2 6 4.1 9 0 R U Sindh Province, Pakirton.

Aves from Horld Bank,
Pakirton.

RURAL WATER SUPPLY AND SANITATION

PROPOSAL FOR COST RECOVERY

MERARY
INTERMATION OF THE PROPER DENTINE
FOR THE STREET AND
SAME AREA FOR

29 MARCH 1990

This note is an extension of the note submitted on 17th March 1990 to the Sub-Committee on Cost Recovery in connection with the Rural Water Supply and Sanitation Project and the meeting held on the 26th of March 1990.

1. BRIEF SUMMARY OF PREVIOUS PAPER AND MEETING

1.1 The previous paper suggested two alternatives of which the one which the committee decided was feasible was to revise local cess rates so that there are uniform rates for all districts in Sindh varying by status of irrigation. The rates in the first three year period would continue to be charged on land cultivated, the broadening of this base being considered at the time of the next increase in 1993/94.

1.2 The revised rates would be as follows :

		Perennial	Non-Peren.	Barani
	Increased Rates 1990-91	(Rupee:	s per acre)	
a)	full recovery of O & M costs	22.50	11.25	4.50
b)	recovery of Energy and Repairs	16.25	8.13	3.25
c)	recovery of Energy only	10.00	5.00	2.00

1.3 The meeting expressed concern at the level of rates required for full recovery of O & M costs. It was decided that all three alternatives would be put up to the provincial cabinet. In the case of partial recovery of O & M costs via the medium of local cess the balance would need to be met via some sort of direct user charge or community based collection. The purpose of this paper is to suggest a mechanism as well as calculate the level of the tariff required in the case of alternatives (b) and (c) above.

- 2. TARIFFS TO BE CHARGED DIRECTLY TO BENEFICIARY COMMUNITY
- 2.1 The tariff rate to be levied to recover salary or salary and repair costs would vary according to the type of scheme. The calculations have been based on costs as given in Table 5.7 of the Project Preparation Document of December 1989.

New Schemes

- 2.2 The new schemes planned under the project being designed will provide only a basic level of service, house to house connections not being envisaged except in some of the larger villages. The most appropriate mechanism for cost recovery directly from the beneficiaries in these cases is likely to be community based collections.
- 2.3 The level of tariff has been calculated based on the following assumptions:
- a) the average population for larger villages will be 2000 and for medium sized ones 800.
- b) the average household size will be 6, this being the average indicated in the Housing Survey and is also the average used by PHED
- c) the recovery rate will be around 50 %. This appears to be realistic given the current recovery rates in the case of existing schemes (which ranges from 10 % to 75 %). However a second calculation has also been done assuming the recovery to be 75 %. This could be possibly achieved in the case of the medium sized villages where village based organisations are likely to be more effective.
- 2.4 The calculations and resulting tariff rates are given in Table
 1. The required tariff per household in the case of salary recovery
 would therefore be in the range of Rs. 11.50 per month (to be
 doubled if a drainage scheme also exists) in the case of large
 villages and around Rs. 19 per month in the case of medium sized
 villages.

TABLE - 1

CALCULATION OF TARIFF REQUIRED TO MEET SALARY PORTION OF O & M COSTS (New Schemes)

Village Scheme Size Type	Average Pop.	No. of H.Holds	Annual Sal Constant Prices	_	Rate	Tariff per HH per month	Recovery Rate	Tariff per HH per month
Large Water-CSS Large Water-CSS Large Water-TS		333.33 333.33 333.33		22833 22833 22833	50.00% 50.00% 50.00%	11.42	75.00% 75.00% 75.00%	7.61
Large Drain-SP Large Drain-DP	2000 2000	333.33 333.33		22833 22833	50.00% 50.00%		75.00% 75.00%	
Medium Water-CSS Medium Water-CSS Medium Water-TS		133.33 133.33 133.33	19740	22833 22833 22833	50.00% 50.00% 50.00%	28.54	75.00% 75.00% 75.00%	19.03

CALCULATION OF TARIFF REQUIRED TO MEET SALARY AND REPAIRS PORTION OF O & M COSTS (New Schemes)

Village Sche Size Typ	_	No. of H.Holds	· · ·	Rep Cost Curr. Pr. 3 Yr Avg	Rate	Tariff E per HH per month	Recovery Rate	Tariff per HH per month
Large Water-	-CSSP 2000	333.33	46727	54048	50.00%	27.02	75.00%	18.02
Large Water-		333.33	46639	53946	50.00%	26.97	75.00%	17.98
Large Water-		333.33	72901	84322	50.00%	42.16	75.00%	28.11
Large Drain-		333.33	36651	42393	50.00%	21.20	75.00%	14.13
Large Drain-		333.33	38366	44377	50.00%	22.19	75.00%	14.79
Medium Water- Medium Water- Medium Water-	-CSSP 800	133.33 133.33 133.33	37223	44407 43055 60070	50.00% 50.00% 50.00%	55.51 53.82 75.09	75.00% 75.00% 75.00%	37.01 35.88 50.06

2.5 The required tariff per household in the case of salary and repairs recovery are considerably higher, being in the range of Rs. 27 to 42 per month in the case of large villages (depending on the type of scheme, and with an addition of Rs. 22 per month if a drainage scheme also exists) and around Rs. 37 to 50 per month in the case of medium sized villages.

Existing Schemes

- 2.6 In existing rural schemes any user charge is levied on connections, the rate varying by the type of connection (domestic or commercial). The amount of the rate varies from Rs. 10 to Rs. 30 per month for domestic connections and upto Rs. 100 per month for commercial connections.
- 2.7 The basis of charging O & M costs in the case of existing schemes would almost certainly have to continue to be on the basis of connections. Although some form of charge for households without connections could also be conceived the recovery rates in these cases are likely to be very low.
- 2.8 The O & M costs for existing schemes would vary according to whether they have been rehabilitated or not. Existing schemes tend to have been implemented in larger villages than those which will be selected for new schemes under the project. To determine the population size as well as current estimated level of O & M expenditure six schemes were reviewed, the details being as given in Table 3. The indications were that the average village population was around 4,000, this also being confirmed by the PHED as seeming to be reasonable.
- 2.9 The same assumptions relating to house-hold size and recovery rates have been made as in the case of new schemes. The calculations and resulting tariff rates are given in Table 2.

TABLE - 2

CALCULATION OF TARIFF REQUIRED TO MEET SALARY PORTION OF O & M COSTS

Village Size	Scheme Type	Average Pop.	No. of H.Holds	Annual Sa Constant Prices	lary Cost Curr. Pr. 3 Yr Avg	Rate	Tariff per HH per month	Recovery Rate	Tariff per HH per month
			(1	Rehabilita	ted Scheme	es)			
Large	Water-CSSP	4000	666.67	19740	22833	50,00%	5.71	75.00%	3.81
_	Water-CSSP	4000	666.67	19740	22833	50.00%		75.00%	
_	Water-TS	4000	666.67	19740	22833	50.00%		75.00%	
Large	Drain-SP	4000	666.67	19740	22833	EA AA&	E 71	75 009.	2.01
	Drain-DP	4000	666.67	19740	22833	50.00% 50.00%		75.00% 75.00%	3.81
torac	DIAIN DE	4000	000.07	19740	22033	30.00%	3.71	/5.00%	3.81
			(PHED	Non-Rehab	ilitated S	Schemes)			
-	Water-CSSP	4000	666,67	75240	87028	50.00%		75.00%	
_	Water-CSSP	4000	666.67	84960	98270	50.00%		75.00%	16.38
Large	Water-TS	4000	666.67	75240	87028	50.00%	21.76	75.00%	14.50
Large	Drain-SP	4000	666.67	95280	110207	50.00%	27.55	75.00%	18.37
	Drain-DP	4000	666.67	105720	122283	50.00%		75.00%	
			333.37	100720	122203	30.00	50.57	75,00%	20.30
			CALCULAT	TION OF TAI	RIFF REQUI	RED TO ME	ETP		
				REPAIRS					
	_								
Village		Average	No. of	Ann. Sal 8				Recovery	Tariff
Size	Туре	Pop.	H.Holds		Curr. Pr.		per HH	Rate	per HH
				Prices	3 Yr Avg		per month	1	per month
		•	(1	Rehabilita	ted Sahome	ag)			•
			1/	verionitited.	ceu schene	5 0 /			
Large	Water-CSSP	4000	666.67	60221	69656	50.00%	17.41	75.00%	11.61
_	Water-CSSP	4000	666.67	60088	69502	50.00%		75.00%	
Large '	Water-TS	4000	666.67	99482	115068	50.00%		75.00%	19.18
_									

(PHED Non-Rehabilitated Schemes)

55194

53166

50.00%

50.00%

13.80

13.29

75.00%

75.00%

9.20

8.86

47718

45965

Large Drain-SP

Large Drain-DP

4000

4000

666.67

666.67

Large		4000	666.67	130768	151255	50.00%	37.81	75.00%	25.21
Large		4000	666.67	141863	164088	50.00%	41.02	75.00%	27.35
Large		4000	666.67	197027	227895	50.00%	56.97	75.00%	37.98
_	Drain-SP	4000	666.67	130446	150883	50.00%	37.72	75.00%	25.15
	Drain-DP	4000	666.67	145660	168480	50.00%	42.12	75.00%	28.08

TABLE - 3

DETAILS OF SIX EXISTING SCHEMES REVIEWED

Village	District	Scheme Type	(Po 1981	pulation 1990			Estimated Rec. Rate	< Tari Full Rec.	-	
Makli	Thatta	CSDP	3563	5060	9708	144000	60.00%	23.72	9.49	14.23
Chachiro	Tharparkar	TSSP	2884	3749	5024	44300	40.00%	14.77	5.91	8.86
Kandiari	Sanghar	CSDP	4690	6105	8180	120000	50.00%	19.66	7.86	11.79
Gaji Khuhuwar	Larkana	CSSP	2547	3311	7500	56000	50.00%	16.91	6.77	10.15
Ghundan	Sanghar	Drainage	1618	2103	2820	57300	50.00%	27.25	10.90	16.35
Wazirabad	Shikarpur	-	3897	5066	6800	90200	50.00%	17.80	7.12	10.68

- 2.10 In the case of rehabilitated schemes the required tariff per household in the case of salary recovery would be around Rs. 6 per month, to be doubled if a drainage scheme also exists. The required tariff per household in the case of salary and repairs recovery are considerably higher, varying between Rs. 17.50 and Rs. 29 per month (depending on the type of scheme) and with an addition of Rs. 14 per month if a drainage scheme also exists.
- 2.11 For Non-Rehabilitated Schemes the resulting tariffs are much higher. In the case of salary recovery the rate would be around Rs. 22 to 25 per month, to be increased by Rs. 28 to 31 if a drainage scheme also exists. The required tariff per household in the case of salary and repairs recovery would vary between Rs. 38 and Rs. 57 per month (depending on the type of scheme) and with an addition of Rs. 38 to 42 per month if a drainage scheme also exists.

3. CONCLUSION

- 3.1 The proportion of O & M costs which could be passed onto the beneficiary community directly, whether in the form of a user charge or via community collections, would be dependent on the community's willingness to pay. As indicated on page 128 of the Project Preparatin Document submitted in December 1989 there is a willingness to pay charges in the region of Rs. 20 to Rs. 30 per household per month. Given the calculations in Tables 1 and 2 this would essentially indicate that it would only be feasible to meet salary costs via such a mechanism.
- 3.2 We would recommend that only two alternatives be considered, being listed in order of preference:
- a) Meeting total O&M costs through the medium of local cess
- b) Meeting Energy and Repair costs through the medium of local cess passing on the burden of salary costs to the beneficiary community. The mechanism for the latter would vary, being a user charge where household connections are given (essentially the larger villages) and community collections in the case of smaller villages.
- 3.3 In the case of the first being selected we would still recommend that the community collection or user charge mechanism (as is appropriate) be introduced, both to supplement the recovery from local cess as well as to introduce the concept so that more significant recoveries could be made via these mechanisms in later years.

SINDH RUNAL WATER SUPPLY AND SANITATION PROJECT RECOVERY OF 0 & M COSTS WORKING PAPER ON POSSIBILITY OF USING COTTON FEE AND PADDY DEVELOPMENT FEE

1. BACKGROUND

- 1.1 Following the decision of the previous Chief Minister to recover only the Energy portion of 0 & M costs via a surcharge on local cess, a meeting was held to discuss alternative mechanisms for raising revenues to meet 0 & M costs. During this meeting the Chief, (PP&H) origin suggested looking into the possibility of increasing the rates of cotton fee, sugar cane cess and paddy fee.
 - 1.2 This paper examines this possibility and includes calculations relating to the quantum of increase required to yield the necessary amounts.
 - 2. HISTORY OF TAXES

Sugarcane Cess

- 2.1 Sugarcane cess is levied on sugarcane and sugarbeet crushing and processing activities in all provinces except Baluchistan, the liability being equally divided between the mills and the growers. The proceeds, less a collection charge, are credited to a special fund which is used for development of facilities relating to production of sugarcane/sugarbeet.
- 2.2 This tax was not considered in this paper for two reasons:
 the fact that the utilisation of the funds seems to be specified
 the fact that sugarcane is only grown in specific areas of the
 province
- 2.3 Collections of Sugarcane cess for the year 1986-87 was 34.7 million, per the Finance Accounts of the Government of Sindh for that year.

ere fattly old

2.4 Cotton Fee is levied under the Cotton Control Ordinance 1966, being charged on seed cotton ginned, the fee being collected from the owners of ginning factories. The rate is set by the Agriculture department and the fee collected by the Excise and Taxation department.

2.5 The fee was initially levied in terms of rupees per maund (37.32 kgs) but this was changed to rupees per 100 kg. The prevailing rate (as per the Deputy Secretary [Technical] of the Agriculture department) is Rs. 6.00 per 100 kg.

Paddy Development Fee

cifect of

2.6 Paddy Development Fee was introduced by the Finance Act 1975, originally at the rate of Rs. 25 per maund (37.32 kg) which was changed to Rs. 0.75 per 100 kg by the Finance Ordinance 1981. The fee is levied on paddy brought to rice mills.

Collection figures of Cotton and Paddy Development Fee

the race 2.7 Collection figures in millions of rupees, as given by the Excise and Taxation department, are as follows:

3.3 Jus	Year	Paddy Fee	Cotton Fee
care spaces			
ទាំ ពេ ព្រ ុខភេទ	79-80	4.653	42.179
Concerne	80-81	7.425	39.489
	81-82	7.597	44.260
	82-83	8.222	43.884
constant	83-84	7.761	31.531
1.25 ps	84-85	8.382	40.858
ice tres	85-86	8.491	38.878
មហ្គាល់ពីក្រុម ស្រាប់ពីស្រាប់ព	86-87	9.267	35.145
សតី⊹មានជ2∷ ១	87-88	8.553	36.082
district	88-89	7.108	30.725
	89-90	8.216	31.992

2.8 The above figures may need some reconciling as the Finance Accounts for 1986-87 give figures of Rs. 15.769 million and Rs. 20.993 million for Paddy Development Fee and Cotton Fee respectively. Similarly the figures given for 1985-86 are Rs. 7.5 million and Rs. 27.9 million. The figures for cotton fee in previous years, however, are fairly close to those given above.

3. CHANGE REQUIRED

- 3.1 A possible surcharge on Cotton and Paddy Development Fee would be expected to cover the Salary component of 0 & M charges for the years 1990-91 through 1992-93, the average being estimated at Rs.34.34 million. The purpose of using both fees is to spread the effect of the increase over all districts of the province, districts like Larkana, Jacobabad and Shikarpur being predominantly rice growing districts while those like Nawabshah and Sanghar are largely cotton growing, other districts having a spread of both.
- 3.2 Calculations relating to the increase which is required assumed that the additional amount raised would bear the same proportion to the increase in the rate as the current collections bear to the current rate.
- 3.3 Justification of the increase is clearly there. The tax rates are specified in money terms per unit of weight and past increases do not appear to have been in line with increases in prices of the concerned commodities.
- 3.4 The increase suggested, which was arrived at by trying various combinations required to meet the costs of Rs. 34 million, is Rs. 1.25 per 100 kg on Paddy Development Fee and Rs. 4.00 per 100 kg on Cotton Fee. Table 1 analyses the increase as a proportion of land cultivated for paddy and cotton as also as a percentage of the value of each crop grown, the attempt being to keep variations between districts to a minimum in the case of both ratios.
- 3.5 The increase in revenue has been demonstrated in Table 2 where the increase has been compared to the price of the two commodities, the resulting proportions being insignificant.

Analysis of Effect of Increase of Cotton Fee/Paddy Development Fee

Table 1

 DISTRICT	! <	PACOY		r Cuitivatio ¦SUGARCANE;		>;a Total ¦	cres under WHEAT	Cuitivation OTHERS	(Rabi) TOTAL	; total	Prop Add P Fee		_ow AvgY10 Paddy ¦		Tot.Yld. Rs.mill.		Percent; of Value;
Hyderabad	;	70,463 ;	172,131	; 121,902 ;	186,743 ;	551,239 ¦	246,481 ¦	208,325 ;	454,806	1,006,045	1.25	4.00	226 ;	187	; 1.49	¦ 6.13¦	0.91%;
Sanghar	į	22,162	302,455	26,971	122,959	474,547	319,983	105,147	426,130	900,677	1.25	4.00	565 ¦	200	2.57	7.93	0.64%
Therparkar	1	10,107	135,468	54,507	188,280	388,362	241,183 !	127,229	368,412	756,774	1.25	4.00	293 ¦	182	1.02	7.02	1.41%
Badin	Ť	213,682	10,888	104,612	111,001	440,183	74,197	59,371	133,568	573,751	1.25	4.00	264	131	0.76	3.39	2.40%
Thatta	1	225,420	2,350	27,767	49,230	304,777	14,392	99,296	113,688	418,465	1.25	4.00	220 !	250	0.64	2.82	2.55%
Dadu	į	147,032	11.876	11,416	20,207	190,531	112,257	92,987	205,244	395,775		4.00	N.A.	N.A.	N.A.	N.A.	N.A.
Navebsheh	1	48,160	266,721	83,816	146,349	545,046	439,213	96,699	•	1,080,958		4.00	579	414	4.77	15.14	0.67%;
Khairpur	i	16,692	143,079	24,560	177,563	361,894	270,393	102,255	372,648	734,542		4.00	1000	400	2.50	15.63	1.33%
Suktur	ì	12,333	285,221	16,790	157,087	471,431	329,560	50,000	379,560	, ,	, .	4.00	1287	332		13.39	0.70%
Shikapur	í	217,282		656	7,441	225,379	58,057	143,022	201,079	•	1.25	4.00	729	N.A.	1.98	9.12	2.88%
Larkana	- }	391,675	<i>67</i> 0	915	17,401	410,661	78,994	181,410	260,404	•	1.25	4.00	1000	N.A.	4.90	12.48	1.59%
Jacobabad	į	242,447		675	32,270	276,063	84,552	104,723	189,275		•	4.00	775	N.A.	2.35	9.66	2.57%
Karachi East	ì	1		;				1	,	<u> </u>	· .		N.A.	N.A.	N.A.	N.A.	N.A.
Karachi West	į	į		<u> </u>	į	i	į	į.		1	1		N.A.	N.A.	N.A.	N.A.	N.A.

1,617,455 | 1,331,540 | 474,587 | 1,216,531 | 4,640,113 | 2,269,262 | 1,371,463 | 3,640,725 | 8,280,839 |

Source of Acres under cultivation: BOR
Paddy Fee Cotton Fee

Yield in Rs. million

8.216

31.992

Source: Excise and Taxation Department Figures for 198

Fee Yield/Acre (Rs.)

5.08

24.03

Theoretical Yield (kg/acre)

Commodity Price per 100 kg (Rs.)

200

200

Source: Average Price (rounded) per Business Recorder

(*) Source: Zakat and Ushr Department Notifications (figures weighted by number of Dehs to which applicable)

Table 2
Effect of Increase of Cotton Fee/
Follows Paddy Development Fee

PUB	. <u>``</u> V('			
a a	need the second	Cotton Fee¦	Paddy Fee¦	TOTAL
re	vanues () g			·
នប	Current Rate	6.00	0.75	į
်လာ ⁾ ၂၂၂	Increase Suggested (Rs. per 100 kg)	4.00	1.25	
ر . ا حورو	Current Collections	31.992	8.216	40.208
	Expected Increase	21.328	13.693	35.021
2.	Current Commodity Prices	2000	200	
	Increase as proportion of price	0.20%;	0.63%;	

liability

The process

Hitund while

2.2 This / 22 - the : : :

Cotto

2.4 Cotto

being char,

100011

_: ' :-

FINANCING RURAL WATER SUPPLY AND SANITATION SCHEMES

Rural Water Financial Policy

- 1. Government of Sindh, together with all other Provincial Governments, has endorsed a policy for rural water supply and sanitation (RWSS) scheme financing whereby:
 - i) provincial government will provide the capital costs of a basic level of service - standposts or other community facilities - as a grant; and
 - ii) the responsibility for Operation and Maintenance Costs (O&M) will borne by the community.
- 2. This policy is to be become effective in Sindh as part of a US\$ 92 million World Bank (IDA) supported project of which approximately US\$ 71 million will be financed on concessional IDA terms. The investment under this project includes construction or rehabilitation of RWSS mechanized schemes as 780 villages, handpump or handdug well schemes in some 2600 villages, associated drainage schemes, and construction of 6500 demonstration latrines with material for a further 27,500 units.

Operations and Maintenance Cost

- 3. Average O&M Costs during the first three years of the project, which arise mainly in respect of mechanized schemes, are estimated to amount to Rs.100 million per year. There are three main components of O&M Costs, such approximately equal is size:
 - i) energy principally electricit costs for pumping water;
 - ii) repairs and maintenance; and
 - iii) manpower the costs of operators and maintenance personnel.

- have been calculated on the basis of a 4. The costs of manpower being paid to RWSS operations staff, but in practice this service might be provided in kind directly by the community, in which case costs would be reduced. The first two components, energy and essntially cash expenses which can not be provided in repairs. are community (details of the basis for estimating these costs are given in Appendix 1).
- 5. An increase in local cess is considered to be a straight forward and workable mechanism for recovering the power and repairs costs. The required increase is Rs. 12.65 per acre (perennial), Rs. 6.13 per acre (non-perennial) and Rs. 2.75 per acre (barani).
- 6. The World Bank has scheduled project negotiations for January 1991 The issuance of the invitation to negotiate is contingent upon receipt by the World Bank of notification of approval and public announcement by the Government of Sindh of satisfactory cost recovery levels. The World Bank has also advised Government of modalities and that if necessary action is still awaited by mid-December 1990, World Bank would consider negotiating with the Governments Azad Jammu and Kashmir. and Balochistan. both of which have satisfied the requirements for negotiations. This would avoid further delays to these Governments. It would also allow the World Bank's project processing to be complete within this financial year, which is necessary if the IDA funds are to remain allocated to Pakistan. It should be mentioned that if the Government of Sindh fails to meet the mid-December deadline there would be a danger of losing the IDA credit of (US\$ 71) million for the Sindh component of the project.
- 7. In discussions, the World Bank has indicated its support for increases in the local cess at least equivalent to the costs of power and repairs.

OPERATIONS AND MAINTENACE COSTS OF RWSS SCHEMES DETAILS OF CALCULATIONS

1. This note sets out details of the calculations involved in estimating the increase required in local cess rates to meet 0 & M costs relating to Rural Water Supply and Sanitation Schemes in Sindh.

0 & M Costs per Scheme

- The Operations and Maintenance costs which are to be recovered under the mechanism are those which relate to all rural water supply and sanitation projects, including existing ones, new schemes planned the IDA project and new schemes planned under the Annual Development the project preparation study the Program. During consultants, along with PHED, developed a table of Estimated 0 & M Scheme (Annexure 1), this being included on pages Type ο£ 139 and 140 of the final Project Preparation Document. Schemes have been grouped together in combinations of the following parameters:
 - type of scheme, eg., single pumping canal sourced water supply or single pumping drainage, etc.
 - Size of Scheme, i.e., whether for large or medium sized villages
 - whether existing (further divided into pre and post rehabilitation) or to be built in future
- 3. The total 0 & M costs have been divided into three components, Energy and Chemical costs, Salary and Wages and Repairs and Maintenance. Calculations of each component have been made on the following bases (all values being at 1989 costs):
 - a) Energy and Chemical costs have been based on the estimated utilisation of electricity and chemicals costed using the current structure of electricity costs
 - b) Salary and Wages have been calculated as number of persons multiplied by the annual salary. For example the Rs. 19,740 in the case of PHED rehabilitated as well as new schmes, has been worked out as the annual equivalent of 2 persons with a total monthly salary of Rs. 1,645.
 - c) Repairs and Maintenance costs have been worked out as 2 % of the cost (at 1989 prices) of civil works plus 6 % of the cost of mechanical equipment (eg., pumps).

Total Annual O & M Costs

- 4. Having arrived at the cost per scheme the next step was to expand this to arrive at the total 0 & M costs. For this purpose the number of existing schemes was taken along with the planned numbers of schemes to be rehabilitated, along with planned schedules (in terms of number of schemes by type) for:
 - completion of on-going schemes
 - new schemes under the proposed project
 - new schemes under ADP (called "SIP Remainder")
- 5. The numbers have been given in Annexure 2, being dervied from PHED sources as well as the Strategic Investment Plan report prepared by the consultants.
- 6. The number of schemes in place in each year (by type of scheme) was then multiplied by the annual estimated 0 & M costs by scheme to arrive at the 0 & M costs for each year (at 1989 constant prices) by type of scheme, which was then totalled to give the total costs. This calculation is illustrated in Annexure 3.
- 7. Having calculated costs at 1989 constant prices the next step was to inflate these using assumed inflation rates (the rates used being 8% for the first year, 7% for the second and 6.5% p.a. from the third year onwards). Energy costs were also inflated by a further 4% per annum, this being a World Bank estimate of the real increase in Energy costs (it is worth stating that in light of the Gulf crisis the estimates of Energy costs are likely to be substantially understated).

Calculation of Increase Required in Local Cess Rates

- 8. The World Bank had set a condition that cess rates would be reviewed and revised at the end of every three year period. With this in view the initial calculations focussed on the first three years, i.e, 1990-91 through 1992-93. The annual estimated 0 & M costs for these three years were averaged (by component) and calculations done to estimate the increase required in local cess rates to meet each component.
- 9. The calculations were based on the area under cultivation in each district for each crop, this being provided by the BOR, Using this as a base the following parameters were also allowed for:
 - the rates for perennial, non-perennial and barani land should be in the ratio 5 : 2.5 : 1, this being recommended by the committee formed to review the cost recovery mechanism

- a 15% allowance for non-recovery, this being based on the average for the last three years per figures provided by BOR (see Annexure 4)
- a 6 % loss on raising the demand, this again being based on the average difference for the last three years between the actual and theoretical demands
- a 5 % allowance for recovery costs of the BOR

10. The resulting figures were rounded off, the resulting "increases" in rates (Rs./acre) required being as follows:

	Perennial	Non-Perennial	Barani
Full Recovery	18.90	9.25	4.00
Recovery of Energy and Repairs and Maint. only	12.65	6.13	2.75
Recovery of Energy only	6.40	3.00	1.50

11. Calculations were also carried out to standardise the current rates relating accross districts, these being as follows:

Perennial Rs. 3.60 per acre Non-Perennial Rs. 2.00 per acre Barani RS. 0.50 per acre

GOVERNMENT OF SINDH LOCAL GOVERNMENT PUBLIC HEALTH ENGINEERING AND RURAL DEVELOPMENT DEPARTMENT

Karachi dated the 34 MJanuary, 1991

le laps this shall be prosed on to HQ, if it has not been due abroady, Agent X24

Mr. Navaid Qureshi, Projects Advisor, The Resident Mission. World Bank, 20-A Shahrah Jamhuriat, Sector Ramas 5m1.

SUBJECT:

(A

SINDH RURAL WATER SUPPLY AND SANTTATION PROJECTA (IDA ASSISTED).

In continuation of this Department's letter of even number. dated 7.1.1991 on the subject noted above. the Government of Sindh has agreed to adopt the following mechanism to meet the repairs and salaries portion of Operation & Maintenance costs of Rural Water Sunnly & Drainage Schemes completed by Public Health Engineering Department under normal ADP & IDA assisted programmes:-

- A Public Health Surcharge be added on the following three existing taxes, being recovered with these but being oredited to a separate account to meet O&M costs of Rurel Water Supply & Sanitation Schemes :-
 - Cotton Fee, the amount of surcharge being Rs.2.50 per 100 kg this being in addition to the extating rate of Rs. U. 690per 100 kg.
 - Paddy Development Fee, the amount of surcharge being Rs.O.50 per 100 kg this being in addition to the existing rate of Rs.O.75 per 100 kg.
 - Sugarcege Development Cess, the amount (c) of surcharge being Rs. 0.15 per maund, this being in addition to the existing rate of Rs. 0.50 per maund.
- The benefitting community would be asked to take on the responsibility of providing .II) manpower for operating and maintaining the schemes.

The notification in this regard is under process which would be available in time for the negotiations(as per time table communicated in World Bank's telex dated 4.1.91).

In view of the above, it is requested that draft legal documents be issued to the Govt. as per paragraph +GGG of the aforementioned telex.

> (MUHAMMED USMAN SHUJRAH) SECTION OFFICER-III

P/2...

GOVERNMENT OF SINDH LOCAL GOVERNMENT PUBLIC HEALTH ENGINEERING AND RURAL DEVELOPMENT DEPARTMENT

1-- 2 1--

NO.SO.TTT-3(92)/87

Karachi dated the

Jan. 1991

A copy is forwarded alongwith a copy of *ummary for Chief Minister, Sindh vide No.SO.III-3(92)/87, dated 15-1-1991 for information to:-

- 1/- The Additional Chief Secretary (Dev.), Planning and Development Department, Government of Sindh, Karachi.
- 2/- P.S. to Chief Secretary Sindh, Karachi.
- The Chief Engineer. Public Health Engineering Department, Covernment or Singn, syderapad.
- 4/- Mr. Umer Murshad Consultants.

(MUHAMMED USMAN SHUJRAH) SECTION OFFICER-III

Jamil/*

Technology Type	Settlement Size	90-91	91-92	92 -9 3	93-94	94-95	95-96	96-97	97 -9 8	Remarks
) RUPLY SUPPLY SOLEMES						. <u>.</u>				
		i	•							
) Existing Schemes										Includes 16 scher
anal Sounce Single Pumping	Large	143								break-up not know
Double Pumping	Large									prorated between
ubewell Source	L <i>a</i> rge	65								Source : PHED Tab
Rehabilitation	•									•
anal Source Single Purping	0.64	18	31.	33	16	15	15	15		Source : Report
Double Pumping	0.07	2		4	2					Proportioned on b
ubewell Source	0.29			15						of existing sch
Campletians of an going Scho	mes									
anal Source Single Pumping	Large	25	34	49	73	79	44	29	12	Sounce:PHED Tab ! 345 {
	Medium			12						
Double Pumping	Large	3		6	9		6		2	
	Medium			2						
ubewell Source	Lärge	4	5	7	11		7		2	
ान J el S ome Sinter	Medium	1	1	2						
) Completions IDA Project										Source : Report
anal Source Single Pumping	Large	0	4	11	11	12	6	2	2	
	Medium	0	6	20	27	28	28	18	14	
Pauble Pumping	L <i>a</i> rge.	. 0	1	2	3	3	1	0	C	
	Medium	0	2	5	6	7	6	5	3	
ubewell Source	Large	0	0	6	7	4	4		0)
	Medium	0	0	9	10	8	8	б	1	
							-			
) SIP Remainder		_	_			_				Source : SIP
anal Source Single Purping	Large	5	5	1	6	5	11	14	14	
B 11 B	Medium			42	79				261	
Double Purping	Large Madis	1	1	1	. 1	1	3	4	4	
A	Medium	2		10	20				66	
bewell Source	Large Madison	2	6 7	4	9 10	12 13	12	13	13	
DRAINAGE SCHEMES	Medium	1	,	2	טנ	13	14	15	11	•
					•					
Completed Schemes		167	•							Source : PHED Tab
) Rehabilitations		21	37	38	19	17	17	17		167
) On-Going Completions										Source : PHED Tab
Single Purping		37	56	72	79		32	4	0	
Double Pumping		7	11	27	24	16	6	1	0	92
IDA Dominat Completions			Ì							Course of the second
IDA Project Completions		^	· -	40	-		44	• _	_	Source : Report
Single Purping		. 0	5 1	16 6	20	16	11 2	6	6	
Dable Purping		·	Ţ	ъ	6	4	2	1	1	20
) SIP Remainder Completions										Source : SIP
Single Amping		4	3	9	71	86	106	112	112	
Double Amping		1	1	4	21	22	19	19	. 19	86
		0								
Inflation 82 + Real Increase	<u>- 6.5</u>	4).a		_)			·	•
医铁色蛋白 直動 化二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二			0 1		u 1/	' ₋				

.3

COST OF OPERATIONS AND MAINTENANCE RURAL WATER SUPPLY SCHEMES (Source : 08M Table)

A) PHED NON-REPABILITATED SCHEMES

•												
Canal Sourced Single P	umping Large	!										
	Energy	57500	8.2	7.2	5.4	3.5	2.6	1.7	0.9	0.0	0.0	0.0
	Salary	75240	10.8	9.4	7.1	4.6	3.4	2.2	1.1	0.0	0.0	0.0
	Repairs	55528	8.0	7.0	5.2	3.4	2.5	1.7	0.8	0.0	0.0	0.0
	Total	188268	27.0	23.6	17.7	11.5	8.4	5.6	2.8	0.0	0.0	0.0
Canal Sourced Double A					_, .,							•
त्रक्षम्या अस्ति।	Energy	79100	1.3	1.1	0.8	0.5	0.4	0.3	0.1	0.0	0.0	0.0
•	Salary	84960	1.4	1.2	0.9	0.6	0.4	0.3	0.1	0.0	0.0	0.0
	Repairs	56903	0.9	0.8	0.6	0.4	0.3	0.2	0.1	0.0	0.0	0.0
	Total	220963	3.6	3.1	2.3	1.5	1.1	0.7	0.4	0.0	0.0	0.0
Tubewell Sourced Large			5.0	J.,	2.5	1.5	1.1	0.7	0.7	0.0	0.0	0.0
1900,011,000,000,000	Energy	57500	3.8	3.3	2.5	1.6	1.2	0.8	0.4	0.0	0.0	0.0
	Salary	75240	4.9	4.3	3.2	2.1	1.5	1.0	0.5	0.0	0.0	0.0
. "	Repairs	121787	8.0	7.0	5.2	3.4	2.5	1.7	0.8	0.0	0.0	0.0
-	Total	254527	16.7	14.6	10.9	7.1	5.2	3.5	1.7	0.0	0.0	
	ЮШ	L.Ph.K.1	10.7	14.0	10.5	7.1	3.2	3.0	7.7	0.0	0.0	0.0
B) FHED REHABILITATED S	STLEMES											
D) FIED NO ROLLINION (יייייייייייייייייייייייייייייייייייייי											
Canal Sourced Single P	umping Lange							•				
•	Energy	25220	0.0	0.5	1.2	2.1	2.5	2.9	3.2	3.6	3.2	3.2
	Salary	19740	0.0	0.4	1.0	1.6	1.9	2.2	2.5	2.8	2.5	2.5
g from History D	Repairs	40481	0.0	0.7	2.0	3.3	4.0	4.6	5.2	5.8	5.1	5.1
;* r *	Total	85441	0.0	1.5	4.2	7.0	8.4	9.7	11.0	12.2	10.7	10.7
Canal Sourced Double Pu	Imping Lange							-				
	Energy	44840	0.0	0.1	0.2	0.4	0.5	0.6	0.6	0.6	0.6	0.6
•	Salara	107/0	0.0	0.0	0.1	0.0	0.2	0.3	0.2	0.2	0.3	0.3

Tubewell Sourced Large

Salary 19740 0.0 0.0 0.1 0.2 0.3 0.2 0.3 0.3 0.3 0.3 Repairs 40348 0.0 0.1 0.2 0.4 0.4 0.5 0.6 0.6 0.6 0.6 Total 104928 0.0 0.2 0.6 1.0 1.2 1.3 1.5 1.5 1.5 1.5 Energy 39240 0.0 0.3 0.9 1.5 1.8 2.0 2.3 2.6 2.2 2.2 Salary 19740 0.0 0.2 0.4 0.7 0.9 1.0 1.2 1.3 1.1 1.1 Repairs 79742 0.0 0.7 1.8 3.0 3.6 4.1 4.7 5.2 4.6 4.6 Total 138722 8.1 0.01.1 3.1 5.2 6.2 7.2 9.1 7.9 7.9

al famed last

Technology Type	Amual Cost	90-91	91 -9 2	92-93	9 3-9 4	94-95	9 5-9 6	96-97	97-98	9 8-9 9	99-2000
C) PHED CN-COING SOLEMES											
Canal Sourced Single Purping Large		0.0	0.6	. 1 5	2.7	16	6.6	7.7	8.4	8.7	. 8.7
Energy	25220 10740			1.5 1.2		4.6 3.6	5.1	6.0	6.6	6.8	6.8
Salary	19740 40481	0.0						12.3		14.0	
Repairs Total	85441	0.0		5.0		15.4	22.2	26.0	28.5	29.5	29.5
Canal Sourced Double Purping Large		0.0	2.1	5.0	7.2	7.74	22.02	20.0	20.5	20.0	22.0
Energy	e: 44840	0.0	0.1	0.3	0.6	1.0	1.5	1.8	1.9	2.0	2.0
Salary	19740	0.0		0.1	0.3	0.5	0.7	0.8	0.8	0.9	0.9
. Repairs	403/18							1.6		1.8	1.8
Total	104928	0.0			1.5	2.4	3.5	4.1	4.5	4.7	4.7
Tubewell Sourced Large	10 1020	0.0		010	3, 23		313	**,			
Creative to Energy	39240	0.0	0.1	0.3	0.6	1.1	1.5	1.8	2.0	2.0	2.0
Salary	19740	0.0		0.2			0.8	0.9	1.0	1.0	1.0
Repairs	79742							3.6			
Total	138722	0.0		1.2		3.8	5.4	6.3		7.2	7.2
Canal Sourced Single Purping Medium											
the National Energy	10100	0.0	0.1	0.1	0.3	0.5	0.7	0.8	0.8	0.9	0.9
Salary	19740	0.0	0.1	0.3	0.5	0.9	1.3	1.5	1.6	1.7	1.7
~ Repairs	27978	0.0	0.2					2.1			2.4
Total	57818	0.0	0.4	0.8	1.6	2.6	3.8	4.4	4.8	5.0	5.0
Canal Sourced Double Pumping Medi											
Energy	21820							0.2			
Salary	19740	0.0				0.1	0.2	0.2		0.2	0.2
Repairs	26225							0.3			
Total	67785	0.0	0.1	0.1	0.2	0.4	0.6	0.7	0.7	0.8	0.8
Tubewell Sourced Medium Frenov	1000				0.3	0.1	0.2	0.2	0.2	0.3	0.3
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	19620					0.1 0.1	0.2	0.2		0.3	
Salary	19740 48291	0.0						0.6			
Repairs Total	87651	0.0		0.2		0.6	0.9	1.0	1.1	1.1	1.1
D) IDA PROJECT COMPLETIONS	U/WL	0.0	Qa.l.	0.2	0.4	0.0	0,9	1.00	T.*.	# ·	***
Canal Sourced Single Purping Large											
Energy	25220	0.0	0.0	0.1	0.4	0.7	1.0	1.1	1.2	1.2	1.2
Salary	19740	0.0						0.9		0.9	0.9
Repairs	26987	0.0	0.0	0.1	0.4	0.7	1.0	1.2	1.2		
Total	71947	0.0	0.0	0.3	1.1	1.9	2.7	3.2	3.3	3.5	3.5
Canal Sourced Double Pumping Larg											
Energy	44840										
Salary	19740					0.1		0.2			
Repairs	26899										
Total Tubewell Sourced Large	91479	0.0	0.0	0.1	0.3	0.5	0.8	0.9	0.9	0,5	0.9
Energy	39240	0.0	0.0	0.0	0.2	0.5	0.7	0.8	0.9	0.9	0.9
Salary	19740					0.3		0.4			
Repairs	53161										
Total	112141							2.4	2.6		
Canal Sourced Single Purping Medi					***		-112				
Energy	10100	0.0	0.0	0.1	0.3	0.5	0.8	1.1	1.3	1.4	1.4
Salary	19740							2.2			
Repairs	18652	0.0	0.0	0.1	0.5	1.0	1.5	2.0	2.4	2.6	2.6
Total	48492	0.0	0.0	0.3	1.3	2.6	3.9	5.3	6.2	6.8	6.8
Canal Sourced Double Purping Med											
Energy Energy	21820							0.6			
Salary Salary	19740					0.3		0.5			
Repairs	17483										
Total	59043	0.0	0.0	0.1	0.4	0.8	1.2	1.5	1.8	2.0	2.0
Tubewell Sourced Medium											
					•		•				

Technology Type		Amual										
		Cost	90-91	91-92	92 -9 3	93-94	94-95	95 -9 6	96-97	97-98	98-99	99-2000
Tubewell Sourced Medium												
	Energy	19620	0.0								0.8	0.8
	Salary	19740	0.0	0.0	0.0	0.2	0.4	0.5	0.7	0.8	0.8	8.0
\vec{x}	Repairs	32194	0.0	0.0	0.0					1.3	1.4	1.4
. 1.2 f ii	Total	71554	0.0	0.0	0.0	0.6	1.4	1.9	2.5	2.9	3.0	3.0
	•											
E) SIP REMAINDER COMPLE											•	
Canal Sourced Single Pu	mping Large											
	Energy	25220	0.0	0.1	0.2						1 . 5	1.5
	Salary	19740	0.0	0.1	0.2	0.2	0.3		0.7	0.9	1.2	1.2
•	Repairs	26987	0.0	0.1	0.3	0.3					1.6	1.6
1. St. 1.	Total	71947	0.0	0.3	0.7	0.8	1.2	1.6	2.4	3.4	4.4	4.4
Canal Sourced Double Pu												
	Energy	44840	0.0	0.1	0.1	0.2				0.6	0.8	0.8
	Salary	19740	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.3	0.3	0.3
	Repairs	26899	0.0	0.0	0.1	0.1	0.1	0.2		0.4	0.5	0.5
	Total	91479	0.0	0.1	0.2	0.3	0.4	0.5	0.8	1.2	1.6	1.6
Tubewell Sourced Large								,				
	Energy	39240	0.0	0.1	0.3					2.3	2.8	2.8
-	Salary	19740	0.0	0.0	0.2	0.2	0.4	0.7	0.9	1.2	1.4	1.4
	Repairs	53161	0.0	0.1	0.4	0.6	1.1	1.8		3.1	3.8	3.8
	Total	112141	0.0	0.2	0.9	1.4	2.4	3.8	5.2	6.6	8.1	8.1
Canal Sourced Single Pu												
	Energy	10100	0.0	0.1	0.3		1.6				9.3	9.3
	Salary	19740	0.0	0.2	0.7	1.5	3.1	5.5	8.7	13.0	18.1	18.1
·	Repairs	18652	0.0	0.2	0.6	1.4	2.9				17.1	17.1
	Total	48492	0.0	0.4	1.7	3.7	7.5	13.4	21.4	31.9	44.6	44.6
Canal Sourced Double Pur												
	Energy	21820	0.0	0.0	0.2		0.8			3.6	5.0	5.0
	Salary	19740	0.0	0.0	0.2	0.4	0.8	1.4	2.2	3.3	4.6	4.6
	Repairs	17483	0.0	0.0	0.1	0.3	0.7			2.9	4.0	4.0
T 1 33 0 137 12	Total	59043	0.0	0.1	0 . 5	1.1	2.3	4.1	6.6	9.8	13.6	13.6
Tubewell Sourced Medium	-	1000	0.0				0.4	0.7		1.0	1 4	1 4
(1) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Energy	19620	0.0	0.0	0.2 0.2	0.2	0.4	0.7	0.9	1.2 1.2	1.4	1.4
19) ಕ ರಗಳ	Salary Pennim	19740 32194	0.0	0.0 0.0	0.2	0.2 0.3	0.4 0.6	0.7 1.1	0.9 1.5	2.0	1.4 2.3	1.4 2.3
i .	Repairs Total	32194 71554	0.0	0.0	0.6	0.3	1.4		3.4	2.0 4.4	5.2	5.2
	iotai	11334	0.0	0.1	0.0	U./	1.4	2.4	5.4	4.4	5.2	3.4

D) Dariele

Technology Type									96 - 97 :	97 -9 8 !	9 8-99 9	99- 2000
COST OF OPERATIONS AND MAINTENANCE RURAL WATER SUPPLY SCHEMES (Source : 08M Table) A) EXISTING SCHEMES												
N Daoile 30 D.Co	Energy	79100	11.6	8.7	5.6	4.1	2.8	1.4	0.0	0.0	0.0	0.0
Harris Inc.	Salary	105720	15.4	11.6	7.5	5.5	3.7	1.8	0.0	0.0	0.0 0.0	0.0 0.0
	Repairs Total	39940 224760	5.8 32.8	4.4 24.6	2.8 16.0	2.1 11.7	1.4 7.8	0.7 3 . 9	0 . 0	0.0	0.0	0.0
B) REHABILITATED SOLEME	•	224700	32.0	24.0	10.0	11.07	7.0	J., J	0.0	0.0	0.0	
	Energy	44280	ō . 0	0.9	2.5	4.2	5.1	5.9	6.6	7.4	7.4	7.4
	Salary	19740	0.0	0.4	1.1	1.9	2.3	2.6	3.0	3.3	3.3	3.3
	Repairs Total	48291 112311	0.0	1.0 2.3	2.8 6.4	4.6 10.7	5.5 12.9	6.4 14.8	7.2 16.8	8.1 18.8	8.1 18.8	8.1 18.8
C) ON-GOING SOHEME COMF		1,12,111	Ort	Z.J	0.4	1.0.7	الداه مكسلير	1410	10.01	20.0	10.0	10.0
1) Single Amping												
	Energy	22140	0.0	0.8	2.0	3.6	5.4	6.8	7.5	7.6	7.6	7.6
	Salary	19740	0.0	0.7 0.9	1.8 2.3	3.3 4.2	4.8 6.2	6 . 1 7 . 8	6.7 8.6	6.8 8 . 7	6.8 8.7	6.8 8.7
A Marie Committee	Repairs Total	25366 67246	0.0	2.5	6.2	11.1	16.4	20.7	22.8	23.1	23.1	23.1
1) Double Pumping												
	Energy	44280	0.0	0.3	8.0	2.0	3.1	3.8	4.0	4.1	4.1	4.1
•	Salary	19740	0.0	0.1	0.4	0.9	1.4 3.3	1.7 4.1	1.8 4.4	1.8 4.4	1.8 4.4	1.8 4.4
A. William S. Com	Repairs Total	48291 112311	0.0	0.4 0.8	0.9 2.1	2.2 5.1	7.8	9.6	10.2	10.3	10.3	10.3
D) IDA PROJECT COMPLETI		112311	020	0.0	~	J.1	710	2.0	10.2	1010	2013	2010
1) Single Purping												_
	Energy	22140	0.0	0.0	0.1	0.5	0.9	1.3	1.5	1.6	1.8	1.8
5. 79 Page 1	Salary Repairs	19740 16911	0.0	0.0	$0.1 \\ 0.1$	0.4 0.4	0.8 0.7	1.1 1.0	1.3 1.1	1.5 1.3	1.6 1.4	1.6 1.4
	Total	58791	0.0	0.0	0.3	1.2	2.4	3.4	4.0	4.4	4.7	4.7
1) Double Pumping												
	Energy	44280	0.0	0.0	0.0	0.3	0.6	0.8	0.8	0.9	0.9	0.9
.	Salary Repairs	19740 18626	0.0	0.0	0.0	0.1 0.1	0.3	0.3	0.4 0.4	0.4 0.4	0.4 0.4	0.4 0.4
	Total	82646	0.0	0.0	0.1	0.6	1.1	1.4	1.6	1.7	1.7	1.7
E) SIP REMAINDER COMPLE 1) Single Purping												
17 Single rouping	Energy	22140	0.0	0.1	0.2	0.4	1.9	3.9	6.2	8.7	11.2	11.2
	Salary	19740	0.0	0.1	0.1	0.3	1.7	3.4	5.5	7.7	10.0	10.0
J. Carolina I .	Repairs	16911	0.0	0.1	0.1	0.3	1.5	2.9	4.7	6.6	8.5	8.5
1) De bla Danier	Total	58791	0.0	0.2	0.4	1.0	5.1	10.2	16.4	23.0	29.6	29.6
1) Double Pumping	Energy	44280	0.0	0.0	0.1	0.2	1.2	2.1	3.0	3.8	4.6	8.4
	Salary	19740	0.0	0.0	0.0	0.1	0.5	0.9	1.3	1.7	2.1	3.8
Di Maria e	Repairs	18626	0.0	0.0	0.0	0.1	0.5	0.9	1.3	1.6	2.0	3.6
	Total	82646	0.0	0.1	0.1	0.4	2.2	4.0	5.6	7.1	8.7	15.8

In Proces

Technology Type	90-91	91-92	92-93	93 -9 4	94-95	95-96	96-97	97-98	9 8-9 9	99-2000
OOST OF OPERATIONS AND MAINTENANCE RURN.	WATER SL	FPLY S	HES	vw-1			. ·····			
1. Completed Schemes Energy										0.0
Sala Repair Tot	rs 16. 8	14.7	11.1	7.2	5. 3	3.5	1.8	0.0	0.0	0.0
2. Rehabilitated Schemes Ener Sala	*-	0.6	5 1.5	2.5	3.1	. 3.5	4.0	4.4	3.9	3.9
Repail Repail										
	0.0				A	10.0	17 4	13.0	141	1.4.1
3. On-going Schemes Energy Sala Repair	rs 0.0	0.8	3 1.9 ' 4.0) 3.4 7.3	5.7 12.2	8.2 17.5	9.6 20.5	22.4	10.9 23.2	23.2
Tot.	al 0.0	3.5	5 8.2	2 15.1	25.3	36.4	42.5	46.6	48.2	48.2
4. IDA Project Schemes Energy Sala										
Repail Tot	rs 0.0	0.0	0.3	1.7	3.4	4.9	6.2	7.0	7.4	7.4
F CTD During Column	- 0.0		. 13		4 3	. "J 1	10.0	15 5	20.0	20.0
5. SIP Project Schemes Energy Sala Repair	ry 0.0	0.4	1.4	2.6	5.1	. 8.7	13.6	19.8	27.1	27.1
Tot										
Sub-Total Water Supply Energ Sala Repair Tot	ry 17.1 rs 16.8	16.7 18.4	7 16.2 21.1	26.0	21.7 34.8	27.8 45.1	33.8 54.1	40.2 62.9	47.8 70.3	47.8 70.3
COST OF OPERATIONS AND MAINTENANCE DRAIN	40E SOHEM	ES								
1. Completed Schemes Ener Salan Repai	ry 15.4	11.6	7.5 1 2.8	5.5 2.1	3.7 1.4	1.8 0.7	0.0 0.0	0.0 0.0	0.0	0.0
Total	∋ī 32.8	24.6	16.0	11.7	7.8	3.9	0.0	0.0	0.0	0.0
2. Rehabilitated Schemes Enem Salar Repai Tota	ry 0.0 rs 0.0	0.4	1.1 2.8	1.9 4.6	2.3 5.5	2.6 6.4	3.0 7.2	3.3 8.1	3.3 8.1	3.3
3. On-going Schemes Enem	gy 0.0	1.1	2.9	5.7	8.5	10.6	11.6	11.7	11.7	11.7
Salai Repai Tota	rs 0.0	1.3	3.2	6.4	9.5	11.9	13.0	13.1	13.1	
4. IDA Project Schemes Enem Salar										
Repail Tota	rs 0.0	0.0	0.1	0.5	0.9	1.3	1.5		1.7	
5. SIP Project Schemes Ener	gy 0.0	0.1	. 0.2	0.6	3.1	6.0	9.2	12.5	15.8	19.6

	Salary Repairs Total	0.0 0.0	0.1 0.1 0.3	0.2 0.2 0.6	0.4 0.4 1.4	2.3 2.0 7.3	4.4 3.8 14.2	6.8 6.0 22.0	9.4 8.2 30.2	12.0 10.5 38.3	13.7 12.1 45.4
9.b-Total Orainage	Energy	11.6	10.9	11.4	15.4	20.9	25.8	29.7	34.1	37.6	41.4
	Salary	15.4	13.0	11.2	12.5	15.4	18.1	20.0	23.2	25.9	27.6
1. Capleted of	Repairs	5.8	6.8	9.1	13.9	19.4	24.1	27.7	31.1	33.4	35.0
	Total	32.8	33.6	31.7	41.9	55.7	6 8.0	77.4	88.3	96.9	104.0
TOTAL MECHANISED SCHEMES	Energy	24.8	24.8	26.5	33.1	44.1	55.6	65.3	75.3	84.1	87.9
	Salary	32.5	29.7	27.4	29.7	37.2	45.8	53.8	63.4	73.7	75.4
To Make Mill	Repairs	22.7	25.2	30.2	39.9	54.1	69.3	81.9	93.9	103.7	105.3
	Total	80.0	79.6	84.1	102.6	135.4	170.7	201.0	232.7	261.5,	268.6
NON-MECHANISED SOHEMES		0.2	0.6	1.2	2.0	3.0	4.2	5.4	6.7	6.7	6.7
TOTAL WATER SLPPLY AND DRAINAGE	Energy	24.8	24.8	26.5	33.1	44.1	55.6	65.3	75.3	84.1	87.9
	Salary	32.5	29.7	27.4	29.7	37.2	45.8	53.8	63.4	73.7	75.4
	Repairs	22.9	25.8	31.4	41.9	57.1	73.5	87.3	100.6	110.4	112.0
	Total	80.2	80.2	85.3	104.6	138.4	174.9	206.4	239.4	268.2	275.3

· 1-20年9月1日

\$ 50 Acres 55

r**ua**l ar S. V. . . .

A. (certicient)

3. Mark Heles

to be store

4. IDA Project S

5. SIP frijet j

Technology Type											:
		90-91	91-92	92-93	93-94	94-95	95-96	96- 9 7	97-98	98-99	99-2000
COST OF OPERATIONS AND MAINTENANCE	e rural. W	ater suf	77LY 50	-EME S							
1. Completed Schemes	Energy Salary Repairs Total	14.9 18.4 18.2 51.5	14.5 17.3 17.0 48.8	13.6	9.4	7.3	5.2	2.8	0.0	0.0	0.0
2. Rehebilitated Schemes	Energy Salary Repairs Total	0.0 0.0 0.0 0.0	1.1 0.6 1.7 3.4	3.3 1.9 4.9 10.1	6.1 3.3 8.8 18.2	11.2	13.7	16.6	7.4 19.5	7.0 18.3	19.5
3. On-going Schemes	Energy Sal <i>a</i> ry		1.3 0.9						17.7	19.6	
en an Brand III. Talah	Repairs Total	0.0 0.0	1.9 4. 1	4.9 10.5	9.5 20.8	17 . 0 37 . 5	26.0 58.2	32.4 73.5			
4. IDA Project Schemes	Energy Salary Repairs Total	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.3	2.2	4.7	7.3	9.9 7.7 9.8 27.3	9.3 11.7	10.6 13.2	11.3 14.1
5. SIP Project Schemes	Energy Salary Repairs Total	0.0 0.0 0.0 0.0	0.5 0.5 0.6 1.6	1.9 1.7 2.2 5.8	4.1	7.3 7.1 8.3 22.6	14.8	22.6 21.5 24.2 68.4	33.4 36.9	48.7 52.9	51.8 56.3
Sub-Total Water Supply	Energy Salary Repairs Total	14.9 18.4 18.2 51.5	17.4 19.3 21.2 57.9	26.0	34.0	48.5	67.1	85.7	67.8 106.0	95.8 126.2	91.3 134.4
COST OF OPERATIONS AND MAINTENANCE	e drainaci	E SCHEME	S								
1. Campleted Schemes	Energy Sal <i>a</i> ry Repairs Total	16.7	10.8 13.4 5.1 29.3	9.3 3.5	7.2	5.1	2.7	0.0	0.0	0.0	0.0 0.0
2. Rehabilitated Schemes	Energy Sal <i>a</i> ry Repairs Total	0.0	1.2 0.5 1.2 2.8	1.4	2.5	3.2	3.9	4.7	5.6 13.6	5.9 14.5	6.3 15.4
3. On-going Schemes	Energy Salary Repairs Total	0.0	1.4 1.0 1.5 3.9	2.7	5.4	8.6	11.5	13.5	14.5 22.1	15.4 23.6	16.4 25.1
4. IDA Project Schenes	Energy Salary Repairs Total	0.0	0.0 0.0 0.0	0.1	1.2 0.7 0.6 2.5	1.5	2.2 1.9	4.9 2.7 2.4 10.0	3.1	3.6 3.1	3.8
5. SIP Project Schemes	Energy	0.0	0.2	0.3	0.9	5.3	11.2	19.1	28.8	40.4	55.5

	Sal <i>a</i> ry Repairs Total	0.0 0.0 0.0	0.1 0.1 0.4	0.2 0.2 0.7	0.6 0.5 2.0	3.1 2.8 11.2	6.5 5.7 23.5	10.8 9.5 39.4	15.9 13.9 58.6	21.6 18.8 80.8	26.2 23.1 104.9
Sub-Total Drainage	Energy Salary Repairs Total	13.0 16.7 6.3 36.0	13.6 15.0 7.8 36.4	15.8 13.7 11.2 40.8	23.6 16.4 18.3 58.3	35.5 21.5 27.0 84.0	48.6 26.8 35.9 111.3	61.9 31.7 43.9	78.6 39.1 52.4 170.1	96.0 46.5 60.0	117.1 52.8 67.0 236.9
TOTAL MECHANISED SCHEMES	Energy Salary Repairs Total	27.9 35.1 24.5 87.5	31.0 34.3 29.1 94.3	36.7 33.7 37.2 107.6	50.7 38.9 52.3 141.9	51.9 75.6	68.1 103.0	85.2 129.6	173.8 106.9 158.4 439.1	132.3 186.2	144.1 201.4
NON-MECHANISED SCHEMES		0.2	0.7	1.5	2.6	4.2	6.2	8.5	11.3	12.0	12.8
TOTAL WATER SUPPLY AND CRAINAGE	Energy Salary Repairs Total	27.9 35.1 24.7 87.7	31.0 34.3 29.8 95.0	36.7 33.7 38.7 109.1	50.7 38.9 54.9 144.5	74.9 51.9 79.8 206.5	104.6 68.1 109.2 281.9	136.0 85.2 138.2 359.4	173.8 106.9 169.7 450.4	132.3 198.2	

ir thought County Simple Arosing to the Augusty

at a granter.

ra elloseg

SECTION OF THE PARTY.

Section gives

bit Research Completic chair Function Colling Runder