect to the use of :ll limitine resuurces.

It is probably the c.lse that the higinest retuins per unit 0 is investment resources is tu bu had frum projects sufiiciently sophisticated and locited in such a way as to have a supplementary irrigition component. $\dot{\text { evertheless, }}$ if distribution of welfart as well as its maximi ation is a cunsiderction, an irrigation-linked strategy will not always be optimal. Hodistioutive effects are an inportant aspect of rural water supply schemes, and the planner must ensure that considerable csere is taken in planning the financial side of the scheme if it is to benefit those must in need.

In the case of Tanzania, where the provision of domestic water supplies to the rural population is seen as an over-riding sucisl objective, Emphasis has been pliced on spreading resources thinly over as large an arec as possible. the scheme is not designed to be financially self-supporting, though recipients are expectod to make some contributiun towards resuurce costs, mainly in the form of labour donations. Generilly speaking, the risk involved in such a strategy is thit, given the emphasis on minimising costs per capita, provision will be set at a level incoupatible with the realisation of many or the potential benefits assuciated with w.ter provision. Before design and locetion criteria can be formalsed to effectively discriminate between aress having vastly different needs, resources, and economic potential, more rescarch will be needed into the impact of domestic water provision, and this research specifinally gearud to improving decision-making in the prugramme.

Pinally, the plamning nf rural water supplies, beccuse it touches on the responsibilities and iunctions of a number of different depart... ments of Govermment, raises a number of important issues with respect to the cu-ordinetion of sequence of decisions where there are multiple decision-making centres. Beneitt cost analysis of rurnl water supply, while it can contribute to effective decision-making, is no substitute for a planaing process in wich alternatives are identified fairly early uny and the sequence of decisions leading to a final programme is suificiently well apprecinted at the outset to allow planning to proceed quickly and reasonably cfficiently in relation to the resources available.

SUPPLY PLANNING

... by
Gerharü Tschannerl
BRiLUP; Uuriversity of Dar es Saluan

Vater development planning in Tanzania is now at a crucial stage. Up to now projects have largely been conceived and designed in the regional offices, where the selection of projects for implementation also took place. The number of proposed projects was small enough so that the regional water engineer, together with the regional administration, could formulate a programe. Projects were also fairly small in size and scattered throughout the region, so that the possible alternatives of water supply strategy were limited by local conditions and engineering considerations.

Whether this planning procedure is in fact the best one to use under the circumstances which prevailed up to now does does not matter much at this stage. Fo doubt, some lessons could be learned for future water planning and for development planning in other sectors of the economy. But we mast realize that identifying past water devel̆opment objectives and measuring the degree to which these objectives have been fulfilled our means for judging past periformance - are extremely difficult tasks in the light of the intricate decision making process which involves several ministries and warn on the district, regional and national level.

Two observations should, neyertheless, be made about past performance. One is that the decentralized nature of the decision making process allowed the incorporation of some objectives which would otherwise have been difficult to implement, such as local economic and social development priorities and the extent of self-help. The other point is that this decentralization might have retarded (a) the evaluation of how effective the programme has been in realizing anticipated benefits (such as the movement of isolated homesteads to a village because a puislic water supply has been provided there1)

1. For an excellent discussion presumed explicit and implicit benefits, see the article by Heijnen and Conyers in this rolume.
and (b) the caplavitcn $0:$ diflornt, strategies (such as assessing the serines in onst that woild ocour due to economies of scale ir tom uny mall pojetreme woncolidated into a few bigeer ors:");

The reason we noud

 picturen New inttiase $\because ;$ brjar token in the formulation and selection of pajociu; ri.ish amm inainly from a strongly expanded investment butet ad iron the docision to prepare regional wate: wer in in? for fine entire oountry: Suddenly mich more effont an morci mia be spont on planmine: many more projects will heve in bs invceticsitcd; the consequences of alternative sssumptionc for e, eaple cif pupulation growth, must be looired at, alternaiver. suth es grounawater versus surface ater supply, met rystemen duly be crolored; and the starting time of constmatice of ine cieforent projeots within the

These new dexinde or jumaing osin for the rapid examination and sorting of alnambinet mojeat sosizns. The aim of this paper is to show inft the $\operatorname{sintrble}$ formuation and use of mathematical inde゙. After some discuecion ctiv uiufcrent levels of decision making needed for the prepinatioch of 5 mesto pian, a simple model is presented whjch ontinize bha desjell sf in projeat according b ceriain criteris sud ules mand the projeots for the purpose of deciding which onss shrold in builit vith the available budget, and at what tirne。

Cost.Benefit inanvers

In the brosdest ren-o, \%rtbenefit anglysis is nothing but
 gains from itc By tios axtimitun evemybody uses costmbenefit analysis, evon in Fwirres $1 \mathrm{ife}_{\mathrm{n}}$ beceuse the desire for efficiency of some surt. is besice to numsen thdeavore

The criticism ct soctoreciot analysis as a planning tool applies to ita use wion $\%$ mon harrowow definition, which usually makes, anong otherss the woljuring two assumptions about costs and benefits. the finet is frat the costs and benefits can be measured in clearly तotincslae urits 2, such as the roduction in the number of deaths duc r,o : gren mprovement in water quality; or the hours of racisctive luborr gained. The second assumption goes a step fuxthen end renuivos that whe wits in which the costs and benefits are ncicacimut be the same 3 , so that the difference betwein bcnasisis pid cost, can be computed.

1. Studies basci on cost eritrater of implemented projects have shown a considerivic $d=$ enese in project cost per unit of capacity as the renject oize iroreases.
2. There is usuclly ru:e a Non measueble beaefite aw celled intangeable benefits.
3. Callea amancarabin.iot

\qquad
Since the biggest coist component 1 is in monetory units (shillings) the common measure that is usually sought is in those units.

The strict adherance to these two requirementa - and most analysts aim at fulfilling them - often leads to exroneous and absurd rodits, because all the bonefits and conts which cannot be directly ajtributed to the project in quesition and measured in monetary units are sirply neglected. Most analysts have . suceeded in convincing themselves that the non-monetary benefits are unimporitant. To cite oge case, in a Pr. D4 thests from a well-known University, the fapact of a rural senitation. programe on healith was measured postly in terms of the reduction in the vage loss from sickness and death, thereby leaving out persons not engagied fin wage work - all the women in that case.

Another conslequence of the strict adherence to the two assumptions is the insistence on measuring in monetary terms the benefits from godds and services provided. This might be appropriate for number of water ues, such as irrigation and power, but for comesitic water supply the definition of benefits as "the consumer is willingness to pey" (Maass, 1966, p. 21) has no practical value.

The blame this narrow apploation of cost-benefit analysis is not entirely with economitis; the most blatent misuse has been made by people in other profesdions who applied a standard procedure without adequate apprecian of its limitations and without knowing 娄ys of relaxing the assumptions. There is continued debatef in the economics literature abont the appropriate forms of cost-benefit analys to be used in various areas of public decision making. ${ }^{2}$

Levels of Decision Making

Returning now to water plannifg in Tanzania, the central problem to be treated in this paper ish ow to rapidly sort througin a large number of alternateve projects proposals with the aim of arriving at a selection of project to be implemented in a specified time period. The quegtion should also be taken a step further to tineisystematic exploration of alternative strategies and assumptions about thol design inputs.

1. The main cost component consists usually of construction cost, and operation, maintenance, and replacement cost. Other costs, not readily expresged in monetary terms, could be, for example, the ofsplacement of paopl.c or the deterioration of other water sousces through the instillation of an additional well.
2. See especially the following reforences listed at the end of this paper: Freman and Haveman, 1970;

Before discussing some techniques of analysis which would be useful for water supply plaming in Tanzania, it might be well to identify the following levels of decision making:

1. Engineering decisions: groundwater versus surface water utilization;' the cheapest way of meeting a given set of objectives; etc.
2. Design input decisions: medium, high and low population projections; economic development potential; rainfall probabilities; etc.
3. Policy dccisions (which doal with the scttine of objectives): to丸al expenditure level; degree of preference for Ujamaa villages; desired quantity, quality and distance to vater; area. concentration or disper. sion of projects;etc.

This classification, which in reality is never so clearly divided, suggests that there has to be a division of labour in decision making. It is necessary to clearly define responsibilities for each level and to establish guidelines about the desired interaction between them. The necessity to do this should be obvious, but it happens almost as a mule that those who are responsible for engineering decisions also, in fact, make decisions about the other levels, be it by default or for expediency. Unless those responsible for the first level can present the necessary choices to the other levels in an appropriate form and accompanied by all relevant information, the decisions will not always be made by those who should make them. Convenient ways of presenting these alternatives are outlined below.

Two forms of choice

The desired selection of projects for implementation is achieved by ranking all proposed projects (for one region and one time period) in their order of desirablity. The size of the avail-
able budget will then determine for that ordered project list the cut-off point which divides the projects to be implemented from the ones not to be built. This ranking of proposed projects can be achieved in basically two alternative ways, (1) by making a list of all the inputs and outputs for each project and then comparing lists for different projects visually with one another with the aim of ordering the projects by some cirterian of desirability, 1 and (2) by sxpressing the relationship between inputs and outputs entirely in the form of a mathematical model and then ranking projects according to the degree to which each projecti fulfills the stated set of criteria in the model. The advantage of the former procedure is that the lists are comprehensive and flexible; its drawback is the impossibility to keep track of all the factors in/comparison between projects. The advantages of the latter procedures lies in the speed of computation, which can be done on the computer; its disadvantages have already been mentioned.

For the planning situation discussed here, a combination of the two approaches seems the most appropriate. Those important relationships which can be explicitly stated should form a mathematical model. The remaining bonefits (and costs) which cannot bo incorporated in the model under one unit of measurement are siraply listed for cach project aloneside the results from the mathematical model.

The ranking of projects is then carried out in two steps. A preliminary ranking is first achieved by the mathematical model alone, which is subsequehtly refined on the basis of the additional factors on the list.

The Hethod

In the preparation of a regional water master plan, it is not appropriate to analyze, at the start, projects that are so small that they comprise only a few villages. It will be helpful to delienate zones, which form fairly homogeniqus units of water supply and demand characteristics. One such zone could be,for example, a large flat drainage basin with fairly evenly scattered homesteads, limited groundvater availability and no perennial streams. Another zone could be a istertiest of highland plateaus on which villages are located. The preparation of the master plan . would then involve dividing the region into a number of suoh zones, based on initial field studies of the water supply and demand conditions. A separate zone should also be established for any area where there are major choices about strategy to be made, be it the source of water (e.g. pumping from the ground versus a pipeline from a nearbly mountain range), or the overall development potential of the area (future in or out migration, prospects for irrigation).

1. A single Zone

Each zone could first of all be considered separately to see which altemative means of providing water, thereafter called water supply strategy, 1 is the most advantageous for each zone. Taking a certain population forecast and density distribution for a zone, the minimum cost alternative for providing the water should be found. 2 Additional considerations, such as the reliability of the water during the dry season and its quality, should be recorded, and sometimes such information might be used to discard the minimum cost solution in favour of one with more attractive other features.

[^13]The mathematical model which can be used for the simplest possible case of cost minimization for one zone is show in Appendix A. The example consists of a cost curve, one for each water supply strategy, as a function of the number of people supplied, and of a constraint about the minimum number of people to be served. In addition to finding the least-cost strategy, the solution also finds the marginal value of water supplied to the last person, which is implied by fixing the minimum number of people to be provided with water. the marginal value of water is equivalent to the previously mentioned unit benefit (per person). 1 This fact is of considerable importance, because it is a way out of the narrow definition of cost-benefit analysis which was critisized in the beginning of this paper. Instead of assigning a benefit, in shillings per person supplied, the number of people to be served is fixed, which, as a property of the mathematical model, implies a unit benefit. ${ }^{2}$

An obvious implication of this relationship is that the planning procedure currently used in Tanzania does not negledt to consider the benefits from rural water supply, as is often charged. It does not directly assign a value to the benefits, but by setting appropriate constraints a benefit is in fact implied. This gets around the futile endevour to assess benefits from rural water supply through measuring the various benefit components, such as better health, time reallocated to production, and the boost to economic development of the area.

The numerical example presented here postulates a zone writh at least 12,000 people to be served. For simplicity only one strategy (.i.e. one posaible way of providing water) is assumed, with a cost curve as given in Appendix A (cost curve for zone 1 in Fig. 1). The solution is to supply the 12,000 people at a cost of 815,000 shs. The implied unit benefit (per person) is 94.4 shs., and the average cost is 67.9 shs. If there were several alternative water supply strategies for this zone to choose from, the one with the lowest total cost should be selected, unless : for other reasons a different alternative is preferable.
2. Budget Constraint and Phasing of Construction

In this manner, the minimum cost solution and the implied unit benefit are computed for each zone. Adding up the cost for all zones gives thetotal budgetrequirement for the region over the entire plan period. If this exceeds the budget that has been allacated to the region, it follows that the water supply for some of the zones cannot be built in the plan period. Those zones which are preferable must be singled out for implementation. Because the previous calculations already found the least-cost design for each zone, and therd no further cost saving can be obtained, a reduction in cost could only be achieved by lowering the water supply standards (water quality, quantity, per person per day, distance of fetching, etc.).

1. This is demonstrated in Appendix A for the example considered. Henderson \& Quandt, 19 . show that this relationship is
true in general.

It is, of course, possible approach to the problem of planning under a budget constraint differently. One could require that every needy person in the region must benefit from the water invest.Tloiti, and that as a consequence the water supply standerd must be modified so that the total expenditure remains within the allocated budget. This is again a decision which must be made by policy makers and not by engineers or economists. The latter must supply the information so that a choice can be made at the policy level. Policy makers must be told that for a certain standard of water supply the required budget is so much, but if another standard is applied, the requirement is that much.

No matter which approach to planning under a budget constraint for the entire plan period is chosen, a preference ranking for zones must still be established. Not all the zones can have their schemes built at one time. Some will be built earlier, some later. The ranking of projects according to their relative desirability can help in making the solection of zones to be supplied first.

The relative desirablity of each zone's scheme is also a useful indicator of the overall development emphasis that should be given to that zone; if the prospect for the development of a zone is poor, people should not be encouraged to settle there in the future. The water master plans would thereby establish zonal priorities for overall development and settlement of people from the water standpoint, which would be of great help to regional planning because of the fact that water is serious problem for most regions.

To decide the phasing of construction of the schemes for the zones in a region, the total planning period must be divided into sub-periods, and the most advantage@us group of zones selected for the first period, the next best group for the second, and so on. Mare precisely, once the length of the sub-periods is chosen, a budget constraint is assignod to each period. The selection of zones for implementation in the first period is then carried out from among all the projects as if the first period were the only one in existence. Then the selected projects are set aside and the choice from among the remaining projects made for the senond period if it were the only one: and so on. 1

3. Selection of Zones in one Time Period

Having broken dow the problem of deciding which zones should be taken up in which sub-period into one of choosing the most desirable ones for implementation in a specific time period, all the zones not implemented in other periods are ranked in descending order of desirablity and the cut-off point for implementation established, so that the budget allocation for that period is exhausted.

[^14]A number of different ways to rank projects have been employed in the past, not all of which sive the correct ranking. In fact, only onc of them always gives the correct ranking in the precensc of a budget constraint, while some others do so under some limiting conditions. It will be demonstrated with a numerical example how other ranking criteria produce different rankings, which are incorrect.

The recommended ranking procedure consists of computing an index, which is the difference betweon the total implied benefits and the toal cost multiplied by a coefficient (see Appendix B).

$$
\text { Index }=\text { Benefit }-(\text { Coefficient }) \times(\cos t)
$$

This coefficient represents the shadow price of capital (the cost of one shilling, so to speak) and is an undetermined value; it is greater than one. As the magnitude of the cocfficient increases, the index decreases, until a point is reached where the index becomes negative. Furthermore the ranking of zones according to the magnitude of their indices might change with different values for the coefficient. The desired ranking is obtained by adjusting the value of the coe ficient until the cost for zones with positive indices adds up to the budget allocated to that period. This procedure , which is explained in some detail in Appendix B, assures that those projects are built which best meet the given objectives.

An an illustration, four projects are given, each being the best for its zone. Three of them cost $815,000 \mathrm{shs}$. each, and the fourth $1,630,000$ shs. It is given that only 1,630,000 shs. can be spent in that ime period, so that a choice of zones for implementation must be made. The costs and benefits, in shillings, are as follows:

Project	Total Benefit	Total Cost	Average Cost
1	1,133,000	815,000	67.9
2	1,101,000	815,000	54.3
3	749,000	815,000	102.0
4	2,040,000	1,630,000	81.5

For different values of the coefficient, denoted by s, the following ranking of 9 zones by the size of the index is obtained:

Zone
4
1
318,000
2 268,000
$-66,000$
3
Index
410,000
,

3

Total cost
$s=1$
$\xrightarrow{ }$
1,630,000
815,000
815,000
815,000

When $s=1$, that is when the index is simply the difference between benefits and total costs, the indices of three zones are positive, indicating that schemes for these zones should be built. This exceeds the budget constraint, and so s is g-adually increased to make the index of some zones nogative or zero. When s $=1.25$, only the indices for zones 1 and 2 are positive, and their combined cost of $1,630,000$ is equal to the size of the budget. It should be noted that the ranking has changed with the increase in s.

It is interesting to compare the results obtained from different ranking procedures, out of which only the one using the s coefficient on the cost term is correct. Zones are ranked in descending order of destrability.
(i) Renking index show above(using s coefficient)

Zone 1
Zone 2 $\{$ To be built
Zone 3
Zone 4
(ii) Difference betwcen benefits and costs (i.e. s=1)

Zone 4) To be built
Zone 1
Zonc 2
Zone 3
(iii) Average cost

Zone 2
Zone 1 $\left\{\begin{array}{l}\text { yo be built }\end{array}\right.$
Zone 4
Zone 3

The fact that procedures (i) \dot{c} (iii) lead to the same overall conclusion, that is to build in zones 1 and 2 , is a coincidence, because one can show that if the budget constraint were 815,000 shs instead of $1,630,000$ shs, by increasing s to $s=1.35$ the solution would be to build in zone 1 . This is different from the answer obtained by procedure (iii), which say to build in zone 2.

It follows that the importance presently attached to the average cost is an inadequate measure of the reladive desirability of projects.

So far the ranking has been carried out only on the basis of the results from the mathematical model. But as has been proposed in the beginning of the paper, additional factors relating to aaoh project should also be taken into consideration for the final ranking. These could be, for example, the eoonomic development potential of the area, the foreign exchange component of construction, and the condition of the present water supply. Bringing in these factors might change the ranking obtained with the help of the mathematical model, but the refining of the priorities will be greatly facilitated if a preliminary ranking has 12 already been done.

Conclusion
The planning picture can now be further expanded - and this is only possible if project evaluation and selection are systematically and rapidly handled - by sctting different projections, estimates, and objectives, and exploring what the outoome, in terms of project size, location, staging of construction, etc. would be. One could for example, determine what difference it would make to the staging of projects over a $20-y e a r$ period in a certain region if for example water stimulated rapid economic development in some sector of agricultural production, and what it would be like if it did not. A similar exercise could be done for projections of people living in Ujamaa villages as opposed to homesteads scattered over a large area. By holding some inputs fixed and changing others, the link between assumptions and their associated results can be fairly sjmply displayed, so that the necessary decisions can be carried out at the appropriate level.
ranling
The advantages of obtaining a preliminary project $\begin{aligned} & \text { with the aid }\end{aligned}$ of mathematical models are not fully apparent in the simple example which has been discussed. As more factors are added for cach project and as the number of projects increases, an intuitive judgement becomes more and more difficult. Too many projects, too many factors, and too many time periods have to be kopt in mind. The situation is somewhat like that of a card player's who is a player at every table of a toumament hall where different card games take place, and who goes from table to table making a move at every table when his turn comes. He has to remember and history of each game and its present state. This is wherc mathematical modelling and the use of the computer become valuable tools in decision making.

The objectivie is to mininize the total cost, $C(x)$, of the project, subjut to the constrafnt that a ninirum number of poople P, must be piovied with water. The variable, x (which is a dung variable sinec inays for this nodel $x=P$), is the actuol number of people to be semplied.

Model 1 : Mnjizize $C(x)$

$$
\text { SNubcet to } x
$$

The sclution to this probldn is obvious, the population to be served is $x=P$ dad the cost becdnes $C(x)=C(P)$. 70 can , however, gain an additiond piece of inionation if we keen x as a variable and solve the jroblem by some stahdard optimization technique. For our case, the incthod of Lagrangena multipliers is appopriate. The Lagrangean function is $I=C(x)+k(x-P)$ where k is the undetermined. Lerrandean multiplier associated with the constraint.

The solution is found by maximizing I with respect to x,

$$
\frac{d L}{d x}=C^{\prime}(x)+k=0
$$

There $g^{f}(x)$ is the first derivative of $C(x)$ with respect to x. It follows thet $k=-C^{\prime}(x)$.

The Langrangeon huitiplier k represents the shadow price of P, i.e. the bencit's foregone by not supplying the ($\mathrm{P}+\mathrm{Y}$) st person. In our case the shadow price equals the negative rarginal cost evaluated at the folution point (i.e. $\pi=P$). The reason why k should be detefrined is that a slighty different problen formlation leads to exactly the sane result. This alternative formuation is:

The interpretation given to ($-k$) here is the benofit derived frow supplying one person with water. The solution is:

a can therefore use aitior nodel to arrive at the sane psult. For mociel l the minimun number of people, I's has) je fixed, and for mocel 2 the unit venefic ($-\frac{1}{}$). "The focision which formulation to use devends on the doility passifn actual values to these paranetors. Fresent :anning in fanzanic is cone largely along the first ormulation (i.e. cost minimization subject to a minimua anber of people served).
xamle:
The moject cost, $C(x)$ is composec of the capital osts C_{o}, (fixed cost) and operation/maintenanco/
aplacealent (oiR, runnine costs). rine jresent value
the annual Cit costs is denoted by Cond
$C(x)=C_{0}+C_{D R}$
Mere $C_{0}=a+b x^{r}$
and $C_{\text {GilR }}=h x$
so that

$$
c(x)=a+b x^{r}+h x
$$

This form of the fixed cost function was found 3. fit past project cost cata in Tanzania.

Setting $a=200,000, b=0.0036, r=2, h=8$, and
$\mathrm{F}=12,000$ s the total cost in shillings is:
$C(x)=200,000+0.0036(12,000)^{2}+8(12,000)$

$$
=719,000+96,000=815,000 \text { sins. }
$$

and $C^{\prime}(x)=r b x^{r-1}+h=0.0072(12,000)+8=54.4$ shis.
It follows that the average cost is $C(x)=815,000 /$ $12,000=67.5$ shs.

Tschannerl ard alaki - "The Cost of Pural :ater Supply: , iRALUP Report, in preperation. is solution for mocels l and 2 cari be found only if $r>l$, that is when the marginal cost curve increases (see denderson \& Quandt 1958).

The historical data showed invariably functions with $r<1$. Using the the pest triend, however, these curves were extrapolated to the point where $r>1$, thereby increasin: the scale of projects. These consicerations sugcest that mater suply projects in Tanzania should be built on a biccer scale than up to now in order to realize some economies of scale.

APPENOIX B

PROJECT RANKING IN ONE TIME PERIOD

Four zones:

Four (mutually exclusive) zones are to be ranked according to how well the proposed water supply project for each would fulfill the criterion of cost minimization subject to supplying a fixed minimum number of people. The first zone is the one discussed in Appendix A. The other zones have the same cost function as the first, but they have different values for the cost parameters. The following is a summary of the notation which was introduced in Appendix A.

```
a = constant in the capital cost function
b = slope in the capital cost function
r = exponent in the capital cost function
h = present value of OMR cost per person
P = minimum number of people to be served
    (x=p)
Co = capital cost
C
C ( x ) = C _ { 0 } + C _ { \text { OMR total cost} } ^ { C }
MC = C'(x) marginal cost evaluated at x
AC = C(x)/x average cost
B = total benefits (present value)
NB = B-C net benefits
Ri}=\mathrm{ ranking index for i ith zone
s = shadow price on capital
```

The value for the paramaters (a, b, r, h, and F)for the four zones are given in table l together with the results from the

TABLE 1. COSTS AND IMPL IED BENEFITS FROM THE FOUR ZONES

NOTE:

1. All the cost figures are computed with the equation given in Appendix A.
2. The cost curves for the 4 zones (all having the same function but different parameters) are shown in figure 1 .

The ranking index is defined as:

$$
n=(\ldots k) x-s C(x)
$$

where s denotes the shadow price of capital de to a budget constraint being present (a scarcity of the shillings, so to speak). When the budget constraint is binding, s is greater than 1. As explained in the main text, the index R is calculated for each zone by setting a value for s, and the desired ranking is cbtained when the value of s chosen is such that for the first project (from among all the zones) which cannot be built because the budget would then be exceeded, the R is equal to zero.

Setting the budget constraint at Shs. 1,630,000 and defining R_{i} as the ranking index for the $i t h$ zone, the following ranking occurg, in descending order of desirability:

$s=1$	R_{4}	$=$	2,040,000	630,000		410,000
	$\mathrm{R}_{\text {? }}$	=	1,133,000	815,000	$=$	318,000
	R_{2}	=	1,101,000	815,000	$=$	286,000
	R_{3}	$=$	749,000	815,000	$=$	-66,000

Zone 4 is the most desirable, 3 the least. The first three zones should be implementied, which violates the budget constraint. One, or two, zones (depending on which ones they are) must be driven out. To achieve this, s is gradually inereased until one zone (other than zone 3) has an R of zero. This is reached when $s=1.25$.

$$
\begin{aligned}
s=1.25: \quad R_{1} & =1,13 j, 00 \cup-1,020,000=113,000 \\
R_{2} & =1,101,000-1,020,000=80,000 \\
R_{4} & =2,040,000-2,040,000=0 \\
R_{3}= & =749,000-1,020,000=-71,000
\end{aligned}
$$

Remaining are zones 1 and 2, and their joint budget requirement exactly exhausts the available budget. The solution is therefore to implement the sbhemes for these two zones. The remaining two zones might still be taken up in a later time period, with the selection being done by a separate ranking. It should be noted that zone 4 has dropped from first place to third place with the increase in s. This happened because the budget constraint makes
money scarce, thereby penealizing projects with a high cost component. The cost for zone 4 is much greater than for the other zones, and an increase in s makes it less desirable relative to the other zones.

Suppose a solution had not been reached at $s=1.25$, what happens when s is increased further? The of the next project becomes zero at $s=1.36$ and the following ranking obtains:

$$
\begin{aligned}
s=1.36: \quad R_{1}=1,133,000-1,101,000 & =32,000 \\
R_{2}=1,101,000-1,101,000 & =0 \\
\Gamma_{4}=2,040,000-2,202,000 & =-162,000 \\
R_{3}=749,000-1,101,000 & =-352,000
\end{aligned}
$$

The ranking is unchanged from $\hat{\beta}=1,25$, but only zone 1 is to be implemented, which does nor turi utilize the available budget.

REFEREITCES

 Objectives: Current Issucs in Tater Resources Ilaminasg" Fater Zosources Rescarch 6g (Decenber 1970).

Haveman, R.F., Bemefit-Cost malysis: Its Relevance to Public Investm ment Decisions: Coment ${ }^{" 1}$ Quarterly Journal o: Dcononics 81, 4 (1966).

Henderson, J.E., 'and R.E. Quandt, Aicroecononic Theoiry, MaGraw-H111, 1958.

Masss, L., "Banci'itmost Analysis: Its Relevance to Public Decision Makingi", Juarterly Joumpl, Econ. 80, (May 1966) and "Reply" in QUE 81, 4, (1967)。

Mass, A., et. Dl, Desim of Tater Resource Systems, Harvard University Press, 1966

Major, David C., "Benefitmost Ratios for Projects in initiple Objoctivo Investment Programs", Tater Resource Rosearch 5; 6, pp.1174-1178 (1969).
 Snsterdang 1963. 2. Public Investinent Criteria, Massachusetts Inst. of Techiolociv, Cambridee, Massachusetts, 1967.

Tschaninerl, G. anci W. $\begin{gathered}\text { laki, "The Cost of Rural Tater Supply in Tanzania", }\end{gathered}$ BRiJUP Re,ort, in preparation.

INVESHIGA」IONS, SURVEYO hivu DEBTGN

By Andre Harlaut
SiUCO - VBB, jtockinolm, Sweden

1. GeneraI

Due to difriculties with commancations and lack or accumulated information the investigations, surveys and design for rural water supplies aie often difficult to carry out within the limited economicul range available. It is therefore necessary to develop procedures in order to avoid unnecessary commnications and delays.

The three pirincipal bodies involved in a given project are generally a Regional Ufice, a Head Uficice and upecialist jections such as ingineer Geologist, laboratories, etc. It is advisable to establish a procedure which allows a division of work and responsibility between tile three bodies and facilitates comprehensive overall planning.

The schematic procedure should be based on the following main principles:-

1. All work involving knowledge oil local conditions siould in the first place be the responsibility of the Regional Ofice.
2. All work involving special knowledge or equipment should be carried out by jpecialists sections.
3. All design work involving calculations, economic studies, details design and standard design should be the responsibility of the iiead Office.
4. The project work should preferably be divided into three main phases. Tne íirst phase should include all activities in connection with the selection of the projects and the overall planning. The second phase, resulting in a Project Heport should include all investigations and studies necessary for the implementation decision. The third phase should include all surveys and design for the preparation of all documents and drawings necessary for the construction.

The various steps oil the procedure are schemitically listeà below:-

OVER:LL ELATNING

Fater inaster jlan
Three years Planing
RLOJECA RLiPAJULIUN
Preliminary survey
Progranme of investigation
of water source

Implementation decision aiu actions

DE. IGiN
Programme of surveys
Surveys and survey
Fieports
Construction documents

In order to achieve the preparation and design of the projects rith tre minimum of expenses, the third phase should be commenced nly after the implementation decision has been finally taken. It ay however be advi;able in many cases to adapt the time schedule :o the specific conditions ior each project and the project planning inould find the most favourable time schedule for each project. The procedure adopted inally for eack project should always be iscussed with reierence to the cost involved so that the cost of reparation and design or the project is kept on a reasonable level.

2. Overall Ylanning

2.1 Hater Kaster plan

As a guide for the selection of projects it is in the long zun necessary to have in each region a iegional water Master ilan summarizing the overall water situation in the Region. ?he Waster plan should snow information on the main factors to be taken into consideration such as population, livestock, sxisting water supplies and sources, hydrology, hydro-geology, possible water resources, etc. The task of establishing such I iiaster Plan should probably be given to a central body or to consultants, but the continuous revision and up-dating of the Flan once establisined should be the responsibility of the aegional Office. In many cases a preliminary ilaster Plan could be compiled in the liegion on the basis of available information and used until the Water Master Plan for the whole country is established.
2.2 Three Years Planning

Since the preparation and design oi a project requixes the common efiort of several bodies -- Regional Office, specialists, fead Office, etc. -i It is necessary, in order to avoid delays and improvisation to plan caieflilly the programne of work for the whole organization for at least three years in advance. The programme should be revised continuously and should be the responsibility of planning section.
3. Project Preparation
3.1 Ereliminary wurvey

Whe ain of the priminary survey siould be to collect the information necessdiry to access the main features of each project
is a rule the resulte of a survey should be recorded on
Inv
wat

Ove

6. Posisible layout of the schemes.

Hocetion and elevation of reservairs with alternatives, if any.
Location of mains with alternatives, if any. Iocation of domestic points and home connections. Possible extensions with alternatives, if any.
7. Special problems and other information of interest concerning the project.

3.2 Programme of Investigation for Water jources

In many cases the preliminary survey may not give sufficient information as to the availability of water. It should in most cases be necessary to establish a programme for the required investigations by specialists of all the likely water sources to be executed. The programme should include the information needed by the specialists such as topographical sketches, expected water demand, existing and possible sources, etc.

3.3 Project Ylaning

The work of the specialistis should be coordinated by planning section which shoula estallish a time schedule for the project. Close cooperation between involved bodies will have to take place and a standard routine should be developed to avoid unnecessary delays. It siould be the duty of the planning section to achieve und maintain efficient routines for the necessary co-ordination.

Mat
As.
run necess.
Plan summa:
The master
fo be take:
existing wo
possible w
寊 Miaster P :
to consult.
the Ylan o:
Regional 0 :
could be c
informatio:
country is
2.2

Thr:
4 Sin:
common effi
Head Offic
and improv:
the whole ,
The prograi
responsibi:
Pro,
3.1 Pre:

The
informatio
ine results of "a level survey could simply be a plan and a numper of levelling sheets with triw corresponding calculations. It should be the task of the Design Section at the Heau Oifice to develop such standard routines.

It is also essential that all information of importance to the project, e.g. nature of soil, obstacless etc., is continuously noted during tne survey and adequately reported.
4.2 Construction Documents

The construction documents should include the following items:-

1. Construction drawings
2. Specifications
3. Bills of Quantities
4. Cost calculations

If and wren it is decided that a contractor shall construct tie project tien the documents $1-3$ completed with the Conditions of Contract should form tile iender Documents and later on the Contract Documents.

Note:- The present paper is based on experience from surveys and studies of rural water supplies carried out by biACO-VBB, Consulting Engineers and Architects, Stockholm, wweden, in Ianzania and other countries.

```
7
```

3.4
for
the i
in mine
In the
geold
give and in execu
logicai conditt and m
II. HEALTH

SIGNTFICANCE OF FLUORINE IN TAMZARIA
 DRTIKING WATER

by

S.I. Bugaisa, Mineral, Resources Division, Dodoma.

It is generally accepted that the health of community depends in large measure on the ample supply of a whole-some water supply. Diseases of very varied character and nature can be, and are tram nsmitted th man by water. The casual agents conveyed by the water may be chemical poisons, pathogenic micro-organisms, and higher forms of life, like worms. However, certain diseases have als been ascribed ts either deficiency or jver abundance of certain chemical suistances in the water supply; for instance, it is sometimes claimed in the medical field that absence of certain substance in water, such as chlorine and calcium is detrimental to health. At the same time the presence of certain substances in water such as araenti', lead, and fluorine, leads to ill-health.

Mottled enamel, a developmental defect of the teeth, was first noted in 1901. amng emigrapts from Pizzuole, Italy, and has since been observed to occur endemically throughout the world. From the time of the first recorded investigations, suspicion was cast on the water supply, some abnormal constituent of which was believed to be the casual agent. But the exact nature of the latter was discovered only in 1931 when Chruchill reported the presence of fluorine in the water supply of various endemic areas in the United States. Later in the year some investigators produced the condition in experimental animals fed on diets containing (a) sodium fluoride, and (b) the residue of the drinking waters from the affected areas. Ample evidence has since been forth-coming to confirm the responsibility of fluorine in drinking water for this teetch condition in man and other mammals.

FOr example in North Aprica the presence of fluorine in soils has been shown the cause bone diseases, in addition to dental deffects in horses and cattle. Sometimes acute poisoning has been reported in aluminium factories where flueride is present in the dust. However such severe effects are exceptional; most cases of chronic fluorisis are limited to the teetio and are due to the continued ingestion during the early childhood of small amounts of fluorine in the drinking water.

The teeth' disease, lmom as mottled enamel - chronic endemic dental fluorisis - is almost entirely confined to the permanent teeth; and occurs solely during the calcification. Hence it is chidren up to the age of ten years who are susceptible, and the defect does not become manifest until after the permanent teeth have erupted, ie. from the age of six years onwards.

The infected teeteh lose their customaxy lustre and become shalky white, later they develop disfiguring patches of yellow brown, or black staining and may ultimately become pitted and absolutely black. The defect once established is permanent and incurable. However, one curious result is that teeth only

 uotsoy carsfueutity busniv (TTT)
 - ${ }^{\text {In }}$ mdd 08 qnoqe pərț̣quoo

 - it mad 06 of dn yqum - emsuoy (TT) - mad t\& of dn よo

- a mad of of mad L moxy Sutcouex 'quaquoo vuțxonty
 - ㅍ wdd OSZ 07

[^15]
(iii) Serengeti area up to 150 ppm F. 01 Balbal depression - over 86 ppm F.
(v) Mbulu District - Up to 99 ppm F.
(vii) Rivers from I.E. Meru area also known to contain large concentrations of fluorine.
(iv) Musoma Region:
(Several thermal springs in Musoma District also carry fairly large amounts of fluorine up to 25 ppm F.)
(v) Mbeya Region:

Rukwa depression - fluorine concentrations up to 75 ppm have been encountered at Irumba. And in other areas within Mbeya Region, concentrations up to 96 ppm have been recorded.

Generally, fluorine is a rate constituent of groundwaters and the bigh fluorine concentrations in groundvaters as outline above are attributed to some geological and hydrological processes and condttions.
(1) Volcanic Activities:
(a) Volcanic rocks including kimberlites, carbonatites, pyroclastic ashes and salt deposits. The most obvious example of volcanicrocks, pyroclastic and ashes contributing to high fluorine concentrations in groundwaters in general is the east and S.E. Meru area including the Sanya Corridor. Borehole water in South sanya corridor was found to contain up to 96 ppm F., while further north water contained only $8 \mathrm{ppm} F$. An area west of Ngorongoro Crater and Lemagrut Volcanic Cone had fluorine content in spring waters between 40 and 140 ppm . Probably it originated from ash beds deposited in Serengeti Plains. A borehole sunk north of the National Park boundary in basement rocks has shown fluorine content of only 6 to 10 ppm F. Another area where it is suspected that springs and ralcantix: ashes have contributed to the high fluorine content is N.E. Kondoa area. Again waters derived from kimberlites, as in Shinyanga area show fluorine content of the order of 110 - to 250 ppm.
(b) Thermal springs situated in or near deep fracture and fault zones and connected with juvenile sources; this is examplified by thermal springs in Musoma District which carry fairly large amounts of fluorine; and some springs in Mbulu area which drain into Lake Balangida show concentrations of up to 99 ppm.F. Extremely high fluorine contents of 330 ppm have also been recorded in thermal springs in Eake Natron.
2) Concentrations through evaporation in undraincd areas of soline groundwater and mixed juvenile waters. This is examplified by the exceedingly hich fluorine concentrations in waters of Wembere, Bahi, Ol Balbol depressions, Rukwa, Manyara and Arusha Chini - Pangani basins and Serergeti loke beds.
3) The presence of minerals such as fluorinc and apatite in rocks or lake deposits. For instance high fluorine content in Isanga basin - Shinyanga area - is attributed to the mineral fluoride which is known to occur in younger granites in Lake Region.

In addition to these examples, certain rock formations ase charam cterised by relatively high fluorinc concentrations. Consequently groundwaters originating from these rock formations are highly contaminated with fluorinc; for example the younger gronitic rocks; with IL: orine concentrations ranging from 11 to 36 ppm , and the Ifyanzian formition have been show to contain relatively high fluorine values of more thon 4 ppm.

COICLUSION

The toxic action of flumrine from the waters of the contaminated areas may not at first be apparent as the ill-effects are not dramatic in the early stages. However, it should be borne in mind that toxic action of fluorine in the long run is far-reaching and hos ill-effects on human beings and other mamols. In areas like Arusha, Kilimanjaro Masailand, Mbulu, Kondoa, and Kongwa, a greater percentage of the communities loose their teeth or develop deffective bone structures in their early youth and a grain number of domestic animals (cattle, sheep, goats, etc.) are lost each year through bone breakage and wear of teeth. $\Lambda I l$ these are believed to be largely due to fluorine toxic action.

IJutrition authorities reckon that water supplies with fluorine concentrations greater than 2 ppm are unsuitable for haman consumption, particularily where such water supplies are used by children from the age of 6 years onwerds.
Λ research Chemist in the Veterinary Department in Tanzania came to the conclusion in the course of a fluorine survey that fluorine concentrations of 18 ppm was the maximum amount compatible with good husbandry of cattle and. that the abonormal increase of bone breakages and wear of teeth was great above this amount.

Thus it is the duty of our water supply authorities, the nutrition department, institutions like school and nurseries, and veterionary departments concerned : with animal husbandry, to take necessary steps to fiffeguard our youth and domestic animals against fluorine toxic action. As remarked earlier, once fluorisis has developed it is incurable. Hence it is only through preventive measures that we can safeguard our commanities. This can be ackived by either providing good fluorine free water supplies and discouraging the use of fluorine contaminated waters; or in areas where it is practically impossible to get fluorine free water to carry out possible chemical purification processes to reduce fluorine concentrations in these water supplies to the permissible limits.

Some investisations of the possibility of removing fluride from water have been made and various methods have been proposed. Of these, treatment by ${ }^{\text {infica }}$ lcium phosphate" appears to be the most promissiong.

TABIE 1 SOMF : $A N E R$ NIVAISSES

LOCATION
.
Shinyranga
Bahi Swomp
Bahi Depression
W.D.D. Yard, Arusha

Wembere, Singida
Nembere
Mbutu, W. Wembere, Nzega
North Chubi
Ikasi, Dodoma
Oldonya Narok
Igombe, Tabora
pp.m. Fluorine
3.0
26,6
123.0
3.5
26.5
$27.0-34.0$
34.0
80.0
25.0
11.0
2.9

by David J. Bradley
Sir filliam Dunn School of Pathology, University of Oxford.

I have beer asked to take a critical look with y relations between domestic water supplies and health. Py far the greater part of these concern infective disease; for thits reason and also because tine chemical problem of ezcess fluorid is beine covered admirably at this conference already, I shall restrict myself to infections.

Traditional water supply thinkinc, deriving from experience in municipal systems ior temperate countries, has been dominated by the common source epidemic, and rightly so, but in the varied tropical situations there are many other hazards. I cherefore hope firstly to broaden our view of the ways in which improved domestic supplies can afiect health.

Secondly, it seens necessary tiat I should distinguish clearly between what is known with assurance about the effects of changing suppiies upon diseases and what is uncertain or speculative. You may be rather horrified how little is certain, expecially at the quantitative level. OI course we cannot vait to do anything until all the relevant data is to nand - otnerwise nothing would ever get done. But equally we should clearly distinguish between those actions that are solidly based and tne points at which we are compelled to guess.

Chirdly, I would like to make some attempt to separate the effects of increasing quality and quantity of water. Thatever the idealists may assert there are frequently situations where it may be possible only to altcr one of tilese and I would like to consider the healtin aspects of such alterations.

There is certainly plenty of room for changes. fig. I gives some of the daily use levels for different تast Airicah communities as determined in the rather widespread study by Prof. Vinte and myself (uhite et al 1971).

We may $\overline{\text { V }}$ convenience in discussion, classify tine infections relatec to water as follows (Table l).

Category LA, the classical water-borne diseased are the obsession of every tenperate water-woris. If a diseasje - typhoid and cholera are examples - is to belong to this category the minimal infective dose must be very low, that is, only a very fe: microbes must be needed to iniect the recipient. The fe aren't very many infections like this. For a cormon source"e epidemic the water supply must be polluted at some central point and the linfective water carried to the consumers. It the water supply is cinlorinated the residual chlorine will have kilied the microbes before anyone is infected. So three unlikely events for a town system have to occur simultaneously: (1) pollution oif the common source (2) the polluter needs to be a disease carricr (3) the cilorination system must be in abeyance. Ifse other mechanism by which this may ofcur is when pressure in the mains falls ereatly. There is a considerable leak froin many distribution systemis and if similarly leaky semers or

sewage disposal pits are nearby there may be diffusion of infective organism into the water supply. The size of the resulting epidecic is chiefly proportional to the number of users of the supply. in.e likelihood of infective pollution is also related to the number fir people around who might pollute the supply, so that the risk of this sort of epidemic affecting a user of a system is propotional to the size of the system, other things being equal. So much for large urban supplies, and the moral is clearly to maintain the pressure in the system and never stop chlorinating.

There is a second group of potentially water-oorne disease. These nave in the part been called faecal-oral infections, they have higher infecting doses or microbes and generally are transmitted via faecal contamination of hands. In most circumstances water is not sufficiently polluted for their transuission. However, in rural semi-arid areas one may get an exceedingly high level of pollution and I suspect that then these faecal-oral infections become water-borne. The infective dose being high, only few of the already few users of such source get the infection so tirat it is almost impossible to study the situation by classical epidemiological methods. The nearest example on a macroscale was infective hepatitis (infections jaundice) in Delhi. Usually the sewage from Delhi goes into a river, well below tie town water intake. Once aïter a massive flood the river flow was briefly reversed, much swage got into the water supply and befoie anything could be done many thousand people were infected with hepatitis. The importance of this is that in general the evidence is clear that hepatitis is not water-boone. I suspect that here our metinodology acts as blinkers, and that there is a great deal to be gained by getting as many sources as possible away from tiee ultrapolluted condition, and of course, persuading people to boil their water.

The above infections are reduced by improving water quality. What about quantity? Here we snould be quite clear that increasing the availability of water alone without iaproving quality at all will reduce greatly the incidence oil several unpleasant infections. We have called them the water-mashed diseases. They are infections of skin or of the intestine, and table 2 shows which they are, along with the names of the otier water-washed infections. Qualitative evidence for tieir reduction as water is mace available is good, the degree of reduction is uncertain. The diarrioeal diseases need a more critical inspection. These have tended to be put down to poor quality watei but caroiul studies, admittedy using the rather specialised nigella dysentery as an indicator, show clearly that availability of water is important in determining their incidence ('table 3). Diarrioeal disorders are a major cause 0 illness and death in young cnildren in East Africa and althougn not all causes of them are water-melated it seems reasonable to extrapolate to saying trat soue are. Cutaneous water-washed. infections are extremely coman ('lable 4) and are mainly at the nuisance leved taough some can be incapacitating. An attempt is nide in lig. 2 to show the eifects or changinis the quality and quantity oil supply upon the health of a comunity.

The water-based infections are locally of freat importance. Guinca-worm, though rare in East Africa, is one injection trat can definitily be eradicated by siniple watex supply improvements. Bilharziasis can be reauced but only greatly so by a rather carefully balanced progranme of water improvemuats or under particular circumstances.

No Improvamani

Table 2

Vater Supplies and Inrectious Diseases

Disease

IA Cholera
IA Typhoid
IA Leptospirosis
IB Bacillary Dysentery
IB Amoebic.Dysentery
(IB Tularaemia
${ }_{5}$ IB Paratypnoid
IB Infective Hepatitis
IB Enteroviruses
IIA Gastroenteritis
Skin Depsis
Chronic Skin Ulcer
IIB Trachoma
IIB Conjunctivitis
IIB Scabies
IIB Yaws
IIB Tinca
Leprosy
Louse-Borne Typhus
Louse-Borne Relapsing iever
Asceriasí
Urinary J̈chistosomiasis
Rectal Schistosomiasis
Guinea worm
Yellow i'ever
Onchocerciasis
Molaria
Gambian ileeping Sickness

Conmon Severe Chronic

(3)	4	
2	4	
1	3	
3	4	
2	3	3
	3	
1	3	
3	3	2

$\begin{array}{ll}\text { Vater } & \text { \% } \\ \text { Nffect } & \text { Reduction }\end{array}$

$P P P$	90
$P P P$	80
$P P$	80
$V Y P P$	50

Table 3

Water-releted inseise in the Rural U. U.A.

	morbidity/l,000	Nobidity/1,000	Yotve	crve
	0-4 yrs.	All figes	Snigella	Ascaris
$\begin{aligned} & \text { Vater in } \\ & \text { toilet in } \end{aligned}$	428	139	1.1	7
```Watcr in toilet out```	829	238	2.4	25
Water out privy out	1,140	360	5.9	42
$\left\{\begin{array}{l}\text { Water on } \\ \text { premises }\end{array}\right.$	953	307	5.8	41
out $\begin{gathered}\text { (Water off } \\ \text { (premises }\end{gathered}$	1,320	413	6.0	43

## Table 3 B

SHIGELiA in Celi=̂ornie (iigrants)

CABINS
Inside water
Outside water
haucet + shower/toilet in
Faucet only in
No inside water
$\%$ Children +ve

1. 2 5.9
$\%$ families +ve

1.6	2.5
3.0	6.2
5.8	11.0

2.5
$5.8 \quad 11.0$

## Table 3 C

SillGELLA in Caliroornia

A Moderate iconowic status Water Inside

B Low Economic jtatus :ater inside
 15 families/raucet

D Low status. Fater Out
15 families/s'aucet
$\%$
0.4
p. 08 Socio-Econonic
2.1
D.O1 iousing i: Sanitation
5.3
p.0001 mater Access
3.2

Pable 4．
Prevalence of water－related disease in Ankole pre－school children

| Scabies | 49.6 per cent |
| :--- | ---: | :--- |
| Skin sepsis | 42.3, |
| Scabies and sepsis | 26.1, |
| Dermatophytosis | 9.8, |
| Total with one or more of above | 70.1 |

Ascaris
47.6

## Table 5

Mean per capita daily use
in Iitres

Connected
Unpiped
Karuri ..... 32
Moshi ..... 130
Dodoma ..... 73
Iganga ..... 85
Kamuli ..... 86
iororo A ..... 161
11 B ..... 100
Mairobi A ..... 252
B ..... 177
167Dar es Belaam A254
n in B B：i il

$$
\because \quad \mathrm{C}
$$161

11 I ..... 154
Kiambaa ..... 11
Karuri ..... 9
Mukaa ..... 8
Masii ..... 7
Ivianyata ..... 10
Hoey＇s Bridge ..... 6
Hutwot ..... 8
Mathuri ..... 11
Mkuu ..... 8
moshi ..... 13
Dodoma ..... 21
Kipanga ..... 13
Alemi ..... 18
Iganga R ..... 13
1 ． A ..... 14
Kamuli ..... 16
Mwisi ..... 4
Kasangati ..... 9
Lulago ..... 13

## Table 6

## East African Habitats and Flater

UHEAN KURAL

Lower	$\mathrm{Hi}_{\text {Eh }}$	Semi-	Highland
Density	Dewland		
Density	Arid	Humid	Humid


+++	+++	++	++	+
+	+	+++	-	-
-	++	-	++	++
+++	+	-	+	-
-	+	++	++	+
-	+++	++	+	++
+	+++	+++	++	++

## REITEREICLS

Hollister, A.C., Beck, $\mathrm{A} . \mathrm{D} ., \mathrm{Gittelsohn}, \mathrm{A.in} \mathrm{and} \mathrm{iemphill}, \mathrm{E.C}$. 1955. Ameri J. Publ. Filh. 45 354-362. Influence of water availability on Shigella prevalence in chilcren of farm labor families: (Data for table 3B).

Schliessmann, D.J. et al. 1958. Relation of envitomental factors to the occurrence of enteric disewses in areas of Eastern Fientucky. Puolic Health Monograpi 54, Jnited States P. H. ※̈ publication 591. (Data for table 3A).

Hatt, J., Hollister, A.C.g Beck, H.D. and Hemprill, E.C. 1953. Amer.J. Fubl. Hlth. 43 728-74l. jiarrioeal diseases in. Bresno County, California. (Data for tavle 3C).

White, G.F., Bradley, D.J. and White, A.U. 1971. Mrawers of ister; Domestic , ater Usc in East Africa. University of Chicago Press. In the rress.


## By

S. Nieuwolt, Department of Geography, University of Zambia.

Zambi. is situated between approximately 8 and 18 degrees southern latitude, and like most regions in a similar latitudinal position receives all its precipitition during summer. To explain this se..sonal distribution the synoptic situation over the whole of southern Africa siould be considered.

During the winter tive circulation is dominated by a large and intensive iigh pressure cell, wich has its centre at about 25 degrees south. Resulting winds over Zambia are the southesterly trade winds. These winds bring continentalair masses, which have been stabilized by tile predominantly subsiding air movements in the high pressure area. Consequently they bring no apprecicable rainfall to Zambia. This situation prevails irom about May to september.

In september the high pressure cell begins to weaken as the result of stronger insolation and higher temperatures over the continent. The high pressure cell moves eastwards over the Indian Ocean and the resulting winds over Zambia become more easterly. They bring air-masses from tine Indian Ocean, which are rather humid in their lovest layers. Though tiley have lost most of their moisture over the mountain ranges of Mozambique and Hulawi, tiey still cause convectional thunderstorms in cambia, which indicate the end oit the dry season. October and November are the hottest montis in lambis. and the higi aiternoon surface temper:ntures favour tue development of thunderstorms.

The main rainy season lasts from about December to Karch in the southern parts of $Z$ mbicy from November to ipril in the North. During this period the average position of the I.T.C.Z. is over Zimbia. Actually three min air streanis converge: from tie northeast, from the soutnecst and from the west. Especially the last air mass, the congo air, is very humid ind unstable, und it yields lurge amounts of rain witen foiced to rises as is usually the cwoc along the Congo iir Boundary, which cin be considered as part of the I.T.C.Z. In most parts of Zombia, sbout 90 per cent of tie total seasonal rainfall is associated with the convergence zones.

In April the synoptic situition closely resembles that of October, with easteily winds predominating. rhunderstorms again produce wowt of the ruinfill, but trey occur most irequently in the northern part of cumbia, still relstively nedr tice I.T.C. 2.

## Causes of Rainfull Variubility

The bove description of the aeasonal chinges in tine synoptic situation over southern Africa is based on broad generalizations and average conditions. Actual situations vary considerably from tais basic outline.

Hor zambia's rainfall, the movements of the I.T.C.Z. and its C.A.B. - brancia are of greatest importance. Both its general ; southward movement, during Octojer and Noverfober, and its return journey towards equatorial latitudes in harch and ipril are often and irregularly interrupted and sometimes even temporarily reversed. And from December to March, when the averege position of the convergence zone is over Zambia, it actually oscillates between extreme positions to the south and to the nogrth of the country. sometimes, however, the wole convergence arec remains in the same position for weeks.

The convergence zone also shows strong varicitions in intensity. wometimes it cannot be located on weather maps because there is alnost no convergence. Often the zone disappears, to reappear again in an entirely different new position.

These irregularities in the movements ind tie intensity Oi the I.i.i. U. $L$. are the main cause of rainfall variability in Zambia.

But also of great importance is the very localized rainfall pittern associated with thunderstorms. These produce large amounts of rain over relatively small areas and differences between adjacent stations can be very large, even if tiney are only a few miles apart. This second cause of variability is mostimportant during the beginning and end of the rainy sesison, when practically all rainfall comes from small-scale systems. During these periods one storm can produce more rainfall tion tile wonthly median amount. But it is also effective during the min rainy season, because most of the reinfall in the convergence aress is tile result of local thunderstorms.

## short-term viriability

Phis term describes the differences in rainfell during one single month. It con be shown only by daily rainfall figures.

Even, during the presence of the convergence area over a place large veriations in aily rainfall totils are possible. lighest daily figures are not necessarily related directly to the I.'I'C. Z. In Lusaka during $1969 / 70$, the highest rainfall occurred when the convergence area was well south of Lusaka. This emphasizes the main difierence in conditions to the nortil and to the south of the I.I.C. $2 .:$ on thennothern side equatcrial air messes prevail, which are humid, wain and unstable, and thunderstorms develop irequently. But to the south of the convergence relatively dry and stable air masses predominate, which do no't produce many thunderstorms.

This difference is cleirly illustrited by the irequency of occurrence of dry spells at labalis, in tite North of Zanbia, and in lusaka. In Lus.oka almost every major displacemert of the I.'I.C.Z. to the nortis is followed by a dry spell. But in Mbala, which during most of the eriod from Jovember to liarch is to the north of the convergence zone, intermuptions bof the rainy season are raru.

A third method to illustrate siort-term rainfoll variability is to indicate tht irequency of occurrence oi raindays with specified amounts ol rainf:ill. Tnis vas done for 5 dey periods (pentades) and for tienty years at Kasame. ine diagram shows $\therefore$ clerr attenuation of rainfall during Januiry, when thi I.'.C.Z. is far to the south normaliy. Honever, this does not constitute con interruption of the main rainy season.

## Long-term rainfall variability

Most articles on rainfall vuriability study the variations from year to year, beciuse it is felt thi.t short dry spells are lften compensated by wet periods. However, annual (or, in fambia preferably, seasonal) totals fail to show tic full eatent of the rainfall variability in its consequences for agicicultural production. The example of a stition in the Southern Province of Zambia during the $1969 / 70$ seasonal variations show the seasonal total was about normal, but the very dry November and the exceptionally wet December both caused a great deal of damage to crops and the production was very low. The result was widespread famine in tine Southern Frovince during 1970.

It is therefore prefereable to use montrly figures. These were collected for lu4 stations in Lambia and were expressed in a Variability Index, which is the quartile deviation in percent of the median rainfall. The normal period of observations was 30 years, but this was not available at all stations.

The metiod of quirtiles and medians was used, because most of the compilition of dati and subsequent calculitions were carried out by mathemetically untrainec students, without the help of calculating machines. Mhis metrod is not very susseptible to errors in calculation and it also copes well with skemuss of the frequency distribution of rainfull records.

The maps of the Variability Indes ssow that the rainfall Voricbility is generally larger in tae soutiern parts of iembis. tian in the north. This is true during all months and it con be explained by tine less frequent intorruption or the rains in the north and west of cimbia, caised by the previlence of equatorial air masses.

The Variability Index also sinows a very significant correlation with elevation. Tiis correl:tion was calculated after the eifucts of lietitude na lonsitude had been excluded. The residuals of the V.I. on longitude and latitude showed a negative corielation with heifint whicin is significant at the $0.1 \%$ level during most months of tiac rainy season.

H. T. Mörth
E.A. Meteorological Depertment.

## INTRODUCTIOIV


$\rightarrow$
by
-
Daily rainiall records are taken at nomerous rainfall stations throughout East Arrica. From it are roubinely derived and published monthly and annual totals, number of raindays, averages and extremes. For selected drainage areas the areal average rainfall is given.

These data dll refer to point values of rainfall, or to areal averaging of point values. They give no information on the size or distribution of rain showers. For a direct measurement of these it would be necessary to maintain very dense raingauge networksy with a gauge distance in the order of one kilometre.

In the following, an attempt is made to derive, empirically, the number, size, and character of rain showers from a conventional rainfall network, with a gauge spacing around 25 km .

DATA
Daily rainfall as published by the E.A.M.D. For the year 1959 has been used. The area is the seograplical l-degree square bounded by latitudes $5^{\circ}$ and 60 South and longitudes 380 and $39^{\circ}$ East. The Following 16 stations have been used:
95.38 .03
95.38 .04
95.38 .06
95.38 .07
95.38 .08
95.38 .09
95.38.11
95.38 .13
95.38 .15
95.38 .17
95.38 .18
95.38 .19
95.38.20
95.38.21
95.38 .22
95.33 .25

Amani
Ambangulu ©.
Pangani
Handeni
Korogwe
Sakura E.
Igomeni
Karimi L .
liagunga t.
Mandera ङisal E.
Ngombezi Sisal E.
liakinyumbi E.
Kwamdulu Sisal E.
Pongwe L.
Wwera .
Kiwanda iccrool
$5006^{\prime \prime} \mathrm{S} \quad 38^{\circ} 38^{\prime} \mathrm{E} \quad 2989 \mathrm{It}$
50 O"'s $38^{\circ} 25^{\prime} \mathrm{E} \quad 4000 \mathrm{fi}$

$$
\begin{aligned}
& 502615 \\
& 502615
\end{aligned}
$$

$$
\begin{array}{ll}
38^{\circ} & 59^{\prime} \mathrm{E} \\
38^{\circ} & 02^{\prime} \mathrm{E}
\end{array}
$$

$$
\begin{array}{ll}
5028^{\prime} & 38^{\circ} 02^{\prime} \mathrm{E} \\
50 & 26^{\prime \prime} 5 \\
50 & 38^{\circ} 28^{\prime} \mathrm{E} \\
33^{\circ} & 53^{\prime} \mathrm{E}
\end{array}
$$

$$
\begin{array}{lll}
50 & 7^{\prime} \mathrm{S} & 38^{\circ} \\
53^{\prime} \mathrm{E} \\
5^{\circ} .09^{\prime} \mathrm{S} & 38^{\circ} & 54^{\prime} \mathrm{E}
\end{array}
$$

$$
5^{\circ} 14 \cdot 5
$$

                                    \(2222=:\)
                                    959 i:
                                    \(130 \pm:\)
                                    600 -.
                                    \(940 \because\)
    $$
50001 \mathrm{~S} \quad 38038^{\prime} \mathrm{E} \quad 2000 \div
$$

$$
50 \text { 10's } 380 \text { 20'E } 1400=
$$

$$
501015 \quad 38025 \mathrm{E} \quad 1100:
$$

$$
50 \text { l§15 } 38^{\circ} 371 \mathrm{H} \quad 850
$$

$$
501219 \quad 38^{\circ} 29^{1 E} \quad 1000
$$

$$
\begin{array}{llll}
50 & 0715 & 380 & 59^{1} 1 \mathrm{E} \\
200 & 330 \\
20010 & 300
\end{array}
$$

$$
503 \frac{10}{x}
$$



The area is, apart from the coast, hilly and includes the southern end of the Usambara inountains.

Reports from the weather stations at Tanga and liombo indicate that much of the rain lalls from cumulus-type cloud, in the form of showers.

## ANALYSIS

The daily rainfall during 1959 was extracted for these stations (16 stations $x 365$ days $=5840$ station $x$ days).

The days were grouped into 17 classes depending on how many of the 16 stations reported rain on a particular day, e.g. class 6 would contain all those days when 6 out of 16 stations reported rain.

The area average of observed rainfall (Ao) was computed for each day by adding all rainfalls reported by the stations and dividing the sum by 16 .

The maximum reported 24 -hour rainfall (Mx) was noted.
The figures were then scrutinised for consistency. Only one report, that of Ilandeni for $23 r$ d December, was rejected when the station reported a fall of 2.15 inches while all other stations received no rain.

The numbers of occurrence for the 17 classes as well as percentages and cumulative percentages are given in Fig. 1.

It was felt thit a division into 11 classes ( $0, ~ I, \ldots . . . . .10$ ) would be more desirable. A class is then termed "Area Index", in accordance $\because$ ith previous work in rainfall in East Africa (1), (2).

A simple transformation to 11 classes was made and the result for the number of occurrences is presented in Fig. 2.

The means of Mx and Ao were then computed for all values in each of the 17 classes.

The results are plotted in Figs. 3 and 4, and curves were fitted.

## DISCUSSION

Figs. 1 and 2 show theit, during 1959, on more than $30 \%$ of the days, the ilanga negion received rain tnat wetted less tian halif of the ground. On more tian 20; of the days there was either no raing or so little, that less than $20 \%$ of the area was affected.

Fig. 3 indicates a linear increase with area index of the maximum 24-hour rainfall intercepted by one oi the 16 gauges. The plot for lof/16 area index l0, is off the chart. Obviously, this class includes all rain situations from the one where the shovers just cover the total area to any degree of overlapping. Therefire the plot does not belong to the statistical population formed by the lower classes.

Fig. 4 shows a non-linear increase of observed area mean rainfall with area index. Taking account of the linear increase of lix with area index, this means that not only the intensity but also tife area size of the showers must grow with area index.

## DEEIGN SHONETS

faking note of the above, and guided by some preliminary results (3) of the Tropical Urban Rainfall ixperiment in Dar es Salaam, the following assumptions were made:




Fig. 4 MEANS OF AREA. AVERAGE RAINFALL (AO)


A rain shower
a) does nou move,
b) is circular in shape,
c) has its maximum precipitation in the centre,
d) has a linear decrease of precipitation from the centre to the circumference,
e) has a radius in km five times its central (maximum) rainfall in inches e.g. for $\mathrm{Lx}=0.6$ inches the shower radius is 3 km .

The precipitation amounts can therefore be represented by a symmetrical cone and the mean precipitation over the shower circle is $1 / 3$ of the maximum precipitation.

Making the assumptions that in one 24 -hour period
f) not more than one shower affects a raingauge,
g) the showers are all of the same gize,
h) the showers are regularly spaced,
one can now, using the observed mean shower maximum lix for classes 1 to 9 , compute for such design shower.

> i) the size of the shower,
> ii) the mean rainfall in the shower area,
> iii) the mean rainfall (Ac) in a 10 -square,
> iv) the number of storms (N) in a 10 -square,
> v) the mean shortest distance (S) between showers,
> vi) the mean longest distance (I) between showers.

The results are presented in the following table:

Area Index	1	2	3	4	5	6	7	8	9	10
Net Area $\left(\mathrm{km}^{2}\right)$	1210	2420	3630	4840	6050	7260	8470	9680	10890	1210
Mx (inches)	0.19	0.38	0.57	0.76	0.95	1.14	1.33	1.52	1.71	1.90
1 Max (inches)	0.06	0.13	0.19	0.25	0.32	0.38	0.44	0.51	0.57	0.6
Radius (km)	0.95	1.9	2.85	3.8	4.75	5.7	6.7	7.6	8.5	9.5
Ac (inches)	0.006	0.03	0.06	0.10	0.16	0.23	0.31	0.41	0.51	0.6
IN	400	200	146	105	86	71	65	53	48	43
S (km)	3.7	4.0	3.5	2.2	2.5	1.7	0.4	-0.1	-1.3	-2.3
L (km)	6.0	7.2	7.3	7.5	7.4	7.2	6.2	6.1	5.2	4.6

The theoretically derived area averages (Ac) are in lig. 5 compared with the area average means (Ao) that have been computed from the observed data. The divergence of the curves above arees index 7 should be expected as regularly spaced design showers covering $80 \%$ or more of the square will actually overlap (see shortest distance $S$ in the table above). This will result in a higher observed area average rainfall. the vilues of area index 10 have, for reasons given earlier, been omitted.

## COHCLUSIONS

The high correlation between the curves in lig. 5 encourages confidence in the basic assumptions on the structure of design showers and their distribution. One must, however, bear in mind that these relations pertain to mean values, and that departures from the model are likely to be large on individual days.

The above results provide a type of information that is normally not available for larfe areas. They are relevant to rainiall network design, interpretation of point rainfall data, space diversification of crops, and tre hydrology of small catchments.
future work should extend this study in time, say over a period of five years, and test the validity of the results for otiner areas.

## LEFERETCES

(1) JOLNSON, D.H., MORTH, H T.; Forecasting Research in East Africa; E.A. H.D. Memoirs, Vol. III, No. 9, 1961;
(2) JOINSON, D.H.; iain in Rast Africa; Quart. Journal R.M.S:y 88, 1962.
(3) SULNER, G.N., ORChiAil, A.O.; Keport on Dar es Salaam Nainfall December 1968 - Pebruary 1969; Bast Airican Rainfall Project; Department of Ceograpiy, Kings Collée, University of London, 1969.

by
J. Bear
A. Issar
Y. Iitwin

Balasha-Jalon Consultants \& Engineers Itd., Haifa, Israel.

## INTRODUCTION

An evaluation of the available water resources is the first step in plaming the development and management of water supplyr systems, whether of a small, local scale, or on a large, regional or national one. Estimates of these resources are needed both at the general planning phase, as well as for the design of specific elements of the system. Obviously, because we are dealing with a natural phenomenon - water as part of the hydrological cycle - we can aim at best, at estimates of long-term averages, expected values or probability distributions of the sought quantities. The development of procedures for predicting : surface and ground water resources has been the goal of engineers for many years and several such procedures are described in the literature.

Different types of estimates are required for the two planning phases mentioned above. In the first the general planning phase, estimates are needed mainly of the long-term average annual ground water surface water yields. These are often expressed for each available source of water in the form of a safe yield, defined as the amount of water than can be withdrawn annually without producing undesired results, and limits of withdrawal which constitute. . constraints on the withdrawal based on present and future needs of downstrean areas. For the design of specific hydraulic structures which constitute elements of the water supply systems, the data requred include such items as peoik rates of flow, annual and monthly flows of specified frequency; etc.

There is no need to elaborate on the fact that the only source of information from which any estimates of the above planning and design
parameters can be derivod is actual observations of various elements of the hydrological cycles: precipitation, ground vater elevations, spring discharge, surface munoff, etc. . Because of the variability of these observed paraneters, resulting from the randoin nature of the precipitations, which may be considered as the input to the hydrological cycles it is the lenth of record which determines the accuracy of any evaluation of water resources. Whenever a record of basic data (e.g. streanflov for murface water and elevation for ground water) is of a sufficient longth and is available at the point of interest, the reghired asoessment of wator resources is re latively simple and can be obtained by a mumer of know empirioaly mathematical or statistical methodse Unfortunately, in practice,
especially as far as surface water is concemed, it is only seldom that data are available at the point of interest and for a sufficiently long period. This is especially true in developing countries, where the observation network is rarefied. In such cases, the assessment of water resources for point of interest must be based on a regional approach.

In the regional approach, the hydrological behavifur of a watershed or a ground water basin as a whole is taken intto account. Obviously, the first step in such an approach is the definition of the region whose regime is to be investigated. In ground water, it is on aquifer or a group of aquifers. In surface water it is a single watershed or a group of watersheds, which behave in a similar manner from the hydrological point of view. Tests are available for checking this homogeneity in a hydrological regime.

The more simple regional analysis procedures include the extension of streamflow records by comparing them with those of rainfall. Rainfall records are usually available for a much longer period of time, thus enabling interpolation between stations for which observed data are available, and establishing relationships between flow and watershed parameters.

The problems and complexity of regional studies vary widely from one climatic region to the next. For example the problems encountered in humid areas differ considerably from those encountered in arid or semi-arid areas. The size of the considered region and its geographical and toppraphical conditions also greatly affect the selection of an appropriate regional study procedure. Moreover, because of the large variability in these and other conditions, it is pram ctially impossible to develop a universally applicable proaedure for evoluating water resources. There are, of course, certain basic principles which are common to all procedures, but beyond these principles, procedures are based on such local conditions as availability of data, homógeneity of region, etc.

The objective of the present paper is to review briefly several techiniques commonly employed for the assessment of water resources and to outline a methodology developed in connection with two large-scale development projects carried out by BalashoJalon Consultants and Engineers Ltd. In botr projects, an assessment of the water resources was required.

The two case histories to be discussed are the evaluation of the water resources of the Benue Plateau State (B.P.S.) of Nigerma as part of a Master Plan for Water Resources Development (Figure 1) and the evaluation of the water resources of the Jiroft Valley in Iran as part of the Jiroft Development Project (F. 2). In each of the two cases, both surface water and ground water havefeen considered.

PROBIERIS ASSOCIATED WITH THE ASSESSIEMT OF SURTACE WATER RESOURCES
The main feature of surface runoff is its variability which is composed of both deterministic elements (e.g. seasonal changes) and random ones which can be described by probabilistic methods.


LOCATION MAP
1
Deral
Figure . 1


In view of the stiochastic nature of surface munoff, three major problems of assessment may be distinglished:-
(a) determination of the frequency distribution of the various parameters characterjzing the flow ( $\in \cdot g$. annual flow, peak discharge), (b) analysis of Plow fluctuations (e.g. seasonal fluctuations, occurance of wet or dry sequences and sexial correjations, and (c) analysis of the continuous flow changes in tine. Mhencver a record of sufficient length (approximately equal to the design period) is available at a site of interest, the assessment of surface flow is based directly on an analysis of the available record. When the area of interest consists of a number of secondary watersheds, with records available only at a small mumber of gauging stations located in only part of these watersheds, correlations are established between the flow paxanters (e.g. annual flow, or annual peak dischage) and watershed (measurable) factors sich as area, shape, size, elevation, etc.

In practioe, especielly in developing countries, the density of gauging stations is low and the records are of a short duration. In mary cases, although the total Iergth of record seeras to be of a sufficient duration, gaps and discontinuities exist .- in the record and in some cases the station underwent contimous changes and shifts so that the value of the record is questionable.

In order to overcome some of the difficulties mentioned above, metrods have been developed fopombining records of individual stations in a region. Several probleas are encountered in applying the regional analysis method:
(a) Scarcity of data (streamflow, rainfall etc.) due to both srall number of observation stotions and infrequent observations.
(b) The large fluctuations in hydrological - and climatological data. These increase with the size of the watersined and are especially high in mountainous areas in arid and semi-arid climates.
(c) Inhoinogeneity in watershed parameters (e.g. topography, shape, slope, vegetation, ctc.) as the considered region becomes

## I. r slarger.

is criterion for the success of a regional method is the possibility of assessing the accuracy of its results, using statistical mbthods. However, in nany cases, it is difficult to carry out this assessment (c.g. in the fom of confidence limits) because of the small number of actually observed data which are available.

Some of the methous employed by enfineers for the assessment of surface water resources arc rather simple, especially those based on a single paraneter. Others, which are based on multi-paroneter medels of watershed behavior are"e complicated. Obviously, there is no use in utilizing sophisticated models for cases where orily little data, and of poor quality (e.g. reliabiiity) are available. The various methods may be classified either according to the type of required output (e.g. peak flows, monthly flows, amual ilows, etc.), or acording to the type of input information which they required (e.E. rundif records, rainfall records, etcs).

Most methods mentioned above are based on data on streamflow and rainfall available at the site of interest. In preparing the
 State it was required to evaluate the water resources of the state (area of $38,000 \mathrm{sq}$. miles) as a whole for the purpose of planning the development of rural and urban water supplies as well as irrigation projects (Fig. l). The planners in this case needed data on available water resources not at a specific location, but rather for all watersheds in the state. The results of the investigations had to be presented accordingly. Because no specific project was considered, the reaults included various types of information, from mean annual flows through a frequency distribution of the flow in the thirty driest days of an average year. In the Jiroft Valley, on the other hand, the planners needed information on water resources in comection with a specific project cove ring a specific watershed (Fig. 2)。

In both cases, the amount of measured data was insufficient and methods had to be devised for producing synthetic streamflow data from rainfall data which were available in larger quantities. Accordingly, the analyses in both cases consisted of two steps:

> (a) Collection and processing of available data and supplementing records by synthetic data derived by specially developed generation medels in order to arrive, as far as possible, at records of a uniform character. In the B.P.S. the reoord thus obtained covered a period of 20 years, whereas in the Jiroft valley it covered a period of 50 years.
(b). Analysis of the surface runoff records obtained in the first step in order to arrive at the information requested by the planners in each case.

Figure 3 sumarized the methodology of the investigations of surface hydrology of the Benue Plateau State. $\Lambda$ similar sequence of investigations was developed for the Jiroft Valley project (Fig. 4). Four common basic phases can be distinguished in both cases:
A. Preliminary analysis of available rainfall and streamflow data.
B. Supplementing incomplete rainfall and streamflow records.
C. Producing of sythetic steemflow and rainfall data.
D. Deriving the required planning and design data by analyzing the available records, and prescntation of the ${ }^{\prime}$ results.

Following is an elanoreticn of each of these phases.
A. As a first step, the investigated region was defined and tested for homogeneity ( 1 ) (2). Essentially, the homogeneity tests determine whether recorded observations in a group of stations differ from each other by anounts which cannot reasonably be attributed to chance. The analysis of data was then carried out for

```
1. Dalrymple, T., Flood Prequency Analysis, VoS. Geological Survcy Water Supply Paper, 1953-í, Uashington, 1960.
```

2. Report on the surface Hydrology of the Halil fud Easin, EalashaJalon Consultants \& Engineers Ltd. 1970.



METHODOLOGY OF INVESTIGATIONS
homogeneous regions only. The watersheds oomprising of the homegeneous investigated region, or regions, were also deffned and their physical characteristics studied. Figure 5 shows the availam bility of rainfall data for the Halil Rud Basin in the Jiroft Valley.
B. Because of the general scarcity of data, an effort was made to complete the records in which data were missing for certain periods (from days to months), so that they could be incorporated in the analysis. V-arious methods are available for supplementing such data, depending on the intended use of the considered records, and the type of data contained in them. For the B.P.S., the objective was to obtain continuous records of monthly rainfalls at stations where a relatively small number of months was missing in each record.

When at least two rainfall measurements were available for the considered year the rainfall in any missing month was assumed to be a product of the long-term average for that month and a coefficient ( $C_{R}$ ) calculated separately for the rainy season (in the case of B.P.S. six months from May to October) and for the dry season (during the remaining months of the year:). In each season:
for $1<k<5 \quad C_{R}=\frac{1}{k} \quad \sum_{j=1}^{k} \quad R_{j} / \bar{R}_{j}$
for $k=0 \quad C_{R}=1$

Where: $\quad C_{R}=$ seasonal coefficient (there are two such coefficients for each year with $R=1$ or $R=2$ for the dry or the rainy season, respectively.
$k=$ number of moths with available record in a season
( $k=0,1,2,3,4,5$ )
$R_{j}=$ rainfall during the $j$ th month
$\overline{\mathrm{R}}_{j}=$ mean rainfall in the $j$ th month.
Because too large sampling errors were obtained by using $C_{R}$ when only a small number of monthly rainfalls was available for a particular year, the cocfficient $C_{R}$ was replaced by an adjusted coefficient $C_{k}$ winich takes into account the number of months within the season for which data were available:

$$
\begin{equation*}
C_{R}^{\prime}=1+\left(C_{R}-1\right) \cdot k / 5 \tag{2}
\end{equation*}
$$

By combining (1) and (2), the following expression was obtained:

$$
\begin{equation*}
C_{R}^{\prime}=\frac{5-k}{5}+\frac{1}{5}{\underset{1}{5}}_{R_{j}}^{k} / \bar{R}_{j} \tag{3}
\end{equation*}
$$

It should be noted that for $k=0, C_{R}^{1}=1$ for $k=5, C_{R}^{1}=C_{R}$

The synthetic monthly rainfall $\left(R_{j}\right)$ in any missing month was therefore calculated bỳ:
$\mathrm{R}^{*}{ }_{\mathrm{j}}=\mathrm{C}_{\mathrm{R}}^{\prime} \quad \bar{R}_{\mathrm{j}}$

Monthly rainfail data supplemented according to Eq. (4) proved to fit measured rainfall data rather well.

In the Jifoft Valley, the length of rainfall record differed from one station to the next. In this case, a procedure was developed, on the basis of 44 years of record, for adjusting means and standard deviations according to some common basic period. The adjustment of means was based on a simple proportion between means of corresponding years at stations which differ in length of measured record, but which belong to a hydrologically homogeneous region. The adjusted standard deviation was calculated from the adjusted mean using the coeffllient of variation $\left(C_{V}\right)$ which was assumed to be independent of the length of record. This procedure may be illustrated by the following example.

Let Station A have $N$ years of rainfall record with a mean $\overline{\mathrm{R}}_{\text {AIJ }}$ and a standard deviation s"N both parameters calculated for the period of IN years, and Station $B$ has $M$ years of record with a mean $\mathrm{R}_{\mathrm{BM}}$ and a standard deviation $\mathrm{O}^{\circ} \mathrm{BM}^{\circ}$. Assuming that $\mathrm{M}>\mathrm{N}$, the adjustment for a longer period of the first two moments of rainfall data for Station $A$ is done as follows:
(i) For the mean

$$
\begin{equation*}
\frac{\bar{R}_{M M}}{\bar{R}_{B M}}=\frac{\bar{R}_{A I N}}{\bar{R}_{B N}} \text { or: } \bar{R}_{A M I}=\bar{R}_{A N} \frac{\bar{R}_{B M I}}{\bar{R}_{B I I}} \tag{5}
\end{equation*}
$$

(ii) For the standard deviation

$$
\begin{equation*}
c_{V}=\frac{o_{M N}}{\bar{R}_{\Lambda N}}=\frac{M M}{\bar{R}_{M M}} ; \quad c_{V M I}=c_{V I I}=c_{V} \tag{6}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
O_{M I}^{\prime}=\frac{\overline{\mathrm{R}}_{\mathrm{MI}}}{\overline{\mathrm{R}}_{\mathrm{AN}}} \quad O_{\mathrm{AL}}^{\prime} \tag{7}
\end{equation*}
$$



```
M,
N........ ...\ EESTE
```



```
--
* \because.: : : : : \because:% &.
```

available ralafall data in hall guo basin foroup i)

Several additional methods were developed for supplementing missing streamflow records:
(1) Reconstruction of hydrographs

This méthod was employed when observations of water stages in a stream were interupted for a few days only. In fisuch cases the nydrograph was first draw for all time intervals forf which data on streamflov were available. Then the hydrographs were extended to cover also the periods for which no data were available. Finally estimates of the missing streamflow values were read directly from the curves.
(2) Streanflow recession at the end of the rainy season

Whenever the period for which data were missing lasted not more than several months, and occurred during the dry season or at the end of the rainy season, continuing into the dry seasion, the flow recession curve was employed for supplementing the incomplete record. Prom the preliminary analyses of hydrographs of streams for which streamflow data were available and the pattern of rainfall distribution during the year, it was concluded that for the dry period, lasting in:- the Benue Plateau State from November - December to Narch-ipril, the entire streamflow is a baseflow withdrawn from storage in the adjacent aquifers. During this period the hydrograph takes the form of a recession curve described by:

$$
\begin{equation*}
Q_{t}=Q_{0} \exp \quad(-\alpha,(t) \tag{8}
\end{equation*}
$$

Fhere:
$Q_{O}$ - Streamflow at the beginning of the recession period
$Q_{t}$ - Streamflow at time $t$
$\alpha$ - recession coefficient ( $\mathrm{K}_{\mathrm{l}}>0$ ) which depends on watershed characteristics.
t - time

From Eq. (8) it follow that:
$Q_{t}=Q_{0}\left(Q_{T} / Q_{0}\right)^{t / T}$
where:
$Q_{0}$ - daily strcanflov just prior to $t=0$
$Q_{T}$ - daily strcamflow just following $t=T$

Eq. (9) may be employed for supplementing missing data for a period of T days.
(3) Correlation of streamflows

In many cases two or more hydrometric stations are located several miles apart on the same stream. Usually the daily flows in two such stations are highly correlated, with an appropriate timc lag. . Such a correlation, when founds justified the supplementing of incomplete records at one station by using the measurements taken at another station on the same stream. This approach can easily be $\dot{\rightarrow}$ extended to a larger number of stations. For arid and semiarid regions, it was found convenient to carry out the correlation enalysis with respect to a dimensionless discharge variable $X_{i}$ defined by:

$$
\begin{equation*}
X_{i}=\bar{Q}_{i} / Q_{j} \tag{10}
\end{equation*}
$$

where $Q_{i}$ is the daily flow, $i$ is an index running through the entire period of record and $\bar{Q}$ is the monthly average flow for the specific month to which $Q_{j}$ belongs ( $1<j<12$ ). The variable $x_{i}$ is a measure of the relative streamflow at the station only when a flow record is availahle; otherwise $x_{i}$ is undefined.

The various methocs of supplementing missing records described above have been repeatedly justified in the literature and shown to tyield reaults which are accurate for all practicel purposes. By employing these methods complete rainfall and streamflow records were made available for the analysis of surface runoff. One should recall that the alternative to the approach of supplementing missing records, is the immediate initiation of a data collection programme for several years at a larger number of streams. This will. postpone the evaluation of surface water resources needed for the preparation of the project until more data become svailable.

In all cases, the actual computations were carried out by means of digital computers.
C. In the Benue Plateau State, even with all available streamflow records completed as described above, the! number of years for which streanflow data are availabie is still insufficient for a reliable evaluation of the State's water resources as required for planning purposes. On the other hand, as in most other cases, rainfall records are available for much longer periods of time and at a lurger number of gauging stations. These'records can be utilized for the reconstruction of the historical streamflows at the existing hydronetric stations for the entire period for which rainfall records are available. The reconstructed records can then be used for the estimation of the mean and standard deviation of the historical flows and for a frequency analysis of streamflows at each station.

The transformation of rainfoll into streamflow data is carried out by means of a generation model capable of producing a synthetic record with frequency characteristics similar, in the statistical sense, to those of the ristorical flows.

The following scheme describes the concept of this transformation:
Input (Rainfall) Transformation system output (streamflow)

The input consists of a sequence of average rainfalls over the considered watershed. The output has the form of a sequence of generated streamflows for the same period and the same watershed.

The watershed transformation system may be described by various mathematical or statistical models. In each case, the choice of model depends not only on the physical relationship between input and output, but also on the type of input data and intended use of the generated output data.

In the case of the Benue Plateau State, a general multi-linear regression model was employed. This model is descrbied by the following equation:
$Q_{i+1}=\bar{Q}_{j+1}+\alpha\left(Q_{j}-Q_{j}\right)+\beta\left(R_{i}-\bar{R}_{j}\right) A(r)+\gamma\left(R_{i+1}-\bar{R}_{j+1}\right) A_{i}^{(r)}+v_{i+1} \varepsilon_{i+1}$
where $Q_{i}$ and $Q_{i+1}$ are the monthly streamflows (in volume units) during the $i-t h$ and ( $i+1$ ) moths, respectively, counted from the beginning of the generated sequence; $Q_{j}$ and $Q_{j+1}$ are the mean monthly streamflows during the $j-t h$ and $(j+1)$ months respectively, withing a repetitive annual cycle of 12 months; $R_{i}$ and $R_{i+1}$ are the monthly rainfalls (in depth units) during the i-th and (i+1) months respectively, counted from the beginning of the generated sequence; $R_{j}$ and $R_{j+f}$ are the mean monthly rainfalls of the calendar month $j$ and $j+1 \quad(1<j<12)$; is e multiple regression coefficient of $Q_{i+1}$ on $Q_{1}$ when $R_{j+1}$ are kept constant; $\beta$ is a multifle regression coefficient of $Q_{i+1}$ on $R_{1}$ when $Q_{i}$ is kept constant;
$Y$. is a multiple regression coefficient of $Q_{i+1}$ on $R_{i+1}$ when $Q_{i}$ and $R_{j+1}$ are kept constant. $v_{i+1}$ is a random number drawn from a normally distributed population; ${ }_{A}(r)$ is the area of the


The model's details showm schematicaily in Figure 6. Comparison of measured and generated data for a 3 ycars period is shown in Fig . 7

The model as descrined above is based on the assumption that sufficient rainfoll data is available. Quite often, rainfall records are also poor. Then it is necessary to generate them first and to use the generated rainfall data as input for producing sequences of synthetic streamflows. (rig. 8). ...

From the streamflow records, both measured and synthetic, general estimates of streanflow parameters (flow duration curves, frequency of occurence of annual muoff, etc.) can be derived for planning purposes. Because data are generally available for a small number of watersheds, the regional approach was employed for each of the above streamflow parameters. For example, to obtain a regional frequeney curve of annual runoff, frequency rurves are finst developed for each hydrometric station. Then these curves are transformed into a dimensionless for (=rati, of annual innoff to its long-temm mean)

By comparing dimensionless frequency curres of stations belonging to
the same region (defined by using a homogoneity test) a regional frequency curve is obtained. Figure 9 shows an example of such curve obtained for a certain region of the Benue Plateau State.

In order to estimate the annual flow in various streans, a vo volume-area relationship can be established for an investigated region which includes watersheds of various sizes. The assumed rebationship has the form:

$$
\begin{equation*}
\bar{V}=C \Lambda^{n} \tag{12}
\end{equation*}
$$

where:
$\overline{\mathrm{V}}$ - mean annual flow volume
C, $n$ coefficients
1 - area of watershed

Figure 10 shows the volume-area relationship obtained for the Benue Plateau State ) (excluding the hydrometric stations on the Benue River itself). The high computed correlation coefficient ( $r=0.97$ ) indicates a rather high reliability of this relationship. Whenever a frequency of occurrence of a given volume is required, it can be obtained by using the regional streamflow frequency curve and the volue-area relationship simultaneously.

In addition, flow duration curves and monthly distribution of flows were prepared for the planning of water resources in the state.

In the Jiroft Volley Project, also bec\&use of scarcity of measured data on surface runoff synthetic streamflows were obtained by using rainfall data collected in the surfonding area. These ares available for much longer periods of record, The compiled data were tested for regional homogeneity. The fainfall stations which passed the tgst were included in the regional analysis of annual rainfalls. This analysis, is characterized by an effort to utilize the maximum mount of data available in the region of which the investigated Basin is a part. Date from stations included in this analysis were used for deriving annual rainfall-elevation relationships for various frequencies of annual rainfall. By combining the hypsometric distribution with the obtained rainfall-elevation relationships, areal averages of anmual rairfalls for specific frequencies over any basin inside the investigated rogion were derived. Employing the method of regional analysis, these avorages were used for establishinf several frequency curves of annualreinfall for various watersheds within the studied besin.





After verifying the results by comparinc them with short term records measured inside the watersheds of interest, the basic input parancters, 50-years sequences of annual rainfall were generated for each of these two watersheds. These sequences then served as input for additional models by means of which sequences of equal length of synthetic annual and monthly streamflows were generated. Essentially these madels were based on the relationship between the average annual inainfall over the entire watershed and streamflow, determined on the basis of a record of approximately 10 years. In a similar way synthetic sequences of monthly rainfalls and streanflows were also generated. These were later used for planning water resources projects in the Jiroft Valley.

As emphasized in the introduction, because of the large fluctuations in streamflows (especially in arid and semi-arid regions), the available water resources connot be expressed as a single figure. The type of information needed as an asseasment of surface water resources depends on the type of the projoct under consideration and its stage of planning and design. Several methods were described above for obtaining the various types of information under conditions of scarcity of data.

## ASSESSNENT OF GROUNDWATER RESOUPCES

Whenever available, ground water is a most attractive source of water which has a nuraber of advantages over surface water. For excmple because of the usually large volume of water available in storage in the aquifer at any instont, this source is more reliable and less subject to fluctuations which depnd on climatic conditions.

It is also a source which is less susceptible to polution. Whenever both surface water and ground wator are available, their conjunctive use is usually recommended. The decision in each case however, is based on local conditions.

Unfortunataly, unlike surface water whosepresence is easily determined and one has only to evaluate its quantities, the utilization of ground water requires first an exploration phase in which tiee presence of aquifers and ground water basins has to be determined. Once these sources of water have been located, the quentities available for exploitation have to be determined. Accordinglÿ, scarcity of data in this case means scarcity of data for botis stages.

Then ample data are available, ie.e. when theaquifer if well defined, its hydrological properties (hydraulie conductivity, transmissivi=y and storativity)known, and records on water levely
elevations
erc available at a large mumber of observation wells and for a sifficient length of time to yield a reliable statistical averages, the available quantities of woter con be estimated fron ths water balances propared for an investigated aquifer. These mater balances, bascd on Darcy's law take on the form:

$$
\begin{equation*}
\Delta t\left(\sum_{i=1}^{m} B_{i} T_{i} J_{i}+N+G+P\right)=\bar{S} \Lambda \Delta h \tag{13}
\end{equation*}
$$

where:
$\Lambda \quad-\Lambda r e a$ of investigated region
$\overline{\mathrm{S}}$ - Average storativity of investigated region
$\Delta \mathrm{h}$ - average : rise in water level over $\Lambda$ during period
of balance $t$.
IN - natural'replenishment over $\Lambda$
P - pumpage in $\Lambda$.
G - return flow in A
$B_{i}$ - length of i-th segment of boundary of investigated
region.
$T_{i^{\prime}}$ - transmissivity along $B_{i}$

Obviously this quantitative evaluation of available ground water resources cannot be carried out in the first stages of a regional development. Because of the large investments involved in the exploration phase, especially in drilled wells, an approach is recommended which combines exploration with the actual development of a region of interest. fecording to this approach the hydroeological investigations of a region in which little or no data are available consist of four stages:

## Stage 1. Reconnaisance:

The purpose of this stage is to find out whether ground water basins or aquifers exist at all in the investigated region and whether the area may be regarded as generally rich or poor in ground water.

In order to answer those questions, the generin hydromological model of the region has to be established. This model is composed of the following components: climate, geology, morphology and surface water in the region.

The climate component can be established even on the basis of rather scarce meteorological data, or with supplementary observation from the vegetation and information gathered from inhabitants. When cven this is not available, information can be obtained from comparison with other regions of the wokld with similar geographical conditions.

The geological component has to be based on a stratigraphical and stiuctural analysis of the rerion. In the stratigraphical study the geological section is divided into hydrostratigraphical units, i.e. into aquifers, aquitards and aquicludes. The thickness,

The activities during this stage are similar to those undertaken during the second stage, except that as more data become available, the obtained results become more accurate. A new feature in the analyses carriechut during this stare is the time factor. Additional and improved water balances can be prepared and spring discharge fluctuations can be analyzed.

## Stage 4. Accurate hydrological balance stage;

In this stage, more advanced methods of investigation, exploration and evaluation are applied in order to arrive at a higher degree of accuracy in the estimation of the ground water development potential. In this advanced stage possibilities of utilization of one time reserve as well as artificial recharge, conjunctive use techniques and detailed mangement programmes are also studied.

Data during this fourth stage is obtained Irom the actual operation of the project. The emphasis in this stage is on improved management procedures and on efforts to reach optinal utilization. luring this stage, ample data is already available on the aquifers and a mathematical model of it is usually established for the purpose of determining its optimal yield.

In the Jiroft Valley Project, Stages 1 and 2 have been completed by now and a large numicr of wells are already in operation. These wells served first as exploration wells which supplied information on the quifer, and then were equipped as pumping wells. Pumping tests in these wells provided infornation on aquifer parameters. Water levels measure in these were uscd for drawing contour maps, which were in turn used for estaiolishing a prelimiary water balance of the aquifer.

The project is now at its third stage of refining the information on available ground water. Plans are also being prepared for anjunctive use of surface and ground vater resources based on the evaluation of surface mater resources described in the previous section.

In general, actual development nay start following the second stage. As the development continues, more observations of water levels (in time and space) become available and the assessment of water resources can be refined and up-dated continuously.

The various methods described above for supplamenting missing data, preparation of synthetic sequences of inaturol replenishment, etc., can also be applied in the assessment of ground water resources.

The methods described above for the assessment of water resources under conditions of scercity data, are by no means the only ones or the best ones. They were presented here as an exaraple of how relatively simple methods can be employed inererder to overcome the barrier of lack of data, both at the preliminarytatages of planning the development of watejresources and at the more advanced phases of detailed design of projects.


## 1. INPRONUCTION

Water trapped bendath the surf zones which are separated by the wader table. The water table exists only in water-bearing formations wher contain openings of sufficient size to permit appreciable movement of water. The water table is generally considered to be the lowe suriace of the zone of aeration and the upper boundary of the zone saturation, which extends down as far as there are interconnectec enings. The zone of aeration is an unsaturated zone where voids Ground water refiers only to water wis 'e filled with water and air thin tine zone of sa.turation or below the water table, wiere the soll is saturated.

Ground water stored within the zone of saturation is principally produced by rainfall on the surfacefor the esirth thict has gradually infiltrated dow through porous soil strita or through cracks in rock formations and reached the zone of Gaturation. when and where the slow natural replenishment of grounte water storage was in adequate, man has painstakingly tried and evolved many metiods to artificially increase tine quantity of water stored underground. . the addition of water by man-evolved methods to grohnd water storage is called artificial recharge.

This paper discusses, with pasfing reference to Last Airica, the different methods developed by man or shallow artificial underground storage or shallow artificial recharge of ground water.

## 2. Shallow Artificial Recharge.

The fundamental principle of consists of irst replacing the ai黄 within the zone of aeration by water. The zone of aeration is gaue up of a three-phasesystem consisting of the solid matior (soil), vater and air. The void spaces within the zonc of aertion are rillod with water and air.

Shallow artinicid rechare i囊 achieved only to the extent of filifite the aif spaces withiat the zone of aeration by water that is, replacing the ground aier by water. Then the zone or aeration becomes saturated with water, qaditional surface water"tien seeps under the influence of gravity to the zone of s:turation below the water table, where it is held in storafe Gnallow artiricial recharge is ideal at locations whene the zonc of aeration is permeable and readily transmits surfce water to the zone of saturation where water is held in storage. If, at such lociotions, the water table is high (i.e. the zone or aeretion is not feep) a better situation exists. The validity oi shallow artificial recharge is determined by whether the inifiltration rate tirough the zone oi aeration is adequate and not depending on the gedlogic and foil formetions of the locution considered.

All shallow artificial recharge methods involve the spreading of water over the ground surface. Tre larger the wetted area over which water is allowed to spread and eventually seep through the zone or aeration into the zone of saturation, the better. The infilitration rate also increases with the length of time water is allowed to stand on the surface soil. Thus the time and area over which water is recinaried influence the success or otherwise of shallow artilicial recharge methods.
whallow artificial recnarge nay be classified into five methods. It is outside tre scope of this note to discuss the possible application to Last Africa of every metriod in detail. This is because the topographic, geologic and soil conditions ana otiner relevant factors and parameters vary from one country to tie other in East Africa, and withing the same country irom one location to the other. Hovever, the particular experience in Sudan is referred to whenever it is relevant. whether that particular experience can be efiectively applied here in iast alrica is left for the rural engineers to judge, each in nis own jurisdiction and according to the conditions prevalent there.

### 2.1 The illooding wethod.

This metiod can be used in rural areas where the topography is flat or the land slopes are very gentle. It is particularly suitable in the basins and deltas of flashy streams that flow only for part of the year. Tne geolozic and soil formations of such basins and deltas should, as a rule, be suitable to accoumodate and permit the recharge of surface water in the zone of saturation. This method is mainly used to irrigate rural lands for the cultivation of quick-ripening crops that satisfy their water needs irom water stored in the zone of saturation. It can also be used for rural water supplies. An advantage oi this wethod is that recharged areas do not need to be elaborately prepared and the cost involved is minimal.

In this method, the rechargec areas are first enclosed by low banks or small canals to efiectively control the distribution of water throughout the flooding period. Regulators are also needed to regulate the release oi water at suitable intervals over the upper reaches of tre ilooded areas. Hractice in judan and elsewhere tells us that it is better to flood the recharged areas witu a thin sheet of water and that this water should be made to flow at a minimun velocity so as not to disturb the soil.

In Sudan the flooding metaod is practiced to irrigate the deltas of tre Gash river and tile Baraka river in the Lastern Sudan and in the Abu :tabl stream catchment in the :estern sudan. the practice followed in the nivaf Gash catciment in Eastern sudan will be discussed here as an example.

The Gash river is a flashy, erratic stream flowing from the sthiopian nishlands near Asuara.

The river is in flow for about three montins, the bulk of the flood arriving between mid-July and early veptember. r'low is very Variable und flushes of $760 \mathrm{~m}^{3}$ per second have been recorded. The average flood volune rarely exceeds nali a milliard in any one year.


The Gash delta in Sudan covels roughly 300,000 hectared. The area effectively irrigated variesteonsiderably according to tre magnitude of the flood and may recich 30,000 hectares in a fairly good year, that is, lo percent of the total availabile area.
iig. I shows a plan of tice Gasì delta in sudan below Kassala town. There are five head regulators which regulate the flow of the flood waters over the Gash delta. The opening in the head regulators, which are usually about iive metres ligh, 'are controlled by means of stop logs which ure inserted and withdrawn by hand - poerated steel hooks. The water fron the river flows into main canals through these head reguiators and from the cenals/the plots by means of small water couises. The systell of small water courses covers the whole delta. The crops grown in the Gash delta are millet and cotton wich depend for their water supply on the water stored in the zone of saturation in the delta.

The flooding metuod in the Gush delta is also used for rural water supplies. A head regulator with a design cepecity of 20 cumecs feeds a natural spills channel. The diverted water is used to replenish the natural underground sand reservoir at Gammam village. The well centre at Gaman village is not iar from the Gash river, as shown on rig. 1. Fater is pumped from the Ganmam well centre.into overhead tanks ior distribution by pipes to all parts of the delta. Water pumped crom the well centre is of a far better quality than the contaminated silty water or the Gash river.
bore important still is tine fact that except during the rainy months of July, August ind Septeaber wien the Gasin river is in flow, there is a severe shortage of water in the delta. Water artificially recharged into the Gommam aquifers duiding July, August and septenber, is the oniy source of weter in tine delte during the rest of the yeur. The system is designed to deliver l00, 0 ju gallons of water per day, with scope ior an additional 300,000.gallons per day.

The flooding method is used in the Gash delta both for irrigation and water supply purposes. The same method is successfully adopted in the Buraka river catchment and the Abu Hebl streamcatchment. The possibility of the adopting this method in Last Airica, both for rural irrigation and rural water supplies, could be the subject of further studies.

### 2.2 The Basin method

The basin method is used in rural areas where the rechorged area lies alongside a surface stream. The geologic and soil formations oi such recharge areis sfould be suitable for artificial recharge. The basin method is mainly used for rural irrigation Projects and rural water supply Projects. With this method is used, the land bordering the stream on (i) one, or both, banks is divided into basins by the contruction of longitudinal banks parallel to, and as near to the stream as they.could safely be placed, and (ii) of cross banks joining longitudinal banks to from a network o1 inter-connected basins in series. The layout, size, and shape of these basins is dictated by the local topography in each particular casc. Fig. 2 shows a typical system of recharge basins in series.

If needed a. diversion structure is built across the main streau ciannel. Water is then adiatted tirough on inflow canal into the upper basia. When tioc first basin is rull, witer overflows through an section into the second besin (at a lower elevation), and so on, until the entire systeu of basins is full. water is tien cllowed to stand on the busins until
percolition to tre zone o. saturation is couplete. The remaining excess water con then be ruturned to tioe main strecm cinanel througin an outflow canal. lhe bisins then is readj ior cultivation. Jater stored in the zone of ssturibion suppurts the plints througnout their groming phase.

The success of this method depends on tile infiltration rate oif the particular location considered. The methou could be rulad out in silty und clay formations, where the infiltration rate is adversely low. Recnarge retes of up to 9.6 feet per a $:$ y had deen observed in Santa Ana River, California.
loday the basin metiod stands out as the bust metiod of artificial recharge on account of economy, eawe of construction and supervision, and efficient use oi space. Vast stretches of waste lands have been reclaimed by using tinis method in many countries of the world.

In Northern Sudan this metnod is extensively and successfully practiced in the Shendi and Dongola districtio. The shendi basins are a series of natural depressions near the banks of the main Nile. Just before tine peak of tie annual inile ilood, water is admitted through a simple reguliator into these basins, filling them to an average depth of two metres. It is held there for about 2 months and then returned to the river Nile after its level had fallen sufiriciently. The following table gives tice sruas flooded in the Shendi basins in a fairly good yeur, in hectares.

Basin	Area flooded, in ha
Ilugna	840
Hamid	3,800
Basabir	2,100
Salawa	3,000
Sayal	1,300
Guw	1,300
Taiy	3,000
Kelii	4,600
Kumeir	1,300

The total ared floodec in fairly good yeur is of the order of 20,000 hectares. the tlooded area depends on the extent of the Nile flood and may vary fron 4,00 hectares to 40,000 hectores depending on the floods. The crops grown are quick-maturing mainly, millet and chickpea because the basin wetnod allows a single heavy watering during autumn with a single crop grown uring the following winter.

The Dongol: basins are similar to the whendi basins, but the oniy ones oi any importance are the Kerma basin and Letti basin. In a fairly good yewr they watur 13,000 hectares and 3,000 hectates, respectively. In order to inprove the watering oi tis Kerma bisin and to augment the artificial recnarge of ground:nater a system of 16 inch tube-wells wese drilled covering ine Kerai beting. The results were imnediutely felt. the volume of water rechirged underground in the zone of saturation incressed appreciably to the extent that a second crop was erown after the firit wos harvested. Peasants in tie shendi and Donevia basini drov their water supplies from wells winch are recharged by the nnual flood :aters oi the ivile when admitted into thewe basins.


A SYSTEM OF RECHARGE BASINS
IN SERIES AND BORDERING A. STREAM CHANNEL


The essence of this method is $\mathrm{m}_{\mathrm{c}} \mathrm{i}$ increase tile timo and area over which water is recharged from $\mathcal{O}$ natural stream by both reiarding the natural flow of water, and by speading it over the iloodplain of the stream. In tinis method, longitudinal banks running alo:g and some distance from either bank ow the natural steam are coastructed. Low check dams are then built across the stream and connecting the raised bandks on either side of the stream. These check dams are spaced at predesigned intervals. The natiral flow of the stream is then dammed upstream from these check daas - in such a manner that recharge ponds are formed. Surtiace wuter from these recharge ponds then seeps down to the zone of saturation and replenishes the underground storage (see fig. 3).

Another version of this metnodis to construct a series of stageered temporary earth dykes truversing ind spanning the larger portion o. the stream section from which they begin. The flow of the natural stream unen spreads across and is contained within the banks on either side of the stream. The serpentine path followed by the waters of the stream helps to retard the flow of surfice water, giving it more time to scep underground over the extended recharge area (see fig. 4).

The natural channel method is extensively used in sudan. A typical example is the river rahed. 'The river iahad is a seasonal stream, that flows in spates for tnree montis every year. When the river bed is dry, the farmers build low check dams of rock and wire across its dry bed. When the river falls, rechirge ponds are formed upstreain from the check dams. surface water irom these recharge ponds seeps down to the zone oi saturition and replenish the underground storage. A variety of quick-maturing crops, like millet and water belon, are tinen grown on the floodplain of the Rahad. Villagers depend $10 \%$ tieir oxistence on these crops on which they live for the whole year. Almost all the domestic water supply of the villagers along the river kahad comes from wells dug in the floodplain of the river hahad upstream from the check dams. The sane welle are used to recharbe the underground water storage when the kahad is in ilood. Useful pasture lands are provided on the Rahad floodplain upstream from the check dams, when the Rahad falls, Villagers have also found that such recharge ponds provide them with a good supply of fish. It can also be mentioned here that the Dinder National Park Hodee depende lor its wator supply on a system of wells dug in the river Dinder 1000 plain upstream a check dam.

The natural channel method is used here in East Airica mainly to reduce tile lood hazarda 0 : erratic streams. There is however scope ioi its use in water surply and irrigition projecte.

### 2.4 The Ditch hethod.

Inis metnod is ideal ior undulating land where the terrain is not ilat. A ditch nutwork bordering one or both banks of a natural stream is dug (seefig. 5). The peripheril ditches sholild be lurger than the intermediate ditcies. As a rule these ditches shouid be flet-bottomed, siallow and closely spaced to obtain maximum woter-contset area. hetur is then edmitted into the system of ditches and kept theie uritl percolation to the zone oir saturation is complete. A collecting ditch at the dowstresm ond oi the area returns the rewoining exciss whtur to the main stream. Where the land slopes are steep, cnecks could be built and incorporated in the ditcin system to ficilit.ite $\because$ better water distribution.

Enginters have developed many difieqent designs of ditch systems. Each design is dictated by the local topography and available recharge urea. In Americay the contour ditch type, the lat.ral ditch type, and the tree-shaped ditch type are most common. The ditch method might be used in wist Africa to ddvantage because the terrain is generally irrigular.

### 2.5 The pit inethod.

Where rather impermeable subsurface strata (hardpany clay or silt) within the zone of aeration cannot transmit water readily downward to the zone of saturation, the spreading techniques outlined above become invalid. Then and where it is economically possible to remove such impermeable intervenine strata by excavation, artificial recharge in pits may be attemptei. Pits ure dug to such depth that the impermeable geoiogic formetions wich restrict the downard flow of w-ter to tic zone of sciturcition are removed. The sides of the excavited pits should be nearly vertical, wiich avoids the depositien of silt on tre sides so that side infiltration is not restricted.

Recharge through pits can only be used for water supply projects, and not for irrigation projects. this is a considerable drawback as fur rurcil artificial recharge is concerned, because pits and shafts cost moie to construct and rechirge smaller volumes of water thin do other methods mentioned earlier. Also in East Africa the use oi the pit method to obtain potable, wholesome rural water supplies could be more expensive than the conventional chemical treatment of surface water. In developed countries where the rivers' water are polluted by industry, the use oi the pit method could be economically acceptable, but most probably not in idast Airica.

Recharge through pits could be economically acceptable in cascs such as abondened eravel pits bordering newly built roads, or when the excavated soil from recharge pits could be utilized elsevinere. But often such casts occur only where there are no rural settlements to moke use oi them or where there are no surface streaus to feed the recharged pits.

Aftrificial recharge through pits and shafts could be ruled out in Eist Airica due to, among other factorsy the economic cost involved and the limit.tions in recharge volumes and consequent limitations in tie field oil application of this metnod.

## 3 - COLCLUSIOISS

The object of this paper is to introduce tine different methods of shallow artificial recin.rge of groundwater. It is outsiae the scope of this not to discuss the posinible successful application of any one metriod in bist A」rica. linis is governed by the locill topographic, geologic und soil conditions of thu difíventr regions and Localities in East Africa. Wuch coaditions vary grently frou onc country to the otiser in disist Afric. .nd within any one countivy in East Africa one region or locution to tine other. Also the successful applic-tion of any one metnod in E.ist Alricia depends on the volumes of availablu water to be reciarged and the ultinate soter use, whether ior rural water supplics or ruxal irrigation projecta or both. The lund valut, water quility and clincto my sometimes play a decisive role and have to be considerud. Even if any unc wethod proves to be applicable hure in bist Arrica, trie economic cout incurred has to be reasonable and the cost-bencfit ratio favourable.

SYSTEM OF CHECK DAMS AND PONDS (AFTER TODD)


PLAN VIEW

BANK OR LEVEE

CHECK DAM
RECHAGE POND

ELEVATION VIEW


The shallow artificai recharge metpods cost least and can be used both for rural irrigation projecits and rural water supply projects. These methods are therelore been treated in this note. The experience in Sudan is referred to winnever relevant. Of course, the successiul application of these metiods in Sudan does not mean that they can be successfully implemented in East Airica. This zgain depends partly on the topography, geology and soils of the particular locetion considered.

1. D. K. Todd, Ground watir hydrolosy
2. H.W. ilemaing, Die unterirdische Vasserzurinkhaltung, Gutachten fur das Bundesministerium
3. K.A. Brckichan, Estimated Use of iatei in the United states, 1955
4. M.I. Brashears, Recharing Ground-Water witi Wells and Basins
5. 7. Koehne, Die Wasserpeicherung in Unterirdischen Raumen
1. L. Schiff, Water Spreading Ior Storage Underground.
2. J. Hullsten, Wells For Urains
3. R. Bettaque, Studien Zur Kunstiichen Grundwasser Anreicherung
4. G.D. Clyde, Utilizition oi Naturil Underground Watei Storage Reservoirs
5. G. Giek, Die Grundwasseranreicheruns in der Letzlinger Heide.

# PEMEABLE DAMS 

## by

R.I. RiAIKES

Raikes and Partners, Consulting Ingineers and Hydrologists, lione, Italy.

## 1. INTRODUCIION

I am assuming that this conference is essentially concerned with the practical aspects of Rural Water Supply. These aspects range from the location and listing of sources of water; the hydrological assessment of their long-term yields; the efficient long-term extraction of water from them; its distribution to the point or points where it will be consumed by people, animals or crops (under irrigation); purification of the water to the various standards that good public health practice dictates for various uses; and finally ensuring that used water, whether used by humanc or animals or in irrigation does not contaminate water sources and, ideally, that it does not get wasted.

Wy concern is with location and extraction whether from surface of underground sources and, since the long-term use of underground sources can only be ensured if there is adequate natural or artificial recharge of the aquifer, I am also concerned with waste water as a potential source of recharge.

As regards this last I will only say that conditions can, or can foreseeably, be such thet the full requirements of a particular scheme can only be met by a considerable degree of "recycling" of used water. The subject that I have chosen for this paper is that of intentionally leaking, or permeable dams. They are sometimes called detention dams as opposed to retention dams, the inference being that detention implies short-term storage: they aice also called recharge dams. All the descriptions are valid. The concept hass the advantage of intrinsiccheapness. It also has the advantage of flexibility in use: e.g. it can be used for direct flood irrigation or for recharge (of pumped aquifers) or botin.

## 2. RELEVANCi TO TANZANIA

liuch of tlarzania is semi-arid. These conditions are on the one hard aggravated by low latitude and on the other are somewhat mitigated by fairly nigh altitudes. The conditions are inwever, as rar as climate is concerned, fairly characteristic of semi-arid tropics: high evapo-transpiration; high macimum temperatures; high diurnal range of temperature; pronounced seasonality of raintali (often bi-modal); rainfall characterised by high intensities, iigh totals for single storms, short duration of individual storms and high seasonal and areal variability.
2.1. Under sucn conditions the run-oif tiat results irom rainfall is almost always more or less ilashy in character and often with high peak discharges. I am only concerned in this paper with areas, such as ior instance parte of the jerengeti, where torrent beds are dry except immediately after ilood-producing rain. The hydrograph of a typical flood from evea a small catchnent of subcatchment (of the order of say 500 sq . km. are.) is seldom the
product of rainfall over the .hole of such catchment or sub-catchment; it is more likely to be the result of a single storm system (eenerally moving) of waich only a part may cover the catcrment in question or of waicin tie whole may only cover a part of tie catchment. The shape of the hydrograph under such corditions is estraordinarily constant as between one part of the world and anoticr, particularly as regards the time base or duration. The run-off from larger catcmments tends to take a more complex form since in efiect the hydrographs of various individual storms are superimposed on each other with various lag times. The overall efrect remains however much the same, with ingh combined discharges of relatively short duration or maybe a fairly quick succession of flood peaks at the outlet of the cotchment. The outlet of the catchment for present purposes is tie point under study at whicil it is proposed to conserve water for mural water use.

## 3. PEIRABLE DAMS

The basic intention behind a permeable dam or detention dam is to convert highly variable flood discharges into long-term flow of low variability (generally a combination of surface and subsurface flow) with the smallest and cheapest structure practicable The conversion is acinieved by:
(a) Allowing water impounded behind the dam to leak safely through it and under it (:hicn requires that there should be permeable river-bed alluvium) and
(b) By using either a permanently open draft pipe or conduit, or one with a valve or penstock, to discharge water at predetermined rates depending on the head (i.e. maximum at full supply level, minimum at the take-off level) to direct floodirrigation use or for recharge of an aquifer whose top surface is at a lower level.

Very often the aquifer is the same rivei bed alluvium, downstream ol the dam, and ir tnis is of not very great capacity complete absorption of outilow for recharge may require several kilometres.

## 4. CHOICE OH UIZEMTC.

Detention oí all, or a predetermined proportion of, discharges at the outlet would require a very much larger capacity and larger dam structure than would be required for detention of all, or the same predetermined proportion of, discharged at each subcatchment outlets. But aswuming that the main outlet site and sub-catchment outlet sites have approximatcly similar snapes as regards longitudinal slope, side slopes, propoition of widtn of channel to height of dam (i.e. much narrower at sub-oætchment sites) and form oi upstream basin, the same capacity as is achieved by one dam of height $H$ at the main outlet can be acaieved by 8 dams of height $\frac{5}{2}$ at sub-catcnment outlets.

$$
\text { Hor capacity \& height }{ }^{3} \text { and } \frac{H^{3}}{\left(\frac{H}{2}\right) 3}=8 .
$$

The ratio of $1: 2$ for heigrts is cnosen for illustration only. Since the volune of material in any earth bank is, in practice

and when account is taken of berms and of some adaitional top width and free board in the case of aigher banks, ajproximately proportioned to $\mathrm{H} \boldsymbol{j}$ it follovis thet the volume or material in multiple sub-catciment detention structuies would be approximately the same as tirit in a large structure at the main outlet.

## 

However there are cestain very great advantages, sone more obvious than others, in using multiple low dams. They may be grouped under tile headings of hydrology, hydraulics and construction:-

### 5.1. Hydrology

Provided that reliable rainfall data are available, particularly as regards intemsity/duration, daily depths, and tieir distribution in time and provided that some (probably short-term) related run-off data are either available or are made available during a preliminary phase 0 a water supply project, it is not difficult to determine the approximate thalweg length of a sub-catchment (for length is more important than area) for which the mainmum probable flood event would be that due to a single storm. This is not necessarily a storm covering the whole of the sub-catchment since the durations critical for shorter thalweg lengths are associated with higher intensities of raintall. The long-term flood regime of such a sub-catchment is generally easier to forecast with less dependence on subjective assumptions or onlong-term flood records than that of the main catchment would be.

In studying rainfall and its related run-off'tie establishment of criteria we are searcing to quantify such concepts as initial loss, surface detention storage, infiltration rate and so on which are often without much eiror treated as constants for i given catchment although not in fact so. Both initial loss and infiltration räte, however assessed, so diminish rainfall available for flood generation (rainfall ecess) that an increase of rainiall intensity from $i \mathrm{~mm}$ to ( $i+i$ ) mm may double the peak discharge resulting.

The outflon resime and its effect on available storage in similar downstream structures is gencrally of little more signilicance hydrologically than low base flow even if overall cost effectiveness requires detencion of only a pait of available flows (atter maling allowance for designed outflows) with some occasional substantial spillway discinarges. The routing of floods through storage for arriving at economical and effective combinitions oir stoiuge and spillway capacity is mucn simplified in the case of careت̈ully selected sub-catchments.

### 5.2. Hydraulics

There is iniratly the question of flow tirough and under the dam determined normally by the flovinet metiods originally developed in India for dams and barrees on permeable foundations. inese metiods although neat und eínective are considerably dependent on assumptions maue as to the degree of conipactness of relatively coarse material in the dam itselr. :hile the use of under-drinage or toe driinage can elimiactu fmost all risk tiat e.cessive seepage
may cause ilotation of paiticles of the dan material (piping) the risk nevertheless remains. In the $c=s \in$ oi a small dam the construction of a downstream berm to increase the flow path can be quickly and fairly cheaply done and is a permanent cure. Whe larger the dam tie longur this operation would take and time might be iruportint. $\dot{A}$ large penstock controlled outlet ior use in emergency is advisable if toe dan is just upstream of a settlement.

Secondly there is the question of the drait pipe which I perfer to visualise as permanently open without valve or penstock. The selection of the size of this is not very easy, the main problem being that of limiting tne velocity of $\hat{\text { Ilow }}$ in the pipe. This requires carefulconsideration of nead. As part of tris question tiece is also that of siltation: it is recomended that the designer accept an amount of dead storage wich represents the estimeted amount of siltation in a given number of years. This may be at as much as half the height oir the dam wiile representing only some $10 \%$ - $15 \%$ of its volume. It is recommended that the draft pipe be set horzontal at this level with $\alpha$ simple screened intake structure. It siould be sited at a distance upstream from the dam, and at one side of the impounded basing such that tine velocity in the pipe is within the safe limit for the material used. This will still normally be a fairly considerable velocity and it is therefore recommended that the horizontal draft pipe be led to a small stilling pond downstream of the dam (and on the flank of the valley) from wiich the mater can be conveyed to the river bed by an open channel in cascade.

### 5.3. Construction

On the one hand a large dam enables equipment to be used for a longer period in one plice while possibly involving longer leads: on the other hand the multiple small dams nean shortar periods of use between moves but possibly shorter lecds. Dams should preferably not all be constructed simultaneously unless completion before the flood season can be guaranteed since it is essential that upstreim dams be completed first if the scheme is to operate as planned.

### 5.4. Materials

Selection of the material to place in the dam requires considerable juugeruent. Clay is out of the questidn since it is impermeable: a predominantly silty material is proqe ío "piping" and therefore requires more accurate illownet calculations and very careful design of "inverted rilters" at underdrains; neither of these factors justifics rejecting silt but they both require thut the design be undertaken by experienced engineers. A sand/silt mix is generally easy to deal riith but, even sand alone cin be usedif very fine. fowever sund mais the disjadantage that the great permeability requires a longur flow patnín therefore wider suction and greater volume. At tie sume time sand unless very fine and rounded can be relatively difiicult to load fast into scrapers wile being easiur tan some materials, to compact. all these constiuction inctorey ais other not mentioned, have to be taken into account men dosignines.


## 6. OPGLATIUN

The end product of a system ol permeable dams is that iloods generi.ted above vech unit are temporerily sifored (and pornapis partially spilled) by that unit ainch so long sis there is water in the unit, vill be, disciargine botil through the drait pipe and underground. Yhreatic levels in tie river beds vill rise and in certain circumstances .,ustained ilow may resilt all thouga the rainy season. Fireatic water may be extracted by pumping, from wells or getleries, any large volumes oir aquifer tout midy be identified by geophysical soundings: naturally tre wells must be near where the weter is required. wuch pumped parts oi the aquifer will act as cirainage sumps for both surfece and underground flow. In the case of sustainé ilow it may ue most erisective to lead this ofi at suitable points ior ifrigution or it my be alloned to flow unchecked to those drinage sumps. Extriction ol groundvater can be done in severil ways - shallow bore holes, pumped galleries, gravity-ilow galeries etc. depending on the conditions. It is worth noting that these detention structures perform a valuable flood control task as vell: inaeed one coula slmost say that they are bisic floou control and utilisatión structures. Although I have referred specificilly to torrents that are normally dry it is not difficult to modily tik principle wo us to apply it to small sustained seasonal streams. In these cases the main benefit is irom increased surface low ior irrigation or other uses. Any recharge of groundwater in these circuistances cin generally only be cicinieved by diverting regulated surface to potential groundwater reservoirs away Irom the river.

## 7. CONCLUSION

irhe foregoing describes a cheap type of earth dam that avoids the cost und difficulties of an impermeable core and deep cut-off. Any mobile earth-inoving equipment can be used and skilled labour and rigid meterials are required only for itic spillway, draft pipe and, in certain circumstances, for tit toe drain. Foints to weitch in design are:- thu estimated trensmissibility of the dam material ind the measured transmissibility of tie undisturbed material below it and their use in construtcting a flow net; the risk of slips in tile upstream face due to relatively rapid drawndown if a silty material is used. Hosever the most important point of all is to get the hydrology right before design stextsi this method o. construction, properly designed ana cirried out, cin control and utiline irregularly occurrine iloods by combined use of short-term surituce storage end long-tein ground stoisge.
IV. DESIGIAND IIPLEMENTATIOH


By André Harlaut
SWECO-VBB, Stockholm, Sweden

1. General

The final objectives of any public water supply system are:-
i
to supply sare and wholesone water,
to supply water in acequate quantity,
to make water readily available.
From the purely public health point of view there is no doubt that the above objectives should be fuliilled also for rural water supplies. Unfortunately full satisfactory water supply systems are expensive and beyond the financial means of most rural water supply programaes. Alternative solutions must be compromises between econcmic realities and public health necessities.

However, the search for economical solutions which will serve a maximum of consumers within a given finanoial frame should not result in the implementation of inadecuate systems which in the long run do not improve the public health conditions and may thus be even more uneconomical than wore elaborate and expensive systems. The implenentation of limited systers is justified only as a first step towards a more complete solution. The possibility of extending and inproving the systems in the future should always be borne in mind.

A single water supply system whitch could apply to the whole country does not exist. The types of water resources available and the water requirements differ widely and, consequently, a great variety in conception and design of water supplies is required.

The rural population is very often scattered over large areas or is brouped in small communities. Concentration is being encouraged by the development of Cormunity Villages but the process of concentration will most probably be slow and for many years to come a considerable part of the rural population will remain scattered.

Por villases and comunities where an increasing concentration and a future development can be foreseen, provision should be made, wherever possible, for the ultimate distribution of sate water to points easily accessiole by the majority of the people. The distribution layout and the general design should iecilitave future extensions and future individual house connections. the first step towards developing a more compiehensive water syster. could be a piped supply witii linited distribution facilities but with tine main structures designed so that future extensions could be easily carried out.

For areas with scatterec populations it is not generally possible to provide the same distribution facilities as for comunities. An improvement of the water situation can be obtaincd by creating
safe and wiolesome water sources or by improving existing water sources. Wells, boreholes or water points with anple protection against pollution and equipped with mechanicel lifting devices should at many places be a satisfactory solution. In most cases it would not $\mathfrak{b e}$ feasible to provide distribution facilities.

## 2. Design Yeriod

The period of operation for which a new water supply system should be designed is governed by a number of considerations, the most important of which are the anticipated growth of the population and water consumption, the durability oi meterials from which the component parts oit the works are to be constructed and financial rates of interest and amortization.

Theoreticilly it should be necessary to have a reliable prognosis of the anticipated water consumption for a period longer than the most durable part of the works and, considering all the above mentioned factors, to search for each component part the most ecoromical dimension.

However, since unexpected alterations in the prognosis made must alvays be anticipated, it is usually economical and reasonable to limit the design period ior a water supply system to the period for which the prognosis can be considered as reasonably reliable. The generil possibility to extend the works in the future should, however, alvays be borne in mind.

For urban conditions it is usually considered as economical and reasonable to limit the desisn period oí a water supply system to 30 to 40 years. For mecianical equipment such as pumps and motors which have a high rate of depreciation and for those parts of the works that car easily be extended or doubled the design period may be 15 to 20 years or even less.
ior rural water supplies there is no agreement/designers $\angle$ between as to a suitable design period, but it is advisable to consider wherever possible an overall design period of at least 20 years. The system should be planned for the final stage at the end of the 20-years period and the possibility of development in stages and the necessity of replacing certain items of equipment at certain intervals should always be considered. The general possibility of extending and improving the system in tho far future should always be borne in mind.
3. Nuraber of Vater Consumors to be Berved

In order to arrive at an estimate of the number of water consumers to be expected throughout the whole design period it is common practice to consider the changes which have taken place in the past. In rurcil conditions, however, even the deterinination of the present population is in itself a difficuli task, and attempts to forecast the future population generally encounter great difficulties. The designer rust consequently excreise considerable judgenent in predicting the future development.

## 4. Water Consumption per Cicipita

In rural weter supplics tie consumurs are mainly the domestic consumers, the institutions.such as schools and dispensaries and

tiie livestock. In certain cases irrigation may be combined with domestic witer supply but in this case special studies are required which are not considered in this paper. Generally there are very few reliable date regarding the present water consumption in rural areas. from the few rescarch studies available the rollowing observations cin be mad:-

- The avelage daily consumption of water provided from public tap seems to be less than 5 gallons ( 23 litres) per capita per day.
- The average daily consumption of water provided through house connections is considerably higher but dows not seem to exceed 20 gillons ( 91 litres) per capita per day.

Generally it is considered that, includireg leakage and waste, an averıge of 10 gallons ( 45 litres) per capita per day is required for domestic purposes, i.v. drinking, cooking, ablution and laundry and that the provision of 25 gallons (about 110 litres) per cepite per day is wost desirable in hot countries.

Bince the construction costs and the operation costs of water supplies are dependent on trie amount of water provided it will be necessery to meach a compromise and adapt the final gocl of the rural weter development to the financial means available. Ïowever, since liaiting the witer consumption is always connected with technical and social disadvantages it is necessary to be. prudent in this matter and alvays nake provisions for an unespectedly rapid grovith of the water demand. As a first approximation to be confirmed by study uf the real conditions it seems reasonable to assume that when weter is available in sufficient anount the
water consumption including loakage sad waste grows as follows:-

Average daily consumption per capiti

$$
\begin{array}{ccc}
\text { lst yeir } & 10^{\text {th }} \text { year } & 20 \text { th }_{\text {year }} \\
\text { litres gallons } & \text { litres gallons litres gallons }
\end{array}
$$

Domestic Consumpion
In densely populated areus with pipea supplies anc easily accessibie public taps

Ditto vita house connection

- In zpansely popuiated areas without distribution facilities or with poor distribution facilities

Livestock Consumption (per livestock urit)

30	5	45	10	70	15	40
90	20	135	30	180	4	
15	3	18	4	23	5	
23	5	23	5	23	5	

I'akin into account local varintions of conditions higher or lower values should be considerud in certain areas. for the livestock hither values should apply if ard whore the future plans imude tine implementation of orginized dairius.

## 5. Water jource

Before installing a water sup:ly system, investigations of the available watei sources are an important part of the design. It is necesssry before deciding to invest considerable sums in systems such as extensive piped supplies, winch in themselves attract a population concentration uround thi nci facilities, to nake sure that the water sources civailable will oe suificient not only in the near future, but also in tile long run. the water source finally selected should in any case be capable of meeting the water demand expected after 20 years, and further reserves should exist for considerable extension if required after the considered 20 years period.

## 6. Pump Capacity

There is little information avsilable sis regards the durability of pumps and motors in rural conditions. It seens, however, reasonable to provide a pumping capacity suficicient to satisíy the expected water demand after 5-10 years and to make provisions for installition of larger pumps ween required.

It is generally recommenaed to provide ior a certain emergency capacity, However, for economicil recsons provisior of such emergency reserves shoula always be weighed against the possibilities of obtaining water from other sources during emergency periods. For most supplies tae grovision of two pump units tofether capable of delivering the duily demend with an effective pumpińs time of $12-16$ hours per day should provide sufficient emergency reserve. The capacity of each pump unit should be chosen in each particular cise with due consideration to the characteristic curves for pumps and waier mains.

## 7. B̈torage Capacity

Generslly tine cost of storaye tanks is an important part of the construction costs. Storage tanks are usually provided in pumped supply systems in order to maintain a necessary balancing effect as well as a certain emergency resarve. Considering the construction costs involved, it is advisable to investigate the necessary storage capacioy for ach particular case taxing into account the idvantages of a reserve in relation to the investment cost. Por $\sim$ pumped supply system equipped with two pumps as described above the need for reserve is less than for a punped supply irom one single borehole with one single pump. In many cases it may be coononically and technically advantageous to construct a small tank in a frirst phase and to ada a new tank in che future when tre water consumption his increased. Such possibility of construction in phuses should be considered in eack particular case. For supplies by gravity from ponds or strecms it may not be necessary in many cases to provide any storade capacity in the disiribution system.

As a gentral indication it seembadisable to detormine the storage capacity to be inctalled in a iixst phase on the basis of the water consumption expected after 5-10 yeirs with due consideration given to the future posijible extensions.


The volume required for balancing the daily variations in consumption can be calculated ill the expected variations aile known. For urban conditions this volume is usually $20-30 \%$ of the daily consumption. Hovevery if it is accepted ior econonical rebsons that shortage of water may occur during sinort periodis or the day, the said volume could be lesis.

The need iur reserve will viry from project to project as mentioned above, but the storage copacity should always be sufiicient to meet the water demend during the snort interruptions of operation which way be required for daily or weekly routine maintenance. It does not seem economical to provide reserve for major repairs wnich, il tiey cannot be made within $\dot{\text { fi few }}$ hours, will probably nced several days of attendance. Emergency of tiris kind snould be met by other means and pirincipally by rationelization and increasen efiiciency of the maintenence routines.

Ground reservoirs are much cheaper tran elevated tanks and should be preferred when possible. 'The storafe cepacity could be chosen somewhat larger for ground reservoirs than for elevated tanks.

It must be borne in mind whan choosing the storige capacity that the operation of the water supply system is more complicated wen the reservoir volume is small and if one wants to avoid waste and water shortage.

## 8. Pipework and Distribtuin Ficilities

Depending on tine lieyout of tre particulsr scheme and on the relutive location of the water source, storage tank and distribution points, tat low to be triken into considerition. in dimensioning the pipes will vary between a value equal to the puap or intake low und a value equal to the peak consumption.

It is thus importarat to design tne general layout so tiat a minimum cost is obtained for the wnole or tie supply system. a development of tie water mains and networks in pheises whould always be considered.

In most cases the pipework and distribution system are the most costly components of the water supplies. If and where a reduction of the initial constiuction cost is required, it seems adivisable io consider in the first place fireduction of the distribution rocilitiea providing thot due consideration is siven to posijule iutuie exterimions. Buch a reduction vill involve a certain amount of inconvenience tor the ponilation servcu, and eill in itself result in a lover consumption of whet. The risk ci tiae consumers turning away irom the supply tovarus easier but perheips unsater water sources siould always be borne in mind.

As a eeneral rule the dimensione ou the pipes siould be calculated for the flow expected aiter lo-20 years. Then punping is involved it is usual to determiat an conomical diameter for tise pipes by taking into cunsiderataon the bainace of the construction costs Ior tie pipes aswinst the jpetation costs ior the pumping.

## 9. Dems and Chircos

Very often dams and charcos are not provided with distribution facilities otiler than hand pumps or intake wells in t.ee immediate vicinity of tiie embankment. Considering the rather high costs involved, the implementation of dins and charcos without piped distiibution systems should always be based on a serious investigation of the real possibilities ior the population surroundine the site to obtain water frum the supply.

## 10. Otner ieatures

Considering the distribution of a population where a large part of the rural population is scattered and considering also the costs involved in the implementation of piped supplies, it is necessary to provide, in the water development proframes, ior simple and cheap torms of water supply tait could be installed in areas where ine construction costs of well engineered piped supplies would be prohioitive. In this connection, it seems advicable to initiate special studies in order to examine and develop possible innovations. In the first place two objects seem wortiny of special attention:-

1. The development or design and construction metaods for low cost shallow wells with high hygienic stindard and equipped with hand pumps preierably os locil fabrication.
2. The development oristandard types of small rainwater catchments with prefabricated or locally made tanks for areas where groundwater is not available. The possible use plastic material should be investigated.

## 11. Water 'ieatment

The question of the water quality and the necessity or treatment is not discussed in this paper but should aldays be subject to initial examination.

Note:- The present paper is based on taperience from surveys and studies on rural water supplies carrid out by
inECO - VBB, Consultinç Bńbineers und architects, Stockholm, Sweden in Tanzaniu and other countries.

by<br>Gordon H. Bateman<br>Department of Applied Physical Science University of Rewding

## IWTRODUCTION

Water supply in the rursl areas of developing countries is a subject thet for too lung has been seriuusly neglectud, and it is heartening that interest in East africa has now reached the stage where a majur conferunce on the subject is being held.

In considering rural whter supplies it is interesting to look at the way in which the whole subject of development in the developing countries hes been approached in the past. Cunsider the cuuntry depicted in Fig. 1, which could be almast any developing country. It has the natural resources shown in the diagram. The traditional approach to development would be to send a team out to review and advise on how to develop the resources of the country to the most ecunumic advantage, i.e. to reduce large-scale imports ana expand large-scale exports - the factors which are basically involved in the econoay of the country in relationto other countries. The team identifies the resources in Fig. 1. The river then provides a dam site, which leads to hydro-electric power and irrigation. The puwer means the mineral deposits can be readily exploited and industry developed (rig. 2).

From the capital, and from the impat/export balance sheet of the country, all looks well. But for the vest majarity of the people of the country, who are living in the greater part oif the country (Fig. 3) life is just the sane. They subsist on rain-fed agriculture, they have no large rivers, no mineral deposits, no naturnl resources of note: hence the survey team mentiuned above made no recomnendations for the development of their part of the country. But they are people and they must be involved in development just as much as the others if the country in the longer term is to truly develop. If they cre nut involvud in development, they will migrate to the industrialised aress and overload them - there are plenty of slums and shanty towns in the world to bese witness tif this fact. The only logical way to reduce this migration is to develop the rural areas sufficiently so thit ill benefit, thus removing much of the incentive to gu tu the big cities.

How can these areas be developed? Briefly, the eppruach should be to start with what the pesple alrcedy mave, with whe they are doing and to build un it atop by step. This is the opproach developed by the Intermediate rechnology Development Group end the recder is referrud to their various publiceti'shs fur a more detailed study uf it.

## The Neods fur Water

In the traditional approceh to develupaent uutlinud above, the attitude was, in the cise of witer, "Here is watery a large river, what cen wa do with it?" and the answer was "Build a daw, generate electricity and irrigate cropsi'. In the rain-fed areas the approach should rather be, "flere is a nued fur water, huw are we to neet it?i, i.e. stirt with a definite nced..

Whot are the needs with regora tu water? Cunsidur a typical individual household in the arua. Want are the sctusl water needs at the home? Water is required for drinkjng, couking, wishing the pots, and for bathing and washing clothes. Lhe latter two uses cululd be performed away from the home, though the preference is most definitely for them tu bo carried out at the huuse. ihe point oil cunsumption is in the house itsely and ideally the woter should be supplied at the house. This is the first set of needs and it applies just as much in every house in the rural areas as it does in tine big cities. What can be dune to meet the need?

The second case is that of a farmstead: agoin there is a need for water at the huuse for dumestic uses, but in addition there is a need fur water for the animls for irrigating a vegatable kitchen garden (not for field crops as it is a rain-fed agriculture). What can be done for this set of needs?

Thirdly, cunsider a cumplete village together with its lands around the village. In the village itself there are all the houses providing points of consumptiun fur domestic water. There are all the little vegetable gardens, all the animals buth near the house (especially chickens and goats) and out on the pasture land, and also water for the animals and men working on the arable land. How can all these needs be met with a supply of weter right at the point of cunsumptiung so that the traditional and very custly system ui corrying water can be eliminated?

## Possible Sources of water

In seeking possible sources of water $I$ think it is ustiul to consider the hydrolugical cycle, wich $I$ heve depicted in Fif. 4. There are to my mind three majur points at which water cin be extracted from the natural cycle and put to man's uses:
(a) surface water
(b) gruund water
(c) rainwater.

The use of surface water to precisely mect the needs listed above is custly - because those needs not only indicate a quantity of water, nor only a quality of water but also a lochtion - the paint of consumption to which ur water supply scheme musty deliver the water. The ubtaining of surfaces water will perhaps include $a$ dam or weir, as well as a distribution system of pipes and taps, and in places where gravity feed is not possible, puaps or hydraulic rais are necessary. It is technically possible to provide a piped water supply to almost anywhere - but the ecunomic factors mat it impussible.

Gruund water may be a pussibility, although there ire plenty of places wheru groundweter is not present. If shalluw witer is available then thore is a good chance thi.t people are already using it - I recall the weny hand-dug wells I saw in Irdia. Deep groundwater is murc difficult, of cuurse, and its tapping is an expensive operatiun, including the inhurent risks thint nut every" burehole will be a success giving a guod yeld. Iheid is the need fur of pump, which on deep borehules will almost certainly nued to be power operated. Also, must borenules give surficient water to supply cll the nueds of a considerable arua (which they wust to mike tnem financially worthwhile) - and the: entails an cxpensive distributiun systoms as previously mentionud. sven with sh:lluw welle it is quite likely that each well will have sufficiont yield for = large number of househulds.


Fin. 1. A Se! Ne.nnas somerres


Firs. 2. jevolomont of the haturg Rescuroes


Thus buth surface water aind gruindwater, except perhaps very shalluw groundwater, generally have the disadvantages uf requiring an expensive strucuure tu obtain the waterg and of haing $a$ lot of water in une place which then needs distributing to the points of cunsumptiun, i.e. the availobility is pour.

However, the third suurce of water is rither different, obviuusly su in its availability. The arer is; bused on rain-fed agriculture, so there is rainfall everywhere, j.e. at every point of consumption. All thit is required theretore is a means of catching and storing the water. The fact that 1 inch of rain falling on $1 f^{2}{ }^{2}$ gives abuut 0.5 gallons means thiut even with why a modest rainfall of 10 inches and a catchment arec of $100 \mathrm{ft}^{2}$, the yield is about 500 gallons, assuming almost 100\% run-off. Loreer cotchment areas will give greater yields. Rainwater has an advantage from a purity point of view as it is pure until it hits the ground (wo are not concerned here with industrial areas and attendant air dollution), so if our catchment and storage system is cunstructed sd as to keep the water clean there will be no need for expensive purification plant for the domestic water. (I shall return later to the imatter of purification). Indeed rainwater catchment and storage is an dncient system of water supply, but it has taken un a completely new look with the advent of modern impervious membranes, plastics, resins; etc.

I was pleased to see thnt rainwater catehment tanks appeared in the Workshop on Rural Weter Supplies held in Dar es Salaam in 1969, in a paper by Barker (1), where the use of butyl rubber membranes was described. While this is a perfectly guod method of construction, it is very expensive and I will briefly outlined a metiod which is far cheaper and in sme respects technically superior.

The Mud/Eulythene/Sousage Methud of Cunstructing Rainwater Catchment Tanks

This particulax design was first develuped in Kurdutin fruvince of the Sudian by lifi. Ifnides, Project Fanager ff an $\mathrm{i} . \mathrm{A} 0$. Land and Fater Use Survey fruject. It has since been fised in Butswana, and more recently in Swaziland.

The design is fully explained in the report on the Introduction of Rainwater Catcheent ranks and Micru-Irrigation to Botswana (2). Briefly the method is to dis a hole to the copruximate size required (e.g. a lo,000 galluns tank wight be a rectanular hole $20 f t x$ loft at the surface, sluping to l6ft x l2it at the baitom, with a depth of $6.5 f t)$. The systen of lining is to put in the temk a series of layors of mud and polythene interspersed with "suasages". The "sausages" are layflet polythene tubing which is 4 ur 4.5 inches wide, made of 150 gauge polythenc. The tubing is cut into lengths of about 18 inches and filled either with dry sand (sand sausages) or a cement-sand mix (cement gausages). The cement sausages are filled with a dry fiix of 15 parts of $s$ nd un tine of cerent (compered with 3 or 4 io 1 for ordinery coment work). Knots are tied at both ends and it essential thit the sand is cumplately dry and the mix is well tamped down in the sausage fur full compaction. In the case of the cement sausages, swall holes re pierced olong une side oit the sausage, it is laid holes duwn in sbout half an inch of water just long enough to absurb capillary water, and then leic in positiun. In this way only just enough water to cure the ceraent is used and nearly $100 \%$ coupaction is achieved. It is fur this reason, together with the mix being enclused in pulythene and therefore in ideal curing conditiuns that such a weak ceinent-sand mix can be used.

The order of the various layers in the lining is shopn in Fig. 5. It can be seen that the cenent sausages pruvide aprotective revetment. This lining wis used in the tonks built in Botemana for irrigating vegetables, and the cost of naturials on site in Butswana in 1967 was £12.50 sterling ior a 10,000 gellon tank. There were no labuur costs because theschoul children (even the eight yeenr old ones) built it. The process is made up or a series o very repetative operatiuns which can be quickly learnt. Clearly a 10,000 Gallun tank is a very small une, in the Sudan tanks up to 0.5 million gallons were built: the larger tanks nave a lower ritio of lining tu vodunie stored, but there will be limits un size impused by other racturs, ${ }^{\text {e.g. }}$. availability, ior dunestic uses, a sanc filter system can be built as shown in Fis. 6. The "beehives" are also made frun cement sausages reinforced with wire pins, i.e. they are reinfurmced cuncrete structures which require no external shuttering.

However, much further work needs to be wone and other types uf lining need tu be evulved. At present I am working in Ghana, where polythene is over twice the price of pulythene in southern Africa - making the exercise nut such an attractive une.

Table 1 gives the approximate quantities of materials required for a 10,000 gellun tank (drinking woter type). These figures are based on the experience or my culleague vaul foody.

## Other Factors to Consider

To leave the details of these particular desings and return to my earlier argument on the use of rainwater compared with uther sources of water, it shoula be realised thet the cost per unit volume of water is greater for catchment tanhs then for other. sources, e.g. dams and borenoles. Upton found this when he made an economic appraisal uf irrigation in Botswane (3). Such conclusiuns are typical of many facets of life - the small-scole itel costo more per unit than the large-scale. Huwever, there is the question of the availability tu consicer - whether or nut the witer is aviilable exactly at tre puints of cunsumption it is tu serve. In tine case of rainwater catchment tanks it is nearly always technicalily possible to build a tark just where the water is required. Such a statement connut be made of dans and bureholes. Lurthur, catchment, tanks lend themelves tu seli-help (indeed they wuld be must unattractive financially if they were built with paid labur) - and it is becoming increasingly recugnised that the unly way the devuluping cuuntries will develup is by helping themselves, by using lucil materials as much as pussible and by cipitalising their labuur.

I have already mentioned the matter $u$ w wher purification in relation tu rainwater. However, there is a wore general point thot should be made. Ihere is a schuol ol thought which takes the attitude th.t is any improvenent in drinking woter supplies is to be wade, the systur must provide pure water, up to forld fealth Organisation stendards. Mnerc is sulae strengtn in this arcument when applied $t$, a water suprily scheme which will serve severol hundreds if nut thousconds of people - for if an infection like typhoid or cholera dia entur the systew then a large numbur of people wuld be affected. But when tiken litcrolly the unrucsunableness oi the arguement is demunstreted by the ccoe of $\therefore$ villuge in Ghane tho village people hove two suurcus of weter. - onv is a very lom yielding undergruund seep which cuntains guinu worn ariungst miny uthur infectiuns. The uthei is $\therefore$ small duc-out when 1 would inagine ironi





the colour and from the numburs uf small worius and larvae in it tu be worse than the seep. On $u$ ne occasion a water supply man visited the village, tested the weter 1 row ine twu suarces, and declared the watex unfit ifor human consuption. Fe tren told the peuple nut to drink it, and departed - making nu further atterapt t. impruve the
 that the human body hias unfortunctely the ability tu produce pangs uf thirst, and that it is jusi a litile unreasonsble to uxpect pejple to live iur years and nut to drink from their sources of water (their only sources) beciuse tile water his been declaied unfit for humen consureption.

The water frum the drinking water design ui catchoent tank I have described abuve is ust pure, but at least it is reasonably clean and is a big step forward. ife all hope that one day everyone will have pure water, but that day will nut cume overnight, anu in urder that the greatest number might benefit irju sume improvement intermediate steps are necessary.

However, I du nut wish tu lecve tiue inpression that I cunsider rainwater catchment and stor.oge as the only pussible way uf providing water - it is nut. But it is a bust neglected subject, une that almost never figures in the standard engineering texts.

## The iiter ture Available

This in fact is what is required - a text of ideas and methods on what Ionides calls the "ireory and fractice of Village dater lechnulugiesi. There are a number of references here and there on this level of technulugy, but they are rather few and far between. At Intermediate lechnulogy Devel.jpueni Gruup I carried uut a literituru reviev on luw-cust whter technulugies, which was published as o Bibliograohy (4) aid a few idei.s and suurces of infurmation came tu light. Vulunteers fur Interni.tiunal iecinnical Assistance, Nev York, have published a number of ideasy principaliy in the Village Pechnulugy Handbouk (5). The Comiunity iater Supply Research and Developwent frugramie ji. .H.O. have groduced two backgaund pepers, "The Village l'ank as a source uf Drinkine vater" (6) and "'Biolugical' ur 'Sluw Sand' Filters' (7). The iirst of these in particular cuntains a nuruber of iueas in siuple pieces of equipuent wich cuuld be wade fairly easily in the village - trough I understend from :iry.o. thet must oi the ideas live not been sctually tried out, so far as is $k n \cdot w n$.

Variuus ideas heve been put furward fur sinple pumps - perhaps the diaphragn purip is unv thit will coie int vosue mure and more with the availability of plastics and synthotic rubbars, making the diaphragh itselu mure reliciolug mention shuuld be acde uf a specicl reprint of a series uf articlus by acjunkin and Vesilind (8) un tife subject uí practical hydriulics for the engineur. It is $2 l l$ basic material un the essentials of inydxustatics and nydrudyawics, bringing into a. cupact furmat the verisus equations for.flows in pipes and upen papers ank ideas which to verying extunt contribate to linowledge of low-cuet water technulogies heve been included in the Bibliography. Ihe overnil cunclusi n which I very dofinituly cans t: was that very little has becn recordul on the techniadus of village water supplies.

## Future iork

In associstion with Interrediate lechnolugy, further work on pumps is being dunt by a research worker at the University uf danchester Institute fi wacience and Pecimology. Desalination is a subject that is often raised as answering iany probleas, but while it


1. Barker:, P.W. (1969)
2. Anun (1969)
3. Upton, M. (1969)
4. Bateman, G.H. (1970)
5. Anon (2963)

Anun (1905)
6. Anטn (1969)
7. Anun (1970)
"Butyl Fubber Shecting in Weter Cunservation and storoge" Rurksiop in Rural water Supply. University College, Dar es Salram, Dec. 1969.
"irhe Intruduction uf Rainwater Catchment Tanks and Iicro-Irrigation to Botswana" Intormediate Technology Development Group Ita. Sept. 1969
"Irrig.tion in Botsmane: Development Study No. 5, vepartment vi AgricuItural ifounowics, University of Reading, liay 1969.
"Bibliugraphy of low-Cost Technolugiesi Intermediate Tuclnolugy Development Group Ltd. July, 1970.
"Village lechnulogy Handbuok' Vol.l U.S.A.I.D. Cominunicritions Resources Division CI - 11
"Viliage Technulugy Handbook" VuI2. U. B.A I.D. Communcations Resources Division CI - 12
"Hhe Village Tank as a ijuurce of Drinking Wateri T. H.O. Comunity Dater Supply Researcir and DevelopEent Irugraume. $\mathrm{HO} / \mathrm{CiS} / \mathrm{RD} / 69.1$
i' Biulugical' or 'Slow Sand' Filters" O.H.O. Comunity Water Supply Research ind Develepment Prusracuie. WHO/CiS/ed/70.1
8. McJunking, F.E. and Vesilind, P.A. (1968) "Practicel Hydraulics fur the Public iorks ingineeri Speciol Roprint of articless from the Public Hurks Hagazine if Sept., Oct., and Fuv. 1968, published in the later Supply and Sanitation in Developing Countries series by Int. Prugrim in Sanitary Enigrg. Design, North Corviina.

$$
\begin{array}{r}
\text { top }-20 \mathrm{ft} \times 16 \mathrm{ft} \\
\text { flour }-16 \mathrm{ft} \times 12 \mathrm{ft} \\
\text { depth }-7 \mathrm{ft}
\end{array}
$$

## Impurted baterials

```
 (i) Pulythene sheeting (150 gauge, clear)3 rulls, 6 ft wide and 100 yds long
42 Ibs.
(ii) Pulythene tubing (iLayrlat" 4 or 4.5 in widey 150 gauge, clear) 13 rulls of \(500 \mathrm{yds} 70 lbs.\).
(iii) Wire (8 gaugeg plain galvanised) 4 rolls of 100 Ibs each (apprux. 485 yds each)
400 1bs.
(iv) Cement
30 puckets (94 lbs/pucket) 2,820 lbs.
(v) Insecticide (\(50 \%\) Dielcirin powder) 3 lbs.
3 lbs.
(vi) String (meduin sized rils)
5 rolls
```

Zocaily Avoilaois Materiais
(i) Mud (free of stines, grassy etc.)
(ii) Sind (as clean as possible)

Approx. 5 tons Approx. 24 tors Labour

Tutal of apprux. 250 man-days.


# MAJI MA MAEIDDIEO VIJIJINI: <br> THE EXPERIENCE WITH RURAH SELF-HELP WATER SCHEME <br> IN LUSHOTO DISTRICT 

by<br>R.R. Matango<br>Maendeleo - Lushoto

and
D. Mayerle

IIDEP - Water Development Section

## GEIGRAL BACKGROUND

The importance of water for human needs is understood not only as an absolute necessity for life, but also because its quantity and quality make significant contributions to national development of any country. Tanzania has contrasting water-problems, ranging from arid and semi-arjid areas without any water, to areas with plenty of water: some areas have either dirty water or scattered waterpoints where women have to walk long distances to fetch it; some have very little water, in which case the women have to queue for long hours at the wells for water. Tanzania's Rural Development Policy has purposely given a high priority to rural water supply "for provision of better domestic water supplies (for health reasons), to reliease labour for other productive purposes and to allow a more efficient pattern of settiement"。

Besides the natural contrasts of water problems, there exist great imbalances between demands of water in areas where it can be made available, and the administrative resources to meet them, between the meagre arailable funds for water and the non-existance of already trained persomel to implement them in the villages. In the following pages an attempt is made to show what has been done and is being yardsticks for economic growth, the experiences with water schemes in Lushoto may not apply to other districts of this country but it shows what people have managed to do with little funds, technicians and craftsmen and the problems encountered. One should in mind that an important aim of providing water in the rural areas is to serve where possible as a catolyst for Rural Development, besides being an economic investrent and a social service.

## Planning and Implementation

The Ministry of Regional Administration and Itural Development released ths. 5495/00 for tio sheillow wells under Rural Self-Help schemes in Iushoto District, at the same time provided one technician and one lorry to form a Mobile Field Unit for Iushoto.

Funds were released and transfered to the Regional Office in Tanga. The area to stort woxk was picked out'of Lushoto District Second Five Year Developraent Plan。 Lushoto Division (Ubiri) was one of the areas indicated for starting mural water supply in 1970/71 - if funds ano available. Ubiri was therefore selected for being in the plan and nearer to the $\Lambda$ dministrative centre to people of Ubixi in the schemes was gtronsly felt, and it was realized that a self-help spirit ariong the people, we had to avoid full involvement in the lunring of the schemes. The TAru-branch Chairmen, Diwanis (councijors), and Village and Divisional Executive Officers from the wards in iushoto Jivision (Tbiri) were invited to ${ }^{\circ}$ a neeting at the Vard's Headquarters.
 and the decision wasr made, first to elect a Divisional Furat Supply Comittee, made up of 5 TANU-branch Chairmen (from 5 Ward Executive Officers (Village Executive Officers), 2 Ten Cell Leaders from each Ward, and 5 Diwanis (councillors). Secongly, 15 small committees made up of ten-cell leaders with TANU Chairmen and the Ward Executive Officers as ex-officios, to be elected by the people in each area where a schene would be started. These small comrittees had to supervise the work, and in particular to ensure that every person in ten cell units reported for duty. If person failed to do so, the committee would devise ways and means to prevent absentism and create deterrents. It was also theind duty to impress upon their people that the solution of water problems was within their own means, while Maendeleo Division could provide the technical know-how.

The Divisional Committee had the power to allocate the materials to these water schemes and to withdraw or transfer the samel materials for schemes in which people are not willing to participate, and to re-allocate the materials to other schems where people are prepared to work*.

Another duty for this committee is the allocation of materials to water projects, and to serve as people's représentative in the whole operation.

There was a feelings to involve TANU at a higher level than the bronch Chairmen. Two members of parliament were involved as aatalysts; one in laying a foundation stone and doing the actual work for some days together with the people. A cinema-van came from Maendeleo Regional Office for a dual-purpose in reinforcing the campaign to complete the water schemes; firstly, by showing films on the spread of waterborne diseases and effects of drinking dirty water, and secondly, it showed films on self-help work done in West African countries, and the effect of such projects on rural life.

The Mobile Training Unit under the District (MTU) leader, is collaboration with a district fealth Officer, followed in the footsteps of the film-van and conducted lessons on the need for clean water foe domestic supplies, waterbome diseases, their prevention and cure. While the work was in progress, Maendeleo Staff served the schenes in advisory capacity (Washauri), except for technical organisation and supervision with the people badly needed. In some schemes there was good response from the people, in others a very poor one. $\Lambda$ number of reasons for these tendencies were observed, in areas where people tumed out in great numbers to work, the balozis were capable to organise the people and there was little friction amongst them. In areas where there was a poor response, we observed that people felt it was the duty of Maendeleo Bivision to construct the water schemes for them and expected to be paid some wages they turned up for duty. Nlso there was little co-operation among the balozis.

Besides these setbacks, there were other factors which ${ }^{1}$ necessitated the progress in these schemes to be slow. Whên the work started, for instance, people were fasting (Ramadiani), and wore at the same tine expected to work on their shambas. There is a fixed timetable for self-help work in the Division (twice a week). Water schemss, therefore, increased the niluber of days these people have to work on self-help and so deprived them of part of their free tine.

* In fact, up to now, it has occurred only once, when the Comittee withdrew sand, aggregated and conent from one scheme and re-allocated ther to another for failing to comply with the requirements.

In addition, there are other seious problens which have brought some of the schemes to a complete halt. The technical advlce available could not serve every scheme at the time it was needed.

There was only one technician whose movements were limited partly by lacking transport to reach the schemes or to deliver the materials, and sometimes was necessary to spend two to three days with one scheme before entrusting the work to the local craftsmen. Materials could not reach the schemes in time, because they had to be purchased in Tanga or Dar es Salam, or because there were no transport facilities for the affected schemes. Lack of some tools like orga bits or bunkamdrillers made the outcome of borehole-schemes uncertain. In some cases people thought there was water underground, but after digging ten feet they did not find water; such schemes are lagging behind now.

Despite all these difficulties there is progress. Three wells are now complete (see Appendix 1) and three more are nearing completion. More precautions are being taken to avoid problems to the villagers, particularly delays of materials and technical advice. Maendeleo Division has approached IIDEP (Iushoto Integrated. Development Project, Soni) which also has some experience on rural water supply in Funta, Mayo and M10la, with request to merge the two field units after which their services can be maximised to benefit more people than before. Already this new move has made it possible to complete Kwemlazi Water Scheme in a shorter period than was anticipated. LIDEP and Maendeleo have also agreed to share the costs in some of these schemes. It was mentioned above that the Ministry of Maendeleo had given Shs. 5495/00 for ten wells. Already this amount could not suffice even to construct ten wells (see costs in Appendix 1). To strengthen the merged field units, the Ministry has now employed 2 more technicians who have, however, to undergo an on-the-job training in this field before they can work alone in the villages.

## Opportunities and Problens of Self-help in Rural Water Supply

It is not intended to raise an argument of whether or not there. are potential opportunities yet to be exploited in our endeavour to develop the rural areas. Mwalimu Nyerere's authentic statement of 2 "while some nations aim at the moon, we are aiming at the village" ${ }^{2}$, made in 1961 has its relevance here. Which is the best rural development strategy to use if we have to aim at the village? Do we make plans in the central government and impose them upon the people of the rural sector for implementation, or can we plan and affect rural development from the bottom by giving some autonomy to local units, like Ward Development Comittees (WDCs)? or can it be done by compromising on using two principles of working from top to bottom, and vice versa together, which might mean abandoning all of them? Besides the choices of where plans are nade, there are questions of improving quality and quantity and even technical designs to facilitate repairs and anticipate the likely future demands for more water through increased population, chanige of people's attitudes to water use and onimals; and the elemination of water pollution.

For the experience gained in various self-help work in Lushoto and elsewhere in Tonzania, there are convincing reasons for the need to exploit more the field of self-help. There is firstly the need to understand the people's problems, more so to those unknown to the villagers. Secondly to educate the people so that they understand their positions as individuals in their society, nation or the world; making them aware of the
rights they deserve and what they can do to change their environments to reach their desired goals. To this end we can bring our people's relations closer, as a group of cormon problems rather than that of blood relationship. It is true that every villager feels the ned to have a water point at the door step but not every one knows fow much pathogenic organisms in the water contains, nor does he remily know into how much productive use could his idle labour or wasted time on fetching water be? We need not draw instances from outdide Usambara which show that people's attitudes change according to their knowledge and feelings at given situations. Between the period 1885 and 1914 the Germans in the Usambaras found it difficult tô get sufficient labour fource to work on their coffee plantations. They resorted to recruiting the labourers from Tabora, and madefuse of Hehe captives in constructing roads; later on they had to use force. Merensky, one of the German missionaries - (a) protested against the use of raw force to obtain labour (b) advocated the protection of the African from exploitation, and (c) advised the German administrators to get to know the language and the culture of the Snaboas.

Certainly in this way he felt there was need to know the problems, attitudes etc. of the people first before involving. them in a programe. Today the sambaas are among the well orgonised Tanzanians in doing self-help work if only they know how the project would benefit them.

The second instance is cited in an article by Dr. J. Kreyslop, "UHURU NA MAJI"'. While collecting survey date for his Nutrition Research in Lushoto District, he found the Mayo village population highly infected with intestinal parasites. This was brought to the people's attention, and then guidance was given to make use of latrines and an improved piped water (supply) systen for the village. People responded positively by doing the work themselves, collecting funds from amongst themselves to meet any necessary expenses. This does not only mean that the people volunteered to do the worl because a group of leaders who were development conscious set the rolling but it is also because the people were educated, felt the need, and were given guidance and the necessary assistances.

The third instance comprises self-help projects in this district. The Maendeleo Annual Reports for 1969 and 1970 on self-help shows that in 1969 there were 59 different self-help projects. If we can examine the money saved on the completed projects in 1969 we get the figures of Shs. 312,065/75 while the figure for the 110 projects in 1970 is Shs. $724,256 / 70$. This is a clear indication that self-help schemes could provide a viable rural development strategy if approached through the right channels.

It does not suffice to write only on miracles we expect to see in this field without exposing the problens facing self-help schemes. In fact at times those who advocite the promotion of self-help spirit are accused of being saboteurs of the schemes when they want to employ higher efficiency to complete the work in the shortest time possible. It has happended in several cases that when the labour force which was expected to come through self-hclp was not forth coring, a decision was made to employ paid labour to complete the work.

In our introductory remacks abore the problem of lack of technicians is emphasised and the instances mentioned where we encountered problems with our maral seli-help water schemes. There are many challenges which arise out of the analysis of self-help projects. Do we have uny standards, judgement values or yardsticks in the field or seli-help? Have we any evaluation units to deteraine whethel our inputs for self-help and the outpats have relationship to the mural development strategies?

While we acknowledge the importance of planning, we need to survey our own resources for enhencing better plans on the village level. Without this, it is most lirely that risks of starting ambitious self-help projects, which village resources can not meet will be great. We must also looir into the better utilization of funds and skills and determine how to motivate the people and formulate training programines.

The totality of all this would amoni to formulating a policy for rural development. These 3 re some of the very serious problems facing a developing country like Tanzenia and a conference as this would recommend ways to indrove the situation.

## Maintenance and repair

Nearly all the self-helc projecis in Iushoto face, shortly after completion, problems of maintenance and repair. This problem is usually not considered in the initiel plemings when this results in broken-down or half-working projects, the interest of the people rapedly fades. This could very often be prevented by sjinple planning: choosing the right design and materials and providing training and funds for repair.

Some of these problems can be illustrated by the experience at Funta. As a source for improred supply 2 wells were available; one at a destance of one kilometre from the village, but about 40 metres below the village, the other 3 kilometres away at a site 18 metres higher. The latter site had a smiller flow and a night storage tank would have been required with an additional costs of Shs. 3,000/00. The village favoured the firet site, enthusiastic for having a piece of modern technology. But the cxperience in the Usambara and elsewhere showed that shortly after instailation, purps operate at half their expected efficienty and frequently break dow. 1 so the petrol cost of Shs. 55/00 per month would in 5 years outbalance the higher co $\omega$ t of the tank.

Other design problems include taps: the stopcocks at Funta attract the children to open and close them. But the usual answer, spring taps, provide even greater attration and loss of water. More successful was the materjal chosen for the tank: locally available stones and galvonized bati roof, easily replaceabie.

To provide for repair scrvices when a project is being finished, a namber of the village is traired to narry out minor repairs. The necessary tools are supplied Shw. 60/00. This mair was not paid but having been selected by the inhabitains of the village, he therefore was freed of all other common dutics. Ihis solution is not regarded as optimal because sone of thesc mon leave the area or change villages.

In the midale oi 1970, IMTBP started a training programe for Rural ilechanics at Soni. The six-ronth trairing course also covers skills required for mainterance and repair of water supplies. The trainees, supported $b_{j}$ zesular smil wonksions (outfit Shs. 650/00), are expected to renoin in thein villagus.

Almost all of the trainees come from areas where the IIDEPMAENDELEO Tield Unit is in operation on water project; this sol tion which combines water repair with a basic trade can be regarded more successful.

But the best solution would be if the Field Unit of Maendele could be a permanent operation over the years, and included a progrorme of maintenance and repair of self-help projects in their operations plan. Further, the tillagens could be encouraged to provide a small contribution (for example per house and year Shs. 3/00, while the WD \& ID rate per month is Shs. 6/00). The collection of this fees should be done by the responsible body of the village, (village Headman, TANU Chairman, VDC) for the expected; upconing repairs of the later Supply (washers, taps, etc.) One characteristic which all self-help projects have in common (Food Mills, Water Supply) and should be encouraged is the creation of a personal and commual feeling of pride for their achievements, thus making each villager feel responsibility for taking care of the project, which is the best form of maintenance,

## Costs of Self-Help Water Schemes

Fron the point-of view of district development the critical cost problem is how to provide the maximum improvement in water for people given a limited budget for materials with the available manpower and transport. The economist's point-of-view is somewhat different for he is concerned with "opportunity" costs, maintaining that even the labour from self-help is not really free, if the labour can be more productively used elsewhere.

For the 15 schemes in Iushoto Division and the other 4 schemes located elsewhere.in the district, the estinated costs are shown in Table 1 along with quantity of water supplied, population. served, and quality, where available. Excluding Funta, Mayo, Mola, Mbula B and Majenga, where complete data are not available, it is anticipated that 4,840 people will be served with an improved water supply for a total cost of Shs. 63,730/00, including Shs. 26,490/00 for materials, Shs. 10,500/00 for technical supervision, self-help work Shs. 13,840/00 and transport estimated at Shs. 11,900/00. This gives a per capita cost of Shs. 13/10, reflecting both the ready availability of water in mountain areas and the considerable economics of small-scale-selfhelp project. Maintenance and repair are similarly low-cost involving some training costs, a set of tools worth Shs. 60/00 and self-help labour at each project site.

## Change in Water Use

A programe of base line studies and evaluation, by Dr. J. Heijnen of the Bureau of Resource Assessment and Land Use Planning, Uniturersity of Dar es Salaam who at present attached to IIDEP, accompanies the programe of Rural Water Development. The research is still underway but results of a short question given to 100 residents of Mlolat, are available. Of these 59 residents lived within 5 minutes distance from a tap, the others had to wall an average of 21 minutes to the new water source. AIl respondents used the tap water exclusively; no rainwater was employed.

The first results give rise to a few preliminary coments:

1. The system of distribution appears to be of paramount importance. Time savings only occurred in a significant way for those within a short distance from the tap.

Average time spent (in minutes) to collect water

	5 min   or less	more than   5 minutes	Total
Before tap   installation	85.03	108.95	94.84
After tap   installation	$25.06^{2}$	105.15	57.89
Number of   people	59	41	100

(a) Significantly different fron "before tap" time (at the 0.1 level)
(b) These are man-equivalent units after Collinson who used to make comparisons between men, women and children.
2. In part this is caused by the fact that many people (58 in a total sample) collected more water. For example, those 15 minutes away from the tap often would spend more tine actually carrying water.
3. $\Lambda$ significant increase in consunption per head could only be demonstrated for these living in 5 minutes walk from the tap.

Consurnption per head in litres

	5 min   or less	more than   5 minutes	Total
Before tap	13.4	13.4	13.4
After tap	$19.2^{a}$	15.7	17.8

(a) Significantly different from "before tap" (at the 0.1 level)

Although a single study in a specific environment is, of course, far from enough to justify any sweeping stateménts, there are some points to be learned, at least for future research on the subject. The increase in the consumption per head of the uncontaminated improved supply is presumably one of the nain justifications for supplying the water at all. Secondly, there is the time saved and both elements have medical, social and cconomic aspects. If it is true that only a supply brought within 5 minutes from the house will bring the desired effects, that is a significant increase in consumption and time save, than the cost of a programe to supply the rural areas with inproved supplies will go up trenendously. The present design criterion is to supply water within a distance of one mile.

It is suggested here that a carefully designed study be set ${ }^{[p} \mathrm{p}$ to measure the effect of even small distances on changes in constamption rates. Unfortunately the sample will have to be rather large infview of the large variance encountered in surveys of this nature.

The multiplier effect of self-help water schemes on Rural Development
It is an accepted fact that in Usambaras, and everywhere in manzanic. and the rest of Africa, women work hard and for long hours on the
 hours to get it. First, it is obvious that the amount of tine mobed walking long distances and queuing at the water points can be usfolly utilised for other productive activities if the women can get water right in the village. Seanndy the labour which is wasted in cogrrying water across the fields can also be employed somewhere else for better profit. We have observed women queuing for hours at Kwemlazi and they even now contirue queuing at Nkesse where it takes about 20 minutes to get 4.5 litres of water. The population which depends on this source of water is 625 of which about 200 are adult women. It its not amazing to leam that besides the time they waste, the water they draw is not clean. It is open for all possible contermination which in turn makes them not healthy, feeble and unable to work hard to produce more than the subsistence level. The improvement of rusal water supply would provide more opportunities to improve social, economic and political conditions of the rural people.

If we take same improvements into large settlements like Ujamaa villages and other comunities, we shall have set the pace to create moltiplier effects in rural dovelopment, particularly if from the planning stage considerations for future expansions are taken into account and necessary data collected for future plans. Villagers, being trained to combat their ow problens right from the planning stage to implementation, will it possible for their plans to be in line with national plans.

Preliminary estimates or population served，quality and cost of Lushoto District Selfaielp Schemes

$\begin{aligned} 150 \\ \div 1 \end{aligned}$	$\begin{aligned} & \text { ilane of } \\ & \text { Scheme } \end{aligned}$	Type	$\left.\begin{aligned} & \text { P1ow } \\ & 1 / \mathrm{min}\end{aligned} \right\rvert\,$	Popu－ lat－ ion	Coli	```Sost OP mate- rial```	Cost 0 ¢ sel－ $=$ elp lab－ our	```Cost Or trans- por't```	secimica   Supervi＝ sion
1123445677891011121314151616171619	Lushotc Div．								
	Mbula A	SC	24.0	235	「Til	1125	1040	Estim	Istim
	Vulli	SC	7.5	217	İil	880	380	total	total
	Tiwemlazi	SC	3.8	322	I！il	603	440	11．900	10.500
	Mnelo S．	SC	10.8	465	Nil	375	360	（aver）	100\％
	Mhelo K	SC	4.3	325	Wil	375	450	or one	time
	Ewemaimu	SC	na	635	Wil	850	555	lorry	1 fundi
	Hkesse	BIE	na	625	na	895	350	load	1 tecis．
	IHande	SC	na	395	na	745	630	$\mathrm{p} \in \mathrm{r}$	60\％time
	Kabei	SC	na	176	na	745	600	day	1 tech。
	Bondei	5	na	325	na	820	275	40 mil	assnt。
	Mabughas	Br	na	295	na	600	438	landr．	30\％time
	Mazumbai	Bri：	na	255	na	600	433	むa！y）	1 dev．
	Maincei	B－i	na	220	na	830	373		organ：）
	Moula	$\mathrm{B}=$	na	na	ra	na	na		
	Majengo	SC	na	na	isa	na	na		
	other Di								
	Rangwi	PW	ne．	300	na	16000	7500		
	Funta	Fvid	11．${ }^{\text {d }}$	750	泔之1	9000	4200		
	Mays	PW	na	500	［\％］．	30400	3159		
	N1ola	P\％	na	650	na	6650	na	na	
	Total of 14 proje cts only			.340		126490	13840	11900	20599

Grandtotal of costs：Shs． $63730 /=$ or Shs． $13 / 10$ per capita

Tey to abbreviations：
SC $=$ Spring catchment
$B=$ Eorehole
PV＝Fipe System
na $=$ not available
$P C=$ Project Completed
IF $=$ in inogress
$S P=$ Slow Progress
HS＝iot Started
SA．＝Scheme Abandoned

[^16]1. Second Five Year Development Plan, Govnt. of Tanzenia.
2. Speech by miwalimu J.K. Nyerere in 1961
3. Dr. J. Kreysler, "Unur, na Maji" Jowrnal of Tropical Pediatrics, Vol. 16, 1970
4. R.R. Matango, "Approach and strategy of Kural Development in Iushoto District", Mineograph, 1971


The numbers l-ig refer to the water schemes in table 1.


In developing countries, water planning is usually characterized by a lack of basic data, ranging from scarcity of maps, flow records, rainfall data, etc. to loosely defined development objectives. Demographic data on existing and îuture population, rates of demand, economic and social trends, etc. are very hazy in most cases. iherefore, techniques for producino synthetic data ind correlations inave to be evolved. Also, continuous collection of additonal datia has to be incorporated in the design and the normal operation oi tise rojects, especially in their initial stages. The initialg basic data can thus be reviewed and updated so that the design of subsequent stages is based on more reliable information. Designs have to be inherently flexible enought to permit radical adjustments within the lifetime of the projects, as new data becomes available.

The normal stages of planning are:
(a) \&valuation of present and future demands, by stages, for domestic, agricultural and industrial consumption. In forecasting future demands, special attention must be paid to the feedback effect of the development and the ensueing rise in standard of living.

In many cases, plans for economic growth and agricultural and industrial development, waich establish future water demands, are totally lacking. It timen becomes the task of the planning team to outline such development programmes in sufficient detail to permit it to estimate future water requirements.
(b) Evaluation of available water resources, of botil ground and surface water. Quantity and quality and their areal and temporal distribution must be ascertained.
(c) Planning of water supply projects, basically accomplished by the superposition of present and iuture demanas on the available water resources. Eccnomic evaluations of the projects themsclves, as well as their impact on the overall development scheme, serve as a basis for decision making in the planning process. However, in addition to economic considerations, intangibles, like social factors, national aims and local traaitions must not be overlooked.

The planning approach should be regional, so tidat all pertinent factors are taken into accnunt. The resulting optional solutions may take either of two forms. - intergrated regional schemes, or independent local schemes, covering the entire region. In developing countries, the latter form is nften preferable, in view of the foregoing remarks on technical capability and the need $\boldsymbol{\text { on }}$ staging of construction. The design, however must envisage the possibility of a future integration of local sciames, when local conditions are ripe in order to increase flexibility and dependability.

The construction, operation and management of modern water resources projects requires an administrative framework based on appropriate legislation. Guidelines for the necessary administrative and legal steps musit be integretion in the planning.
Then examples trum the recent practice or Balasha-Jalon
by
F.J.H. van de Laak

Mdoleleji Water Development Scheme

## 1. INTRODUCMION

Rural Water Supplies have high priority in Tanzania, especially lowmcost projects benefitting a large number cf people. Villages, especially Ujamaa villages with their development potential, receive priority because of their population concentration.

In many areas where villages are still few and widely scattered and where water sources allow this, it will be often cheaper to construct small supplies for individual villages rather than a large supply where water is piped to many villages from a entral source. Also, small village supplies may be a temporary or not so temporary, alternative to waiting many jears until a large central supply becomes economically possible.

Water sources for one-village supplies may be concrete lined wells in the sands of river beds, lined wells dug into the water bearing strata of the sub-soil, or bored wells. often such wells are located some distance from the village, and pumped supply piped to a storage tank in the village may be desirable. However, small piped water supplies in rural areas present some problems which grow larger as the number of such supplies increases.

## Piped Water Supplies for Rural Villages

## Engine powered supplies

Once it is decided that a village should be provided with a piped water supply, a power source must be chosen to pump the water to the village. Generally the employment of an engine is thought of as most obvious and reliable. The question is whether this is true.

Engine powered supplies have substantial recurrent costs aggravated in rural areas by the disitance from the supply and repair facilities, and the conditions of the roads to the villages. Bngines need fuel to run, and they need a daily attendant, either employed from public funds or recruited from an Jjamaa village itself. The reliability of the system and the frequency of breakdown and costily repairs depend mainly on the skill of this attendant. Deys may be lost in reporting oreandumis and for the rnnair team to reach the village. If breal:downs occur during the rainy season, the village may well be out of water for veeks because of impassable roads.

If a power-source could be found with lower runnine-cost and repair characteristics and vithout diminishing the reliability of the supply or requiring a substantially larger investment for its installation, such a puwer-source would be more in accordance with the low-cost requirements of the Second Firo Year Plan and its alternative to enginc powered supplies deserves careful attention.

It is my contention that in many instances aiwind-powered supply compares favourably with engines for pumpieng water in rural areas.

Wind-powered Rural Water Supplies
Experience in the Shinyanga East Region with an 18 ft Climax windmill, and more recently with a locally manufactured 16 ft windmill, show that windpower can be a cleap and reliable power source which can easily complete with engines, provided that the choce of the mill is adequate for the work it has to do.

1. Windmills, one installed, require no fuel and not daily attention. They operate automatically and protect themselves from stom damage. Repairs are few. Maintanance is limited to at most a half-yearly oil change and check-up. Prection is relatively simple and cheap. A correctly installed mill, receiving its required maintanance, will often operate troublefree for twenty years, and more. Mechanically, therefore, they are much better suited than engines to meet rural conditions. Hence, the main argument against windmills is rot on its mechanical features but on the availability of wind.
2. Investment costs for a windmill installation appears to be the same or only little higher than an engine powered installation.

## Wind-data

When designing a pumping plant an engineer who recormends an engine feels a security which tends to desappear when he wants to prescribe the use of a windmill。

The reason is that while engine performance can be accurately predicted from the manufacturer's specifications, in the case of windmills this information has to be supplemented with data about the reliability of the wind at the site of the plant. In Tanzania, windrecords suitable for windpowered plant design are scarce and usually inadequate; for most areas they are non-existent. The design of windmill plants then becomes only guessmork.

Considering the superior mechanical features of windmills as a power source in rural areas, it would pay to install the necessary with recorders ai strategic central points, preferably at the district level. Reliable data on windregimes will then become ovailaible, and wind-mill performance predictions can be made with increasins accuracy in the course of years, making their reliability comparable with those of engines.

The recorders shoula be of the automatic type where windspeeds are continously recorded on a chart. When furtner windrecords are made at the site of the proposed plant, and at times show in the central records to be crucial for windmill pexformance, comprison of these records with, the central charts will show the relative windregime at the site, and an adequatc windmill plant can be chosen.

To my knowledge, windrecords available at present are often on a 24 hour mileage basis. Such records are inadequate for inland conditions. Experience in the Shinyanga East Region has ghow that at crucial times, usualiy at the change of theseasons, the 24 hour. milcage record may show, for example 70 miles of wind. In reality, a windmill may punp on that day enough water for the daily requirements of the pump at all. The reason is that the milease show may in fact be an hourly wind ave=age of 2.9 miles/hr, at which speed no windmill will operate. The successful pumping may occur when the reading of 70 miles per 27 hour indicates a day of calm, except for two hours of hard wind exceeding 25 miles/hr. a normel occurance in the rainy season. During such a period, our climax mill which we have installed at ivdoleleji would punp in excess of 1500 gallons.

In the Shinyanga East Region, days of complete calm are few and occur only during the rainy season. Prolonged periods, exceeding three days consecutive calm, are very rare and are often followed by days of hard winds. Three years in Ndoleleji showed only four calm periods - crucial for the water supply - the longest of which was seven days. It should be noted that villagers, depending on a windmill operated system, soon find out"its peculiarities and tend to be careful with water du+ing calm days. The eason for the shortage can be noticed eusily, as it is a natural phenomenon which farmers experience each day,

Contrary th what is generally assumed, a windmill plant need not operate on a 24 hour basis to be reliable, provided storage is available. Inland wind conditions are of a nature where winds occur over linited periods during the day. In Hdolelejis night breezes often pump more water than the fey hours of hard during the day,

For Rural Water Supplies, the dry season with its regular winds does not usually present a problen. The rainy season with its irregular winds, varying Irom lıght breezes to periods of calm followed by hard gustij wjiads; is a crucial tine. Windmills should be designed to work with reasonable puining capacities during light winds, at the same time being able to malke use of short periods of hard winds. As pumping capacities rise to the square of the wind velocity, this dual demand presents no large problem. Vindmills therefore, should in general be designed to match rainy season. conditions, and excess water pumped in the dry season can be used for cattle drinking water, or irligating a village garden, or it can be retumed to the vell via a iloat valve and pressure relief valve systen. Float systens in the well, operating a return valve for the weter; can take care of the problen of exceeding well outputs.

The demand for power in Iow winds calls for large sizes of mills matched to large puips. For that reason many windnills which perform unsatisfactory in Tanzania are too'small. These depend on long hours of operation in suitable winds. It is interesting to note that Australia, with its vast inland area, depends for many of its sheep farms on windpowercd supplies and, to my knowledge, the Australism manufacturexs are the only ones who manufacture mills in sizes larger than 18 ft dianetor sails.

In the Shinyanga Region, windmills generally perform well if there size is determined on the basis of a 5.6 miles $/ \mathrm{hr}$. wihd and the actual size of windmill and pump is one size larger than that recommended on the windmill chart.

Windmill Construction
The ordinary automatic govermed-type windmill, suitable for rural areas, is the so-called multibladed windmotor. It is simple and robust and makes use of reciprocating pumps. The connejetion between the mill head and the pump is a wooden pumprod, moving between gui ies in the tower.

The rotating action of the sails is translated into a; reciprocating action by means of two large gearwheels to which an accentric is connected. Usually the motion is geared down from three to four revolutions of the sails to one up and dow stroke of the pump. Some Australian manufacturers (Comet, and Southers Cross) have direct acting mill heads, whereby the reciprocating action is obtained by means of a crankshaft. One revolution of the sails results in one up-and-dow movement of the pumprod. The results is an extremely simple constiuction with few moving parts, especially the Comet mill. The manufacturers of Comet have added to this feature whereby the dead weight of pumprods and connections are balanced on the sailams, taking some of their weight off the active stroke of the mill.

A disadvantage of the conventional type mill is that only about half of the windmill capacity is used for active work. The dovm: stroke is a free stroke.

In the 16 ft locally manufactured windmill, at present installed in the water supply of Shagihilu village in Shinvanga East, the construction on this mill allowed for it to be used to full capacity. Because of lack of means to mainufacture the normal moving parts, car parts were used. it lainurover gear axle was placed horizontally on top of an Austin rearwheel which was fixed vertically on top of the tower. Another landrover axle was placed down. The differential pinions were made to face each other and were connected with a pipe. To the wheel end of the top axle a gearbox, activating a crank, was connected. The crank operates a seesaw via s short connecting rod, and to the seesaw the pumps are attached, each on one end of the pivot. The seesaw enabled the balancing of the mill with connecting rod and crank, and the balancing of the output, whereby on the up-stroke of the crank one pump operates, and on the downstroke, the other pump, on the far end of the seesaw, operates.

The windmill starts in very low winds, and when necessary the output can be more than doubled by a simple shift of gears. It may be worthwhile to investigate the possibility of further developing this system for local manufacture, possibly diminishing the capital costs of windmill plants.

Recently, experiments and developinent of windpower have resulted in windpower plants maring use of propellors. A Canadian experiment deserves mertion in this respect where the Erece hirscrew windmill was developed incorporating a 32 It three bladed nirscrew which operates a centrifugal pump. In its experimentol stage it was used for irrigating a 10 acre plot and performed satisfactorily. In 18.5 miles $/ \mathrm{hr}$. winds the mill developed 10 HP , and in $30 \mathrm{miles} / \mathrm{hr}$. winds 50 HP . It can be used for water supplies and, depending on wind power available, for irrisating ficlds and operating maize grinders.

Another propellor-type wind power pump is manufactured in Germany by Lubing, Barnstorf. These are cheap and rance in price from Shs. 600/00 to Shs. 1000/00. They are used for small capacity cattle drinking water and garden irrigation. Their outputs are from 444 gallons to 1320 gallons per day at a head of 20 ft and in winds of $6.7 \mathrm{miles} / \mathrm{hr}$. The firm also manufacturers larger plants on the same system suitable for small village supplies under certain circumstances, costing up to Shs. 6000/00.

## Conclusions

Trom the above it may be concluded that the use of vindmills for purnping water in rural water supplies should be seriously considered. Satisfactory windmill operated supplies enable funds and manpower, otherwise used on existing supplies, to finance new supplies. They are a means to speed up considerably the spread of rural water supply, which has high priority in the second five Year Plan.


As the logarithmic scale is most suitable for the case, the calculations of 'C' are made on the basis of:
$\operatorname{Lg} C=\operatorname{LgQ}+0.36453-2,63 \operatorname{LgD}-0541 g i$


1 English system.
III. RESULT AND COMMEITS

The results are show in Tacle 1. An increase in the coefficient ' C ' with pipe diameter can be observed. The result of the 3 ' pipe does not seem correct and it most likely not representative since only one pipe has been tested.

Table 1

PIPE	Nos. of pipes Experimented	Nos. of Experi: ments carrind. out	VALUE OF C (TUTG. STAIDARD)			PIPE-
				$\begin{aligned} & \text { Reduced } \\ & \text { by } \\ & 12.5 \% \end{aligned}$	Recommended	
$1_{\mathrm{B}^{1}}^{\text {class }}$	2	12	171.1	149.7	150	1" (B)
	3	12	172.6	151.0	150	
$\frac{1 \frac{1}{2} "}{I_{B} I^{\prime}}$	3	13	204.2	178.7	175	1 ${ }^{\prime}$ " ${ }^{\prime \prime}$ (B)
$2^{2 \prime}{ }_{\prime^{\prime} \prime^{\prime}}^{\text {Class }}$	2	9	204.0	178.5	175	2" (B)
$\begin{gathered} 3 " \text { Class } \\ \mathrm{I}_{\mathrm{B}} \mathrm{I}^{\prime} \end{gathered}$	1	6	167.5	146.5	145	3"(B)

For the practice a friction diagram with reduced ralues in recomend (ss Fig. 2). Here $12 \frac{1}{2} \%$ allowances are made, accounting for the imperfect pipelaying and the different fittings.

Unfortunately, no data for the change of the roughness of the plastic pipes with age are available; therefore such experiments are strongly recommended.
IV. COMCLUELION

The use of available data for the friction coefficient ' $C$ ' could often result in wrong calculations, cousing technical failures and conomically unjustified projects.

Field experiments can produce the actual values of the friction losses, and such investisation are therofoer recormanded for all new types of pipes.



## $A P P E N D I X A$

## FINAT RECOMARDATIONS ${ }^{1}$

## Planning aid Policy

(1) Consicleming the large number of regions for mion water development master plins are to be prepared, the conference reconamels that guidelines be established to sitandardize the appronch to study teans encased in the preperation of such masier plans in order to facilitate the Rinel decision nakine process. The stondardization should include the desion, ind analysis oi projects, as well as solection criteria, construction cost, maintenance cost, vater quantity and quality standards, terms of finance, etc.
(2) The conierence draws atteition to the need for an interdisciplinary approach in the preparation of inetional and regionel master plans for the development of weur resources, briajing in and strengtheinins a variety of institutions on the notional and regional level. Furthermore, the preparation of recional master plans by various teams should be preceded by preparatory work, on an interdisciplinary basis, by the governcont of the respeotive country, so that che teams can be siven uinform guidelines at the start of tisein studies.
(3) The conierence recommends that intensified comparative research on the social, economic ard health effects of vater supply in dirierent rural environments be undertalren on a national and jincemational level.

## Hydrology anc ieteorology

(4) The conforence rotes the inadequacy of metecrolorical data in Dast Lirica as reported in the Morishop on Rural Mater Supply in Jart Africa, Decenber, 1969, Dar es Salaam, ${ }^{2}$ which is hishlighted by the proceedin's oi tiis conference. Considerins the urgent present and future needs ior adequate ain high-quality meteorological data $-0: 1$ development planuing, it is recomenced to:
(a) brine the existing raingauge network to existing standards of operation,
(b) ensure a regular inspection end meintenance of all meteorolocical stations, at least twice a year for main stations ond once in two years for rainfall stations,
(c) expand the rainfause network to meet needs Ior data sparse areas,
(d) insíall an adequate retrom of wind recorcers (apart from its neteorological importmine this would movide. plaminc; data for windmilis and other envinsering projects),
${ }^{1}$ The recormendetions were draited by the workshops and approved in the fimal session of the conference.
${ }^{2}$ See D. Hamor (ed.), Rumal \#ater Supply in East Mrinca, procedincs of the workshop on Rural Iater Supply, BRALUP Research Paper Eo.11, 1970.
(e) upgrade all main meteorological stations to Penman standarels, and
(f) qualiin the publication of meteorolocical data by /the indicatine the date or last inspection and/orfaization responsible for it.
(5) The coniorcince further recomends:
(a) placing oreater importance on adequate naintimance of the existines hyirolosical network,
(b) oxpanding the network in areas lacking datio, and
(c) gyving particular attention to instrumentation and data sollection in sirall catshments.
(6) The conference, notin; that different types of instrunents provided by different countries are presently in use in the meteorological and hydrolosical services now operating in Bast ifirica, recomends that appropriate arrangenents to be nade by the responsible authorities in the meteorological and hycurolozical services to ensure standardization of instruments in use by these services. It also recommends the staindardization of observing and maintenance procedures, and of stafi training. This standardization should be effected by means of close lioison between the respective services, through eooperation between the IHD national oomittees, to becoiae operative as soon as possible. The conference also recomends that the presentation and publication of data in these fields be standardized as far as possible.

## Design, Implementation and Health

(7) Further research is needed to provide a better basis for the selcction of desicn criteria, includins per capita water coasumption, water quality, length of design period, storace tanir capacity, puinp capacity, peak flom, and natcricl oif pipes. This research misht be cerried out by the countries' research institutes in conjunction with the respective departuents of water developaent.
(8) Present policy in Fast ifrica assuries that a lane part of the health benefits from inproved water supply coir be obtained by proviuing standpipes. The evidence to support this assuaption is not stronc: and there is some evidence, relatine to infectious diseases, hat suggesti tie contraty. The conterence strongly recomends a comparative study in Tanzaria's ujamaa villages of the benerits and costs of designs in relation to health.
(9) The convorence stresses the inportance of contimued emphasis on trainins of nonpover on all levele in the field of water resource developnent. In particular, a rajor siortage of tecinical staff exists to work under the dircction of professioind eheineers. The rural water supply programines could be accelerated it: wo techitians were available. ite recomend thet, in collaboration with the inistries of Education, an inservice training and advonconent schere be established to assurc the promotion of specially able servin: technical officers and works formen socording $t$ their ability.

$$
\therefore P P E N D I X \quad B
$$

$$
9.00-10.30
$$

Introduction: Dr. I. Katoke, associate Dear, Faculty or darts asi Socici Sei:nne University of Dar 0, Sajam.

Openins didress: Dr. T.K. Chagula, Kiniatur for Water Development and Power
 Principal Eecretaivg, on iis Bu:inf?

Planinins - Master Plans
Chaiman: .... F.K. Ivesamulila
Robert T. Kates, "Flexibility, Coordination and Choice in iaver Resoume Planning: The Utility of Recent Planning Innovations for Water Development in Taincuia"

Len Berry and Diana Conyers, "Plaming for fural Fater Developnent in Tanzaina"

Rushahi Henin, "Deterijnation of the $*$ Base Population of tine irea and Future Population Size"

Plannins - Policy
Chairman: Teshoma Workie
Ian Burton,
"rovards a Rationalc for Fater Supply Policy in Developing Countries"
J.D. Heijnen and Diana Conycres,
"Impact Studias oi iural Fater Supply"

Plaminr - The Broader Context
Chainman: Hamisi invinyigoha
Hartmut Walter, "Educationel we Ecclogical" ispects of Surai Tater Planing"

Roger Voodsg "Social Strictuce and Fater Supply - Questio:ss of Fural. Developaent Strateries in Tanzanis"

## Plannin: - Procedures

Chaiman: G. Schultzbere
Geore W. Irvin, "Problems o: Beinefit Cost inalysis in Plamine oir Rural "Tater Supplyil

Gerhard Tschamerl, "The Use oi mathematical Fodels in Thater Sipply Planingi"
indre Harlsut, "Investications, Survey and Design of Rural Tater Supplies"


hiraksinen, iIs. U.
Ministry of Fater Developnent and Power; P.O. Box 9291 , Dar es Solaail.

Bartinc, Bo.
Ministry of "iater Developnent and Power; P.O. $30 x$ 9291, Dar es Salam.

Bateman, Goicion Fi.
Deperthent of Lpplied Physical $\operatorname{moiences,~University~of~Reading,~}$ Ensland.

Bear, ine. J.
Balasin and Jalon Consultant Engineors; ©1, Hantzrauth Road; Haifa, Israel.

Berry, Dr. Ien
BRiluP, University of Dar es Salam, P.0. Bor 35097, Dar es Salam.
Bower, Rod C.
National Hater Resources Council; P.O. Box 9242, Dar es Salame
Bradley, Dir. David J.
Dunn School of Patholocy, University of Oxford; South Parks Road, Oxford OX1 3RN, Bnyland.

Buchanall, is.
Ministy $0:$ Water Development and Power; P.0. Box 9291, Dar es Salem.

Rugaisa, Stephin $I_{\text {。 }}$
lineral Resources Division, Dodoma.
Burton, Dr. Ion
Depertient of Geóraphy, University of Toronto;
Toronto, 181, Ontario, Canada.
Chokraborty, T.
Ministry of Tater Developient and Power; P.O. Boas 9291, Dar es Eglaara.

Chakraburtty, Z .iT.
linnistiy of iater Developmeat and Power; P.O. Boan G291, Dar es Sulam.

Chagula, Dr. הoxa...Minister
Winistry of Jater Development and Power; P.O. Eor 9291, Dar ea Salaan.

Chambers, Di. Robert
Institute for Developraent Studies, Universitir O: Nairobi, P.O. Box 30197, Meirobi, Kenya.

Chande, S.J.
Howark itumhreys and Sons, Consultant Engineers; 5. O. Box 2555, Dar er Salana.

Clark,

P.O. Box j0521, Nairobi, Kenya.

Conyers, iliss Diana,
BRiJUP, Jniveraity of Dar es Salaam;
P.O. Borr 35097, Dar as Salam.

Csontes，$K$ ．
IInistive oe ilater Develoment and Power；P．O．Box 9291， Dar es Salari．

## Osongrady，

iinine sive oi Mater Development and Power；P．O．3oz 9291， Dar es Solam．

Deklrer，G．
Regional divisor on Fater Respurce Developilent； Economic Comission for iafrica，P．0．Box 3005，didis dbaba， Ethiopia．

Dhalla，H．
Dater Development，P．O．Boy 174，Singida，Tginailia．
Dredsner，i．
Balasioà aud Jalong．Consultant Ensineer； 6I，Haatziauth Road，Haila，Israel．

Falu，J．
Ministiy of Vater Developnent and Power，P．O．Bo天 9291， Dar es Salam．

Frank， H
Society oi 4pplied Geophysis Itd；
Eduaid－schivid－Strasse 3， 8 Iunchen 90，i．Geriany．
Hagan，Ivar．
Ministicy of ilater Developrient and Power；P．O．EOK 9291， Dar es Salanil．

## Harlaut，incre

VBB Vattenbysjnadsbryan；P．O．Box 5033， S－102 41 Stockholn 5．Sweden．

Hasan，到fatih i．
Hydrone $e \mathrm{corolosical}$ Survey of the Lakes Victoria，Yyoga and in bert；P．O．Box 192，解tebbe，UEZanda．

Hay，Robert
East iniscon Meteorolozical Department； P．O．Bor 3056，Dar es Salaari．

Henin，Dr．Roushudi is
BRiJUP，Uiziversity of Dar es Salaam，F．O．Box 35097, Dar es Salami．

Heijnen，DI．J．D．
BRiLuP，University of Dar es Salam，P．O．Box 3509？， Dar es Salam．

Hwahabisama，Pirincipal，
Tecmical College；P．O．Box 2958，Dar es Salaen．
Irvin，Georee \％．
Instibute of Developraent Studies，University 0：？Sussex； Brighton BH1 9RE，Enclond．

Jalon，Pnご． 2.
Balasina and Jalon，Consultant Encineer；
61，Haatzilauth Road，Haila，Israel．

```
 Departileit oif Geosraphy, University of Dar es Salaam;
 P.O. Box 9291, Dar es Saian.'
Johansen,
 Tater Developnent Departments Ministry of asriculture;
 P.O. Box 30521, Nairobi, Kenya.
Kamunvi, Dr. i'.... Secretary,
 East mirican Medical Research Counctl;
 P.O. Bo天 1002, irusha, Tamzania.
Kates, Dr. Fobert \(\mathrm{T}_{0}\)
 Sciooi of Geography, Clark University, Forcester, Massachusetts,
 01610, U.S.S.
Kesseba, Dr. A.
 Faculty oilledicine, University of Dar es Salaan, P.O. Box 20693,
 Dar es Salaan.
Khuti, R.
```



``` Tanzania.
Kiossev, V.
Ministry of Tater Development aind Power; P.O. Bor 762, Mbeya, Tanzania.
Kukove, Mrs. iiaria,
Techuical College; P.O. Box 2953, Dar es Salaal.
Kuschel, H.
Tational Mater Resources Council; P.O. Box 9242, Dar es Salame
Iucas, R.O.
Ministry of Fater Developnent and Power; P.O. Bor 9291, Dar es Salanin.
Iundquisis, Jan,
BRAJUP, University of Dar es Salam, F.0. Box 35097, Dar es Salaam.
Iwegamulila, F.F.....Principal Secretary,
itinistry oi Fater Development and Power; P.O. Tox 9153, Dar es Salam.
Iwelarila, lisJ.
Ministry of Bcononic Afrairs and Development Plawing; P.O. Box 9242, Dar es Salam.
Maier, A.D.
Bish anc Patners, Consultant Engineers; P.O. Dox 7040, NAIROİs -innya。
Liann; Dr. Geore
National Iater Resources Council, P.O. Box 9242, Dar es Solaarı.
Matanç, R. A. ...Sural Development Oificer,
Distried Development Office, P.O. Sox 81, Iushoto, Ianzania.
Hatteucci, L.
IFO Research Institute, Minich, Gemany
Matteucci, ins. L.
Univeraty of Califomia; Berkcley, Califomia, U.S.i.
Mayerle, Dicter
LIDRP, \(\because .0\). Box 60, Soni, Tanzania.
```

Mbelwa,
H.

Kibeha Education Centre; P.O. Box Kibana, Dar es Salaan.
McKay, Johin,
BRiLUP, University oi Dar es Salaam; P.O. Box 35097, Dar es Salam.
Meghji, H. F.
Faculty of Arriculture, Univensity of Dar es Salcom; P.O.Box 643, Morogoro, Ianzazia.

Mezer, ince. A.
Balasha and Jalon, Consultant Engineers;
61 Haatzauth Road, Haisa. Israel.
Mithalyi, I.
Departinent of Geography, University of Zambia, P.O. Box 2379, Lusaka. Zenioia.

Moller, H.C.
Ministry of Tater Development and Power; P.0. Wor 220, Iringa Tanconia.

Moris, D.I.
Masailaik Ronge Developinent Project; Kilino, Iru ha, Tanzania.
Moris, Dr. J.R.
Depariencit of Political Science, University oz Dar es Salaan: P.O. Dor 35091, Dar es Sclaan.

MBrth, Dr. in. T.
East Lirican lieteorological Departient; P.O. Boar 3056, Dar es Selcani.

Msimbira, I. K .
Nationcl Tatpr Resources Gouncil; F.O. Box 9242, Dar es Salaan.
Murray-Rust, Harmond
Bridup, University oi Dar es Salam; P.O. Box 35097, Dar es Salam.
Mwalwega, A.LI.
Ministry of ilater Developaent and Power; P.O. Box 9291,
Dar es Solaary.
Mwinyigoha, Fozisi,

P.O. Bo天 3092, Moshi, Tanzaina.

Mzee, 1.
Tater maí Drainage Division; P.O. Box 1878, Dar es Salabne
Nieumolt, S.
Depart.ient of Geoßraph, University of Zantia; P.O. Do: 2379, Lusaka, Zabia.

Okot, P. ~.
East African Heteorolouical Department; r.0. 30ze 3056, Dar es Salaza.

Olsen, ill $\hat{r}$
Ministry of water Devolopment and Fower; P.O. Box 3291, Dar es Silean.

Patel, B. H.
Ministry o: Tater Development and Power; P.O. Bo: 9291, Dar es Solean.

# Assessment ard Land Use flaniong 

## (a) Research Hotes

No.1* Rescarcin Porspcetives, "Scpterber, 1967
No.2* J. Mallay, "Plamiņ for Develoment: a Review of Studies of Traditioizal Rural Settlonent in 'łazania", Hov., 1957

No. 3* I.D. Thenas, "A Survey of Administrative Boundary Changes in Tangaryika/โanzauia, $195 \%$ to 1967, for use in Interconcal Comparisons", Hovember, 1967

No. 4 L. and E. Berry, A Preliginary Subdivicion of Districts into Rural Ecomoric Zonos: A liap with Key", March 1968

Reprinted Jụne, 1959
No. 5 Guide to Basic Data on Resource Assessient and Land Use Plaming:

Part 5a* I. Jackson, "Rainfall Stations in Tanzaiia", October, 1960

Pant 5b* I.J. Thonas, "Population Density in Tansania"

Part 5c "Bibliograzhy of the Geology and lineral Resource of Namzanial to Deccitibcr, 1967. Augtist, , 1969

Part 5d D. Conyers; "rorestry in Tanceria," October, 1969

Part 5e J.t. Heijnen, "The River Basins in Tanzania a bibliograjty", Manch, 1970

Ho. 6 L. and E. Berry, "Land Use in Tancania by Districts", Agril, 1969

No. 7 J.R. Pitolado, "A Reviow of Agricultural Land Use and Land Tenure in Tancaria," June, 1970

No. 8 I.D. Thomas, "Sonc Notos on Population and Laud Uso in more Donsely Populated parte of the Uluguru Mountains of lionogoro District," July, 1970

No. 9 I.D. Thomas, "Sone ilotes on mpulation and Lanci Use in the Horth Pare iowntains"

Ho. 10 I.D. and C.J. Thoms, "Comparative Fopulation Data for the Division of Fanzania," Fobruzxy, 1971

No. 11 C.-F. Clacson, "iovomont to Toms: Tailes and Sciniments, April, 1971
ned Versus Thole Vaize：
＂Sono Ifutritiondith and Decnomic Irplications of the Froc申ssinध of ive in ivortin Pastern＇Sazania，＂ July 1968
 Selffreliance iplayo Village，＂Lece：ber， 1968
 and fildife on w．African angeland：The case oif Licrya，＂ Janulary， 1969
 Buldba District flest Lave Resion，＂June， 1569
No．6＊J．D．Heijnen，＂薬imary Iducation and Proposed Agricultural Exterirnent in Ifonza District＂，Ausust， 1969
No． 7 W．L．Dickson，＂pational idaprine，Protromie，Specification and Costs in Dey ${ }^{\text {ghoping }}$ Countries，＂Ausust， 1969
 September， 1969

No． 9 JD．Heijnen，＂ischanised Block Cultivation Schemes in


No． 10 L．Berry anai F．Whes，＂Flarmed Irrigated Settlenent： Tanzania，liay 1090

No． $1 \mathrm{I}^{*} \mathrm{D}$ ．Warner（ed）， Proccedinses of Riay， 1970
No． 12 matcr Develonetr－Tanconia．A Critical Review of Reccarch，＂A Mrit， 1970
ivo． 13 L．Berfy et a1， Drought in Tannat ＂Saque As－ects of Febquary， 1971

No． 15 R．Henin，＂Aspect
No． 17 ＂ioad Feasibilit
INo． 17 I．1marray－Rust， Kisoneo Catcheoint
No． 18 J．E．Thoore，＂an 緆 Population Vamyins Capacities the Districts of Tazenia，＂July， 1971

Humn Adjustmont to Agricultural
dral Vater Supply in Dast Africa Worlasiop on zwal Jater Sugily，＂
a：Filot Investications，＂Forthcoming egional＝lamine in manzania，＂
of African Denorrephy，＂April， 1971 Stucies in Tamania，＂ikty， 1971

So i． 1 Srosion and Sedimentation in Arusia Fegion，＂Junce， 1971


[^0]:    G. Tschannerl

    August, 1971

[^1]:    $\mathrm{l}_{\text {See }}$ introduction for scale or form size used thougiout this report.

[^2]:    $\overline{I_{A}}$ summary of the dabe required and its sourcus is siven in Appendix I．

[^3]:    $I_{\text {See Blialuy, }}$ Restarch zeports wos. 15 and 22.

[^4]:    ${ }^{1}$ See BuALUP, Researcin Keport No. 22. ${ }^{2}$ See BRALUP, sesearcis Reports Nos. 13,16 and 23.

[^5]:    Water Development in ienzania: a critical review of research, Research laper ivo. 12, 1971.
    ${ }^{2}$ See Brialuf, Reswarch Notes ifo. 50.

[^6]:    

[^7]:    1 W.A. Lewis, Theory of Economic Growth. London: Unwin, 1955
    2 W.W. Rostow, The stares of Economic Growth. Canioridge: Cambridge University Press, 1960
    3 1.0. Hirsch man, The Strategy of Economic Develoment. New Haven and Iondon: Yale University Press, 1066

[^8]:    $\bar{I}$ Personal communications.

[^9]:    $l_{\text {This }}$ is usually the case ior gravity schemes.

[^10]:    ${ }^{1}$ In Israel, for instance, very claborate investment in underground pipes, water metering equipmert, and pirsonmel to supervise ind enforce a complex system of water quotas is thought to be necessiary because of the critically limiting nature of witer as a niturill resource.

[^11]:    $I_{\text {The . Stcond }}$ 'ive Year Plan allocates Shs. $406 m$. to this sector, or ancording to Denis.harner, about 12 of ininisterial Development expenditure. At present, about $90 \%$ of the rural population is estimated to have inadequate: water provision." Sec D. Warner, "rhe Economics of Rural Water Supply in Tanzania", DiB paper fo.19, The University of Dar es Salam.

[^12]:    $I_{\text {See }}$ wanner, D. "A Preliminary Assessment of the Impact of Kuril itoter Supply upon Eivuseholds and Villifes", ERB paper No. 70.12, The University, Dar es Salacm. Alsu, "Vater Development - ianzania; a criticol revien of research", research Paper No. 12, Biuluy, The University, Dar es Solaam.

[^13]:    1; The term project used in the beginning of this paper is synonymous with water supply strategy.

[^14]:    1. There are cases where this method does not give an optimal ranking. See liarglin, 1963, pp. 28-29, 5l-52, for a precise statement of the conditions when it does. Domestic water supply projects normally mect these conditions.
[^15]:    
    

[^16]:    ＊The location of schemes is shown in liop 1

