$\left[\begin{array}{l}\text { BYPs }\end{array}\right]$

वाला जु यन्न० शालां पा. वि. baEA Ju yantra shala pve lto balaju. kathmandu po. box 209 nepal A PROJECT OF NIDC ANO SATA

PLUMBING DIVISION PHONE Ne 16385
LIBRAă:

3. Manual

for

WATER SYSTEMS

alll

34

PIPE WOIK

262.0-77BR

A blider

INTRODUCTION COURSE

FOR THE ESTABLISHMENTS OF RURAL WATER SUPPLIES IN NEPAL

PREPARED BY ANDREAS BACHMANN NIR MAN JOSHI
P.

Importance of water

Development of sources, quality and quantity
12.1
21.2

2 WATER SUPPLIES
Natural gravity system
$3 \quad 2.1$
Rumped gravity systen:
nydraulic ram
42.2

Loss of head
52.3
$\begin{array}{ll}5 & 2.3 \\ 6\end{array}$
3 WATER COIDUIT
$\begin{array}{lrr}\text { Trenches and pipelines } & 7 & 3.1 \\ \text { Manhole, special standpipe } & 8 & 3.2 \\ \text { iater place, standpipe } & 9 & 3.3 \\ \text { Valves } & 10 & 3.4 \\ \text { Special vlaves } & 11 & 3.5\end{array}$
4 GALVALITEED PIPES
$\begin{array}{lll}\text { Using, rules, pipe measurements, length of threads } & 12 & 4.1 \\ \text { Thread cutting, watertight joints and threads } & 13 & 4.2 \\ \text { Aipple cuttinE, connection to concrete } & 14 & 4.3 \\ \text { Gaiv. Fittings I } & 15 & 4.4 \\ \text { Gaiv. Fittings II } & 16 & 4.5\end{array}$
5 SLASTIC PI EEN
Introduction, expension and contraction 17 5.1
Transport and storage
185.2

Preparation of trenches and laying the pipes
195.3
$\begin{array}{ll}\text { Connections between galv.-pipes and plastic pipes } 20 & 5.4\end{array}$
6 SVC PIPES
Using, rules, preparing of a spigot end 216.1
Solvent cement joints, points to remember about joints 22 6.2
Socket and bends
236.3

7 HDP PIPRS
Using, rules
Handilng of pipe coils
247.1

Velding
Branch 45°
25.2

Branch 60°
277.4

Branch 90°
287.5

Bends and elbows $450+90^{\circ}$
29 7.6
Fadcap
Conical Reducer
Endcap (+ lst step for Low-pressure reducer)
Reducer (low-pressure)
Reducer, for small differences in diameters
Miter Box
307.7
317.2
327.9
$33 \quad 7.10$
347.11
$35 \quad 7.12$
$36 \quad 7.13$

A cross section of a possible arrangement of the earth crust showing how water may be distributed over and trough it.
A part of the rainfall runs off at the surface forming creeks and rivers; a part may soak into the ground and return to the surface at springs or wells.
Yet another portion may percolate deeper trough cracks and faults, (A-A and B) into a porous strata (P) where it may be carried many miles to the ocean or to artesian wells.

S	Springs
$S W+D W$	$=$ Springs or wells
$A R T . W$.	$=$ Artesian well
P	$=$ Porous strata
$X+Y$	$=$ Watertight strata

Sources of water for domestic use

- Rain water
- Natural surface waters
- Ground water (best quality)

Development of sources of water

Any new or untried source of water should be examined for quality before expensive development is undertaken.
For watering animals, sprying and irrigation it should at least be clear and free of any minerals, tastes or odors which wounc de harmful or objectionable to plants or animals.

Quality

The water must be free of - harmful bacteria

- objectionable minerala
- tastes or odors
- sediment = clear, without color
- temperature about $10^{\circ} \mathrm{C}$ (50 OF)

Quantity
need for life - 15 litr (about $3 \frac{1}{2}$ Gallons; per day and person
need for life
with washing

- 50 ltr (about 11 Gallons)
per day and person

Lef anitions as applied to water

When usea in connection with handeling water, head refers to the vertical height of a column of water above a certain point, and is considered as causing or counteracting the flow of water. For example, if water stands at a hight of 6 meter (20 feet), there will be 6 m (20 feet) of head in the bottom of the pipe. This pressure is expressed in terms in kg per cm^{2} (or pounds per square inch, pai). A column of water 10 mm high (10 m head) will have a pressure of $1 \mathrm{~kg} / \mathrm{cm} 2$. (By $6 \mathrm{~m}=0.6 \mathrm{~kg} / \mathrm{cm} 2$).

Gravity head is the actual vertical height of a columri $C_{\text {. water }}$ above a reference point.
Pressure Pressure head is the vertical height in meter (feet) to which any given pressure will force water. One kg per cm^{2} will force water to a height of 10 m . (or one pound to a height of 2.3 feet).
Suction head a term applied to pumps, is considered as the total equivalent head in meter (feet) on the suction side of the pump against which the pump must work in order to get water.
The equivalent suction head is made up of
gravity head + friction head
Most pumps are guaranteed to work against 7 m (22 feets. of total suction head at sea level. (As higher as less suction).

NATURAL GRAVITY SYSTEM

Spring catchment must be in a way, that the water always can flow out, without damming up the water-level. There must be an overflow without valve.

The outlets must be covered with screen, so that no dirt or animal can ofock the pıpe.

Gravity Type

a gravity water system is one having a tank or storage reservoir located higher than the faucets from which tank or reservoir water flows to the faucets by the force of gravity.
There are two common types of gravity systems. One is "natural" gravity where the source of the water is high enough above the faucets to provide a satisfactory flow. The other is the "pumped" system where a pump is used to elevate the water to a gravity storage tank located above the faucets.

Natural gravity system

The natural gravity system should be considered only when the sourœ of water is high enough above the faucets (stand-pipes or buildings) to give adequate flow.
Unless the spring has a strong flow, a catchment basir snould be built below the spring as shown. For a satisfactory flow there should be at least 7 m (22') of elevation on the higr.est faucet. If the system has a great distance, more then 7 m is iesirable.
A source to be developed should provide an adequate year-round. supply of good quality water. Special attention shouiz. pe giver to catchment basins, size and material of pipe to use, arc protection from contamination or pollution.

HYDRAULIC RAM

The hydraulic ram is an automatic pump which by means of a relatively small gradient raises a part of the available spring or stream water to a much higher point.

Example: The spring or stream water is being collected in a reservoir. From here a part of this water is to be lifted to the supply reservoir. For this purpose the water is being fed trough a pressure pipe into the ram. A part of this volume is then being raised trough. the supply pipe to the reservoir.
The proportion between pressure pipe quantity + supply pipe quantity
can be from:
to :
$\begin{array}{llr}100 \% & - & 3 \% \\ 100 \% & - & 24 \%\end{array}$

$L=$ length of pressure pipe $4-5 \times \mathrm{H}$
$A=30-40 \mathrm{~cm}\left(12-16^{\prime \prime}\right)$
$B=$ at least $10 \mathrm{~cm}\left(4^{\circ}\right)$

Collecting reservoir: The available water is colleeted in a reservoir or basin. As far as the water is taken from a stream, this latter can be dammed up for this purpose. The collecting tank can be made in any desired size. It is, however essential, that the pressure pipe intake is always covered under at least 30-40 cm ($12-16$ "). The collecting reservoir must furthermore be constructed in a way which excludes any possibility of air bubbles entering the pressure pipe. Air bubbles in the pressure pipe would hamper the proper operation of the ram.

Pressure pipe: The pressure pipeline must be installed with greatest care. It must in particular be absolutely tight.
Caution: An installation of a ram is a very particular matter, it needs a founded knowledge. Before ordering a hydraulic ram, contact a specialist.

II II sig mater system 2

LOSS OF HEAD

PIPELINES

Never bring water to a place, before the waste water can de brought away from the faucets. (MOISTURE brings insects and illness).

Before refilling the trench: check if it's waterproof! Make plan how the pipe lies.

Pipes should be in the ground, where they are protected against mechanical damage. The temperature also will be better.
ihe depth of trench should be at least 1.0 m ($3^{\prime} 4^{\prime \prime}$). Stherwise there could be the risk that they will be dug out by the farmers for irrigation.
Don't let pressure in the pipeline, before the trench is filijec ut in the correct way. Otherwise remains the risk, that ii wisi never de done.
Always loak through the pipes before you install them, and ciose the open enas ana if it is only for a few minutes:
WF $4=$ Working pressure $4 \mathrm{~kg} / \mathrm{cm} 2$. Good for a pressure of 40 m head. wiv $6=$ Nenndruck (nominal pressure), working pressure $=6 \mathrm{~kg} / \mathrm{cm} 2$

Manhole

By changing the direction in the ground, make always big bends. The best solution (by low pressure distribution only) is a manhole. For cleaning reasons and also for blocked pipelines.
Pipelines in the ground should have a diameter from at least 5/4". (Exceptions: branchline to standpipes).

Standpipe with reservoir and pump
Water shortage remains a good possibility, as shown. Shortage because there is not enough water, or because the people don't close the valve.

St.andpipe

A bad water tap site makes bad situations worse:
Take great care for the place itself, and the place around.
The waste water outlet is absolutely obligatory. (Moisture orings dirt, insects and sickness).
Don't open the system before every work is finished, the risk that it will not be done is very possible.

ID I' SO $^{\prime \prime}$	SPECIAL VALVES	3.5^{11}

Nonreturn Valves

vertical check

horizontal check

swing check

Use: Where the water has to stay in the pipe. By pumpea gravity systems and by installation of hot water reservoir (boiler), but then with safety valve only:
Caution: The check has to be installed with the water pressure under the seat:

Use: On the end by suction pipes (pumped systems)
Foot Valves

Safety valve

Use: With danger of
overpressure.
Necessary by hotwater reservoirs.

Caution: verify the flush direction of the water. No valve between boiler and non return valve:

Plug valve
Use: for gas onjy. Not waterticht enc danger of waterhammer+= overpress.
G.I. pipes (galvanized iron pipes)

Use: inside buildings, (high mechanical restistance).
electrical conductine

Never put union's (or flanges) in ground or wall. (Without revision possibility $=$ manhole).
Painting in grand and in walls is necessary as protection against corrosion (danger of rusting).
By using 6.0 m pieces (20') cut off the half length of the threari (with a hacksaw) and cut a good thread.
No bends of G.I. pipes without using fittings. (Otherwise the galvanization will split off $=$ risk of rustingl.

\varnothing	outside \emptyset in mm	appr. weight/ m	length of threac. (unsrew-length in mm
$1 / 2$	21.3 mm	1.2 kg	13 mm
$3 / 4$	26.9 mm	1.5 kg	15 mm
$1^{\prime \prime}$	33.7 mm	2.4 kg	17 mm
1 t	42.4 mm	3.1 kg	19 mm
$1 \frac{1}{2}$	48.3 mm	3.6 kg	19 mm
$2^{\prime \prime}$	60.3 mm	5.0 kg	24 mm
$2 \frac{1}{2}$	76.1 mm	6.5 kg	27 mm
$3^{\prime \prime}$	88.9 mm	8.4 kg	30 mm

Pressure: (depends on the quality)

$$
\begin{aligned}
1 / 2-3 / 4 & \text { appr. } 25 \mathrm{~kg} / \mathrm{cm} 2 \\
1^{\prime \prime}-4^{\prime \prime} & \text { appr. } 16 \mathrm{~kg} / \mathrm{cm} 2
\end{aligned}
$$

G.I. pipes / Thread cutting

1. Check the quality of the pipe; (correct weld seam, proper. galvanization, diameter accurate).
2. fix the pipe in clamp.
3. cut the length and after the thread. (Never cut threads without oil).
4. check the length of the thread.
5. clean it from oil and steel splitter.
6. put hemp and jointing paste (putty or animal grease)

Checking: If the thread is properly cut, it should be possiul: to acrew appr. 65% of the threaded portion into a fitting by hand.
Elumber-threade are conical. The fittings will apoil, if they are unsrewed the whole length; about 2 turns of the thread should remain visible. Protection against rust with paint.
Caution: Gate valven, globe valves and similar items should be easily removable for overhaul or replacement, without dismantleing much of the line. For this purpose long threading, unions or flanges should be fitted close to such parts.
Cutting pipes with pipe-cutter, requires that the pipe be reamed for burring. Better to use only hacksaw for cutting.

The burr made by a pipe cutter

Improper reaming

Pipe properly reamed.

Watertight joints on threads.

Use only dry hemp (candle wicking) and non-poisonous foint paste, (putty, or animal grease). Paint as joint paste is not recommendable, because it dries hard

1. Turn hemp in clockwise direction, starting at the beginning (end of the pipe) of the thread covering the entire thread with hemp.
2. Put pipe joint paste on the hemp of the thread, check that no hemp, oil or joint paste is inside the pipe.
3. Start the fitting on the pipe by hand and tighter with the pi re wrench until reasonably tight. If turned too tight, the fitti ie may stretch or crack. (2 turns should remain visible). Use a small wrench on a small pipe.
4. Cut off the hemp with an old hacksaw blade, by moving anti-cluckwise. Paint the visible part of the thread.
G.I. pipes / Nipple cutting
5. Cut thread at the end of a pipe.
\therefore. Mark the length of the nipple and cut it off.
\because Dut the end on the other end of the nipole.
As it is too short to be chucked ir the vise directly, the ripole must be extended. Use a suitable pipe witn a socket at tne end. On these must be long threading; important: both ends of the pipe must touch inside the socset. Cutting nipple in this way is only possible for smaller diameters.

Good connection to concrete tanks

can only be done with G.I. pipes. For really good connections it is important, that the G.I. pipe is fixed in the same time as the wall will be build up. (Otherwise the joints can leak).
Caution: The galvanization must be removed:

BEND NO.1

REDUCING BUSHES
NO. 241

SOCKET NO. 270
L/R NO. 271

CAPS NO. 300
BACK NUTS NO. 312.
NO. 280

10

HEXAGON NIPPLES
plugs No. 290
flanget oval
NO. 320

NIPPLE NO. 530
NIPPLE NO. 532

Mastic pipes (H D P + P V C)

Use: for cold water only, pipelines in the ground. no electrical conducting.
Pipes and fittings made from plastic offer many advantages. They have excellent chemical resistance which, combined with smoothness of bore, eliminates build-up of scale and gives good flow characteristics which remain constant troughout their workin life.
Being odourless and tasteless, they are suitable for conveying drink ing water and many food products; they have good abrasion resistance and weathering qualities, and afford good thermal and electrical insulation. Plastic pipes are light and clean to handle, and may be easily joined.
The excellent chemical resistance of plastic pipes makes them especially suitable where pipelines are exposed to the risk of externai corrosion.

Points to remember about expansion and contraction.
A pipeline should be allowed to expand and contract freely.
Wherever possible, expansion and contraction should be taken up by changes in direction.

Careful positioning of fixed points will enable the direction of expansion and contraction to be controlled.
Expansion loops may be used, but they must be large enough to give adequate flexibility. (at least 2.0 m , resp. 7').
Valves and heavy components must be independently supported so that no stresses are imposed on the pipeline.
Where pipework incorporates pumps or other machinery, and there is a possibility of excessive vibration, it may be advisable to isolate the source of the vibration by means of flexible connections.
correct

Lay pipe in the truck in an
orderiy manner and supported along its extire length.

cary the oipes,


```
```

Eon't mix up

```
```

```
```

Eon't mix up

```
```


Jon't throw-dowr.
storage on square timber,
in the shadow,
in a straight line

FDP pipe coils

shouia de daic horizoriotilly, and in the shadow.

The best solution : adapter union

Cut thread on plastic pip.e.

with rubber ring.
ev. heating = draws together

By H.D.P pipe only

About connection to concrete walls see special description.
Screwed joints on plastic pipes
The outside diameter of the plastic pipes must be according to the GI pipes. Because screwed joints necessitate the use of a thick walled pipe; the overall cost of the installation will be higher tahn for a similar one resp. for low pressure (by PVC pipes with solvent cement joints).
The length of the threads should be according to the GI threads. If the thread on the pipe has been cut properly, it should be possible to screw the fitting on by hand for about two-thirds of the thread length.

Points to remember about screwed joints on plastic pipes.

1. New chasers should be used and retained for threading plastic pipes.
2. The full depth of thread should be cut in one continuous operation.
3. Lubrication of the chasers is not necessary. Oil strictly prohibited.
4. Care should be exercised to ensure that undue strain is not applied when making a threaded joint.
5. The normal type of wrench should not be used, but special toois of strap type are recommended.

PVC pipes
Name :
Density:
Colour:
Use:

Installation:
PVC is a short sign for Polyvinylchlorid
$1.4 \mathrm{~kg} / \mathrm{dm} 3$
gray (normally)
in the ground, for long distances for cold water only (below $60^{\circ} \mathrm{C}=140 \mathrm{OF}$)
Generally apply the same rules as given for G.I. pipes (galv. pipes).
PVC must be installed free from stress and not in freezing areas.
The clamping-distance is approximately ten times
the pipe diameter.
Handle the pipes with care, avoid shocks. Don't paint the pipes after installing. Some paints will destroy the PVC material.

+ connection with adhesive
+ light in weight
+ good for make sockets
+ need few tools
+ low friction loss
- breakable (few mechanical resistance
- difficult to make fittings
- length of the pipes only up to $6.0 \mathrm{~m}\left(20^{\circ}\right)$
- welding only with special tools (needs electricity)
- adaption to terrain is limited. The trench bot= tom must be very well prepared.
- no direct connection with cement.

Preparing of a spigot end

Mark the length with a soft poncil on the PVC pipe and cut it with fox saw (also hacksaw) and remove internal burrs.
slightly chamfer outer edge of pipe (appr. 15° to pipe axis)

PVC solvent cement joints
The cement creates a chemical bond between the pipe and the fitting It is a simple and efficient method of jointing, and because it is also permanent it is important to use the correct technique which is as follows:

1. Cut the pipe end squere, and remove internal burrs.
2. Degrease joint surfaces of pipe and fitting with cleaning fluid using absorbent paper.
3. Slightly chamfer outer edge of pipe (appr. 150 to pipe axis).
4. Roughen joint surfaces, using clean emery cloth or medium glasspaper, and clean again.
5. Mark on the spigot end the length of the socket. (With a soft pencil).
6. Using a brush, apply an even layer of cement to both fitting and pipe in a lengthwise direction, with a thicker coating on the pipe.
7. Immediately push the fitting (or the pipe end with the socket.) on to the pipe without tuming it, until it reaches the reduced portion of the socket. Then turn pipe at least $1 / 4$ of a full tumn. Keep them in this position for a short while, (10-20 seconds). Now remove the surplus cement.
8. Leave undisturbed for five minutes, then bandle with reasonable care.
9. Allow 8 hours before applying the full rated pressure. For lower pressure, allow one hour per $1 \mathrm{~kg} / \mathrm{cm}^{2}$ ($15 \mathrm{ibf} / \mathrm{in}{ }^{2}$) For example $3 \mathrm{~kg} / \mathrm{cm}^{2}\left(45 \mathrm{ibf} / \mathrm{in}^{2}\right)$ would require 3 hours drying time.

PVC points to remember about cemented joints

1. Before applying cement, the mating surface must be absolutely clean and dry.
2. For sizes $3^{\prime \prime}$ and above, two persons are required to apply cement simultaneously to pipe and fitting.
3. The tin of cement should be closed immediately after use, as the solvent evaporates quickly.

Caution: Solvent cement is inflamable, and there should be no smoking in the working area. The cement shoula be used in well ventilated conditions oniy.

PVC sockets

1. prepare a spigot end (according description).
2. Mark the length of the socket (on the pipe for the socket). The dept of a socket is about one time the outside diameter of the pipe.
3. Heat the end of the pipe with a soft flame (or in hot oil) until it is soft and rubber like. While the pipe is soft, see that the two pieces of pipe are joined straight in line, and then cool them with water. Only then, when it is cool, remove the pipe.

PVC tee-connections
The pieces and other fittings are (maybe) available in the market.

PVC bending

By applying heat, PVC pipes may be easily bend to any angle.
For bending without sand use a bending radius from at least 8 times the outside diameter.
For bending with sandfilling use a bending radius from about 4 times the outside diameter.

1. For small bends: close one end of the pipe with a wooden plug.
2. Fill the pipe with hot, fine sand (warming with a flame). Compress the sand inside the pipe while knocking the pipe outerwalls with a wooden stick.
3. Close the other end of the pipe also with a wooden plug.
4. Heat the pipe with a soft flame, while turning the pipe, and bend over the mould.
5. Cool with water.
6. Prepare spigot-end or/and socket.

IB 1 S
 HDP pipes

PLASTIC PIPES

Name:
Density:
Colour:
Use:

Installation:
$H D P$ is a short sign for High density polyethylene.
$0.9 \mathrm{~kg} / \mathrm{dm} 3$
black (normailly)
in the ground, for long distances (coils) for cold water only (below $60^{\circ} \mathrm{C}=140 \mathrm{OF}$)

Generally apply the same rules as given for GI pipes (galv. pipes)
HOP should be installed free from stress. The clamping-distance is approximately ten times the pipe diameter.
Don't paint the pipes after installing. Some paints will destroy the HOP material.

+ connection with welding plate
+ possible to make fittings
(Tee, bends)
+ available in coils (up to $100 \mathrm{~m}, 330^{\circ}$)
+ light in weight
(transport cost)
+ need few tools (no electricity)
+ good chemical resistance
+ low friction lose
+ flexural strenghth (reaist breakage. and frost)
+ good adaption to terrain
+ incrustion-free smooth internal surface.
- Adhesion is not possible
- Connection with sockets is difficult without special fittings.
- no direct connection with cement.
- caay to make hole in it. (therefore deep trenches)

HANDIING, LAYING AND JOINMING COILED PCLYETHYEEOE HIEE

Pipe Coils

Polyethylene pipe can be supplied in coils in a size range $2 / 3 "-4$ and in some instances $6^{\prime \prime}$ diameter. Coil lengths of $150 \mathrm{~m}(492 \mathrm{ft})$ in sizes $3^{\prime \prime}$ and $4^{\prime \prime}$ are in common supply. Longer coiled lengths of up to 2000^{\prime} of $3^{\prime \prime}$ and $4^{\prime \prime}$ diameter pipe car be supplied on special drums.

When Polyethylene pipe is goiled this is done at factory ambient temperature of approximately 25° centigrade ($77^{\circ} \mathrm{F}$). The pipe, which is extruded as a straight pipe is mechanically wrapped rourid a coil former and bound together into a rigid transportable coil. When the binding is cut from the coil, the pipe will tend to revert to a straight pipe, and care should be exercised to control this movement on pipe diameters $2^{\prime \prime}$ and above as the uncoiling force can be of considerable magnitude and could cause injury to those handing the coil.

When uncoiling pipe, the bound coil should be stood vertically on its circumsference. The outer free pipe end should be positioned at the bottom of the coil and as soon as it is cut free from the coil, this end should be anchored to the ground with a stake or metal hoop. The coil should now be rolled out away from the anchored end until the entire coiled length is unwound.

The ends of the coil pipe, though tending to straighten themselves, will, for some time, retain a degree of curvature. It will facilitate jointing if adjacent pipe ends are arranged so that this curvature is towards each other.

The ends of Polyethylene pipe when cut, after extrusion will tend to reduce in diameter slightly over the last $2^{\prime \prime}$ or $3^{\prime \prime}$ of the pipe. This short section of pipe should be cut off, and in doing so the pipe end cut truly square.

Alignment for Butt Welding

When jointing pipe by the butt weld technique, it is essential that the pipe ends meet truly square and mate together without external restraint. Bearing in mind that these ends will both be curved, the alignment of the joint may be achieved either in the form of a semi-circle, where the curvature of the pipe ends is in the same direction, or in the form of a large letter 's' if the curvature of the pipe ends is contrary. Fime spent in achieving exact alignment is time well spent as the subsequent jointing will be a very simple matter indeed.

Storage

Polyethylene pipes should not be stored along side fertilizers, pesticides, insecticides and chemical compositions such as these, otherwise, those pipes are liable to develop cracks.

reding

Unly when good alicament has bee: achieved should the welding rocess be attempted, the procedure for which is as follows:-
:. Assemble gipe ends in clamps leaving approximately 2 " of pipe projecting inwards from each clamp.
2. If pipe ends have not previously been squared, then scruare off using a fine toothed wood saw. Acain check alienment.
3. Complete trimming of pipe ends using the triming tool. This achieves both a very clean and square trim and also exposes a perfectly new face for the weld. Care should be taker that the trimming of the pipe ends is complete over the entire pipe circumference, ifter trimming nothing should be allowed to touch the newly exposed faces.
4. Remove trimming tool and again check the joint for neat join and true alienment. it no point on joint should there be a gap of more than $0.5 \mathrm{~mm}\left(1 / 64^{\prime \prime}\right)$.
5. Check temperature of heating tool yith heat crayon, which should be $210^{\circ} \mathrm{C}\left(+10^{0},-5^{\circ} \mathrm{C}\right)$ or $410^{\circ} \mathrm{F}\left(+50^{\circ},-41^{\mathrm{F}}\right)$. Insert heating tool between pipe ends and adjust pressure of pipe ends on heating tool. Times and pressures for heatire are given on the attached Chart.
6. Remove heating tool and without delay bring pipe ends into contact under pressure and leave under pressure, undisturbed until weld has cooled. Again welding pressures and cooling times are given on the attached Chart. The actual pressures can be read on the graduated pressure adjustment screw.

Indication of a good joint is given by the uniformity of the bead on the outside of the pipe over its entire circumfererce.

Unevenness of this bead is an indication of poor aligrment and uneven pressure. The bead size should be approximately 2 to 3 max thick on pipe size $2^{\prime \prime}$ to $6^{\prime \prime}$ i.d. Failure to achieve a bead on any part of the joint would be indictive of a suspect joirt, and this joint should be cut out and re-made.

Welding of HDP pipes, pressure for about 30 seconds

\emptyset	48 mm	ca.	9 kg	$(20 \mathrm{lbs})$
\emptyset	56 mm	ca.	10 kg	$(22 \mathrm{lbs})$
\emptyset	75 mm	ca.	18 kg	$(40 \mathrm{lbs})$
\emptyset	90 mm	ca.	20 kg	$(44 \mathrm{lbs})$
\emptyset	110 mm	ca.	30 kg	$(65 \mathrm{lbs})$
\emptyset	125 mm	ca.	40 kg	$(8 \delta \mathrm{lbs})$
\emptyset	150 mm	ca.	55 kg	$(120 \mathrm{lbs})$

IMPORTANT: If the welding-plate is heated with a blow lamp or over a fire, then a teflon-paper has to be fitted over the plate after the heating before the welding can be cone: Otherwise the quality of welding will be very bad.
ID I'S PLASTIC PIPES

TD ITS P PLASTIC PIP		HDP	7.5
BRANCH 60°			
1. cut			
3. filing, check			
		piece	
7. check, filinf?			

	PIPES	HDP	7.6
BRANCH 90°			
1. cut			
3. Piling, check			
5. cut		 r piec	
7. check, filing			

ENDCAP

Take the remaining segment of a branch 90°,
from the same diameter as the main-pipeline
(see page 7.6, No. 5)

Cut an 45° angle on a straight pipe.

Heat both pieces on the welding plate

Press them together.

1. Take a segment of a 455 450 branch.
(see 7.4, No. 5)

2. Check the diameters from the conical piece to the big diameter pipeline.

3. Weld the conical piece to the pipe with the bigger diameter.

Cut of the pointed end, the segment has to be smalier than the diameter of the smaller pipe to be ilxed.

4. Heat the end with hot air and push a conical piece into it.

5. After the cooling, the diameter have to be made the game es the piece to be velded on it.
6. Heat both pieces on the welding plate and push them together.

ENDCAP (+ 1 st step for reducer - making)

1. prepare a metal welding tool outaide $\emptyset=\mathrm{HDP} \phi+1 \mathrm{~mm}$ bigger inside $\emptyset=H D P \phi-1$ mm amaler than the pipe, for which an end cap is requiced.

2. Heat the pipe with hot air (and not with the flame) and open 1t.

3. Mark the pipe-outsidediameter and clean the urface properly, neceseary for the following welding.

4. Kemove the welding tools and connect both plastic parts. rressing for appr. 30 seconds is essential.

5. Take a piece of HEPB-pipe and cut it in the length side. (= material for the cap.)
6. Fut the HDPB-plate on a flat surface and on it a. flat wood, with some weig on it. Wait until it is cold.

7. Heat the velding tools and pet the plastic-materials on them. Welding-plate for $\operatorname{HDPEFpl}$ Welding-pipe for HLIPE-plate.

8. The overlapping material can be removed, but the welding sean should not be cut away. (heinforcement).

REDUCER (for low pressure and waste waterlines.).

1. Take an endcap (making as vefore mentined-).

The diameter has to be according to the required gigeer one.

2. Srepare a netal weidine toos outside $\emptyset=H D P \emptyset+1 \mathrm{~mm}$ inside $\emptyset=\mathrm{HDP} \varnothing-1 \mathrm{~mm}$ than the pipe, for which the smaller pipe-diameter is required.

3. Bark the place, where the smaller pipe has to be. Clean the surface on the cover-plate with a knife or glass-paper

4. Prepare a wooden bloc, for the inside oi the bicger \varnothing, as counter-pressure for the weldine.

5. Heat both pieces on the weldine tools (plate + pipe-tool) an presse them toether.

6. Cut out the inside part, but leave the welding-sea: existing (reinforcemert..

ID ITS S	PLASTIC PIPES	HDP	$7.12{ }^{35}$

REDUCER, for small differences in diameters

1. Prepare a conical wooden piece.	2. Heat the pipe with hot air (on the very end oniy), until it gete soft, like rubber, prevent over-heatine!
3. Push the piece over the wooden mould while turning.	4. After cooling, make the surface equal and according tco the required, bicEer diameter.

5. Heat both pieces on the welding plate.
6. Press them together.

MOULD FOR STRAIGHT PIPE WELDING

MITER BOX

MOULD FOR BRANCH (WELDING AND 'Cutting)'

The blow lamp is a portable kerosene toreh used by plumbers for aecuring intense local heat, for melting metals, heating metale and coldering.

Operation of BDOY Lamp

1. Fill tank $3 / 4$ with keroeine. Uee a funnel with a iliter so that dirt will not fiow into the tank and cause a bIoclage in the outlet.
2. Opan 1ir Valve
3. Pill oil cup with rerosene
4. IVebt the reronen in 011 cup and leave the match in oil cup.
5. Let the kerosen anost burn out.
6. Close Air Valve.
7. Pump the air pump 15 to 20 times.
8. Iamp shpuld tart burning, if it goes out repeat the above operttion.
9. To increase 11ame pump the 41 punp again.
10. To reduce flame open the air valve silghtly.
11. To stop flane open air valve all the way.
12. If flames moken or fluctuates, clean the outlet with a cleaning needlo.

IMPOKTANT: If the velding plate is heated with a blow lamp or over a fire, the a teflon-paper has to be fitted over the plate after the heating before the welding can be done: Otherwise the quality of welding will be very bad.

