2 5 0 6 7 I R

Ì

Ĩ

ſ

IRON REMOVAL FROM WATER SUPPLIES

(Thesis No. 189)

by

Veera Vitayaudom

SEATO Graduate School of Engineering

Bangkok, Thailand

(0,0)()250

67 IR

LIBBARY

control technic Referance Centre control community Water Supply

IRON REMOVAL FROM WATER SUPPLIES

Thesis by

Veera Vitayaudom

For the Degree of Master of Engineering

A.I.T. LIBRARY

SEATO Graduate School of Engineering

Bangkok, Thailand

IRON REMOVAL FROM MATER SUPPLIES

by

Veera Vitayaudom

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering in the SEATO Graduate School of Engineering, Bangkok, Thailand.

Approved by: Anin Letanist 10 Aug 67

Dr. Surin Sethamanit Special Lecturer in Public Health Engineering

Accepted by

Benkerfy 10.2. 1967

Milton E. Bender, Jr. Dean

-ACKNOWLEDGEMENTS

The writer wishes to express his profound gratitude to Dr. R.T. Skrinde for his guidance and suggestions during the course of experiments, to Dr. Surin Setamanit and Prof. M.B. Pescod for their constructive criticism and careful editing of the manuscript. Acknowledgements are due to the Ground Water Division, Department of Mineral Resources, Ministry of National Development, and the Department of Public and Municipal Works, Ministry of Interior of the Government of Thailand for assisting with the supply of data.

(iii)

ABSTRACT

A map showing concentration iron in ground waters throughout Thailand has been developed from available data. It was found that the problem of iron in ground water existed mainly in the Northeastern part of the country.

Ferrous sulphate (FeSO₄.7H₂O) was added to natural ground water taken from an artesian well near Bangkok for experimental studies in the laboratory. Preliminary investigations were carried out using jar tests to determine optimum pH and optimum dose of coagulant aid required for effective iron removal before actual experiments with a laboratory - scale iron removal unit were made. Sodium hydroxide (NaOH) was rised for pH adjustment and the coagulant aids used were polyelectrolytes of anionic, cationic and nonionic polymers.

A laboratory - scale unit was designed, based on the upflow solids - contact clarification process, with total detention time of 3 hours. The results obtained indicated that short-circuiting of upflow through the sludge blanket caused floc to be carried over the effluent overflow weir. Use of anionic and nonionic polyelectrolytes resulted in larger and heavier floc formation with less carry-over at the effluent overflow weir and hence improved the efficiency of the unit.

(iv)

TABLE OF CONTENTS

Į

.

٠

CHAPTER	TITLE	PAGE
	Title Page	i
2	Thesis Approval	ii
	Acknowledgements	iii
۰ ۸	Abstract	iv
	Table of Contents	, v
	List of Tables	viii
	List of Figures	x
	List of Symbols	xii
I	INTRODUCTION	1
	General Introduction	, 1
	Iron Problem in Thailand Ground Waters	2
	Purposes of the Study	10
	Scope of the Study	11
	Preliminary investigations	11
	Experimental investigations	13
11	LITERATURE REVIEW	14
	Iron Removal Processes ,	26
	Oxidation Methods	26
	Aeration	26
	Chlorine or hypochlorite.	28
	Potassium permanganate	29
	Chemical Methods	30
	Lime treatment	30

.

	TABLE OF CONTENTS (Cont'd)	
CHAPTER	TITLE	PAGE
	Coagulation	31
	Ion-exchange Method	31
III	THEORETICAL CONSIDERATIONS	32
	Mechanisms of Solution of Iron	32
	. Factors Influencing Iron Removal	33
	Solubility of iron	33
	Oxidation kinetics of ferrous iron	38
	Coagulation and sedimentation of	39
*	Insoluble from	
IV	EXPERIMENTAL INVESTIGATIONS	44
	Operation of Laboratory-Scale Iron Removal Unit	44
	Design of Experiment	48
	Materials and Equipment	49
	Ground water reservoir	49
	Laboratory-scale iron removal unit	52
	Procedure and Analytical Method	53
	Preparation of high iron-bearing ground water	54
	Titration curve of the ground water	55
	Jar tests	58
	Experiments on the laboratory-scale iron	60
	removal unit	

.

۲

(vi)

TABLE OF CONTENTS (Cont'd)

CHAPTER	TITLE	PAGE
v	EXPERIMENTAL RESULTS AND DISCUSSION	62
	Ground Water Characteristics	62
	Preliminary Investigations	63
	Treatment with NaOH	63
	Treatment with coagulant aid	70
	Treatament with Bangkok clay	83
	Investigations Using the Laboratory-scale Iron	83
	Removal Unit	
	Treatment with NaOH	91
	Treatment with coagulant aid	95
VI	CONCLUSIONS	ל01
VII	RECOMMENDATIONS FOR FUTURE WORK	109
	REFERENCES	110
	APPENDIX	113

LIST OF TABLES

TABLE	TITLE	PAGE
1	Iron Content of Ground Water in Thailand	7
2.	Equilibria for Iron	34
3	Chemical Analyses of Ground Water from	54
	Wat Nang and Wat Warurachin, Dhonburi	
4	Data on Titration of One Liter of Ground Water	56
	with 0.1 N. NaOH	
5	Chemical Analyses of Ground Water Used in Jar Tests	64
6	Chemical Analyses of Ground Water on Jar Test	68
	at Various pH's	
7	Chemical Analyses of Ground Water on Jar Test	72
	with PURIFLOC A-22 as Coagulant Aid at pH 8.3	
8	Chemical Analyses of Ground Water on Jar Test with	72
	FLOCCOTAN as Coagulant Aid at pH 8.3	
9	Chemical Analyses of Ground Water on Jar Test with	75
	5 mg/1 FLOCCOTAN as Coagulant Aid at Various pH	
10	Chemical Analyses of Ground Water on Jar Test with	75
	PURIFLOC N-11 as Coagulant Aid at pH 8.3	
11	Chemical Analyses of Ground Water on Jar Test with	76
	PURIFLOC N-17 as Coagulant Aid of pH 8.3	
12	Chemical Analyses of Ground Water on Jar Test with	76
	2 mg/1 PURIFLOC N-11 as Coagulant Aid at Various pH	
13	Chemical Analyses of Ground Water on Jar Test with	79
	Nalcolyte - 605 as Coagulant Aid at pH 8.3	

(viii)

LIST OF TABLES (Cont'd)

-

	• •	
TABLE	TITLE	PAGE
14	Chemical Analyses of Ground Water on Jar Test with	79
	Nalco-600 as Coagulant Aid at pH 8.3	
15	Chemical Analyses of Ground Water on Jar Test with	81
	2 mg/l Nalco-600 as Coagulant Aid at Various pH	
16	Chemical Analyses of Ground Water on Jar Test with	, 84
	Bangkok Clay as Coagulant Aid at pH 6.4	
17	Variations in Dissolved Oxygen, Temperature and pH	86
	During Detention Time of Three Hours	
18	Ground Water Characteristics Before and After Treat	ment
	with Coagulant Aid and Variations in D.O.,	92
	Temperatures, and pH in the Unit no.1 During Run no	.1
19	Ground Water Characteristics Before and After Treat	ment
	with 5 mg/1 FLOCCOTAN as Coagulant Aid and Variation	ns
	in D.O., Temperatures, and pH in the Unit no.2	97
	During Run no.2	
20	Ground Water Characteristics Before and After Treat	ment
	with 2 mg/l Nalco-600 as Coagulant Aid and Variation	ns
	in D.O., Temperatures, and pH in the Unit no.1	
	During Run no.3	100
21	Ground Water Characteristics Before and After Treat	nent
	with 2 mg/1 PURIFLOC N-11 as Coagulant Aid and Varia	ations
	in D.O., Temperatures, and pH in the Unit no.2 Durin	ng
	Run no.4	104

(ix)

LIST OF FIGURES

_

FIGURE	TITLE	PAGE
1	Map Showing Iron Concentration in Ground Water in	5
	Thailand	
2	Precipitation of Iron in Illinois Ground Waters	17
3	Alkalinity versus Precipitation Rate	17
4	Insidious Trace Quantities of Impurities may strongly	
	accelerate the Oxidation Reaction	19
5	Permanganate Demand Curve for Oxidation of Ferrous	19
	Iron	٠
6	Effect of Anionic Flocculant	22
7	Effect of Cationic Flocculant	22
8	A Model of a Structure Floc formed by Coagulation in	25
	the Treatment of Turbid Waters	
9	Solubility of Fe(OH) _{2(s)} in a Non-Carbonate, Non-Sul	fide
	Solution	35
10	Solubility of Ferrous Iron in a Carbonate-Bearing Wat	ers 36
11	Solubility of Fe(OH) _{3(s)}	37
12	Schematic Diagram of Laboratory-Scale Iron Removal Un	it 45
13	Laboratory-Scale Iron Removal Unit	46
14	Schematic Diagram of Arrangement of Laboratory-Scale	50
	Iron Removal Unit	
15	Arrangement of Laboratory-Scale Iron Removal System	51
16	Titration Curve of One Liter Ground Water v.s.o.1 N.N.	aOH 57
17	Iron Removal at Various pH's with NaOH Treatment	69

(x)

LIST OF FIGURES (Cont'd)

.'

FIGURE	TITLE	PAGE
18	Iron Removal at pH 8.3 with anionic PURIFLOC A-22 and	
	FLOCCOTAN	74
19	Iron Removal at pH 8.3 with nonionic PURIFLOC N-11	77
	and N-17	
20	Iron Removal at pH 8.3 with Cationic Nalco-600	80
	and Nalcolyte-605	
21	Comparison of Iron Removal at Various pH among	8 2
	Coagulant Aids used with Jar Tests	
22	Iron Removal on Jar Test with Bangkok Clay	85
23	Variations in Dissolved Oxygen and pH during 3-hour	87
	Detention Time in Unit no.1	
24	Variations in Dissolved Oxygen and pH during 3-hour	87
	Detention Time Unit no.2	
25	Sketch of Floc Deposit after 27 hours of Operation	90
26	Sketch of Floc Deposit after 50 hours of Operation	90
27	Total Iron and Hardness Removal without Coagulant	93
	Aid during run no.l	
28	Total Iron and Hardness Removal with 5 mg/1 FLOCCOTAN	98
	as Coagulant Aid during run no.2	
29	Total Iron and Hardness Removal with 2 mg/l Nalco-600	101
	as Coagulant Aid during run no.3	
30	Total Iron and Hardness Removal with 2 mg/1 PURIFLOC	105
	N-11 as Coagulant Aid during run no.4	

(xi)

LIST OF SYMBOLS

A	-	Alkalinity in mg/l as CaCO ₃
D.O.	=	Dissolved Oxygen
^E h	=	Redox potential
K	=	Overall rate constant of ferrous oxidation
Ko		Logarithm of rate constant
OH-	=	Molar concentration of hydroxyl ion
^P 02	=	Partial pressure of oxygen
T ₁	=	Half-life in minutes, or time required for
		one-half of the ferrous iron in solution to be
		precipitated.

ŧ

(xii)

I - INTRODUCTION

General Introduction

Provision of adequate clean water supplies for domestic purposes has long been a critical problem for people in areas located far from permanent streams or surface water sources. The problem is particularly acute during the prolonged dry months of the summer season, during which time temporary surface water sources such as ponds become dry. With inadequate water for domestic needs, health condition may become serious, domestic animals weaken and in some instance families and livestock have been forced temporarily to other localities where water is available. Ground water in this case becomes of great importance as a valuable resource to furnish a supply of water.

Iron is one of the common contaminants as sciated with ground water. In rural areas ground water supplies serving villages, shcools, hospitals, and health centers often contain so much iron that they must be treated for iron removal. Yet in many cases the economy of rural areas is insufficient to support the high capital and operating costs of presently known iron removal plants incorporating sand filtration. Therefore the people often prefer to use polluted surface waters to untreated iron-bearing ground waters. There is a need to develop low cost methods of removing iron from ground waters used to serve small areas or groups of people. Iron Problem in Thailand Ground Waters

In 1954, the Thailand Ground Water Exploration Project was implemented to evaluate the ground water potential and obtain essential information required for the orderly development of ground water supplies for domestic, municipal, stock, industrial and irrigation users in the northeastern part of the country. This area, commonly known as the "Khorat Plateau" comprises over 65,000 square miles, 33% of the total area of Thailand. The region contains 34% of Thailand population and is affected at least locally by droughts each year.

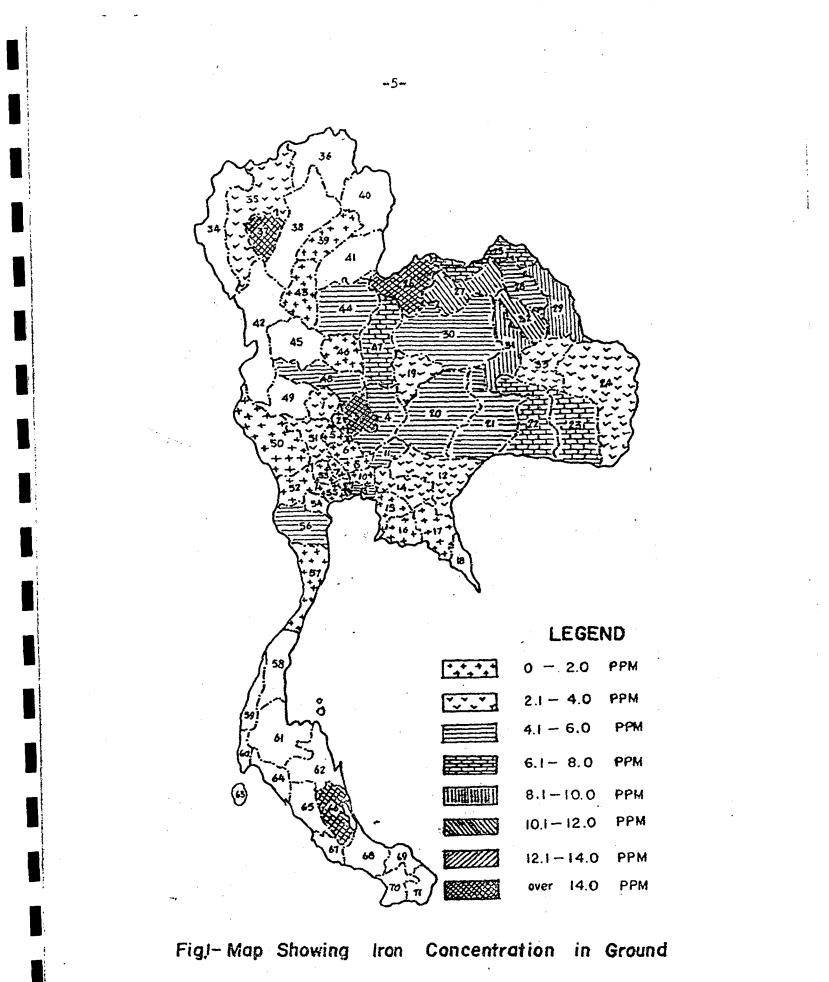
Although the wells in the northeastern area of Thailand produce safe water for domestic supplies, many of the waters contains excessive amounts of minerals. The ground water supplies are often not used even during water shortages because of the presence of high concentrations of soluble ferrous iron, which is colorless when first taken from the wells, but which turns to the reddish colored insoluble ferric state on exposure to air. Data showing iron concentration in water supplies in various regions of northemstern Thailand are shown in Appendix B. It can be seen that the iron concentrations vary from trace amounts to as high as 36.0 mg/l. In other parts of the country, concentrations of iron in ground water have been reported by the Department of Public and Municipal Works to be somewhat less than those in the Northeast, but in many cases they are found to be in excess

-2-

of the upper limits recommended in the 1962 USPHS Drinking Water Standards and the International Drinking Water Standards.

According to the 1962 USPHS Drinking Water Standards, reported in AMERICAN WATER WORKS ASSOCIATION (1961), the recommended limit for iron in public water supplies is 0.3 mg/l. The International Drinking Water Standards of the WORLD HEALTH ORGANIZATION (1963) also contains the recommendation that the permissible limit of iron for potable water should be 0.3 mg/l, and a concentration of 1 mg/l is reported to be excessive. These limits are not based on any physiological consideration. Iron is, in fact, an essential mineral for proper nutrition. Limitation of the concentration of iron in water supplies is mainly due to its staining effects to the contacted materials, and supporting the growth of iron bacteria resulted in taste and odor to consumers.

Most of the ground waters in the rural areas of the country are used without treatment after pumping. Only those wells which produce acceptable quality of water are fitted with hand pumps or power pumps with elevated reservoirs. In cases wh re iron-free water sources are not available in some localities, the pumped iron bearing water from wells is held in a reservoirs for a sufficient time for the soluble ferrous iron to become naturally oxidized by the atmosphere to an insoluble iron. This is then settled out before passing on to the consumers. Works are now underway to design a simple aerator and filter system for iron removal in Northeastern


-3 -

Thailand water supplies by both the Department of Mineral Resources and the Department of Health.

It was one of the purposes of this study to delineate the iron problem present in ground waters of Thailand through the preparation of a map showing iron concentration in the various areas. This map, shown in Fig.l and accompanying data shown in Table 1, were based on available data from both the Division of Ground water, Department of Mineral Resource, Ministry of National Development and the Department of Public and Municipal Works, Ministry of Interior. In some areas in the North and in the South of Thailand there is no data available on the iron concentrations in the ground waters.

It can be seen from Fig.1 and Table 1 that although iron is present in the ground waters in many parts of Thailand, the most serious conditions are observed in the Northeast. Of the 15 Northeastern provinces only three have wells with iron concentrations as low as in the range of 2.1 mg/1 to 4.0 mg/1. The other provinces were found to be over 4.0 mg/1 up to as high as 36 mg/1 iron concentration. According to the records of chemical analyses of ground water reported by the DEFARTMENT OF MINERAL RESOURCES (1966), it was found that most of the ground waters in Northeastern Thailand are devoid of dissolved oxygen. Carbon dioxide which is often associated with iron-bearing waters, was found to range from zero in some wells to as high as 366 mg/1 in a well in Surin Province (Well No. A-11, S-10). High iron content is also

-4-

Water in Thailand

-6-

Legend of Fig. 1

.

· •	•	
1 Chainat	27 Udron-Thani	53 Nakhonpatom
2 Sing-buri	28 Sakonnakhon	54 Samutsongkhram
3 Lopburi	29 Nakhorn Phanon	55 Samutsakhorn
4 Saraburi	30 Khon-Kaen	56 Phetburi
5 Ang-thong	31 Maha Sarakham	57 Prachaup-Kairi-Khan
6 Authya	32 Kalasin	58 Chumphorn
7 Nonthaburi	33 Roi-Et	59 Ranong
8 Pathum-thani	34 Mae-Hongson	60 Phang-Nga
9 Thonburi	35 Chiengmai	61 Surat-Thani
10 Bangkok	36 Chieng Rai	62 Nakhornsri-Thamrat
ll Nakhornayok	37 Lamphun	63 Phuket
12 Prachinburi	38 Lampang	64 Krabi
13 Samutprakan	39 Prae	65 Trang
14 Cha-Choengsao	40 Nan	66 Phatalung
15 Cholburi	41 Uttaradit	67 Satun
16 Rayong	42 Tak	68 Song-Khla
17 Chanthaburi	43 Sukho-Thai	69 Pattani
18 Trat	44 Phitsnuloke	70 Yala
19 Chayaphum	45 Kamphaengphet	71 Nara-Thiwat
20 Nakhornratsima	46 Pichit	
21 Buri-ram	47 Phetchbun	
22 Surin	48 Nakhorn Sawan	
23 Srisaket	49 Uthai-Thani	
24 Ubonrat-Thani	50 Kachana-buri	
25 Nong-Khai	51 Suphanburi	
26 Loei	52 Ratburi	

Province	Well de	epth ft.	Total	Fe ppm
	Range	Average	Range	Average
North-east				
Loei	100-191	133	1.5-36.0	14.3
Udorn	100-515	224	0.0-23.0	10.4
Nongkhai	100-480	139	0.0-21.0	6.5
Chaiyapoom	100-1004	270	2.0-10.0	3.9
Khonkhaen	90-331	198	0.0-17.0	5.4
Nkornpanom	65-845	158	0.0-28.0	9.8
Sakornnakorn	70-1045	233	0.0-23.0	5.0
Kalasin	90-526	151	1.2-41.0	11.3
Roi-ed	90-300	161	1.0-7.0	3.9
Mahasarakam	80~500	219	0.02-20.0	8.1
Surin	67-1050	329	0.6-15.0	6.7
Buriram	94-1015	275	2.5-16.0	6.0
Srisaket	100-356	179	0.5-14.0	6.4
Ubol	60-1010	246	0.0-14.0	4.0
Nakornrasima	55-1500	337	0.0-24.0	4.1
South				
Prachaupkni -rikhan	140-750	420	0.0-1.0	0.4
Songkhla	50-240	194	1.9-90.0	22.3
Chumporn	-	-	-	-
Surat-thani	-	-	-	-
Nakornsri -thamraj	-	-	-	-

Province	Well der	oth ft.	Total Fe mg/1	
	Range	Average	Range	Average
Pattalung	-	-	-	-
Trang	- 1	-	-	-
Puket	-	-	-	-
North				, I , I
Chiengmai	152-330	216	1.0-4.8	2.8
Lamphun	135-345	133	212-120.0	47.0
Prae	246-400	335	0.1-2.3	0.8
Uttaradit	50-250	138	2.0-25.0	8.0
Petchaboon	152-350	186	0.6-21.0	8.0
Sukhothai	60-260	146	0.6-3.3	1.9
Pitsanuloke	185-270	219	1.8-5.8	4.7
Kamphaeng Phe	t -	-	-	-
Tak	-		-	-
Chiengrai	-	-	-	-
Lampang	-	-	-	-
Nan		-	-	-
Mae-Hongson	-	-	-	-
<u>Central</u>		:		
Nakonsawan	131-287	218	0.2-6.5	5.0
Pichit	150-310	225	0.8-2.3	1.5
Chainat	35-231	120	0.4-7.0	2.7
Lopburi	66-320	189	0.0-80.0	30.0
Saraburi	100-258	159	0.0-42.0	5.9

Province	Well d	lepth ft.	Total Fe mg/l	
	Range	Average	Range	Average
Singhburi	170-354	225	0.2-1.0	0.3
Supanburi	144-187	165	1.4-5.0	3.8
Ayudhaya	167-365	245	0.1-1.0	0.4
Pratumthani	248-364	293	0.2-0.8	0.5
Nontaburi	565-720	596	1.0-2.1	1.5
Bangkok	400-713	590	0.1-1.3	0.8
Thonburi	481-670	559	0.1-4.8	1.0
Samutprakan	403-903	689	0.5-11.0	5.2
Samutsakorn	355-542	472	0.1-1.6	1.0
Angthong	112-174	143	0.1-0.2	0.2
Rachaburi	130-660	305	0.2-1.8	1.0
Petchaburi	200-850	562	0.3-17.0	5.0
Nakornpatom	302-645	401	0.1-0.7	0.3
Kanchanaburi	113-215	165	0.2-2.8	1.5
Utai-thani	-	-	-	-
Samutsongkam	-		-	-
East				
Cha-Choengsao	295-580	438	1.8-3.8	2.8
Rayong	45-84	66	0.8-3.3	2.0
Cholburi	141-160	145	0.3-2.4	1.3
Prachinburi	80-215	135	0.0-7.0	2.2
Chantaburi	74-75	74	0.8-1.2	1.0
Nakonnayok	80-320	152	1.0-9.0	5.5 [°]
Trat Note: See APP	- ENDIX B for		-	-

ŗ

ļ.

Note: See APPENDIX B for additional data on individual wells.

commonly associated with a high concentration of hardness, and some wells in Northeastern Thailand exhibited total hardness, more than 1,000 mg/l expressed as CaCO₃. Manganese was reported to be relatively low compated with iron and other constituents. The major constituents which were found in high concentrations in the ground waters in this area were Ca⁺⁺, Mg⁺⁺, K⁺, Fe⁺⁺, HCO₃⁻, SO₄⁼, Cl⁻ and PO₄⁼

HAWORTH, NA CHIENGMAI and PHIAN CHAREON (1966) reported in their ground water resources development study of Northern Thailand that the concentration of iron in water of sand stone aquifers was slightly lower than in shale and siltstone aquifers. The concentration of iron in water from limestone was moderately high, because the most important source is iron pyrites (Fe S₂) which is easily attacked and dissolved by water containing carbon dioxide.

In the central part of the country, higher iron concentration in ground water appears to be not as common as in the Northeast. Most of the deeper wells produce a more acceptable quality of ground water than the shallow ones.

Purposes of the Study

The primary objective of this study was to obtain information which could be used to improve the present costly process of iron removal. It included also a study of the fundamental factors that govern oxidation of soluble ferrous iron to the insoluble ferric form so that ferric precipitates could be removed by sedimentation. The main purpose of the study was to develop, on a laboratory - scale, a unit combining the oxidation, flocculation and upflow solids contact clarification processes into one with sufficient efficiency in order to avoid the necessity of using rapid sand filters, commonly employed in conventional iron removal processes. Such a unit can be operated by untrained personnel in rural area: where funds are limited.

Scope of the Study

Ground water from an artesian well located near Bangkok with characteristics similar to most of the ground waters in the Fortheastern part of Thailand was selected as the raw water for the study. Because of relatively low iron content in the ground water from this well, ferrous sulfate -(Fe $SO_4.7H_2O$) was added to produce ground water of high iron concentration similar to that commonly found in the Portheastern part of the country.

The study was carried out in the laboratory in two major steps:

<u>Preliminary Investigations</u> Preliminary investigations were first made to determine an optimum pH for iron removal. Jar tests were carried out with water having pH values of 7.0,7.5,8.0,8.5,9.0 and 9.5. Adjustment of pH was made by the addition of NaOH. The optimum pH value so obtained was then employed in the laboratory-scale iron removal unit, and it was found that the iron flocs were light and gelatinous in form, resulting in a large number of flocs being carried over to the effluent overflow weir.

In order to improve the iron floc formation in the upflow solids contact clarification employed in the laboratory-scale iron removal unit, coagulant aids were used. The coagulant aids used were organic, high molecular weight polyelectrolytes (also called "flocculant" by MINZ, 1964) of cationic, anionic and nonionic characters taken from various manufacturers, namely, nonionic PURIFLOC N-11 and N-17 and anionic PURIFLOC A-22 from the Dow Chemical, U.S.A., cationic Nalco-600 and Nalcolyte-605 from the Nalco Chemical Company U.S.A. and tannin-based FLOCCOTAN from the Forestal Industries (U.K.) Ltd. The dosing range of each coagulant aid was strictly in accordance with the manufacturer's recommendations. The optimum dose of the coagulant aids was first determined at pH 8.3 The optimum pH for the optimum dose of each coagulant aid was again determined at the original pH of the raw water for the jar test experiments.

Another study on coagulant aid was made with Bangkok clay. The clay was added to the ground water to prepare a series of solutions with turbidity values of 25,50,75,100 and 125 units. A Jackson candle turbidimeter was used for measurement of turbidity. The prepared series of ground waters was then supplemented with 50 mg/l FeSO₄.7H₂O. Determination of the turbidity and the residual iron in the decanted supernatant after 2-hour settling period was

-12-

then carried out. This test was repeated using 25 mg/l $FeSO_4.7H_2O_4$.

Experimental Investigations Experiments with the laboratory-scale iron removal unit were carried out at the optimum pH and with the optimum dose determined during. preliminary investigations described above. The first run was operated with the pH value in the flocculation chamber controlled within the range of 8.0 to 8.7, without coagulant aid. In the second run, the water was dosed with 5.0 mg/lanionic FLOCCOTAN; the third run with 2.0 mg/l cationic Nalco-600 and the fourth run with 2.0 mg/l nonionic PURIFLOC N-11. During the experiments with the laboratoryscale iron removal unit, the total flow rate of the raw water, NaOH and coagulant aid solution of each run was controlled at about 54 ml/min in order to get 3-hour detention time in the unit.

II - LITERATURE REVIEW

LONGLEY, ENGELBRECHT and MARGRAVE (1962) designed a pilot plant for both laboratory and field experiments to study the fundamental factors that govern the removal of iron by oxygenation, sedimentation with flocculation, and plain sedimentation. Their pilot plant also included a rapid sand filter. Oxygenation was accomplished by using a multiple-pass aerator with diffused air. It was found that the dissolved oxygen of the effluent could be brought up to 6.36^+ 0.8 mg/l. The reaction basin had the combined purpose of providing time for completing the chemical reaction and for flocculation and sedimentation. It had a 1.5-hour detention time at a flow rate of 0.12 gpm. The rapid sand filter consisted of a 30-inch depth of sand with a design loading of 2 gpm/sq.ft. The filter medium was screened, sharp grained sand, having an effective grain size of 0.45 mm and a uniformity coefficient of 1.4. The results of this investigation using an essentially standard water treatment process can be summarized as follows:

1. The ranges of iron removed by each unit process of the pilot plant, based on the amount of iron applied to that unit were:

Process	<u>Removal</u> - %
Aeration	0.1 - 44
Reaction Basin	0 - 13
Filtration	96 - 100

2. It was found that the following had no effect on

-14-

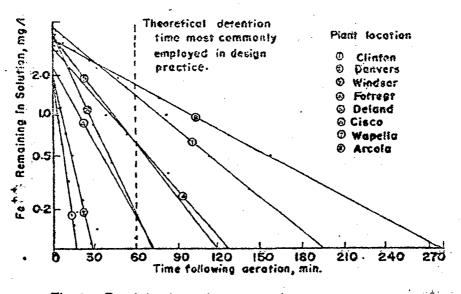
overall iron removal efficiency:

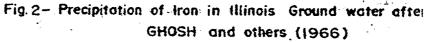
Substances	Amount , mg/1
Chlorides	0 - 60
Sulfates	0 - 75
Total nitrogen	0 - 16
Total hardness	427

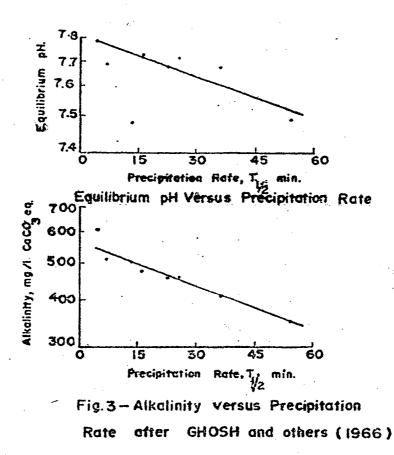
and Chemical Oxygen Demand 0 - 65.2

3. Alkalinity values greater than 400 mg/l and in excess of the hardness present favored more rapid oxidation of iron.

LONGLEY and others (1962) also made an investigation into the role of filtration in iron removal. It was found that there was often a depletion in dissolved oxygen in the water as it was filtered. This resulted in a high iron content, usually in the ferrous form, in the finished water. It appeared that the bacterial growth which developed in the filter and the amount of iron passing through the filter increased with time of filtration following each backwash cycle. The depletion of dissolved oxygen as a result of bacterial growth led to the development of a reducing enviornment and was accompanied by a slow decrease in the oxidation - reduction potential within the filter as filtration proceeded.


GHOSH, OCONNOR, and ENGELBRECHT (1966) studied factors that govern the kinetics of iron precipitation in natural ground waters in order to find a more rational approach to


-15-


the engineering design of reaction basins in iron removal plants. Investigations were conducted at eight water treatment plants in central Illinois. An 8-liters sample of ground water was aerated for 2 minutes to raise the dissolved concentration to 6 mg/l or more. Laboratory studies indicated that the rate of iron precipitation was unaffected by dissolved oxygen if its concentration exceeded 5 mg/l. A plot of the log of the ferrous iron concentration in solution versus reactive time was found to be linear, indicating that the precipitation of ferrous iron from solution was governed by a first order reaction with respect to ferrous iron concentration. The relationships between the ferrous iron remaining in solution and the time following aeration are shown in Fig.2. As the water samples were drawn from different sources with varying pH values, it was difficult to draw any definite conclusion from the curves alone.

On the other hand, if the experimental results were rearranged and a plot of equilibrium pH versus the rate of precipitation, as half life, T¹/₂, for the Illinois ground water studied as shown in Fig. 3 was made, a somewhat remote relationship between pH and rate of precipitation was indicated, showing precipitation occurring more rapidly at higher pH levels. Conversely, a comparison of alkalinity and precipitation rate indicated that higher alkalinities were associated with shorter half life or more rapid precipitation rates.

-16-

-17-

The dependency of iron precipitation on alkalinity was shown to have the form :

 T_{2}^{*} (min) = 522-- 0.33x10¹⁴ (OH) - 183.log (alkalinity) \pm 8.10 (1)

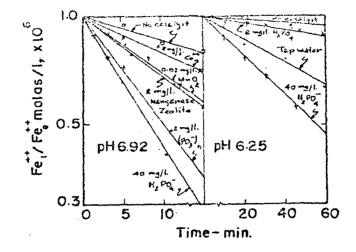
This empirical expression was derived from data on water having equilibrium pH values ranging from 7.5 to 7.8 and alkalinities in the range of 355 - 610 mg/l as $CaCO_3$. A conclusion that may be drawn from the large alkalinity dependency of the precipitation rate is that the precipitates formed were primarily carbonates rather than hydroxides, and a large part of the iron precipitated from Illinois ground waters was in the ferrous, rather than ferric form.

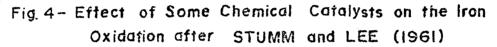
STUMM and LEE (1961) studied the reaction between ferrous iron and oxygen and found that the rate of oxygenation was a function of ferrous iron concentration and the partial pressure of oxygen (P_{02}), as indicated by Eq. 2.

$$- \underline{d(Fe^{++})}_{dt} = K^{1} (Fe^{++}) P_{02}$$
(2)

(OH⁻)²

In their study of the effect of pH on the rate of oxidation of ferrous iron, their data indicated a 100 - fold increase in the rate with an increase of one pH unit. Because of this second order relationship with respect to hydroxyl ion concentration, the overall rate was expressed as :


$$\frac{d(Fe^{++})}{dt} = K(Fe^{++}) P_{02}$$


$$K = \frac{K^{1}}{(OH^{-})^{2}}$$

$$K^{1} = \frac{Ko}{P_{02}}$$

where

(3)

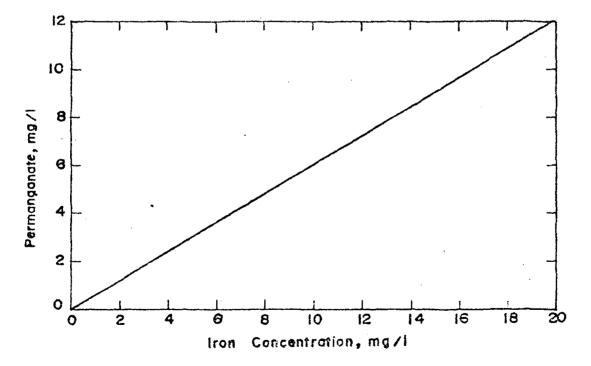


Fig. 5— Permanganate Demand Curve for Oxidation of Ferrous Iron after WILLEY and JENNINGS (1963)

-19-

$$Ko = \frac{-d\ln(Fe^{++})}{dt}$$

and Ko = logarithm of the rate constant Another study was made by the same authors (1961) on catalytic effects in iron oxidation. They found that metal ions of Cu⁺⁺, Mn⁺⁺ and Co⁺⁺ as well as anions like $H_2PO_4^-$, in addition to OH⁻, formed complexes such as Fe⁺⁺⁺(H_2PO_4)³ and were capable of hastening the oxygenation reaction. Fig.4 shows the effect which trace quantities of some chemical catalysts exhibited in accelerating the oxidation reaction.

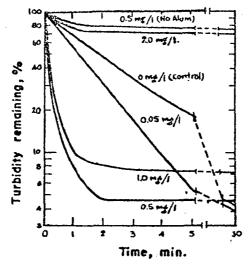
BABCOCK (1950) studied the efficiency of the Spaulding Precipitator, in which, a sludge blanket was suspended in the tank by the velocity of the influent and acted as filter and catalytic surface for the removal of iron and manganese from the water. He reported that the use of the precipitator caused removal of approximately 95% of iron and manganese, if a pH value within the range 8.5 to 9.1 was maintained during operation. The chemicals used were alum and lime. No coagulant aid was employed.

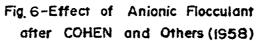
BENSON (1965) developed a simple method to remove gross quantities of iron in remote Alaskan water supplies. He used a fill - and - draw treatment tank with slaked lime, $Ca(OH)_2$, as the chemical to adjust the pH and precipitate the iron, followed by decantation and disinfection of the treated water by chlorination. In the case of ground water with high carbon dioxide, aeration, using a small gasoline - powered compressor to diffuse air into the treatment tank, was carried out prior to chemical treatment.

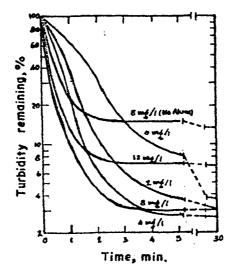
-20-

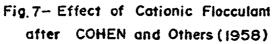
Concentrations of iron, manganese, hardness and alkalinity were greatly decreased, but the pH of the effluent was as high as 10.8.

WILLEY and JENNINGS (1963) discussed the use of potassium permanganate (KMnO₄) to oxidize ferrous iron to insoluble ferric precipitate. They suggested that dissolved iron and manganese can be effectively removed from water by continuous feeding of potassium permanganate to water before it is passed through a manganese green sand filter. This method has been known as a continuously-regenerating process. The quantity of potassium permanganate required can be determined by running a permanganate demand test on the water to be treated. The reactions involved are:


 $3Fe(HCO_3)_2 + KMnO_4 + 7H_2O \rightarrow MnO_2 + 3Fe(OH)_{3_1} + KHCO_3 + 5H_2O_3$ (4)


Theoretically, one part of potassium permanganate (KMnO₄) will oxidize 1.06 parts of soluble ferrous iron to insoluble ferric iron. In practice, it was found that a less amount of potassium permanganate was required due to the secondary reaction of the MnO₂ formed, according to the following equation:


$$2 \text{ Fe}^{++} + 2\text{MnO}_2 + 5\text{H}_2\text{O} \rightarrow 2\text{Fe}(\text{OH})_{3_1} + \text{Mn}_2\text{O}_3 + 4\text{H}^+$$
(5)


They also developed a permanganate demand curve for oxidation of ferrous iron as shown in Fig.5. This curve shows the permanganate concentration required to oxidize ferrous iron completely in the given concentrations.

-21 -

-22-

COHEN and others (1958) studied the effect of three types of flocculant: anionic A, cationic B and nonionic C, on both artificially prepared clay suspensions and different natural waters. Containers with stirrers were used for the tests. An optimum dose of aluminum sulfate was added to the process water, with different doses of the test flocculant, and mixing was continued for 30 minutes, followed by 30 minutes settling. The effect of anionic flocculant A on floc settlement during the treatment of water artificially made turbid with clay is shown in Fig. 6.

The best results were obtained with a flocculant dose of 0.5 mg/l. Further increase of dosage caused a reduction in the settling rate and higher residual turbidity. At 2 mg/l, settling was practically inhibited. This result indicates that the flocculant is effective within a given dosimetric range and that there is an "optimum" dose at which optimum settling is obtained. When an anionic flocculant was added to the water without aluminum sulfate no coagulation or settling was produced. Similar results were obtained in treating natural waters.

The effect of cationic flocculant B is shown in Fig.7, plotted from test results in the treatment of Ohio river water. The cationic flocculant, like the anionic, considerably raised the settling rate at optimum doses. But, in contrast to the anionic flocculant, it produced a definite effect without aluminum sulfate, and allowed the proportion of this latter reagent to be considerably reduced.

-23-

Comparing the effects of different types of flocculants, the authors showed that the least effective and versatile flocculant was the nonionic flocculant C, which reacted only in the case of one process water out of all those with differing composition and physio-chemical properties that were tested. Flocculant B was ineffective with weakly mineralized waters.

MINZ (1964) discussed the use of polyelectrolytes as coagulant aids in water purification processes. In order to approach the mechanisms of the polyelectrolyte in facilitating flocculation, the author presented a model of a structure of floc formed by cogaulation in treatment of turbid water as shown in Fig.8. He discussed that when coagulants were used in turbid water coagulation, the coagulant furnished ionic charges opposite to those of suspended and colloidal particles resulting in neutralization of repelling charges on the particles. The particles in suspension became covered with adsorbed colloidal particles of the hydroxide of the coagulant which had joined each other to form "adhesive bridge" thus linking together the suspended particles. The space lattice contained "trapped" water which is incorporated into the structure of the flocculated particles. The mechanical entrapment of the agglomerated particles by adsorption on to the floc formed with coagulant chemicals and also by molecular bridging of the individual molecules of the coagulant is known as "Flocculation".

When the polyelectrolyte was used as coagulant it acted as a "binder" or "bridger" in that it mechanically entrapped or stuck

-24-

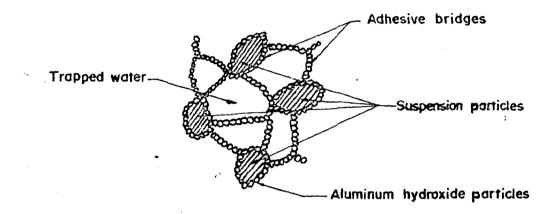


Fig. 8— A Model of a Structure Floc formed by Coagulation in the Treatment of Turbid Water after MINZ et al (1955) floc particles together by their opposite electrical and surface charges thus caused an increase in floc strength and an acceleration of floc formation. The flocculation rate depended on the number of segments of the polymolecule arranged along its chain, suitable for being adsorbed onto the particle surfaces. The polyelectrolytes were effective within a given dosage range. If the polymer was added in excess, its molecules were also completely adsorbed on suspended particles and stabilized the suspension, as a protective colloid thus inhibiting flocculation.

Iron Removal Processes

A number of processes can be used, singly or in combination for the treatment of iron bearing waters. The choice of the process depends upon the range of the quality of the raw water and upon the chemical state of the iron compounds. Iron removal methods may be clarified as oxidation, chemical or ion exchange.

Oxidation Methods

<u>Aeration</u> - On aeration, iron present in the soluble ferrous form is converted to insoluble hydrated ferric oxide which can be removed by settling and filtration. The chemical reaction may be shown as :

 $4 \text{ Fe}^{++} + (2x+4)H_2O+O_2 \rightarrow 2\text{Fe}_2O_3 \cdot xH_2O_4 + 8\text{H}^+ \qquad (6)$ Stoichiometrically, 1 mg/1 of oxygen will be required for 7 mg/1 of ferrous iron.

Aeration is usually employed in ground waters where

- 26-

iron is present as ferrous bicarbonate. The aeration of such ground waters results in the formation of CO_2 as shown in Eq. 7.

4 Fe $(HCO_3)_2 + O_2 + 2H_2O \rightarrow 4$ Fe $(OH)_{3\downarrow} + 8$ CO₂ (7) The CO₂ thus formed in addition to that which may already be present in the ground water, is stripped from the water to a considerable degree only by a sufficient pressure of oxygen from an aeration process. Any CO₂ present will react with the water as shown in Eq. 8.

 $H_2O + CO_2 = H^+ + HCO_3 = 2H^+ + CO_3^-$ (8) The H⁺ ions then neutralize the OH⁻ groups on hydrous ferric oxide floc. If sufficient H⁺ ions are present, they cause high affinity for the floc and produce positively-charged particles. A high positive charge causes an increase in the electrokinetic repelling force among the particles and they will not coagulate as readily again.

Any factor which tends to displace this equilibrium may determine the course of iron removal. This can be brought about through removal of carbon dioxide causing an increase in pH or depression of the hydrogen ion concentration and thus favoring removal of iron. Removal of carbon dioxide although easily accomplished by aeration, may also be carried out by neutralization through the addition of alkaline substance such as slaked lime, $Ca(OH)_2$, soda ash (Na₂CO₃) or caustic soda (NaOH).

Aerators can be classified into four main groups, namely those in which water flows or falls through air, such as coke trays, slat-trays and spray aerators; diffused aerators in which air is bubbled through the water in an open tank; rotating brushes, in which air is induced into the water by surface agitation; and injector aerators, in which air is allowed to dissolve under pressure in a closed tank.

Aeration followed by sedimentation has been utilized somewhat ineffectively in the past as a simple iron removal water treatment scheme. Settling is necessary after aeration to remove the insoluble hydrated ferric oxides formed, but it has not usually added greatly to the effectiveness of iron removal unless large quantities of iron were present. In addition to the precipitate, a rather stable sol is often formed upon simple aeration. It does not settle well and gives a rather opalescent appearance to the water. Thus filtration has been necessary to polish the settled effluent.

Filtration has been commonly employed in iron removal plants. Short filter runs have resulted from the clogging of the pores between sand grains in the filters by iron floc particles remaining after the sedimentation process. A reduction of iron from the ferric to the ferrous state also occurs during filtration, and is associated with a marked depletion of dissolved oxygen and a considerable growth of biological slime in the filters.

<u>Chlorine or hypochlorite</u> - Chlorine or hypochlorite are effective oxidizing chemicals for oxidizing iron to insoluble forms

-28-

even at low pH values. The reaction may be represented as:

2 Fe(HCO₃)₂ + Ca(HCO₃)₂ + Cl₂ \rightarrow 2Fe(OH)₃₁+ CaCl₂+6CO₂ (9) From this equation, it can be calculated that 1.6 mg/l of chlorine are required to oxidize 7 mg/l of iron. A.W.W.A. (1951) reported that chlorine acted in two independent ways : first, it destroys the complex compcunds of iron and manganese, and thus modifies them so that they may be readily oxidized; second either the chlorine or the dissolved oxygen chlorine dose may be reduced through partial oxidation by preliminary aeration.

Potassium permanganate (KMnC_4) - Potassium permanganate can be used either for direct oxidation of ferrous into soluble ferric iron, or, indirectly, for regeneration of manganese zeolites or green sand beds. The reactions involved in oxidation of iron have been shown in Eq. 4 and 5.

Manganese zeolite or green sand is manufactured by treating New Jersey glanconite with manganous sulfate and potassium permanganate to provide an active supply of higher oxides of manganese on the grains of sand. This manganese zeolite or green sand has been used fairly effectively as a filter medium to oxidize and remove iron and manganese from water. Potassium permanganate is used to regenerate the sand grain surfaces when the oxidizing power of the bed has been exhausted.

The use of potassium permanganate to regenerate the exhausted green sand bed can be in the form of intermittent doses each time the oxidizing power of the bed has been exhausted, which

-29-

is known as a regenerative batch process, or by continously regenerating the green sand by permanganate feed to the incoming water. The regenerative batch process has the disadvantage that the bed is exhausted quickly if other reducing substances such as organic matter, nitrogenous matter or hydrogen sulfide (H_2S) are present. A substantial excess of permanganate is then required in regeneration. The continuously-regenerating process has the advantage of utilizing the full oxidation potential of potassium permanganate as well as manganese dioxide. If the amount of iron in the raw water is high in relation to permanganate dose, then the excess is removed by the green sand. Conversely, if the permanganate dose is in excess of that required, then this excess is utilized in regenerating the green sand.

<u>Ozone</u> - can be used to oxidize iron and manganese to insoluble forms and is particularly useful when color or taste and odor problems occur at the same time.

Chemical Methods

Lime treatment - Iron can be precipitated from aerated ground water by the addition of lime. OWEN (1963) described a process using calcium hydroxide, Ca(OH)₂, for precipitation of iron and manganese. He found that a pH of 8.4 was required for complete removal of iron. BABBITT, DOLAND and **CLEASBY** (1959) stated that a pH of 8.2 is needed for the precipitation of iron. The chemical reactions involved are shown in Eq. 10 and 11.

$$\operatorname{Fe}(\operatorname{HCO}_3)_2 + \operatorname{Ca}(\operatorname{OH})_2 \xrightarrow{} \operatorname{Fe}(\operatorname{OH})_2 + \operatorname{Ca}(\operatorname{HCO}_3)_2 \tag{10}$$

-30-

$$4 \text{Fe}(OH)_2 + 2H_2O + O_2 \rightarrow 4 \text{Fe}(CH)_{3\downarrow}$$
 (11)

Lime also has an advantage in treatment of soft well-waters devoid of oxygen and containing ferrous bicarbonate. Aeration in this case cannot be employed, since it will bring about corrosion when the water is treated with lime in a closed system, the insoluble ferric iron formed will be removed in a closed settling tank or in pressure filters.

<u>Coagulation</u> - Highly turbid colored surface waters containing colloidal iron or iron bound with organic matter can be treated for iron removal by the application of a coagulant such as aluminum sulfate or alum, $Al_2(SO_4)_3.14H_2O$, or ferric chloride, Removal of the turbidity or colloidal particles with also remove the iron associated with them. Adjustment of pH is often necessary to secure optimum results.

Ion-exchange Method

Conventional cation-exchange softening units will remove iron and manganese when present in the soluble ferrous state, just as calcium and magnesium are removed. Any prior aeration of the water will result in the accumulation of precipitated oxidized iron on the resin surfaces, thus interfering with effective base exchange. If this occurs, inhibited hydrochloric acid or other resin cleaner is needed in the regenerative process.

-31-

III THEORETICAL CONSIDERATIONS Mechanism of Solution of Iron

Iron occurs in almost all soils and rocks in the forms of oxides, sulfides and carbonates. As an oxide it may appear as ferrous oxide or red hematite (Fe_2O_3), magnetite (Fe_3O_4), or brown hematite or limonite ($2Fe_2O_3.3H_2O$). As carbonate it occurs as siderite ($FeCO_3$), and iron in the sulfide form is known as iron pyrites (FeS).

In ground water, iron commonly exists in the soluble ferrous state. The mechanisms by which iron may enter ground water, according to GHOSH (1965) are as follows :

a) solution due to the presence of excess CO_2 , which possibly results from bacterial reactions converting insoluble ferrous carbonate, (FeCO₃), into highly soluble ferrous bicarbonate, Fe(HCO₃)₂, as typified by Eq. 12 :

$$FeCO_3 + H_2O + CO_2 \neq Fe(HCO_3)_2$$
(12)

b) solution under anaerobic conditions, possibly due to the presence of soil bacteria, which reduce ferric iron to the ferrous form in the first step, often which it is dissolved by CO₂ as shown in Eq. 13 and 14:

$$2Fe_2O_3$$
 + organic matter \rightarrow 4FeO + CO₂ (13)

$$FeO + 2H_2O + 2CO_2 \rightarrow Fe(HCO_3)_2 + H_2O$$
 (14)

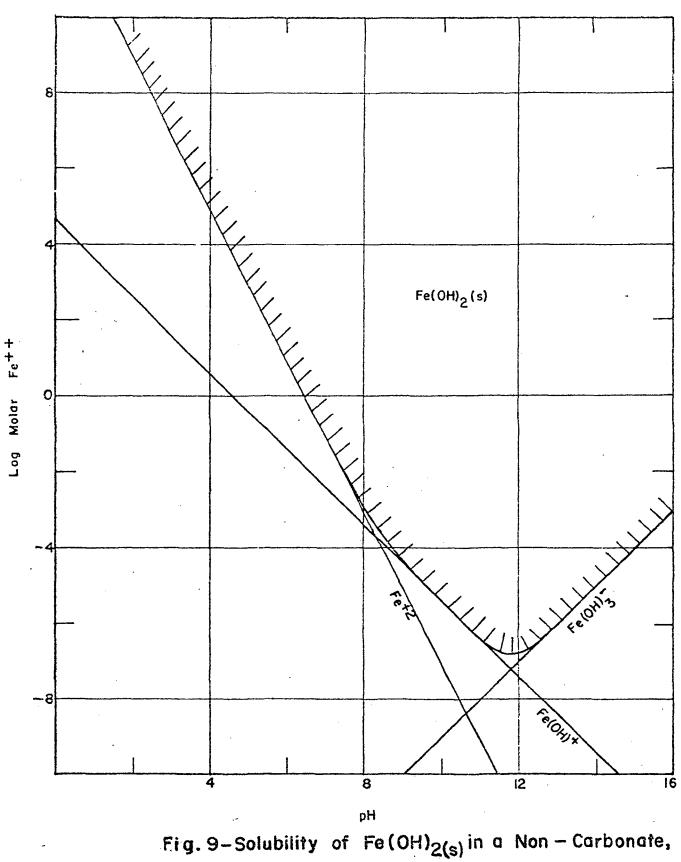
c) solution of organic color bodies from vegetative growths in which iron, both ferrous and ferric, is complexed with stable organic compounds. This type of water is commonly found when the source is a swampy area.

Factors Influencing Iron Removal

Important factors to be taken into account in iron removal processes have been discussed extensively by many investigators. GHOSH and others (1966) have conlouded from their studies that the factors are primarily as follows:

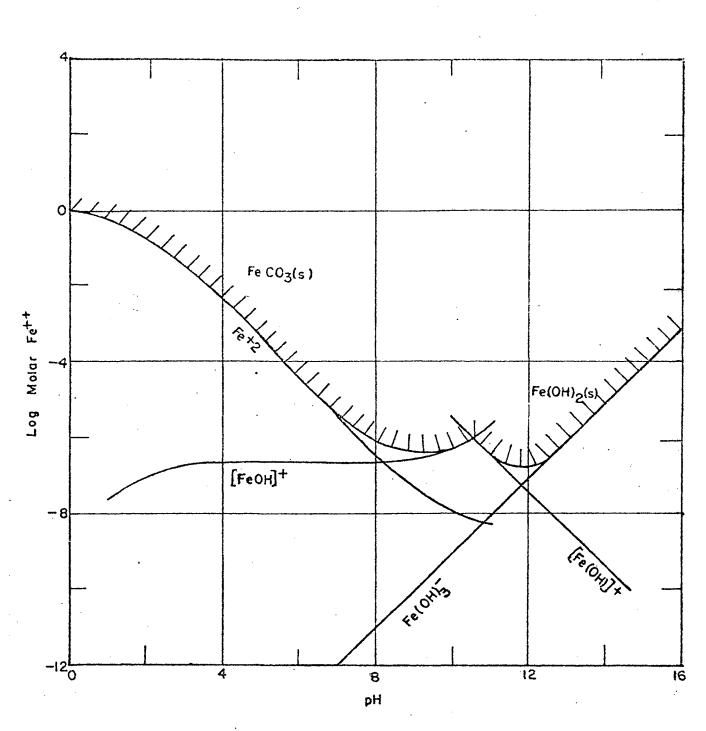
Solubility of iron Table 2 shows solubility equilibria of iron after GHOSH (1965). Graphs developed from these equilibrium values showing solubility of $Fe(OH)_{2(s)}$ (ferrous hydroxide in solid phase) in non-carbonate and non-sulfide solution are shown in Fig.9. The solubility of ferrous iron in carbonate bearing waters and the solubility of $Fe(OH)_{3(s)}$ (ferric hydroxide in solid phase) are shown in Fig.10 and Fig.11 respectively.

A comparison of Fig.9 with Fig.10 indicates that any form of alkalinity reduces the solubility of the bivalent iron considerably. For example, at pH 9.0, the total soluble ferrous iron in a non-carbonate water as seen from Fig.9, is $5x10^{-5}$ mol/1 (2.8 mg/1) whereas in a carbonate bearing water (total alkalinity 10^{-2} eq./1 or 500 mg/1 as CaCO₃), it is seen in Fig.10 that the solubility is $3.16x10^{-7}$ mol./1. This shows that ferrous iron existing in a carbonate-bearing water will have more tendency to form crystal nuclei and precipitate than if the iron is in a non-carbonate water at the same pH of 9.


Fig.11, shows the solubility characteristics of trivalent iron. This solubility is limited by the equilibria of ferric hydroxide, $Fe(OH)_{3(s)}$. As pH 9.0 the concentration of total trivalent iron that can exist in saturation equilibrium with

-33-

Table 2 - Equilibria for Iron, after GHOSH (1965)


No.	Equation	Equilibrium constant at c. 259C: 7.
1	$Fe(OH)_{2(s)}^* = Fe^{+2} + 2OH^{-1}$	8×10^{-16}
2	$Fe(OH)_{2(s)} = FeOH^+ + OH^-$	4×10^{-10}
3	$FeCO_{3(s)} = Fe^{+2} + CO_{3}^{=}$	2.11×10^{-11}
4	$FeCO_{3(s)} + OH = FeOH + CO_{3}$	5.05×10^{-16}
5	$HCO_{3} = H^{+} + CO_{3}^{-}$	4.7×10^{-11}
6	$Fe(OH)_{2(s)} + OH = Fe(OH)_{3}$	8.3×10^{-6}
7	$Fe(OH)_{3(s)} = Fe^{+3} + 30H^{-1}$	6.6×10^{-38}
8	$Fe(OH)_{3(s)} = Fe(OH)_{2}^{+} \div (OH)^{-}$	5.13×10^{-17}
9	$Fe(OH)_{3(s)} = FeOH^{++} + 2OH^{-}$	2.57×10^{-26}
10	$Fe(OH)_{3(s)} + OH^{-} = Fe(OH)_{4}^{-}$	10 ⁻⁵
11	$H_2 O = H^+ + OH^-$	10-14
12	$Fe(OH)_{3(s)} = Fe(OH)_{3(d)}$	2.9×10^{-7}
1		

* Fe(OH)_{2(s)} means ferrous hydroxide in solid phase. ** Fe(OH)_{3(d)} means undissociated Fe(OH)₃ in solution.

Non-Sulfide Solution

-35-

Bearing Water (Alk.= 10⁻² eq./1)

-36-

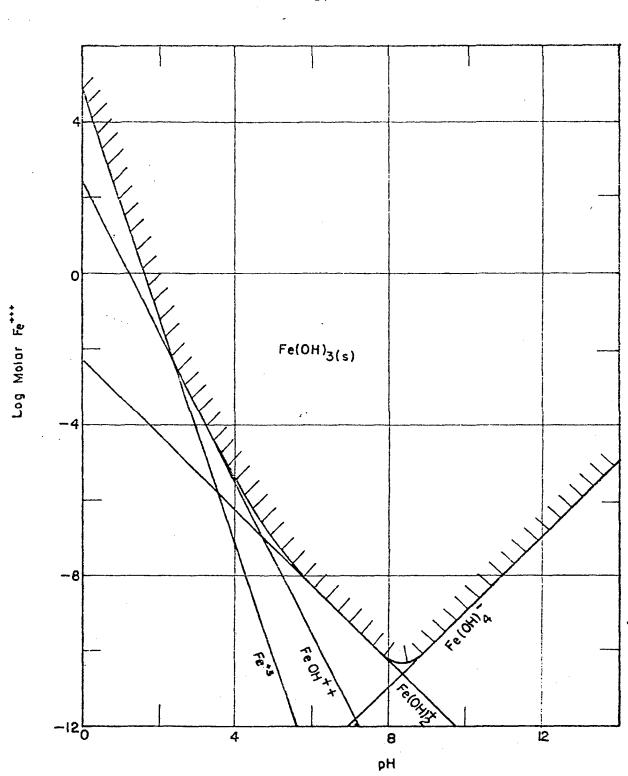


Fig. 11 – Solubility of $Fe(OH)_{3}(s)$

-37-

 $Fe(OH)_{3(s)}$ is 10^{-10} mol./1 (5.6x10⁻⁶ mg/1). This also indicates that at pH 9.0, ferric hydroxide has more tendency to precipitate than the ferrous form in carbonate-bearing water. The solubility of ferric iron may be much higher if it is complexed with organic or inorganic ligands other than the hydroxyl group (OH⁻).

Oxidation kinetics of ferrous iron The basic equation describing the oxidation of ferrous iron by oxygen is given as:

$$4Fe^{++} + \frac{1}{2} + 10H_20 \rightarrow 4Fe(OH)_{3_1} + 8H^+$$
 (15)

Various investigators have studied the rate of iron oxidation and have generally concluded that the rate of ferrous iron oxidation is of the first order with respect to the ferrous iron concentration and the partial pressure of oxygen. JUST (1908) postulated that the rate was first order with respect to ferrous iron and oxygen and second order with respect to CO_2 as shown in the following relationship:

$$- \frac{d \left[Fe(HCO_3)_2\right]}{dt} = \frac{K}{\left[Fe(HCO_3)_2\right]} \left[O_2\right]$$
(16)

He further stated the relationship between the rate and pH as shown below:

$$-\frac{d\left[Fe^{++}\right]}{dt} = K \cdot \frac{\left[Fe^{++}\right]\left[0_{2}\right]}{\left[H^{+}\right]^{2}}$$
(17)

Where K is the overall rate constant for a typical set of experimental runs.

He concluded that the rate of oxidation of ferrous iron increased

with HCO_3 ion concentration, but decreased with concentration of free CO_2 .

STUMM and LEE (1961) established on equation for the kinetics of oxidation of ferrous iron in their work with highly alkaline solutions:

$$- \underline{d} \begin{bmatrix} Fe^{++} \\ dt \end{bmatrix} = K \begin{bmatrix} Fe^{++} \end{bmatrix} \begin{bmatrix} 0_2 \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix}^2$$
(18)

They have shown that oxidation of ferrous iron should be expected to occur rapidly in well-oxygenated water at pH values exceeding 7.2. Another study of catalytic effects on the rate of oxidation by certain anions and cations indicated that addition of trace amounts of Cu^{++} , Mn^{++} , Co^{++} and $H_2PO_4^-$ would hasten the rate of oxidation of ferrous iron, as shown in Fig.4.

Redox potential (E_h) measurements of a water express the net effect of all oxidizing and reducing constituents. The presence or absence of substances affecting E_h in ground water might also influence ferrous equilibria conditions and the kinetics of iron oxidation.

<u>Coagulation and Sedimentation of Insoluble Iron</u> In the pH range of 6 to 9, which occurs in natural waters having alkalinity values between 400 mg/l and 500 mg/l as $CaCO_3$, it is possible to precipitate bivalent iron as $FeCO_3$ along with the more common trivalent form, $Fe(OH)_3$. GHOSH and others (1966) found that, in central Illinois ground waters, the rate of iron precipitation was governed by the alkalinity and pH of the water as shown by the following relationship:

-39-

 $T_{2}^{1} = 522-0.33 \times 10^{14} \left[0H^{-} \right]^{2} - 183.10g \left[A \right]_{\pm} 8.10$ (19) where $T_{2}^{1} = half-life$ in minutes or time required for one-half

of the ferrous iron in solution to be precipitated OH⁻ = molar concentration of hydroxyl ion

A = alkalinity in mg/l as $CaCO_3$.

This relationship was derived from a regression analysis of the data obtained from their field studies and is shown on Fig.3. The ferric iron formed as a result of the oxidation of ferrous iron is hydrolyzed according to the equation.

 $2 \text{ Fe}^{++} + 20\text{H}^- + (x+1) \text{ H}_2^0 \rightarrow \text{Fe}_2^0\text{ }_3.x\text{H}_2^0\text{ }_4 + 2\text{H}^+$ (20) The insoluble hydrated ferric oxide can exist in two forms, namely the sol form, which is stable, and the floc form, which is unstable. Sol particles can grow to larger agglomerates, which become floc, and both forms will be present after hydrolysis. It is apparent, however, that flocculated particles are more easily filtered than sol particles, GHOSH (1965) gave the following sources of interference in the removal of iron by zeration and sedimentation :

- the formation of solution hydroxo-polymers of aquo-bases of iron,
- the formation of colloidal dispersions with organic colloids,

and

 the formation of soluble chelates with organic sequestering agents.

The basic step in the formation of hydroxo polymers of any metal is a stepwise hydrolysis. For ferrous iron, the most common

-40-

hydrolysis products that may exist in natural waters are

 $[Fe(H_2O)_6]^{++}$, $[Fe(H_2O)_5(OH)]^{+}$, $Fe(OH)_2$ and $[Fe(H_2O)_3(OH)_3]^{-}$. For ferric iron, the most common hydrolysis products are $FeOH^{++}$, $Fe(OH)_2$, $Fe(OH)_3$, and $Fe(OH)_4$ and it was found that aquo-ferric ion has far more affinity toward hydrolysis than the aquoferrous ion. Ferric hydroxo complexes have been known to polymerize as shown by the reaction:

> 2 $\left[Fe(H_2O)_5(OH) \right]^+ = \left[Fe_2(H_2O)_8(OH)_2 \right]^{4+} + 2H_2O$ (21)

It has been shown that iron atoms are bound by dihydroxy bridges in the polymer state. The probable structure for the above dimer is :

$$(H_2O)_4$$
 Fe Fe $(H_2O)_4$
0
H

Thus, metastable colloidal iron hydroxo-polymers are formed through hydrolysis and polymerization. In the acid to neutral pH range, positively-charged colloidal ferric oxide is formed, while in the alkaline range negatively-charged colloidal ferric oxide prevails. In more concentrated solutions, the tetrapositive dimer is the predominant product of polymerization.

The positively-charged ferric oxides are hydrophobic in nature and may be stabilized by a coating of hydrophilic negatively-charged colloids in natural waters. They would thus carry a net negative charge. Perikinetic coagulation of such colloids may be effected by reducing the zeta potential. This

can be done by destabilization of the sol with multivalent ions or colloids of opposite charge to that on the sol. The mechanism of this destabilization is mainly by an exchange reaction of the type shown below, with a resultant increase in pH : $\left[Fe_{m}(OH)_{n}\right]^{+x} + SO_{4}^{-2} = \left[Fe_{m}(OH)_{n-1}SO_{4}\right]^{x-1} + OH^{-}$ (22)

The above ion may form a complex with colloidal ferric oxide hydrate. However, a certain degree of adsorption of such ions on the colloids may be expected. Once the sol is destablized, flocculation is then initiated, resulting in gravity sedimentation of the insoluble iron.

RIDDICK (1961) reported that a zeta-potential of \pm 5 milli-volts was optimum for the removal of all naturally occurring colloids, including those of iron. In order to attain such low potentials, the alkalinity in the water should be slightly in excess of that stoichiometrically required to react with coagulant, and he suggested the use of a coagulant dosage sufficient to lower the zeta-potential to - 10 milli-volts, provided that at least 6 to 8 mg/l of alkalinity remained. A suitable coagulant aid or cationic polyelectrolyte is then added to raise the potential to zero.

Many papers, such as SHAPIRO (1964), and CONNELLEY (1958), have been published describing difficulties in iron removal from water having a high content of organic matter. Some investigators have proposed that the iron or some part of the total iron content does not flocculate because it is organically chelated. Another theory is that the colloidal organic matter

-42-

acts as a protective agent in regard to flocculation of the iron. However, it is generally agreed that destabilization of such colloidal organic matter can sometimes be achieved by a slight pH adjustment.

Temperature has significant effects upon iron removal. Once an iron-containing floc particle is formed, its rate of sedimentation is influenced by the temperature of the water. Increasing temperature reduces the viscosity of the water and thus improves settling, provided that precautions are taken to avoid convection currents which would disturb the process. STUMM and LEE (1961) showed that the rate of iron oxidation was also retarded significantly at low temperatures.

IV EXPERIMENTAL INVESTIGATIONS

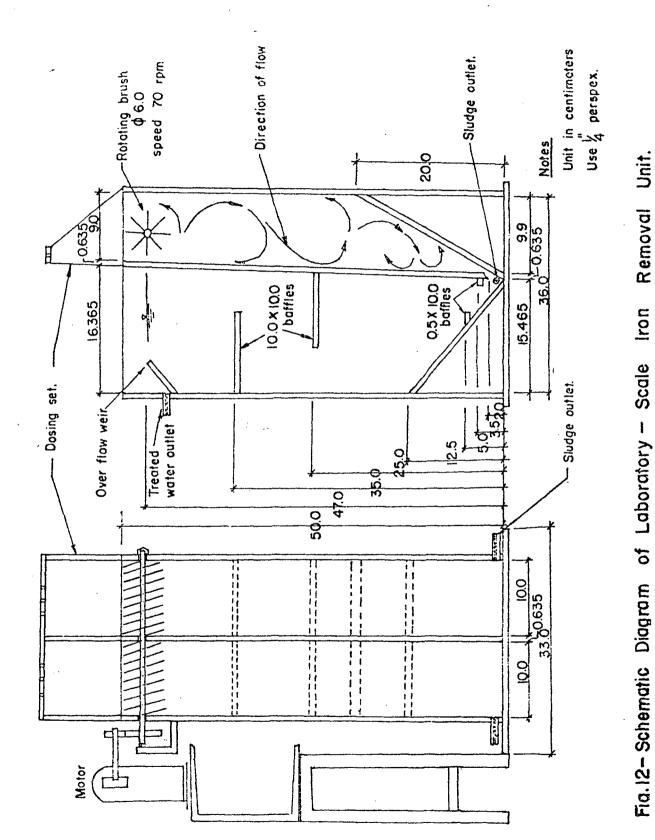
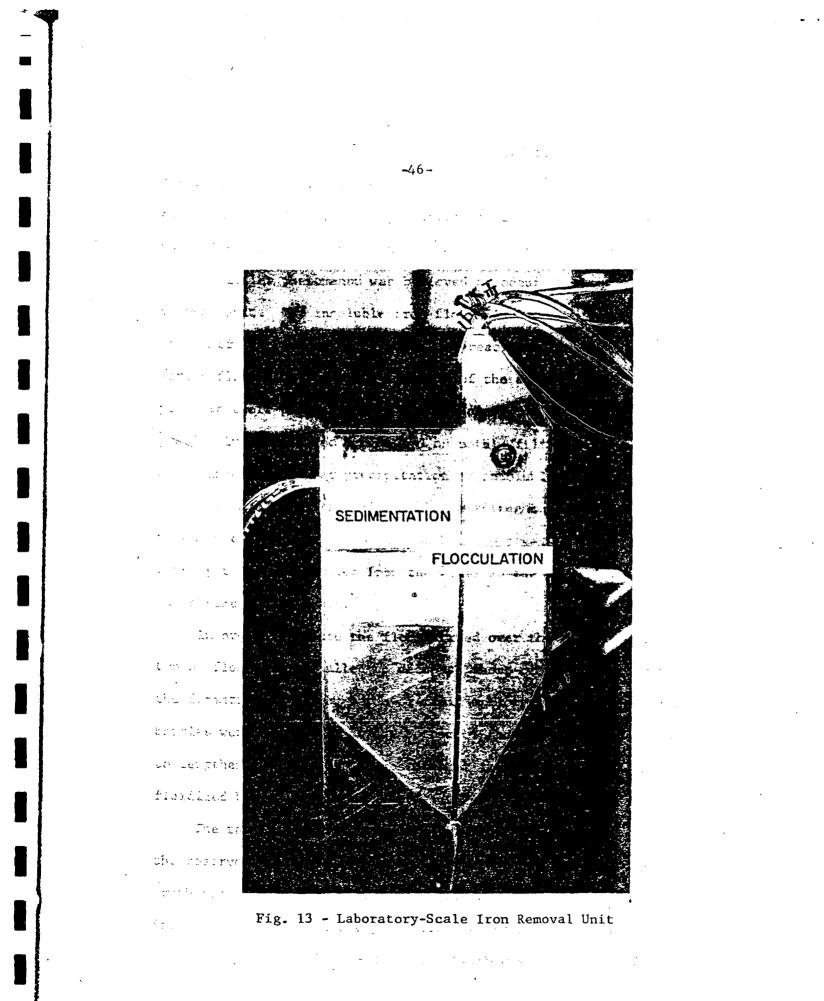

Operation of Laboratory - Scale Iron Removal Unit

Fig.12 and 13 show a schematic diagram and photograph of two parallel laboratory-scale iron removal units. Each unit was composed of two compartments to simulate a flocculation basin and a sedimentation basin. In the flocculation basin, a rotating brush was installed and this was driven by an electric motor at a speed of 70 rpm. The rotating brush provided aeration, rapid mixing, and flocculation in the initial basin. The sedimentation basin had baffles to retard the upward flow of floc particles from the flocculation basin and to reduce short-circuiting of the flow in the sedimentation basin compartment.

The unit was designed on the basis of the upflow solidscontact process. Through the use of baffles, the insoluble hydrated ferric oxide precipitate formed in the aeration and flocculation process was made to pass downward through the opening between the bottom of the flocculation basin and the sedimentation basin. The water then flowed upward in the sedimentation basin and the floc gradually accumulated at the bottom of the basin.

According to the A.W.W.A. (1951) committee and BOND (1961), who studied the upflow solids-contact basin process employed in coagulation of water softening, dosed water from the mixing basin is first brought into intimate contact with a relatively large quantity of very small older particles at a high concentration. The presence in the early stages of large members of nuclei will

-44-



45

l.

「日本の」の「日本のない」

うちょう 日本の日本のあるののないない

encourage the solute, in a supersaturated solution to crystalize out as a solid precipitate. In the latter stage, in the presence of large particles, further precipitation and agglomeration of the solids will occur until their removal is nearly completed.

A similar phenomenon was believed to occur in this iron removal unit. The insoluble iron floc flowed downward to the bottom of the sedimentation basin, it reacted with previously formed floc, remulting in a trapping of the solid impurities prior to their passing up to the effluent overflow weir. The previously formed floc functioned as both a filter and catalytic agent inducing greater precipitation of insoluble iron. As the cross sectional area of the sludge filter zone increased, the velocity of the upward flow of the water decreased, and precipitated particles separated from the water in the upper portion of the sedimentation basin.

In order to reduce the floc carried over the overflow weir, two baffles were installed to decrease short-circuiting and retard the formation of narrow paths of rapid upflow velocity. Two small baffles were also fixed at the bottom of the sedimentation basin to lengthen the path of the dosed water in passing through the fluidized bed of pre-formed sludge.

The raw iron-bearing ground water flowed by gravity from the reservoir to the flocculation basin in which the rotating brush provided dissolved oxygen to oxidize the soluble ferrous iron into insoluble ferric precipitate as shown by Eq. 6.

 $4Fe^{++} + (2x + 4)H_2O + O_2 \rightarrow 2Fe_2O_3 \cdot xH_2O_1 + 8H^+$ (6)

-47-

Aeration from the rotating brush was found to be insufficient to remove the original free carbon dioxide and the additional carbon dioxide resulting from the above reaction. Sodium hydroxide (NaOH) was therefore added to neutralize the CO_2 and to raise the pH to above 8.0 in order to improve the formation insoluble ferric hydroxide floc and thus hasten the precipitation rate.

Design of Experiments

The study was carried out in three steps, the first of which was to prepare, from a natural ground water, a high iron-bearing water from which the iron would neither precipitate nor settle out of solution during the course of the study. Secondly, preliminary investigations with jar tests were performed to determine the optimum pH range and the optimum dose of coagulant aid for iron removal from the prepared water. Finally, treatment of the prepared water in a simply designed laboratory-scale iron removal unit was carried out, according to the information obtained on the jar tests, to determine its efficiency.

Ferrous sulfate (FeSO₄.7H₂O) was added to provide a high soluble iron concentration in the natural ground water. In order to maintain the natural condition of the ground water, as it would be when being drawn from a well, the sample to be treated was stored in a closed reservoir devoid of oxygen.

The effect of pH and coagulant aids on iron removal were studied with jar tests prior to operation of the laboratory-scale unit. Sodium hydroxide was chosen for pH adjustment because of its strong alkalinity, compared with soda ash (Na₂CO₃), and

-48-

slaked lime Ca(OH)₂, and its high solubility. Only a small amount of 0.1 N. NaOH was found to give satisfactory pH control in the unit. The coagulant aids used were organic high molecular cationic, anionic, and nonionic polyelectrolytes, and Bangkok clay. Four runs were made on the laboratory - scale unit. During the first run, the pH of the water was controlled and there was no addition of coagulant aid. The remaining three runs were carried out with coagulant aids.

Analyses of the following water characteristics were made throughout the course of experiments:

> pH, Alkalinity,

Dissolved Oxygen (D.O,), Free carbon dioxide (CO₂), Hardness, Ferrous iron (Fe⁺⁺), and Total iron

Materials and Equipment

Fig.14 and 15 show the arrangement of the leboratory-scale system, which consisted of two parallel units. Each unit was composed of a closed reservoir, and an iron removal plant.

<u>Ground water reservoir</u> - A closed reservoir with inside dimensions of 40 cm (15.7 in) in width, 60 cm. (23.6 in) in length and 40 cm. (15.7 in) in height was made of perspex sheet 9.53 mm. (3/8 in) thick. The total volume of the reservoir was 96 liters.

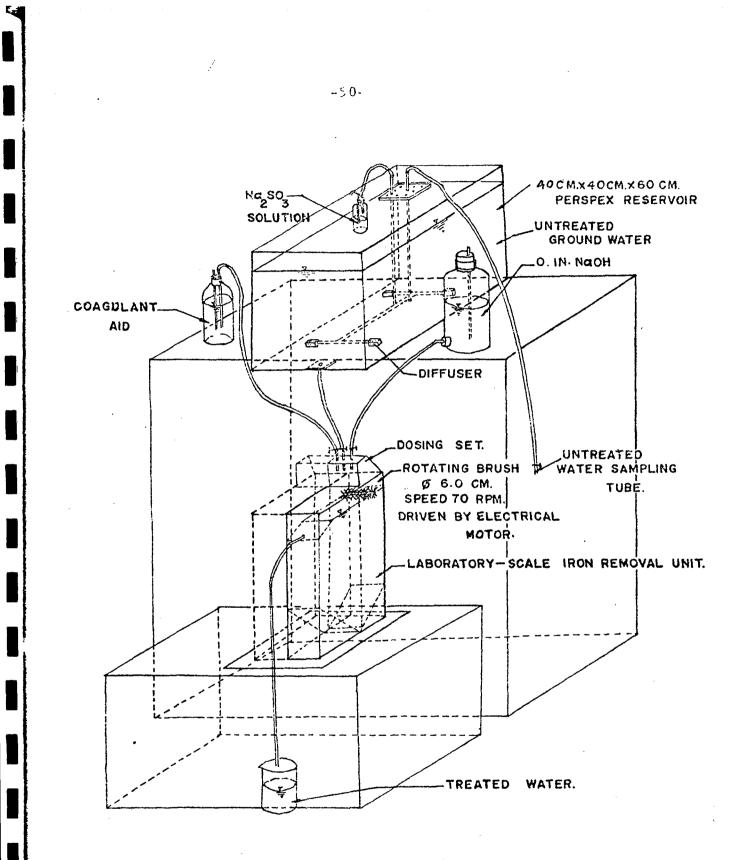
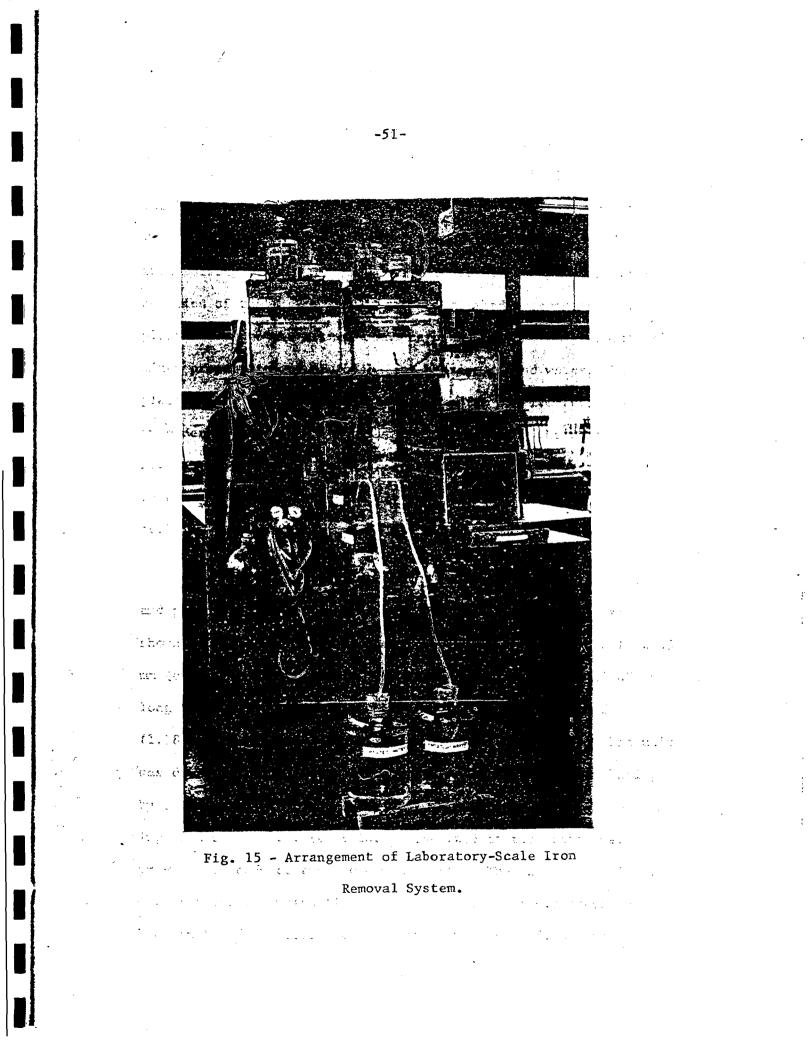



FIG. 14 - SCHEMATIC DIAGRAM OF ARRANGEMENT OF LABORATORY - SCALE IRON REMOVAL SYSTEM.

At the bottom of the reservoir, an outlet perspex tube 0.2 cm (0.08 in) inside diameters could be inserted. The lower end of the 1-mm. tube was connected to four diffusers, and the upper end was connected to a plastic tube. During the preparation of high iron-bearing ground water, removal of dissolved oxygen and carbonation of the ground water was accomplished by connecting this plastic tube to the nitrogen and carbon dioxide tanks respectively. After preparation of the high iron-bearing ground water, the plastic tube was then connected to a sodium sulfite solution bottle in order to deoxygenate the air before entering the reservoir. Both the lower and upper ends of the 2-mm tube were connected to long plastic tubes in such a way that samples of untreated water could be taken when required.

Laboratory - scale iron removal unit - A schematic diagram and photograph of the laboratory-scale iron removal unit are shown in Fig.12 and 13. Each unit was made of perspex sheets 6.35 nm (&·in.) thick and was 10 cm. (3.94 in) wide, 26 cm (10.43 in) long and had a total depth of 50 cm (19.7 in), including 3 cm (1.18 in) free-board. The net capacity was 9.78 liters. The unit was divided into a flocculation basin and a sedimentation basin, by a 10 cm.x 50 cm.(3.94 in. x 19.7 in.) perspex baffle. An opening of 2 cm.x 10 cm. (0.78 in. x 3.94 in.) at the bottom was provided to connect the two compartments. The unit was designed with a total detention time of 3 hours. This consisted of one hour in the flocculation basin, with a volume of 3.26 liters, and

-52-

two hours in the sedimentation basin, with a volume of 6.52 liters. The influent flow rate, based on the three hour detention time, was 54.0 ml/min.

The flocculation basin consisted of a dosing arrangement at the top, a rotating brush and the basin. The rotating brush was made of a perspex shaft of 2.0 cm. (0.78 in.) diameter of the brush was 6.0 cm. (2.36 in.). The brush was rotated at a speed of 70 rpm by means of an electric motor.

The sedimentation basin contained an effluent overflow weir at the top, two baffles size 10 cm. x 10 cm. (3.94 in. x 3.94 in.) in the middle portion, and two small baffles size 10 cm.x0.5 cm. (3.94 in.x0.19 in.) at the bottom. The small baffles at the bottom helped to increase the distance the folcculated water had to pass through previously - formed floc, while the baffles in the middle portion, helped to retard: short circuiting and to prevent floc being carried over the overflow weir. At the lower end of the bottom, between the basins, was installed a sludge outlet tube.

Other materials required were a carbon dioxide gas tank for pH adjustment and a nitrogen gas tank for deoxygenation of the ground water in the reservoir. A 2.5-liter bottle was used for coagulant aid and a 10-liter bottle for sodium hydroxide. The solution of both coagulant aid and sodium hydroxide were fed by gravity with their rate of flow controlled by piezometer tube.

Procedure and Analytical Method

All chemical analyses of untreated and treated ground water,

-53-

except for dissolved oxygen, were carried out according to the procedures gives in A.P.H.A., A.W.W.A., W.P.C.F.(1965), hereinafter referred to as STANDARD METHOD (1965). Determination of dissolved oxygen in the flocculation and sedimentation basins was made by means of a Precision Scientific Co., Galvanic Cell Oxygen Analyzer. pH measurement was made with a Richmond Analytical Pocket pH meter.

<u>Preparation of high iron-bearing ground water</u> - In order to keep the condition of soluble ferrous iron as exists in ground water prior to treatment the water was deoxygenated. The iron bearing ground water used in this study was taken from the artesian wells at Wat Nang and Wat Warurachin, Dhonburi. Table 3 shows the characteristics of the ground waters.

Table 3.	Chem cal Analyses	of Ground	Water	from Wat	Hong an	ıd
	Wat Warui	rathin, Dhe	onburi.	,		

Determi-		Wat Waru- rachin			
nation	Dec. 30, 66	Jan. 11, 67	Jan. 21, 67	Feb. 18, 67	Feb. 25, 67
pH Total Hardness	6.6	6.6	6.6	6.6	6.6
mg/1 CaCO3 HCO3 mg/1,	639.0	598.0	052.0	632.0	556.0
CaCO ₃	324.0	318.0	328.0	308.0	316.0
Total Fe,mg/1	2.84	3.20	2.54	2,65	2.56
Fe ⁺⁺ , mg/1	2.10	1.40	1.38	2.32	2.29
Free CO2,mg/1	86.0	80.0	72.0	78.0	88.0
Dissolved Oxygen,mg/1	4.2	4.9	3.2	3.8	0.8
Temperature, °C	34.0	33.5	34.0	34.0	34.0

-54-

Reduction of dissolved oxygen in the ground water sample was first accomplished by bubbling nitrogen through the liquid for one hour, the excess gases being removed through the opening at the top of the reservoir, The residual dissolved oxygen was then removed by addition of anhydrous sodium sulfite (Na₂SO₃), 7.9 mg/1 of Na₂SO₃ was required for 1 mg/1 deoxygenation as shown by:

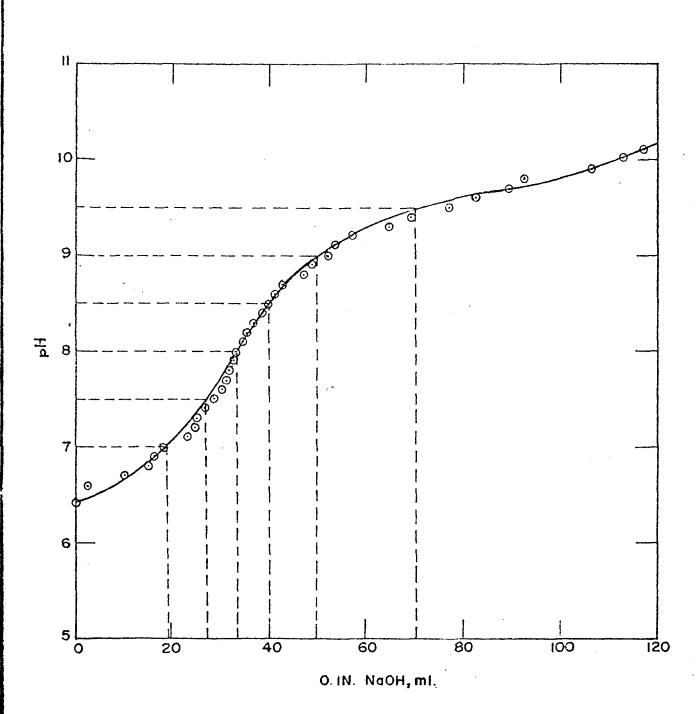
 $0_2 + 2Na_2SO_3 \rightarrow 2 Na_2SO_4$ (23) The stock solution of 5 mg/ml of FeSO₄.7H₂O was then added to the deoxygenated water to give 50 mg/l FeSO₄.7H₂O and this was followed by carbonation for about one to two minutes to keep the pH at about 6.4 to 6.5. The excess carbon dioxide could again be stripped off by nitrogen gas. The perspex reservoir was then tightly closed by tightening bolts along the edges of the cover. Air flowing into the reservoir was deoxygenated in passing through the sodium sulfite bottle. Because this tube was connected to diffusers at the bottom, the tube also worked as head controller for the untreated ground water flow rate. Sampling of the untreated ground water during treatment was done through the another sampling tube.

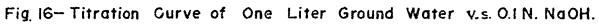
<u>Titration curve of the ground water</u> - To estimate the amount of 0.1 N.NaOH required at various pH's of the high iron-bearing ground water in the jar tests and the flow rate of 0.1 N.NaOH required for pH control during operation of the laboratory-scale iron removal unit, a titration curve of 1 liter of the reproducible ground water containing 50 mg/1 FeSO₄. 7H₂O was developed as shown in Table 4 and Fig. 16.

-55-

Table 4. Data on Titration of One Liter of Ground Water with 0.1 N.NaOH.

Chemical Analysis of Ground Water


рН	6.4	
Hardness	652.0	mg/1 as CaCO ₂
HCO3 Alkalinity	312.0	mg/1 as CaCO ₃
Total Fe	11.80	mg/1
Fe ⁺⁺	7.36	mg/1
Free CO	110.0	mg/1
Dissolved Oxygen	1.6	mg/1
Temperature	27.5	°c


Titration with 0.1 N. NaOH

·					
pН	0.1 N.NaoH ml	рН	0.1 N.NaOH m1	рН	0.1 N.NaOH ml
6.4	0	7.8	32.0	9.1	53.8
6.6	3.0	7.9	32.8	9.2	57.8
6.7	10.2	0.0	33.2	9.3	65.2
6.8	15.7	8.1	34.6	9.4	69.2
6.9	16.2	8.2	35.7	9.5	77.0
7.0	18.1	8.3	36.2	9.6	82.0
7.1	23.4	8.4	38.4	9.7	89.8
7.2	24.8	8.5	40.0	9.8	92.5
7.3	25.6	8.6	41.0	9.9	107.0
7.4	27.2	8.7	43.0	10.0	113.0
7.5	28.9	8.8	47.5	19.1	117.0
7.6	30.4	8.9	42.1	10.2	121.2
7.7	31.2	9.0	52.4	1	

2

- 56-

- 57-

Jar tests The same reproducible ground water with 50 mg/l FeSO₄.7H₂O was used in jar tests to determine an optimum, pH range and optimum coagulant aid dosages required for iron removal. In the jar tests, a series of six 1-liter beakers was set, each filled with one liter of the ground water. The 0.1 N. NaOH was added to give different pH's as required according to the titration curve obtained earlier. The contents were consecutively mixed with a paddle speed of 70-80 rpm for 30 seconds and then with a paddle speed of 15 to 20 rpm for 30 minutes of flocculation time. After the flocculation period the beakers were allowed to stand for one hour and the upper portion of the supernatant was decanted into a suitable container and analysed immediately for alkalinity, total hardness, and total iron.

The jar test was first made to determine the optimum pH range for iron removal. The pH in each beaker was adjusted, using 0.1 N.NaOH, to pH's of 7.0, 7.5, 8.0, 8.5, 9.0 and 9.5. It was found that within the pH range of 8.0 to 8.5, there were some tiny floc particles in suspension at the end of settling time. Then a pH of 8.3 was selected to determine the optimum dose of coagulant aid.

4

In the determination of the optimum dose of coagulant aid, the ground water was kept at a pH of 8.3 using 0.1 N.NaOH before addition of coagulant aid at various doses. The range of coagulant aid dosage employed in each series of jar tests followed the recommendations given in the product manual.

-58-

The water was rapidly agitated for 30 seconds to disperse the coagulant aid throughout the body of the water with a paddle speed of 70-80 rpm and followed by 30-minute flocculation time. The paddle speed during the flocculation time was maintained at 15-20 rpm as before.

Determination of the optimum pH for the optimum amount of coagulant aid to obtain the most effective iron removal was then performed. The range of pH was started at its original pH and gradually increased to pH 7.0, 7.5, 8.0, 8.5 and 9.0 respectively. These optimum coagulant aid doses and optimum pH's were then used in the laboratory-scale iron removal unit.

Another study on coagulant aids was made using Bangkok clay. The Bangkok clay was added to the ground water to produce a series with 25,50,75,100 and 125 turbidity units, as measured by the Jackson turbidimeter. Stock solution of ferrous sulfate $(FeSO_4.7H_2O)$ was then added to give a dose of 50 mg/l FeSO_4.7H_2O in each beaker. The contents were mixed continuously with a paddle speed of 70-80 rpm for 30 seconds, followed by 30 minutes flocculation time with a paddle speed of 20-30 rpm. After the flocculation period the beakers were allowed to stand for two hours and the upper portion of the decanted supernatant was enalyzed immediately for turbidity and iron. Another jar test with clay as coagulant aid was carried out using 25 mg/l FeSO₄.7H₂O. The use of clay as coagulant aid was not investigated with the

-59-

laboratory - scale unit because of difficulties in the application of clay in suspension.

Experiments on the laboratory-scale iron removal unit The laboratory-scale iron removal unit was first tested for the efficiency of the rotating brush in providing dissolved oxygen to the ground water. Dissolved oxygen, temperature, and pH were recorded every 30 minutes up to the designed three hour detention time of the unit.

Four runs were made on the unit. The first run was operated with only pH control in the flocculation basin, the second tun with pH control and FLOCCOTAN as coagulant aid, the third run with pH control and Nalco-600 as coagulant aid and the fourth run with pH control and PURIFLOC N-11. The dose of coagulant aid and the pH used in each run were based on the results obtained from the jar tests. The total flow rates of the ground water, sodium hydroxide, and coagulant aid were kept at 54 ml/min.

At the beginning of the treatment, the specially prepared ground water containing $50 \text{ mg/1 FeSO}_4.7\text{H}_20$ was used in order to accelerate the formation of insoluble iron floc at the bottom of the unit. It took about 24 hours of continuous feeding of this ground water to fill up the bottom opening with floc particles. Then, ground water with only 25 mg/l of FeSO₄.7H₂O was passed through the unit until an effluent with constant characteristics was obtained.

-60-

Chemical analyses of untreated and treated ground waters and measurement of dissolved oxygen, temperature and pH in both flocculation and sedimentation basins were carried out from time to time.

-- 4

V EXPERIMENTAL RESULTS AND DISCUSSION

Ground Water Characteristics

Table 3 shows chemical analyses of the ground waters from Wat Nang and Wat Warurachin in Dhonburi Municipality. The ground water from the well at Wat Nang was used from the beginning of the experiments up to run no.2, when it was found that the well had dried up. Thus, the ground water used for runs 3 and 4 was taken from the well at Wat Warurachin.

The characteristics of the ground water from Wat Nang varied from time to time. The total hardness varied from 598 mg/1 to 639 mg/1 as CaCO₃, total iron from 2.54 mg/1 to 3.20 mg/1 iron, ferrous iron from 1.40 mg/1 to 2.32 mg/1 iron and free carbon dioxide from 72 mg/1 to 86 mg/1. Wat Nang water was found to be high in dissolved oxygen, in the range of 3.2 to 4.2 mg/1, compared with the well water from Wat Warurachin, at 0.8 mg/1. This had an effect on the ferrous iron content of the ground water. Total iron present in the ground water from Wat Warurachin was mainly in the ferrous form. The temperature of the ground water from both wells was relatively high in the range of 33.5°C to 34.0°C. The total hardness of the ground waters from both wells was found to be very high also, being 556 mg/l at Wat Nang and 652 mg/1 (as CaCO₂) at Wat Warurachin. SAWYER (1960) classified waters with a total hardness greater than 300 mg/1 as CaCO₃ as very hard.

Preliminary Investigations

<u>Treatment with NaOH</u>. Table 5 shows the characteristics of the ground water used in the jar tests. After modification it had high total iron of 11.8 mg/1 with 7.36 mg/1 of ferrous iron, high free crabon dioxide of 110 mg/1, bicarbonate alkalinity of 312 mg/1 as CaCO₃, total hardness of 652 mg/1 as CaCO₃ and temperature of 27.5°C.

A jar test was first conducted to determine the optimum pH for iron removal. The results shown in Table 6 indicate effective iron removal in the pH range of 8.5 to 9.0. The reactions involved when NaOH was used for pH adjustment and also as coagulant for the ground water might be explained as follows: First, ionization of NaOH increased the OH⁻ ion concentration in the solution according to the following equation:

NaOH
$$\Rightarrow$$
 Na⁺ + OH⁻ (24)

These OH⁻ ions then neutralized the free CO₂. SAWYER (1960) • considered the neutralization of free CO₂ in the water to be taking place in two steps as follows:

$$2 \operatorname{NaOH} + \operatorname{CO}_{2} \rightarrow \operatorname{Na}_{2} \operatorname{CO}_{2} + \operatorname{H}_{2} \operatorname{O}$$
 (25)

$$Na_2CO_3 + CO_2 + H_2O \rightarrow 2 NaHCO_3$$
 (26)

Oxidation of ferrous iron into insoluble hydrated ferric oxide by NaOH might follow the course described by SIENKO and PLANE (1961). When a base such as NaOH is added to a ferrous solution, a nearly white precipitate of ferrous hydroxide Fe(OH)₂, is formed.

$$Fe^{++} + 20H^{-} \rightarrow Fe(OH)_{2}$$
 (27)

-63-

Table 5 - Chemical Analyses of Ground Water used

Constituents	Before addition of FeSO ₄ .7H ₂ O	After ⁹ addition of FeSO ₄ .7H ₂ O and followed by carbonation
pH	6.6	6.4
Hardness as mg/1 CaCO ₃ *	652.0	652.0
HCO ₃ alk as mg/1 CaCO ₃	320.0	312.0
Total Fe, mg/l	2.54	11.80
Fe ⁺⁺ , mg/1	1.38	7.36
Free CO ₂ , mg/1	72.0	110.0
Dissolved, Oxygen, mg/1	3.2	1.6
Temperature, ^O C	34.0	27.5

in Jar Tests.

<u>Notes</u>

♦ includes 50 mg/1 FeSO₄.7H₂O as supplement

*

hardness as mg/l CaCO₃ by EDTA method

On exposure to air this $Fe(OH)_2$ turns brown, as it is oxidized to form hydrated ferric oxide, $Fe_2O_3.7H_2O$, which might simply be written as $Fe(OH)_3$, ferric hydroxide. The oxidation could be written as :

$$4 \text{ Fe(OH)}_{2} + 0_{2} + H_{2} 0 \rightarrow 4 \text{Fe(OH)}_{3}$$
 (28)

The hydrated ferric oxide is a slimy, red brown, gelatinous precipitate. The presence of hydrated ferric oxide in the solution causes cation hydrolysis. This can be written as :

$$Fe^{+++} + H_2 0 \neq Fe 0H^{++} + H^+$$
 (29)

The most common hydrolysis products of ferric ion, are FeOH⁺⁺, Fe(OH)⁺₂, Fe(OH)₃, and Fe(OH)⁻₄ which may be written in ferric hydroxo complex forms as $\left[Fe(H_2O)_5(OH)\right]^{++}$, $[Fe(H_20)_4(OH)_2]^+$, $[Fe(H_20)_3(OH)_3]$ and $Fe(OH)_4^-$ (GHOSH, 1965). These ferric hydroxo complexes polymerize through dihydroxy bridges in the polymer state. That is, the polymerization of two Fe(H₂O)₅(OH) ++ by two hydroxyl ions to become $[Fe(H_2O)_8(OH)_2]^{4+}$. The electrically charged ferric hydroxo complexes are known as ferric oxide sols. Due to Brownian movement, the positively-charged ferric oxide particles collide with one another, and coagulate to form a larger particle. These particles in collision with one another again, form yet larger particles which are so large that Brownian motion cannot keep them in suspension. The ferric oxide, which is not hydrolyzed, according to SIENKO and PLANE (1961) has great adsorption power for H⁺ ions or the surface. A particle which has H⁺ adsorbed to it has a net positive charge and thereby repels any similarly

charged particle.

Perikinetic coagulation of such electrically charged particles might be effected by reducing the zeta-potential. This can be done by destabilization of the sol with multivalent ions or colloids of opposite charge to that on the sol. Once the sol is destabilized, flocculation is then initiated and this results in gravity sedimentation of the insoluble iron.

The mechanism of destabilization of metastable ferric hydroxo polymers of this investigation can be considered as being mainly due to OH⁻ and SO_4^{-} ions. The OH⁻ ions result from dissociation of NaOH as shown in Eq. 24. SO_4^{-} ions are derived from the addition of FeSO₄.7H₂O, chemical deoxygenation by Na₂SO₃ to form Na₂SO₄ as shown in Eq. 23, and the chemical reaction of calcium nonalkaline hardness removal as shown in Eq.32.

The mechanism of the destabilization by SO_4 ions has been explained by GHOSH (1965) as :

 $\left[\operatorname{Fe}_{m}(OH)_{n} \right]^{+x} + \operatorname{SO}_{4}^{-2} = \left[\operatorname{Fe}_{m}(OH)_{n-1}(SO_{4}) \right]^{x-1} + OH^{-}$ (30) This reaction gives rise to the formation of a complex with colloidal hydrated ferric oxide and an increase in pH.

Removal of total hardness by NaOH might be represented by the following equations:

$$Ca(HCO_3)_2 + 2NaOH \rightarrow CaCO_3 + Na_2CO_3 + H_2^{-0}$$
(31)

$$CaSO_4 \div Na_2CO_3 \rightarrow CaCO_3 \div Na_2SO_4$$
(32)

Only calcium alkaline and calcium non-alkaline hardness is expected to be removed when the pH is controlled at 9.5 in the jar test. Removal of magnesium alkaline hardness, Mg(HCO₃)₂, and

-66-

magnesium non-alkaline hardness, ie MgSO₄, as gelatinous magnesium hydroxide occurs at pH above 10.8 (SAWYER, 1960).

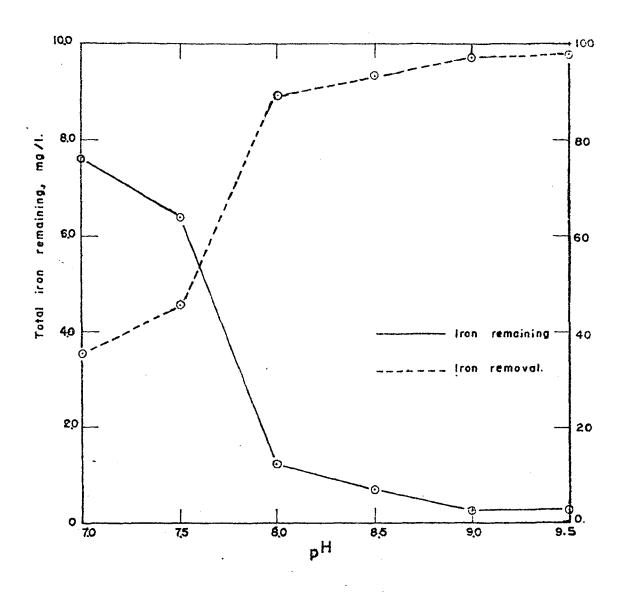
Table 6 gives chemical analyses of the ground water treated in jar tests at various pH's with NaOH and Fig.17 shows the results of total iron removal. It appears that efficient iron removal is obtained in the pH range 8.5 to 9.0. No significant increase in total iron removal as a percentage ot total hardness removal occurred at pH values higher than 9.5. HCO_3 alkalinity of the finished water is noted to increase, which might be due to neutralization of free CO_2 as shown in Eq. 25 and 26. Total hardness removal is observed to be related to total iron removal, being relatively low at low pH and rather high at high pH. The reactions occurring may be represented by Eq. 31 and 32. At lower pH's of 7.0 to 7.5, the supernatant was observed to be yellowbrown in color, which is the characteristic of the positivelycharged ferric oxide. The dispersion of positively-charged ferric oxide in the supernatant was gradually decreased at a pH of 8.0 and nearly disappeared at pH 9.0 and 9.5. At higher pH, higher concentration of OH ions resulted in further reduction of positive charges on the surface of the ferric sols and neutralization of H' ions by the OH ions. This caused a reduction in the magnitude of zeta-potential so that repulsive forces between particles were less than the inter-particle attractive force or Van der Waal's force. Thus, coalescence of colloidal hydrated ferric oxide particles occurred and coagulation was accomplished.

Removal of total hardness was found to be significant

-67 -

Table 6 - Chemical Analysis of Ground Water in Jar Tests

at various pH's


			Chemi	cal Ana	alyses Aft	er 1 -	hour Sett Time	ling
Jar No	рН	Floc for mation	CaCO ₃		Total Hardness mg/1 as CaCO3		Total Iron mg/l	
			нсо3	co ₃	Residual	% Re- moval	Residual	% Re- moval
1	7.0	poor	354.0	-	620.0	4.9	7.60	35.6
2	7.5	fair	363.0	-	605.0	7.2	6.40	45.8
3	8.0	fair	425.0	-	598.0	8.3	1.24	89.4
4	8.5	fair	414.0	16.0	518.0	20,5	0.76	93.5
5	9.0	good	418.0	28.0	436.0	33.1	0.34	97.1
6	9.5	good	312.0	136.0	302.0	54.0	0.31	97.4

_

_

--

-68-

-69-

at pH's between 8.5 and 9.5. At a higher pH, OH⁻ ions would first neutralize the free CO_2 , as shown in Eq. 25 and 26, then oxidized the ferrous iron, as shown by Eq. 27 and 28. The excess OH⁻ ions still further neutralize the calcium alkaline and calcium non-alkaline hardness to form CaCO₃ precipitates, as shown by Eq. 31 and 32. Floc formation was observed to be highly improved at pH's above 8.5, which might be due to the presence of CaCO₃ precipitates. The CaCO₃ precipitates, according to FAIR and GEYER (1954), are negatively-charged and are heavier than ferric oxide particles. These CaCO₃ precipitates could provide nuclei for the ferric oxide and thus stimulate floc formation.

Treatment with coagulant aid. To determine the efficiency of commercial organic high molecular weight polyelectrolytes as coagulant aids for improving iron removal, the optimum dose of the electrolyte was first determined at pH 8.3. This was because it was found that at pH 8.0 and pH 8.5, there were still some suspended gelatinous precipitates in the supernatant water. It was thought that this might be improved by the addition of polyelectrolyte. MINZ (1964) stated that the use of polyelectrolytes as coagulant aids had not been reduced to an exact science. The exact chemical nature of the commercial polyelectrolytes employed in this investigation was not known.

Improvement of hydrated ferric oxide flocculation with anionic polyelectrolyte at pH 8.3 might be due to electrolytic

-70-

dissociation of the polyelectrolyte to give large highly negativelycharged polymeric ions. Anionic polyelectrolyte molecules consist of separate chains cross-linked with stable chemical bonds which dissociate in water to give negatively-charged metastable colloidal 1964). The presence of negatively-charged metastable colloidal iron and the gentle movement provided during the flocculation period promote rapid flocculation. The separated chains crosslinked by stable chemical bonds of the polymer molecule also act as bridges between the entrapped colloidal particles, thus promoting larger floc formation.

Table 7 and 8 show the results obtained when the anionics PURIFLOC A-22 and FLOCCOTAN were used at pH 8.3. Floc formation was observed to be greatly improved and the flocs were no longer gelatinous. They were found to be dense, tough, and in larger and heavier forms. However, the tiny suspended ferric oxide flocs were still observed to exist in the supernatant when PURIFLOC A-22 was dosed at 2 mg/l. At a higher dose of 4.0 mg/l, the dispersion of tiny flocs was slightly increased. This might be due to the complete adsorption of negatively-charged polymeric ions onto the metastable colloidal ferric oxide statistics.

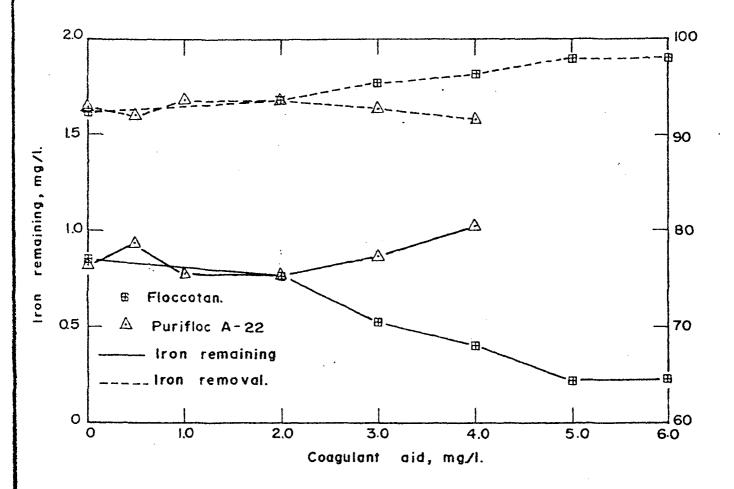
Addition of FLOCCOTAN, a tannin-based polyelectrolyte, was more effective in iron removal than FURIFLOC 4-21. Insoluble iron precipitates agglomerated to form larger and heavier dark brown particles of irregular shape. These flocs settled down rapidly even during flocculation. At doses of 5.0 mg/! and

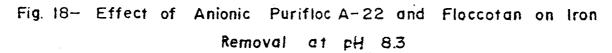
-71-

	1			ettling T	After 1-h ime	our
Jar	Purific	Floc	HCO3	Hardness	Total Iro	n mg/1
No.	A-22	formation	mg/1 as	mg/l as	Residual	% Removal
1	mg/l		CaCO3	CaCO ₃		
1	none	fair	424.0	574.0	0.82	93.0
2	0.5	fair	432.0	570.0	0.94	92.0
3	1.0	good	930.0	580.0	0.78	93.5
4	2.0	good	934.0	574.0	0.76	93.5
5	3.0	good	428.0	586.0	0.86	92.8
6	4.0	fair	932.0	582.0	1.02	91.4

Table 7 - Chemical Analyses of Ground Water on Jar Test with Purifloc A-22 as Coagulant Aid at pH 8.3

Table 8 - Chemical Analyses of Ground Water on Jar ¥est with Floccotan as Coagulant Aid at pH 8.3


Jar	Floccotan	Floc	HCOT	Settling Hardness	After 1-h Time <u>Total Iro</u>	
No.	mg/l	formation	mg/1 as CaCO ₃	mg/1 as CaCO ₃	Residual	% Removal
1	none	fair	428.0	572.0	0.85	92.6
2	2.0	fair	438.0	578.0	0.76	93.5
3	3.0	fair	437.0	582.0	0.52	95.5
4	4.0	good	440.0	579.0	0.40	96.5
5	5.0	good	438.0	582.0	0.22	98.0
6	6.0	good	439.0	580.0	G.24	98.0


6.0 mg/l, good flocs were formed with relatively small numbers of tiny suspended flocs in the supernatant. A dose of 5.0 mg/l was considered optimum for determination of the optimum pH for the FLOCCOTAN. Fig. 18 shows the comparison of iron removal at various pH's with anionic FURIFLOC A-22 and FLOCCOTAN. Table shows that higher pH values of 8.5 and 9.0 with 5 mg/l FLOCCOTAN gave a slight improvement in iron removal. An optimum pH range o of 8.5 to 9.0 at the optimum dose of 5 mg/l FLOCCOTAN gave slight improvement in iron removal. An optimum pH range of 8.5 to 9.0 at the optimum dose of 5 mg/l FLOCCOTAN would be suggested for use in the iron removal unit.

The reaction which occurs when <u>nonionic polyelectrolyte</u> is used as coagulant aid in the flocculation of hydrated ferric oxide might be due to the fact that the nonionic polyelectrolyte molecule is of elongated shape owing to the rigid linkages between the polymolecular chains afforded by oxygen atoms. The polymer can yield both large positive ions and large negative ions (MINZ, 1964). Hence, they can destabilize both positively-charged and negatively-charged ferric hydroxo polymers as well as CaCO₃ particles existing in the solution and result in <u>unprovement</u> of agglomeration of these particles.

Table 10 and 11 present the chemical energyses of the ground water treated with nonionic FURIFLOC N-11 and N-17 at pH 8.3. Agglomeration of suspended iron precipitates was found to be markedly improved, as larger and heavier flocs were formed.

-73-

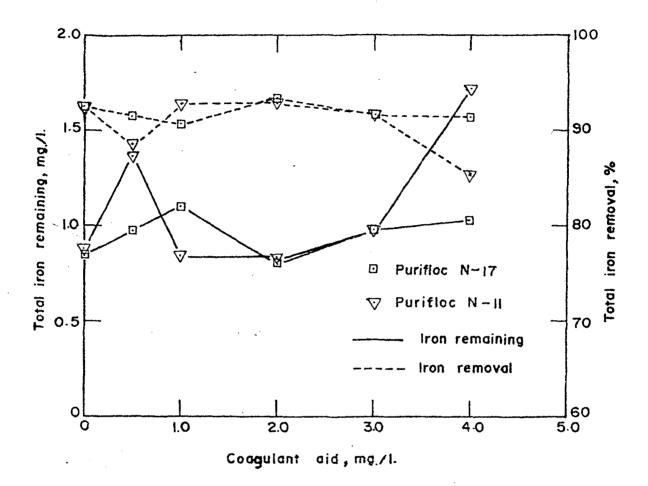
Jar No.	pH	Floc formation	Alkalin	Se ity	ttling Ti Hardness	ter 1-hour me Total Ir	
			CaCO3	ເຣ C0 ຊ ັ	mg/1 as CaCO ₃	Residual	% Removal
			······		(50.0	0.00	
1	6.4	poor	324.0	-	650.0	9.80	17.0
2	7.0	poor	342.0	-	620.0	7.32	38.0
3	7.5	poor	360.0	-	614.0	3.72	68.5
4	8.0	fair	422.0	-	596.0	1.08	90.9
5	8.5	good	412.0	12.0	514.0	0.18	98.2
6	9.0	good	420.0	28.0	458.0	0.14	98.7

Table 9 - Chemical Analyses of Ground Water on Jar Test with 5 mg/l Floccotan as Coagulant Aid at Various pH

Table 10 - Chemical Analyses of Ground Water on Jar Test with PURIFLOC N-11 as Coagulant aid at pH 8.3

		**************************************	Chemica	1 Analyses Settling	After 1-h	our
				Hardness	Total Iro	
1		Floc			Residual	% Removal
	N-11 mg/1	Formation	CeCO ₃	CaCO 3		
1	none	fair	430.0	578.0	C_87	92.5
2	0.5	poor	428.0	572.0	1.35	98.5
3.	1.0	fair	434.0	570.0	0.34	92.7
4	2.0	fair	436.0	576.0	<u>0.81</u>	92. 8
5	3.0	fair	432.0	580.0	C.98	91.6
6	4.0	poor	428.0	570.0	1.72	85.4
		l 			Ì	

-75-


			Chemica	l Analyses Settling	After 1-h Time	our
Jar No.	PURIFLOC N-17 mg/1	Floc- formation	HCO3 mg/l as	Hardness mg/l as	Total I	ron mg/1
			CaCO3	CaCO3	Residual	% Removal
1	none	fair	424.0	574.0	0.85	92.6
2	0.5	fair	432.0	570.0	0.98	91.6
3	1.0	fair	430.0	580.0	1.10	90.6
4	2.0	fair	434.0	574.0	0.80	93.1
5	3.0	fair	428.0	586.0	0.98	91.6
6	4.0	fair	432.0	582.0	1.04	91.3

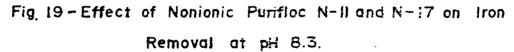

Table 11 - Chemical Analyses of Ground Water on Jar Test with PURIFLOC N-17 as coagulant aid at pH 8.3

Table 12 - Chemical Analyses of Ground Water on Jar Test with 2 mg/l Purifloc N - 11 as Coagulant Aid at Various

Jar No.	рH	Floc	Alkalini	ty as	yses After 1-hour Settling Time Hardness Totel Iron mg/1		
		formation	mg/1 CaC HCO3	C03	mg/1 as CaCO ₃	Residual	% Removal
1	6.4	poor	330.0	-	656.0	10.12	14.3
2	7.0	poor	342.0	-	632.0	7.42	37.1
3	7.5	poor	358.0	-	621.0	4.12	65.0
4	8.0	fair	432.0	-	596.0	1.34	88.6
5	8.5	fair	422.0	12.0	512.0	C.80	93.2
6	9.0	fair	416.0	30.0	473.0	0.78	93.4

pН

-77-

The size of the flocs formed with both nonionic PURIFLOC N-11 and N-17 were generally smaller than the flocs formed by the anionic PURIFLOC A-22 and FLOCCOTAN. The tiny suspended iron particles still existed in the supernatant. Fig.19 shows the comparison of iron removal for PURIFLOC N-11 and N-17 at pH 8.3. The optimum dose of both PURIFLOC N-11 and N-17 was found to be 2 mg/1. At a higher dose of 4.0 mg/1, the dispersion of suspended particles was observed to be markedly increased. The floc formed with nonionic FURIFLOC N-11 was observed to be relatively large compared with those formed with nonionic PURIFLOC N-17. Table 12 shows that total iron removal could be improved at higher pH's of 8.5 and 9.0 with 2 mg/1 nonionic PURIFLOC N-11 to a maximum of 93.4% iron removal at pH 9.0.

Addition of <u>cationic polyelectrolyte</u> to the ground water at pH 8.3 gave no improvement on total iron removal. Table 13 and 14 indicate that addition of both cationic Nalcolyte-605 and Nalco-600 at pH 8.3 interfered with floc formation. Total iron removal was slightly reduced compared with treatment using NaOH alone. This might have been due to the addition of positively charged polymeric ions interfering with the formation of the ferric oxide particles. Fig.20 shows comparison of iron removal between Nalco-600 and Nalcolyte-605 at pH 8.3. Table 15 gives chemical analyses of the ground water treated with 2 mg/l Nalco-600 at various pH's. Better total iron removal was obtained at higher pH values of 8.5 and 9.0.

-78-

			Chemical	l Analyses Settling	After 1-h Time	our
	Nalcolyte ,605 mg/l	Floc formation		Hardness mg/1 as CaCO ₃		ron mg/1 % Removal
1	none	fair	432.0	578.0	0.85	92.7
2	0.5	fair	442.0	580.0	1.20	89.9
3	1.0	fair	438.0	576.0	1.24	89.5
4	2.0	fair	437.0	578.0	1.07	91.0
5	3.0	fair	435.0	582.0	1.54	87.0
6	4.0	poor	440.0	574.0	1.92	83.6

Table 13 - Chemical Analyses of Ground Water on Jar Test with Nalcolyte - 605 As Coagulant Aid at pH 8.3

Table 14 - Chemical Analyses of Ground Water on Jar Test with Nalco - 600 as Coagulant Aid at pH 8.3

4 [.]

			Chemic	al Analyse Settlin	s After 1- g Time	hour
Jar No.	Nalco-600 mg/l	Floc formation			Total T	ron mg/1
			mg/1 as CaCO ₃	ng/1 as CaCO ₃	! Residual	Z Removal
1	none	fair	426.0	570.0	೧_೯	94.3
2	0.5	fair	440.0	578.0	1 12	90.3
3.	1.0	fair	432.0	571.0	1.03	90.9
4	2.0	fair	438.0	582.0	1.02	91.2
5	3.0	fair	435.0	568.0	0.98	91.6
6	4.0	poor	422.0	583.0	1.88	84.0

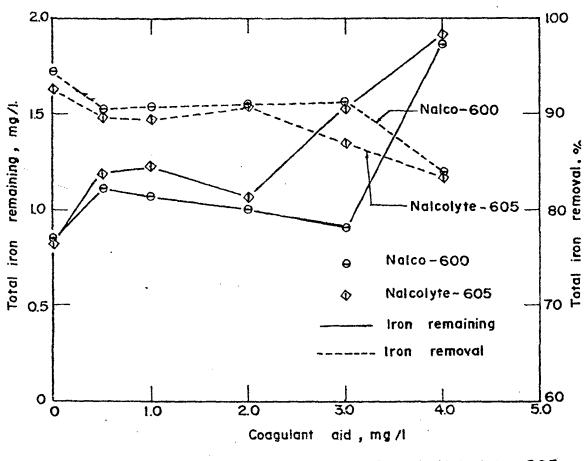


Fig. 20 – Effect of Cationic Naico-600 and Naicolyte-605 on Iron Removal at pH 8.3

-80-

		Floc	Chemical Analyses After 1-hour Settling Time						
Jar No.	рH	formation	Alkalin mg/l Ca		Hardness mg/1 as	1	1		
 			нсо-	c03	CaCO3	Residual	% Removal		
1	6.4	poor	330.0	-	652.0	10.20	5.0		
2	7.0	poor	341.0	-	628.0	8.54	27.5		
3	7.5	poor	364.0	-	615.0	4.98	58.0		
4	8.0	fair	428.0 /	-	597.0	1.85	84.3		
5	8.5	fair	417.0	14.0	508.0	0.97	91.6		
6	9.0	fair:	422.0	32.0	462.0	1.03	91.2		

Table 15 - Chemical Analyses of Ground Water on Jar Test with 2 mg/l Nalco - 600 as Coagulant Aid at Various pH

The results of the jar tests indicated that HCO3 alkalinity of the finished water was increased. This was the result of neutralization of free CO2 by NaOH as shown by Eq. 25 and 26. The addition of polyelectrolytes alone, without NaOH, did not have any effect on iron removal. The addition of various other types polyelectrolytes did not show any effect on iron removal, total hardness removal or change in bicarbonate alkalinity.

Fig. 21 shows that of the three types of polyelectrolyte used, FLOCCOTAN and the nonionic FURIFLOC N-11 seem to be more effective in assisting the removal of iron. During the jar tests, it was observed that floc formation was greatly improved when FLOCCOTAN and FURIFLOC N-11 were used.

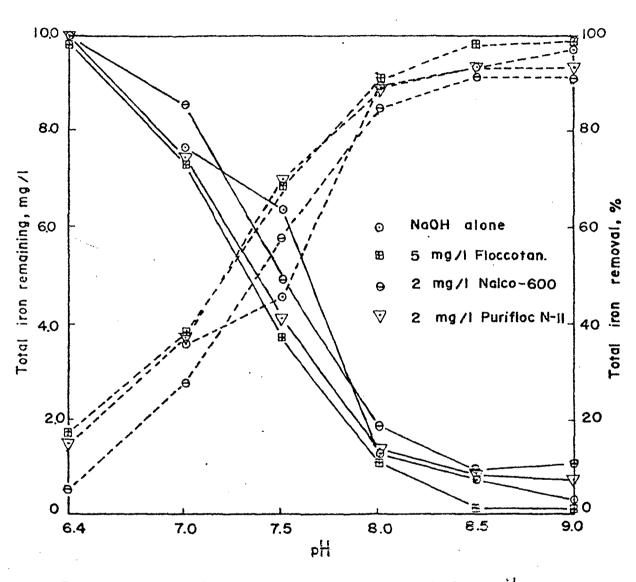


Fig. 21— Comparison of Iron Removal at Various pH among Coagulant Aids Used with Jar Test.

- 82 -

<u>Treatment with Bangkok clay</u> The results obtained using Bangkok clay in colloidal solution are shown in Table 16 and Fig. 22. It can be seen that addition of the clay had a significant effect on iron removal. The colloidal clay sol was negatively-charged and this destabilized the positively-charged ferric oxide formed during the flash mixing of FeSO₄. $7H_2O$. Clay itself also acted to weight nuclei to the colloidal suspension of hydrated ferric oxide. However, it was not used as a coagulant aid in the laboratory-scale unit because of the difficulties of dosing.

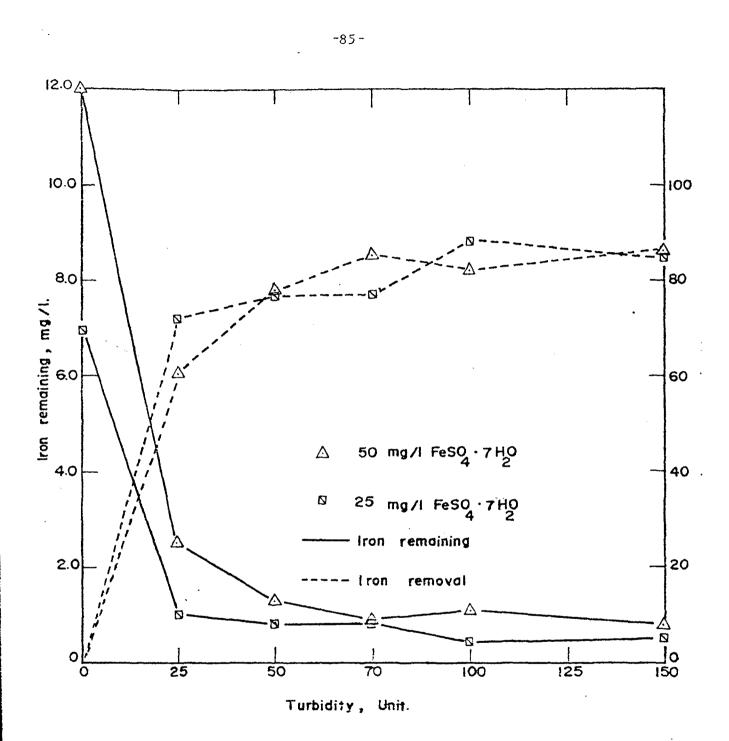
Investigations Using the Laboratory - Scale Iron Removal Unit.

Table 17 shows that the rotating brushes of both units could maintain a maximum dissolved oxygen concentration of 5.2 to 5.3 mg/l in the ground water after 3-hour detention time. The dissolved oxygen level and the pH in the flocculation chamber were measured at a depth of about one fourth of the total depth of the unit. The dissolved oxygen in the flocculation basin was increased from 3.1 to 5.2 mg/l in unit no.1 and from 3.2 mg/l to 5.3 mg/l in unit no.2. The increase in dissolved oxygen content in both units was 2.1 mg/l. According to Eq. 6, 1 mg/l of dissolved oxygen can oxidize 14.7 mg/l of ferrous iron, but this amount of oxygen mai only a trace effect on the removal of free CO₂ which is necessary in completion of the oxidation process as shown by Eq. 8.

The pH in both basins was raised from 6.4 to $\pounds.5$. In order to neutralize free CO₂ and raise the pH to favor iron precipitation, NaOH was used. Fig.23 and Fig. 24 show variations in dissolved

-83-

Table 16 - Chemical Analyses of Ground Water on Jar Test with Bangkok Clay

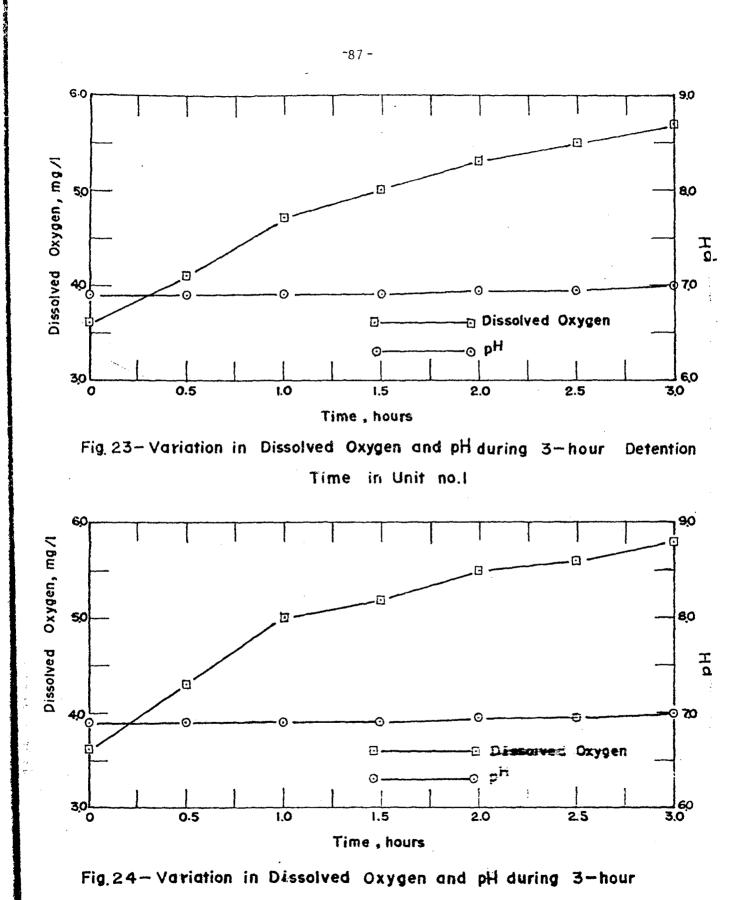

as Coagulant Aid at pH 6.4

Jar No.	Turbidity	FeSO, • 7H ₂ 0 added ug/1	Floc formation	After 2-hour Settling Time Supernatant Total Iron mg turbidity Residual % Rer	I <u>r Settling Time</u> Total Iron mg/ Residual % Ren	Time on mg/l % Removal
F-1	none	50.0	none and turbid	100	12.0	
8	25	50.0	poor	55	2.25	80.5
3	20	50.0	poor	55	1.30	0.68
4	75	50.0	fair	55	06*0	92.5
5	100	50.0	fair	50	1.10	91.0
9	150	50°0	fair	35	0.80	93.0
2	none	25.0	none and turbid	06	6•98	1
φ.	25	25.0	fair	clear (25)	1.00	86.0
6	20	25.0	fair	clear	0.82	88.4
10	75	25.0	fair	clear	0.82	88.4
11	100	25.0	fair	clear	0.46	0*76
12	150	25.0	fair	clear	0.52	92.5

. . .

. . . .

-84-



	Dissolved mg/		Tempera	ture ^o C	p	H
Unit no.	i	n Sedi- mentation basin	Floccu- lation basin	Sedi- mentation basin	Floccu- lation basin	Sedi- mentation basin
1	3.1	2.9	29.8	29.8	6.4	6.4
	· 3.6	2.2	29.6	29.6	6.4	6 . 4
	4.2	3.0	29.3	29.33	6.4	6.4
	4.5	3.1	29.3	29.1	6.4	6.4
	4.8	3.2	29.2	28.9	6.45	6.4
	5.0	3.2	29.0	28.8	6.45	6,4
	5.2	3.2	28.9	28.8	6.5	6.4
2	3.2	2.9	29.8	29.8	6.4	6.4
	3.8	2.9	29.6	29.7	6.4	6.4
	4.5	3.0	29.4	29.3	6.4	6.4
	4.7	3.1	29.3	29.1	6.4	6.4
	5.0	3.2	29.2	29,0	6.45	6.4
	5.1	3.2	28.9	28,9	6.45	5.4
	5.3	3.2	28.9	28.8	6.5	6.4
						<u> </u>

and pH During Detent on Time of Three Hours

Table 17 - Variations in Dissolved, Oxygen, Temperature

-86-

Detention Time in Unit no.2

oxygen and pH during 3-hour dentention time in units 1 and 2 respectively. The rotating brushes in both units were found to have the same efficiency in providing oxygen to the ground water.

Investigations were carried out with the laboratory-scale iron removal unit in four runs. The fotal flow rate of ground water, NaOH, and polyelectrolyte used in each run was controlled at 54 ml/min. This was equivalent to a 3-hour total detention time in the unit, one hour in the flocculation basin and two hours in the sedimentation basin. In each test, the unit was fed with high iron-bearing ground water, with 50 mg/1 FeSO4.7H2O added, for about 27 hours to develop the insoluble iron precipitate sludge blanket at the bottom opening between the compartments. This sludge blanket tends to work both as a catalytic surface and filtering medium to the coagulated water from the flocculation basin. The depth of iron deposit measured after 27 hours, was about 4.0 cm in the sedimentation basin and about 3.0 in the flocculation basin as shown on Fig.25. The laboratory-scale unit was then fed with ground water dosed with only 25 mg/1 FeSO4.7H20 and continuously operated until the effluent showed a relatively constant concentration of iron. This took a total of about 50 hours. Analyses of the influent and effluent were carried out every two hours. After a 2-hour interval, the total quantity of 6.48 liters of influent (54 ml/min. x 60 min. x 2 hours) was assumed to have replaced the water previously occupying the sedimentation basin.

-88-

It was observed that the upflow of flocculated water from the flocculation basin did not distribute itself evenly across the bottom opening. The uneven flow did not keep all the iron precipitate suspension in the sedimentation basin. Instead, weak points formed where flocs were loosly compacted and this caused a channel flow path to form as shown in Fig. 25 and 26. This resulted in a higher upflow rate and encouraged a large number of flocs to be carried over the overflow weir. Floc formation was markedly improved when anionic or nonionic polyelectrolyte was used and the carry-over of floc was slightly reduced.

Variations of dissolved oxygen, temperature, and pH in both folcculation basin and sedimentation basin of the unit during operation in all four runs were within the same range. Maximum dissolved oxygen in the f. cculation basin was in the range 5.4 mg/1 to 6.4 mg/1, pH in the range 8.4 to 8.9, and temperature in the range 25°C to 27.8°C. The difference between dissolved oxygen concentration in the influent and in the sedimentation basin indicated that oxidation of ferrous iron to ferric iron had taken place. Aeration of the influent was carried out during dosing, through the inlet tube, and by the agitation of the provide the function of the sedimentation of the mean of the agitation of the sedimentation of the sedimentation for the sedimentation basin indi-

The mechanisms of iron removal in the laboration scale iron removal unit were the same as those discussed in the preliminary investigations with jar tests. The ferrous iron was first exidized to hydrated ferric exide as shown in Eq. 27 and 28. A pH above 8.5 favored the removal of calcium alkaline and calcium non-alkaline hardness as shown in Eq. 31 and 32. Neutralization of free CO_2 in

-89-

-90-CARRY-OVER FLOC ON BAFFLE - FLOCCULATION SEDIMENTATION -BASIN BASIN PATHS OF FLOW. 4.0 CM. ~ 3.0 CM. FIG. 25-SKETCH OF FLOC DEPOSIT AFTER 27 HOURS OF OPERATION. CARRY-OVER FLOC ON BAFFLE. PATHS OF FLOW. 60 CM. FIG. 26- SKETCH OF FLOC DEPOSIT AFTER 50 HOURS OF OPERATION.

the influent with NaOH resulted in an effluent with high $HCO_3^$ alkalinity. The precipitate accumulating at the bottom of the unit probably consisted of $Fe_2O_3 \cdot xH_2O$ or $Fe(OH)_3$, hydrated ferric oxide complexes $\left[Fe_m(OH)_{n-1} (SO_4)_4\right]^{x-1}$, and precipitated $CaCO_3$.

<u>Treatment with NaOH</u>. The characterístics of the raw water and the conditions of the test were as follows :

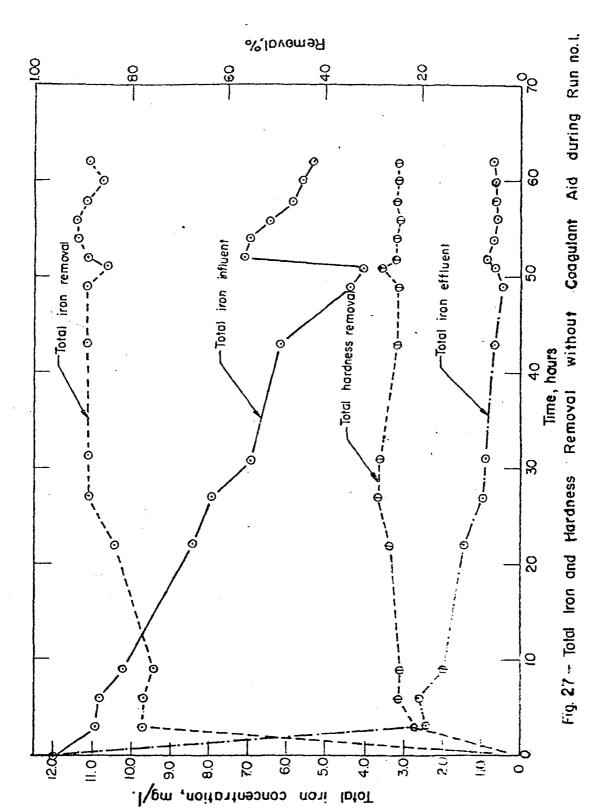
1. Ground Water Characteristics:

<u>Constituents</u>	<u>Original</u>	50 mg/1 FeSO ₄ . 7H ₂ O added	$\frac{25 \text{ mg/1 FeSO}_4}{7\text{H}_2\text{O}}$
рН	6.6	6.4	6.4
Hardness, mg/1 CaCO ₃	632.0	640.0	140.0
HCO3 alk.,mg/1 CaCO3	398.0	282.0	297.0
Total Fe, mg/1	2.65	. 11.9	6.98
Fe ⁺⁺ , mg/1	2.23	8.3	5.8
Free CO ₂ , mg/1	78.0	92.0	90.0
Dissolved Oxygen, mg/1	3.8	1.6	0
Temperature, ^O C	34.0	30.0	26.0

2. Dosages :

0.1 N NaOH	2.2 -	0.2 ml/mir. == 143 ± 4.4 mg/1
Ground water	50.0 <u>+</u>	2.0 ml/min.
Total	52.2 +	2.2 ml/min -

3. Velocity of rotating brush 70 rpm.


Table 18 shows the characteristics of the ground water before and after treatment without coagulant aid and the variations in dissolved oxygen, temperature, and pH which occurred during run no.1. and After Treatment Without Coagulant Aid and Variations and pH in Unit no, I During Run no. 1 in D. O., Temperature, Characteristics Before TABLE 18- Ground Water

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dissolved		Temperature	rdture	4				Chen	Chemical	Analyses	ses of	Untreated	ated	and	Treated		Ground	Water			
Floa Floa Floa Floa Hou Hu Hu <t< th=""><th>1</th><th>XE N</th><th></th><th>-</th><th>ູບ</th><th>ž</th><th>-</th><th>Ha</th><th></th><th>Ałkalir</th><th></th><th>mg/1 C</th><th>aco</th><th>Dissol</th><th></th><th>Total F</th><th>lardne</th><th>- 10</th><th>н. Н.</th><th>+</th><th>Total</th><th>Fe</th><th></th></t<>	1	XE N		-	ູບ	ž	-	Ha		Ałkalir		mg/1 C	aco	Dissol		Total F	lardne	- 10	н. Н.	+	Total	Fe	
basin basin <t< th=""><th></th><th></th><th>Sed</th><th>Floc.</th><th></th><th>Floc.</th><th>Sed</th><th>ž </th><th></th><th>HCO</th><th></th><th>ပိ</th><th>11 m</th><th></th><th></th><th>ш<u>р</u>/1.</th><th>o S S S</th><th></th><th>na.</th><th></th><th></th><th>mg./I.</th><th></th></t<>			Sed	Floc.		Floc.	Sed	ž		HCO		ပိ	11 m			ш <u>р</u> /1.	o S S S		na.			mg./I.	
				basin	basin	basin		Inf.	Eft.	inf.	Eff.	nf.	EĦ.	Ë	Eff.	lnf.		6Rem	Inf.	Eff.	ž.	Eff. 1	%Rcm
	[₿] o			29.9	29.9	8.0	7.2		2.2	282	1	1	1	1.6	1	640	1	1	8.30	1	11.80	1	1
	N	6.1		27.8	28.1	8.S	8.7	6.4	6.7	282	314	1	I	1	B .1	640	491	21.7	748	0.01	10.95	2,40	77.4
6.4 6.1 26.1 6.3 6.4 6.2 6.4 6.4 6.2 6.4 6.2 6.2 6.2 6.4 6.2 6.2 6.2 6.4 6.4 6.4 6.2 6.2 <	ø	6.2		27.2	27.2	8.4	0.2		62	284	320	1	I	 I		640	482	24.7	0.94	1	10.62	2.50	77.0
	6	6.4		26.1	26.1	8.3	8.2		6.2	286	336	1	ł	1.8		640	481	243	6.12	1	10.14	1.94	73.8
	22	6.3		27.2	26.8	B.0	8.4.3	6.40	0.4	298	341	1	16.0	1	6.9	640	468	20.9	5.28	I	8.41	1.43	83.0
5.6 5.2 25.3 25.3 8.6 8.2 6.4 8.2 6.4 8.2 6.4 8.1 6.4 6.1 476 25.3 4.64 -1 6.96 6.1 5.4 26.3 8.5 6.1 6.1 6.1 300 312 -1 -1 6.4 476 25.3 4.64 -1 6.98 6.2 5.5 25.3 25.3 8.5 6.7 8.2 346 -1 -1 6.4 476 25.3 4.94 -1 4.05 6.3 5.5 25.3 8.5 8.2 6.5 8.2 306 342 -1 -1 6.5 640 476 25.3 4.94 -1 4.02 6.1 5.4 2.56 8.2 8.2 314 335 -1 -1 0.6 6.40 476 25.4 4.02 4.02 6.40 476 5.14 -1 7.02 6.24 6.40	27	6.4		26.8	26.4	0.0	8.3		0.3	298	348	1	1	2.7	7.1	640	452	29.4	2.80	J	7.92	0.94	<u>88.3</u>
6.1 5.4 26.3 6.5 6.1 6.4 6.1 6.4 6.1 6.4 6.7 25.3 4.64 $ 6.6$ 6.2 5.5 25.3 6.6 6.5 6.6 6.5 6.6 476 25.0 2.34 $ 4.35$ 6.3 5.5 25.2 25.1 8.5 6.5 6.5 6.5 6.6 8.2 302 346 $ 6.5$ 6.6 $ -$ <	т <mark>.</mark>	5.6		25.3	25.3	8.8	θ.2	6.4	8.2	297	335	1	I	0	6.5	640	456	28.7	5.80	1	6.98	0.83	<u>8</u> 8.2
6.25.325.38.68.26.08.2302346 $ -$ 6.564048025.02.34 $-$ 4.356.35.525.38.58.58.58.58.56.58.56.4048026.1 $-$ 4.356.15.425.825.88.58.58.58.58.58.58.68.2314335 $ -$ 0.86.56.4047626.1 $-$ 7.026.15.426.88.58.58.58.68.2314335 $ -$ 06.564047625.55.14 $-$ 7.026.25.62.6.72.6.38.2314336 $ -$ 6.4047625.55.14 $-$ 7.026.25.72.6.42.6.38.1314335 $ -$ 6.4047625.55.14 $-$ 7.026.25.72.6.48.68.1314336 $ -$ <t< td=""><td>43</td><td>6.1</td><td>5.4</td><td>26.3</td><td>26.3</td><td>8.5</td><td>9.1</td><td>6.4</td><td>9.1</td><td>300</td><td>312</td><td>ļ</td><td>1</td><td>1</td><td>6.4</td><td>6.40</td><td></td><td>25.3</td><td>4.94</td><td>1</td><td>6.18</td><td>0.69</td><td>89.0</td></t<>	43	6.1	5.4	26.3	26.3	8.5	9.1	6.4	9.1	300	312	ļ	1	1	6.4	6.40		25.3	4.94	1	6.18	0.69	89.0
6.35.525.225.18.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.6 4.6 2.01 -1 4.02 6.15.42.562.518.5 6.5 6.5 6.5 6.5 6.5 6.6 4.76 25.6 5.14 -1 7.02 6.2 5.7 26.6 8.5 8.5 6.5 8.2 314 335 -1 -1 0.6 6.5 640 476 25.6 5.14 -1 7.02 6.2 5.7 26.4 8.4 6.5 8.1 314 335 -1 -1 0.6 6.5 640 476 25.6 5.14 -1 7.02 6.2 5.7 26.4 8.4 6.5 6.1 3.14 325 -1 -1 0.6 6.5 640 476 25.6 5.14 -1 7.02 6.2 5.7 26.4 8.7 8.1 8.2 314 325 -1 -1 0.5 640 476 25.6 5.14 -1 6.34 6.2 5.7 26.4 8.7 8.7 6.5 314 325 -1 -1 0.5 640 476 25.6 24.7 4.53 -1 6.34 6.2 5.7 26.4 8.6 8.6 6.5 640 496 25.6 2.94 -1 5.64 6.3 6.5 6.5 6.2 6.2 6.3	40	62	5.5	25.3	25.3		8.2		8.2	302	346	1	1	1	6.5	640		25.0	2.34	1	4.35	0.48	93.0
6.15.426.8 $2.5.8$ 8.2 6.5 8.2 314 335 $ 0$ 6.5 640 476 25.6 5.14 $ 7.02$ 6.2 5.6 7.6	5	ଜ୍ୟ	5.5	25.2		8.5	8.2		6.2	902	342	1	1	0.8	8.5	640	460	28.1	2.01	ł	4.02	0.61	85.0
6.2 5.6 20.0 27.0 8.4 8.2 314 336 - - 6.4 640 478 25.3 4.98 - 6.94 6.2 5.7 26.4 8.5 8.1 314 325 - - 6.5 640 478 25.3 4.98 - 6.34 6.2 5.7 26.4 8.5 8.1 314 325 - - 6.5 640 482 24.7 4.53 - 6.34 6.2 5.7 26.4 8.6 8.5 630 - - - 6.5 640 482 24.7 4.53 - 6.34 6.3 5.7 26.2 28.1 8.6 3.32 - - - 6.5 640 484 24.4 3.81 - 5.62 6.3 5.7 26.0 8.3 6.3 8.3 3.8 - - 5.62 6.3 5.7 26.0 8.3 6.3 3.8 3.38 - - - <td< td=""><td>52</td><td>6.1</td><td>5.4 4</td><td>25.8</td><td>23.8</td><td>8.5</td><td>8.2</td><td></td><td>8.2</td><td>314</td><td>335</td><td>1</td><td>1</td><td>0</td><td>6.5</td><td>640</td><td>476</td><td>25.6</td><td>5,14</td><td>1</td><td>7.02</td><td>0.70</td><td>69.0</td></td<>	52	6.1	5.4 4	25.8	23.8	8.5	8.2		8.2	314	335	1	1	0	6.5	640	476	25.6	5,14	1	7.02	0.70	69.0
6.2 5.7 26.4 28.3 8.1 314 325 - - 6.5 640 482 24.7 4.53 - 6.34 6.2 5.7 26.4 8.6 8.5 6.5 316 330 - - 6.5 640 482 24.7 4.53 - 6.34 6.2 5.7 26.4 8.6 0.5 0.5 316 332 - - 6.5 640 496 25.6 3.94 - 5.84 6.3 5.7 26.2 20.1 8.0 0.2 316 332 - - 6.5 640 494 24.4 3.81 - 5.62 6.3 5.7 26.0 0.5 0.3 6.3 318 338 - - 0 6.5 640 494 24.4 3.81 - 5.62 6.3 5.7 26.0 0.5 0.3 6.3 338 - - 0 6.5 640 494 24.4 3.81 - 5.62	54	6.2	5.8	20.0		8.4	A.2		8.2	314	336	1	1	1	6.4	640	478	Ś	4.98	1	6.94	0.64	90.8
6.2 5.7 26.4 28.4 8.5 0.5 <td< td=""><td>56</td><td>6.2</td><td>5.7</td><td>26.4</td><td>20.3</td><td>8.5</td><td>B.I</td><td>•</td><td></td><td>314</td><td>325</td><td>!</td><td>1</td><td>1</td><td>6.5</td><td>640</td><td>482</td><td>24.7</td><td>4.53</td><td>1</td><td>6.34</td><td>0.50</td><td>91.0</td></td<>	56	6.2	5.7	26.4	20.3	8.5	B. I	•		314	325	!	1	1	6.5	640	482	24.7	4.53	1	6.34	0.50	91.0
6.3 5.7 26.2 26.1 8.6 6.7 6.5 640 484 24.4 3.81 - 5.62 6.3 5.7 26.0 28.0 0.5 8.3 318 332 - - 6.5 640 484 24.4 3.81 - 5.62 6.3 5.7 26.0 28.0 0.5 8.3 318 338 - - 0 6.5 640 482 24.7 3.04 - 5.28	58	6.2		26.4		8.8	8.2	•	0.2	316	330	1	1	1	6.3	640	496	25.6	3.94	1	5.84	0.60	89.4
6.3 5.7 26.0 26.0 0.5 0.3 6.5 8.3 318 338 0 6.5 640 482 24.7 3.04 - 5.28	60	6.3		262	26.1	8.6	0.2	-	8.2	318	332	1	I	I	6.5	640	484	24.4	3.81	1	5.62	0.61	0.09
	62	6.3	5.7	26.0	26.0	0.5	B. 3			318	338	1	1	0	6.3	640		24.7	3.04	1	5.28	0.60	88.7

-92-

to influent. supplement to influent. s upplement Start feeding (with 50 mg./l. FeSQ. 7H2 as Start feeding with 25 mg./l. FeSQ. 7H20 as

⊕ +

- 93 -

Total iron removal was in the range from 85 to 90% and total hardness removal was from 25 to 28%. The pH in the sedimentation section varied between 8.4 to 8.6 with a dose of 0.1 N.NaOH of $2.2 \stackrel{+}{-} 8.2 \text{ ml/min.}$ or $42.5 \stackrel{+}{-} 0.9 \text{ ml}$ per liter of total flow rate. This was equivalent to an NaOH dose of $169 \stackrel{+}{-} 4.4 \text{ mg/l.}$

Comparison of the results obtained in the jar test (Table 6) with those in the laboratory-scale unit (Table 18) shows that in the same pH range from 8.4 to 8.6, the percentage of total iron removal in the laboratory-scale unit was lower than the percentage of iron removal in the jar test. The percentage of total hardness removal in the laboratory-scale unit was higher than in the jar test. This indicated unsuccessful operation of the ferric oxide blanket as a filtering medium. It was observed that the upflow path through the sludge blanket caused light, slimy, gelatinous ydrated ferric oxide precipitate to be carried over to the effluent overflow wier while the heavier $CaCO_3$ precipitates were not moved. Polyelectrolyte was then used in an attempt to evoid this type of failure.

Analyses of the treated water from treatment with sodium hydroxide showed only a trace or zero ferrous iron. This was because the ferrous iron could be readily oxidized in the presence of high OH⁻ ion concentration at high pH. Fig.27 illustrates the variations which occurred in total iron and total hardness removal in the laboratory-scale unit during run no.1. The pH in the flocculation basin was kept in the range 8.4 to 8.6. The percentage of iron removal was low at the beginning of the 3rd hour at 77.4% and, gradually increased to 88.3 % at the 27th hour of operation, and

- 94 -

thereafter tended to be more consistent in the range 82 to 91 %. At the beginning of operation, the previously-accumulated precipitated iron blanket was not sufficient to act as a filtering medium and catalytic surface to the flocculated water from the flocculation basin. The percentage of iron removal was not highly improved after 27 hours of operation and it was observed that there were tiny suspended gelatinous iron flocs above the precipitated iron blanket rerulting from channel-path flow. Total hardness removal was dependent upon the pH in the unit as indicated in the preliminary investigations using jar tests. Because of the slight variation of pH in the flocculation basin from 8.4 to 8.6, the total hardness removal was found to be in the range 22 to 29%.

<u>Treatment with coagulant aid</u>. The characteristics of the raw water and the conditions of the test when the anionic polyelectrolyte FLOCCOTAN was used were as follows:

1. Ground water characteristics :

Constituents	<u>Original</u>	50 mg/1 FeS04.7E20 added	$\frac{25 \text{ mg/1 FeSO}_4}{120 \text{ added}}$
pH	6.6	6.4	6.5
Hardness, mg/1 CaCO	632.0	640.0	64 0 . 0
HCO3 alk., mg/1 CaCO	0 ₃ 308.0	285.0	268.0
Total Fe, mg/1	2.65	· 12.1	7.40
Fe ⁺⁺ , mg/1	2.32	7.94	4.94
Free CO ₂ , mg/1	78.0	94.0	82.0
Dissolved Oxygen,mg/	1 3.8	1.8	0
Temperature, ^o C	34.0	30.0	26.0

- 95 -

2. Dosages

0.1N.NaOH	2.2 +	0.2	m1/min.or $169 \stackrel{+}{-} 4.4 \text{ mg/1}$
FLOCCOTAN	2.7 +	0.2	ml/min.or 5 mg/1
Ground Water	47.0 +	2.0	ml/min.
Total	51.9 +	2.4	ml/min.

3. Velocity of rotating brush 70 rpm.

The FLOCCOTAN was used at concentration of 5 mg/l in conjunction with NaOH to keep bH in the same range as before (pH 8.4 to 8.6). Iron removal was slightly improved as shown in Table 19. The precipitates formed were highly improved in toughness, weight and size and slimy and gelatinous iron precipitates no longer existed. The negative charges on polymeric molecules of the FLOCCOTAN facilitated flocculation of positively charged ferric hydroxo complexes and polymers. Floc carry-over to the effluent overflow weir was reduced. There was no indication of any effect on total hardness removal when FLOCCOTAN was used. The results presented in Fig.28 show the variations of total iron removal and total hardness during run no.2. The percentage of iron removal was markedly improved compared with 79.2% at the 3rd hour and 92.7% at the 52nd hour of operation. The tough and dense flocs formed diminished the floc carry-over problem, but still short circuiting through the precipitated iron blanket lowered the efficiency of iron removal in this type of unit. Total hardness removal showed little variation from 24.6 to 26.5%.

The characteristics of the raw water and the condition of the test when the cationic polyelectrolyte Nalco-600 was used as follows:

- 96 -

Before and After Treatment with 5 mg/l. Floccotan as Coagulant ູ ő D.O., Temperature and pH. in Unit no.2, During Run and Variations in Ground Water Characteristics Aid ၊ ၅ TABLE

84.0 84.3 92.5 92.0 92.0 P/sRem 79.5 88.7 87.8 88.0 29.5 71.4 929 91.8 91.4 92.7 1 0.58 0.47 0.46 0.49 0.46 0.47 2.03 1.83 0.85 0.51 0.48 0.53 238 Eff. I.18 [2] ŝ 1 mo /1. Total 11.52 9.84 7.60 6.70 6.04 9.92 7.40 0.84 5.92 1210 282 4-15 3.98 5.84 7.18 5.71 12. 0.02 Ēf ł I 1 ŧ 1 ł ١ ł ł 1 ۱ ł t ł ł Water ₽e mg∕i. 4 23 4,82 4.94 4.58 4.28 3.94 3.68 1.74 7.94 1.34 4.61 6.01 280 2.4 4.3 laf. 12.7 Unfreated and treated Ground 26.0 25.3 24.6 25.0 26.8 26.5 24.8 25.0 P/oRem 15.6 24.7 253 24.7 24.7 262 25.6 ł Hardness as mg./l. Ca CO₃ 540 470 482 468 476 478 474 478 483 480 482 480 482 472 Eff. 481 1 640 640 6.40 640 640 640 640 640 640 640 640 640 640 640 640 640 Inf. 6.5 5.9 6.8 6.5 6.4 ດ.5 6.4 ດ.5 6.5 Dissolved Oxygen mg./l. 6.2 0.0 0 6.5 **8**.5 6.5 6.2 Eff. ł 0.8 0.5 2 2 2 Inf. 0 5 1 l 0 1 t 1 1 ł I 0 I Chemical Analyses of 24.0 Alkalinityaas mg/l.CocO₃ 12.0 Eff. 1 l ı ١ 1 ŧ I I ŧ ł ł 1 4605 CO3 Inf. ł t ۱ ŧ I t ŧ 336 348 330 348 348 352 350 332 334 366 364 332 336 332 Eff 341 ۱ HC03 286 285 285 288 296 292 308 296 288 296 300 308 314 314 310 314 Inf. **0**.4 Eff. 8.2 8.3 **0.**4 0.3 8.3 **8**.2 8.2 82 0.3 0.2 0.3 6.0 9.2 8.3 N Hd 6.4 6.4 6.4 0.3 0.5 8.5 ຍ ເມ 9.0 V 8 B 0.0 8.5 6.4 0.U 0 0 S 0.0 Inf. Ġ basin Sed. 8.0 ų 10 8.7 0.3 8.2 83 6.4 0.3 6 61 10 10 9.0 8.2 8.3 0.2 8.3 3 2.7 Hd Floc. basin 8.5 **8**.4 8.5 9.6 8.8 6.4 **0**.0 0.0 8.8 8.0 8.8 **B.B** 8.3 B.3 12 C 0.0 basin Temperature Sed. 28.0 25.0 20.0 80.3 2.8.5 26.5 26.9 26.3 25.0 30.0 26.0 20.4 26.2 25.0 26.3 27.2 25.0 basin 30.0 25.9 Floc. 26.4 25.0 27.8 26.0 26.2 26.2 503 20.6 26.4 20.3 25.8 27.0 27.2 basin Sed. 5. G 5.4 5.5 5.4 5.5 42 5.2 5.2 2 5.4 5.8 Θ 10 2 2 5.4 5.6 5.7 5.1 Dissolved Oxygen mg/i. ഗ basin Floc. 6.2 6.4 6.4 0.0 0 6.0 6.0 4 Ю 6 29 6.0 6.2 5.7 6.2 6 10 6.3 6.3 6.1 8 F 25 43 49 54 56 58 62 5 52 0 М ΰ თ ñ ŝ

influent. influent

¢ ¢

Supplement

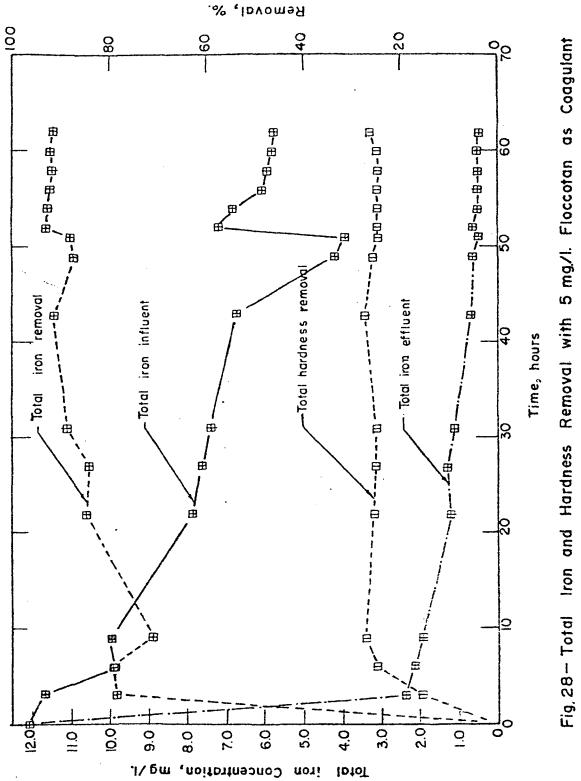
as 03

50mg/l. Fesg.7H20

with

feeding

Start Start


Subblement

25 mg/l. FeSO 7 H_O

with

feeding

- 97 -

Aid during Run no. 2.

- 98 -

1. Ground water characteristics.

<u>Constituents</u>	<u>Original</u>	50 mg/1 FcSO ₄ . 7H ₂ 0 added	25 mg/1 FeSO ₄ . 7H ₂ O added
рН	6.6	6.5	6.5
Hardness, mg/1 CaCO	3 556.0	556.0	556.0
HCO3 alk., mg/1CaCO	3 324.0	310.0	328.0
Total Fe, mg/1	2.56	12.85	7.75
Fe ⁺⁺ , mg/1	2,29	9.64	4.62
Free CO ₂ , mg/1	88.0	90.0	94.0
Dissolved Oxygen, mg	/1 0.8	0	0
Temperature, ^O C	34.0	30.0	26.0

2. Dosages

0.1 N.NaOH 2.4⁺ 0.2 ml/min. or 186⁺ 4.8 mg/1 Nalco-600 1.2⁺ 0.2 ml/min. or 2 mg/1 Ground water 48.0 ⁺ 2.0 ml/min. Total 51.6 ⁺ 2.4 ml/min.

3. Velocity of rotating brush 70 mpm.

Table 20 shows the ground water characteristics before and after treatment with 2 mg/l cationic Nalco-600 and the variances in dissolved oxygen, temperature, and pH which occurred entring run 3. Fig.29 represents variations in total iron removal and total hardness removal during 3. Total iron removal and total hardness removal were found to be slightly improved compared with run 1. This was because of the dose of NaOH in run 3 was raised to 186 [±] 4.8 mg/l TABLE 20. Ground Water Characteristics Before and After Treatment with 2 mg// Natco-600 as PC. Coagulant Aid and Variations in D.O., Temperature, and PH in Unit no.1, During Run no.

	Fe		%Ren	1	74.10	78.70	92.76	8810	8654	85.50	8030	0.98 77.80	0.60 87.50	01.98	92.00	91.00	0.50 91.40	0.52 91.00	0.50 91.00
-		Ň	Eff	i	3.28	2.62	1.28	1.20	1.30	17	1.20	0.98	0.60	0.88	0.57	0.62	0.38	0.52	
	Total		lnf.	12.85	12.62	12.30	11.20	10.0	06.6	7.75	6.10	4.40	4-80	7.20	2.10	6.80	6.50	580	588
	+		Eft.	1	0.03	0.0	1	1	1	1	1	1	1	I	1	1	1	ł	ł
Water	+ 12 12	µg∥	Inf.	1	9.20	8.90	8.80	4.20	3.80	4.62	3.32	2.58	2.32	5.30	5.00	4.95	4.60	4.18	3.72
	ess	Co 3	%Ren	9.64	12.4	23.9	31.5	31.1	28.4	31.0	30.0	29.6	30.0	31.3	31.6	31.0	29.7	29.0	31.0
Ground	Totat Hardness	as mg/ CaCo 3	Eff.	ł	487	423	381	383	398	384	389	391	390	382	380	384	390	385	384
Treated	Totat	as m	Inf.	1	556	556	556	556	556	556	556	536	556	556	556	556	556	556	536
	Ö	4	Eff.	556	4.3	4.8	5.2	6.4	6,4	9 13	6.3	6.4	6.6	6.4	6.5	6.5	6.5	6.5	6.6
ed and	ď	∥бш	Inf.	0	1	ł	0	. 1	Q 4	0	I	1	0.2	0	1	\$	I	ł	0
Untreated	as mg∥ CaCo ₃		Eff.	ł	I	ł	1	I	1	1	I	1	1	1	32.0	8.0	1	1	ł
5	∥6ш s	coã	Inf.	t	1	I	1	1	• 1	I	1	ł	f	1	ł	t	t	1	1
Analyses		110	Eff.	1	320	340	356	326	342	360	346	340	342	358	332	352	350	348	350
	Alkalinity	HC03	lnt.	310	310	310	310	300	3 00	320	320	320	320	300	302	310	302	300	308
Chemical	r	-	Eff.	2.0	82	8.2	8.4	8.1	8.2	0.1	8.2	8.2	8.3	B. 3	6.4	0.3	8.4	8.3	6 3
		- d	lnf.	6.5	6.5	6.5	6.5	6.55	6.33	6.0	6.5	6.5	6.3	6.4	6.4	6.4	0.4	6.4	6.4
7	-	Sed	basin	7.0	8.7	8.3	8.3	8.1	<u>8</u> .2	0.3	D.2	8.2	8.2	8.3	9.4	8.3	8.3	63	0.3
	ď.	Floc	basin	8.4	8.5	8.7	8.6	6.3	0, 1	0.6	0.4	3.5	8.8	8.6	8.7	8.8	8.8	0.6	8.6
Temperature		Sed.	basin basin basin basin	29.R	28.0	27.3	256	27.0	26.0	4.6.2	262	25.9	25.7	26.2	26.2	28.2	20.1	26.0	23.9
Temp	ွ	Flod.	basin	29.8	28.2	27.3	25.6	27.0	26.8	25.4	26.1	25.9	258	26.2	20.2	2.0.2	26.1	26.0	25.9
പ്	1	Sed.	basin	2.8	3.4	3.8	4.1	5.0	5.0	5. 1	વાં	5.2	5.2	52	5.3	5.3	5,3	5.3	5
0 0 0	∕бщ	Floc.	basin	2.9	5	5.3	5.4	6.1	6.1	6.2	6.2	6.3	6.3	6.2	6.2	8.2	6.2	62	6.2
	Ţ	: 		°0	n	9	თ	25	27	+-	43	49	ີຍ	53	55	56	58	60	62

influent.

supplement to

SD

0 H2

FeSo

mg/1.

25

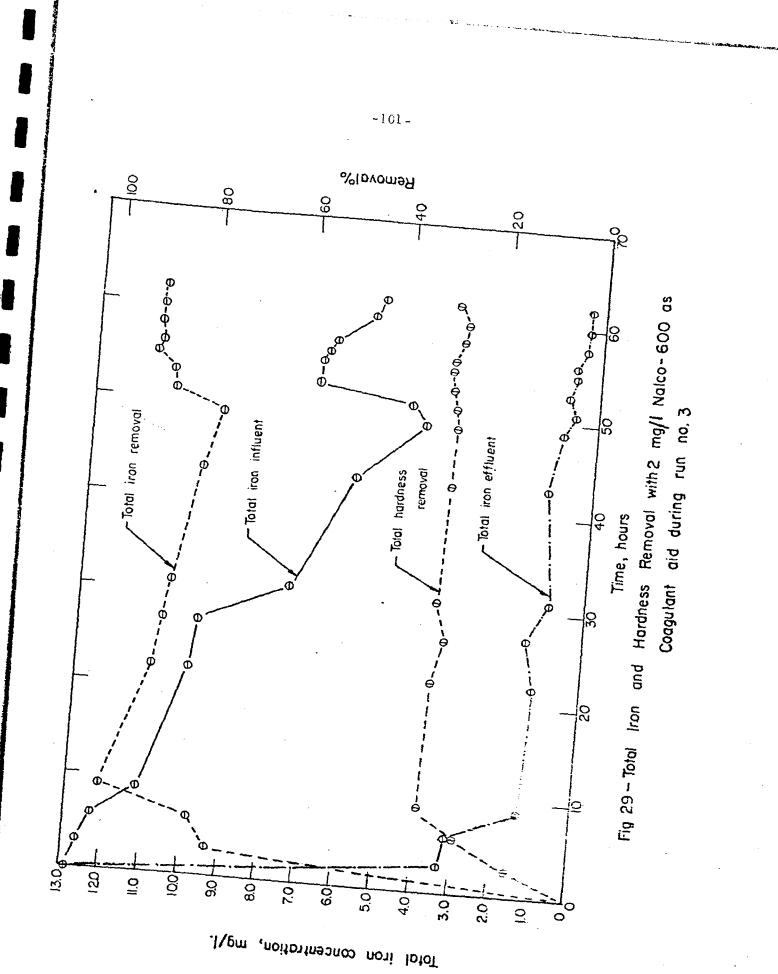
with

Start feeding

+

supplement to influent.

SD


FeSo4 7H20

feeding with 50 mg/

Start

Ð

-100-

compared with 169 \pm 4.4 mg/l of run 1. During the course of addition of cationic Nalco-600 it was that the flocs formed were relatively small and dense with a less slimy and gelatinous structure than the flocs of run 1. The cationic Nalco-600 provided positivelycharged polymeric ions to neutralize the negatively-charged CaCO, precipitates and some negatively-charged ferric hydroxo polymers which might be present in the water at high pH values. The carryover of floc was still observed, but to a lesser degree than that in run 1. From Fig. 29, the percentage of iron removal gradually increased as the precipitated iron blanket grew thicker but still the channel flow formed in the blanket, sometimes reducing the efficiency of iron removal. At the 9th hour of operation, the percentage of iron removal was as high as 97.75%. This might have been due to high pH of 8.7 at the 6th hour and pH 8.6 at the 9th hour in the flocculation basin together with high iron content in the influent of 11.20 mg/l of iton, thus favoring a high percentage of iron removal.

The characteristics of the raw water and the conditions of the test when nonionic polyelectrolyte, PURIFLOC N-11 was used, as follows:

1. Ground water characteristics

<u>Constituents</u>	<u>Original</u>	50 mg/1 FeSC ₄ .7H ₂ C added	$\frac{25 \text{ mg}/1 \text{ FeSO}_4}{7E_2 0 \text{ added}}$
рН	6.6	5.4	5.4
Hardness, mg/1 CaC	0 ₃ 556.0	556.0	556.0
HCO3 alk.,mg/1 Cac	0 ₃ 324.0	316.0	318.0

-102-

Total Fe, mg/1	2.56	12.60	7,80
Fe ⁺⁺ , mg/1	2.29	9.80	4.82
Free CO ₂ , mg/1	88.0	96.0	94.0
Dissolved Oxygen,mg/1	0.8	0	0
Temperature, ^O C	34.0	30.0	25,4

2. Dosages

0.1N.NaOH $2.4 \pm 0.2 \text{ ml/min.or}$ $186 \pm 4.8 \text{ mg/l}$ PURIFLOC N-11 $1.2 \pm 0.2 \text{ ml/min.or}$ 2 mg/lGround Water $48.0 \pm 2.0 \text{ ml/min.}$ Total $51.6 \pm 2.4 \text{ ml/min.}$

3. Velocity of rotating brush 70 rpm.

Table 21 shows the ground water characteristics before and after treatment with 2 mg/l nonionic PURIFLOC N-11 and the variations in dissolved oxygen, temperature, and pH which occurred during run 4. Fig.30 represents variations in total iron removal and total hardness removal during the run. Table 21 shows that when PURIFLOC N-11 at a concentration of 2 mg/l was used, carry-over flocs were found to be reduced, giving rise to a higher total iron removal. The floc was observed to be very tough and relatively smaller is size than the flocs formed with FLOCCOTAN in run 2. The nominant PURIFLOC N-11 provided both positively- and negatively- charged privmeric ions for the high ferric hydroxo polymers and ferric hydroxo complexes, and for the negatively-charged suspended CaCO₃ precipitates, thus facilitating floc formation. Fig.30 shows that the percentage of total iron removal was gradually increased as the precipitated-iron

-103 -

TABLE 21- Ground Water Characteritics Before and After Treatment with 2 mg/l. PURIFLOC N-II as Coagulant Aid Run no. 4. and Variations in D.O., Temperature and pH in Unit no.2, During

「たちをかい」にのというないで、とう、「なべっ」という

_										-		•							
			%Rem.	1	69.70	2.68 77.75	78.00	82.40	82.30	88.20	92.80	88.25	0.58 88.40	90.40	91.00	95.30	95.00	94.50	95.00
		1 07 GI FC	Eft	,1	3.80		2.52	1.80	1.82	1.02	0.52	0.62	0.58	0.70	0.64	0.32	0.34	034	032
	1	-	Inf.	12.60	12.30	12.00	11.50	10.18	10.20	7.80	7.20	5.25	5.00	7.20	7.08	6.80	6.54	6.04	5.96
Water	+	l.	Eff.	1	0.06	0.03	1	1	1	1	1	1	1	1	1	ł	1	1	1
	Fe + +	m g./l.	Inf.	9.80	9.20	8.70	7.20	3.80	3.10	4.82	4.10	3.00	2.90	5.20	4.69	4.60	4.40	4:30	4.00
Ground	d s	co	%Rem	1	6.2	24.8	28.7	31.3	28.4	31.0	32.0	31.3	31.7	31.3	33.4	32.1	32.3	30.4	31.6
		mg./l. Ca C	Eff.	ł	4.84	418	396	382	398	384	378	382	380	382	370	377	384	387	380
Treated	Hardness	тд./	Inf.	556	556	556	556	556	556	556	556	556	556	556	556	556	556	556	556
and	/ed	n 7	Eft.		4 V.	4.8	5.1	6.3	6.4	6.6	6.4	6.7	6.0	6.8	6.4	6.4	6.4	6.4	6.5
Untreated	Dissolved	mg./l.	Inf.	0	1	1	1	1	0.5	0	0	0.8		0	1	1	1	1	t
- 1	Caco		Eff.	1	1	1	32.0	-1	!		72.0	12.0	 !	F	ſ	12.0	8.0	i	1
es of	Έ	ч г 0 0 0	int.		1	1	1	1	3	1	•	1	1	1	1	1	1	1	1
Analyses	ty as		Eff.	1	318	328	318	336	342	346	292	350	344	338	338	338	346	324	326
	Alkalinity	HCQT	Inf.	316	314	314	310 3	300	310	318	318 2	318	316 3	298 3	300 3	302 3	306	310 3	310 3
Chemical	~	·	Eff. 1	7.1 3	7.8 3	<u>6</u> .	8.4	8.3	n	8.3	8.5 3	9.4	8.2	6.3 	8.4 3	8.3 3	9.4 3	0.2	8.2
	Ha		Inf. 6	6.4 7	4	6.4 7		ۍ ۲	6.5 8	4	6.5 8	6.5 	6.5	6.5	6.5	6.5	0.ñ, 0	6.5 0	n
		Sed			ي. 8		4 6.45	3 6.	9 10 10	3 6						<u> </u>			8. 8.
На		Floc. S	sin basin	4 7.0	4 7.8	4 8.0	6 8.4	5 8.	.00	4 3.	9 0.5	8 0.4	8.2	9.5	8.4	3 0.3	8.4	8.2	0.
	2		in basin	0 8.4	.7 8.4	5 8.4	8 8.6	9 8.5	3 8.4	5 8.4	2 8.9	9 8.0	7 8.5	2 6.8	2 8.7	2 3.6	1 0.8	0 8.4	<u></u>
		c. Sed	in basin	8 29.0	9 28.7	5 27.5	8 25.	0 26.9	26.	4 25.	2 20.2	9 20.9	9 25.7	2 26.2	2 26.2	26.	58	0 25.0	9 25.9
		1. Floc.	n basin	9 29.	28.	27.	25.	27.0	26.3	25.	262	25.9	25.9	58	282	26	261	26.0	25.9
Dissolved	mg./l.	: Sed.	in basin	તં	3.5	3.8	б. Ю	5.1	ر ي. ا	5.2	5.2	5.3	5.3	5.3	ດ. ເ	5.3	5.3	5.0	5.3
0.5 0		Floc.	basin	0 5 9	5.2	5.3	5.5	2 6.3	6.3		5.6.3	9 6.4	6.3	63	5 6.3	6.4	9-0-4	6,4	6.4
		Ï		<u>°</u> 0	M	9	6	N	27	m	43	49	5	53	ŝ	57	59	õ	63

to influent

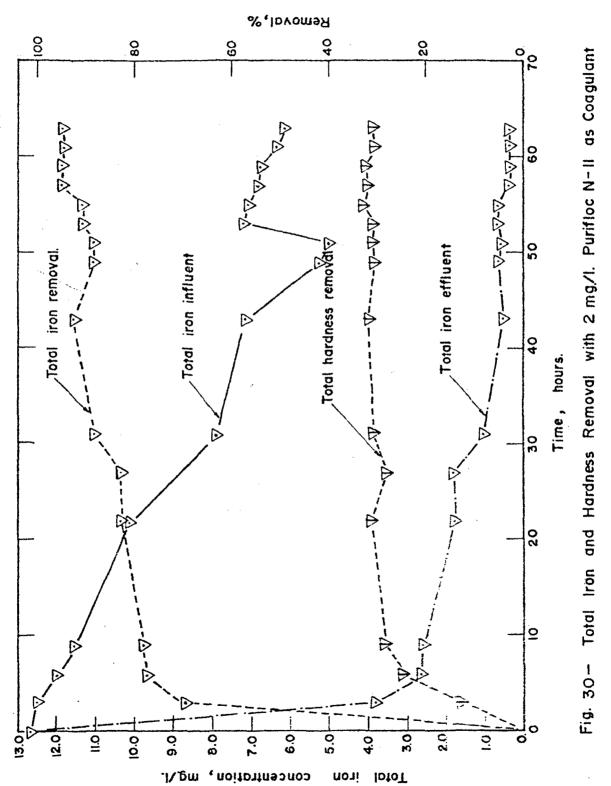
as supplement

Start feeding with 50 mg/l. FeSQ. 7HO 4 to influent.

supplement

SD

25 mg/l. Fe\$0 7H0


wiĥh

feeding

Start

+

-104-

Aid during Run no. 4.

-105-

blanket increased in thickness and tended to be constant at the 57th hour of operation. Because of the higher dose of NaOH, total hardness removal was generally higher than that obtained in runs 1 and 2.

From the results of the experimental investigations carried out in the laboratory-scale unit, it was found that the quality of the finished water in all four runs wasup to neither the USPHS (1962) Drinking Water Standards nor the W.H.O. (1963) International Drinking Water Standards. The iron concentration in the treated water generally above the recommended 0.3 mg/l. It was observed that the iron content in the finished water was in the form of tiny insoluble particles of precipitated iron. These could be readily settled cut under gravity if left for a short period.

Because of the rather high concentration of total hardness in the ground water used in the experiments, the total hardness of the finished water was generally greater than 300 mg/1 as $CaCO_3$. The bicarbonate alkalinity of the treatment water was found to increase, probably due to neutralization of free CO_2 present in the influent with the NaOH added. The pH of the treated water was found to be as high as 8.5 in run 3, which is just within the 7.0 to 8.5 pH range recommended in the W.H.O. (1963) International Drinking Water Standards.

-106-

VI - CONCLUSIONS

The following conclusions may be drawn from the study :

1. Iron concentration in the ground water was found to vary a great deal from well to well. The average iron concentration in the ground water of Thailand according to the availabel data was found to be in excess of both the 1962 USPHS recommended limits and the W.H.O. (1963) permissible level of 0.3 mg/1. High iron-bearing ground water is commonly found in the northeastern part of Thailand whereas in the central part of the country, deep wells generally produce ground water of more acceptable quality, with relatively low iron content.

2. The results obtained from jar test indicated that when NaOH was used for pH adjustment, most efficient iron removal was obtained when the pH value was between 8.5 and 9.0.

Of the three types of polyelectrolytes used as coagulant aids in the jar tests, 5 mg/l of FLOCCOTAN at the optimum pH values of 8.5 to 9.0 was found to be most effective from the standpoint of floc formation and iron removal. Polyelectrolytes of the amionic type and nonionic type were found to stimulate agglomeration of precipitated iron into larger and heavier flocs compared with iron precipitates formed with pH adjustment alone or with addition of cationic polyelectrolytes. Use of polyelectrolyte as coagulant aid was not found to have any effect on total hardness removal.

3. The laboratory-scale iron removal unit, with design based on upflow solids-contact clarification having three hours detention time,

-107 -

was not found to give satisfactory iron removal. Upflow through the bottom opening was not very well distributed and did not keep accumulated insoluble ferric precipitates in suspension. A channel flow path with relatively high velocity was created by the existance of loosely compacted flocs. A high percentage of lighter flocs was thus carried over the effluent weir.

Insoluble iron floc was effectively formed when the pH in the flocculation basin was kept within the values of 8.5 and 9.0. Addition of 2 mg/l cationic polyelectrolyte, Nalco - 600, at a pH between 8.5 and 9.0, was found to give a slight improvement in floc formation. However, when 5 mg/l FLOCCOTAN or 2 mg/l nonionic PURIFLOC N-11 was used, floc formation was markedly better. This resulted in an increase in the removal of imon. Further improvement might be obtained if the laboratory - scale iron removal unit was modified to keep the sludge blanket in suspension or if the depth of the unit was increased. Unfortunately, limited time prevented modifications being made.

4. During the course of these investigations, it was found difficult to prevent ferrous iron in the influent from being oxidized to ferric iron in the influent reservoir prior to treest.

-108-

VII RECOMMENDATIONS FOR FUTURE WORK

The present project was a study of iron removal by the laboratoryscale unit designed on the basis of the upflow solids-contact clarification process. This work might be regarded as preliminary development of a low-cost iron removal unit for rural areas.

Some suggestions for further work which might be carried out in the future are as follows:

1. Further study of upflow velocity to keep the iron sludge blanket in continuous suspension and the length of upflow that will diminish the carry-over of floc to the effluent overflow weir.

2. A study of the effect of other chemical coagulants such as lime, soda ash, etc., with various aeration processes on iron removal. Another study should be carried out using clay as coagulant aid in the pilot plant designed.

3. A study of the factors that govern the kinetics of iron precipitation of some typically high iron-bearing ground waters in the northeastern part of Thailand so that a more rational approach can be applied to the design of an iron removal plant on a practical scale.

4. Investigations into the effect of iron becteria on iron precipitation in the upflow solids-contact clarification process.

-109-

REFERENCES

AMERICAN PUBLIC HEALTH ASSOCIATION, AMERICAN WATER WORKS ASSOCIATION, and WATER POLLUTION CONTROL FEDERATION (1965), <u>Standard Methods</u> for the Examination of Water and Wastewater, 12th ed., Am.Publ. Hlth Ass., Inc., New York.

AMERICAN WATER WORKS ASSOCIATION (1951), <u>Water Quality and Treatment</u>, The Am. Wat. Wks. Ass., Inc., New York.

AMERICAN WATER WORKS ASSOCIATION COMMITTEE (1951), Capacity and Loadings of Suspended Solids Contact Units, <u>J. Am. Wat. Wks</u>

<u>Ass.</u>, v. 54, pp. 263-291.

BOND, A.W. (1961) Upflow Solids Contact Basin, <u>J.San.Engng Div.</u>, Proc., Am. Soc. civ. Engrs, v. 87, SA 6, pp. 73-99.

BABCOCE, R.H. (1950), Iron and Manganese Removal by Spaulding Precipitator, <u>J. of the New Engl. Wat. Wks Ass</u>., v. 64, no.2, pp. 138-47.

BENSON, B.E. (1965), Treatment for High Iron Content in Remote

Alaskan Water Supplies, Arctic Health Research Centre, Anchorage. BABBITT, H.E., DOLAND, J.J., and CLEASBY, J.L. (1953), Water Supply

Engineering, McGraw-Hill Book Company, Inc., New York. CONNELLEY, E.J. (1958), Removal of Iron and Manganese, Am. Wat.

Wks Ass., v. 50, pp. 697-708.

COHEN, J.M., ROURKE, G.A., and WOODWARD, R.L.(1958), Natural and Synthetic Polyelectrolytes as Coagulant Aids. J.Am.Wat.Wks Ass., v. 50, pp. 463-478.

-110-

FAIR, G.M. and GEYER, I.C. (1954), Water Supplies and Waste-Water

Disposal, John Wiley & Sons, Inc., New York. GHOSH, M.M., O'CONNOR, J.T., and ENGELBRECHT, R.S. (1966),

Precipitation of Iron in Aerated Ground Waters, J.San. Engng

Div., Proc. Am. Soc. civ. Engrs, v. 92, SA 1, pp. 199-213. GHOSH, M.M. (1965), Filtration as Related to the Removal of Iron

from Ground Waters, Dep. of Civil Engng, Univ. of Illinois. HAMER, P., JACKSON, J., and THURSTON, F.F. (1961), Industrial Waters

Treatment Practice, Butterworths & Co. (Publishers) Ltd., London.

HOWARD, F.H., NA CHIANGMAI, P., and PHIANCHAROEN, C., (1966), Ground Water Resources Development of Northeastern Thailand, <u>Ground</u>. <u>Water Bulletin No.2</u>, <u>Ground Water Division</u>, <u>Department of</u> <u>Mineral Resources</u>, <u>Ministry of National Development</u>, Bangkok.

JUST, G. (1908), Kinetische Untersuchung der Autooxydation des Ferrobicarbonates, <u>Z. Phys.Chem</u>., v. 63, pp. 385.

- LONGLEY, J.M., ENGELBRECHT, R.S., and MARGRAVE, G.E. (1962), Laboratory and Field Studies on the Treatment of Iron-Bearing Waters, J. Am. Wat. Wks Ass., v. 54, pp. 731-745.
- MINZ, D.M. (1964), Aids to Coagulation, General Reports and Papers on Special Subjects, <u>Sixth Congress International Wat. Supply</u> <u>Ass.</u>, Stockholm.

RIDDICK, T.M. (1961), Zeta Potential and its Application to Difficult Waters, <u>J. Am. Wat. Wks Ass.</u>, v. 53, pp. 1007-1030.SAWYER, C.N. (1960), <u>Chemistry for Sanitary Engineers</u>, McGraw-Hill Book Company, Inc., New York. SIENKO, M.J., and PLANE, R.A. (1961), <u>Chemistry</u>, McGraw-Hill Book Company, Inc., New York.

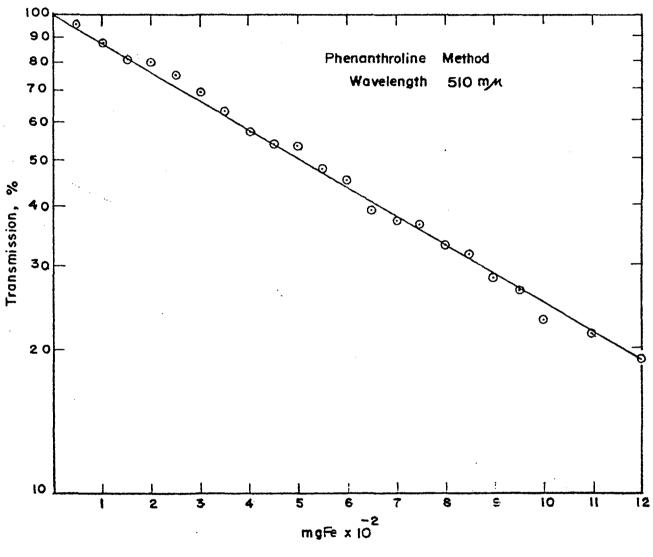
STUMM, W., and LEE, G.F. (1961), Oxygenation of Ferrous Iron, <u>Industrial and Engineering Chemistry</u>, v.53, pp. 143-146.SHAPIRO, J. (1964), Effect of Yellow Organic Acids on Iron and Other Metals in Water, J. Am. Wat. Wks Ass., v. 56, pp.

pp. 1062-1082.

UNITED STATES PUBLIC HEALTH SERVICES (1961), Drinking Water Standards, 1961, <u>J. Am. Wat. Wks Ass</u>., v. 53, pp. 935-945.

WILLEY, B.F. and JENNINGS, H. (1963), Iron and Manganese Removal with Potassium Permangante, <u>J. Am. Wat. Wks Ass</u>., v. 55, pp. 729-734.

WORLD HEALTH ORGANIZATION (1963), International Standards for Drinking-Water, 2nd ed., <u>World Health Organization</u>, Geneva.


APPENDIX A

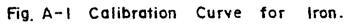

-113-

Table A 1 - Data on Calibration Curve of Iron Content in

Water by Spectrophotometer

mg Fe x 10^{-2}	% Transmission
0.5	96.0
1.0	88.5
1.5	81.0
2.0	80.0
2.5	75.0
3.0	69.0
3.5	63.0
4.0	57.0
4.5	54.0
5.0	53.0
5.5	47.5
6.0	45.0
6.5	39.0
7.0	37.0
7.5	36.5
8.0	33.0
8.5	31.5
9.0	28.0
9.5	26.5
10.0	23.0
11.0	21.5
12.0	. 19.0

- -114-

APPENDIX B

Table B 1- Iron Concentration in Ground Water in Thailand from Division of Ground Water, Department of Mineral Resources, Minsitry of National Development.

City	Well number	Depth ft.	Total Fe mg/l	CO mg/1	рН	Total hardness as CaCO ₃ mg/1
Loei						
A. Chiengkan	J 27.	125	3.5	20.0	7.2	300
A. Chiengkan	C 55	107	1.5	18.0	7.2	108
A. Talee	J 17	160	36.0	26.0	7.4	264
A. Talee	J 12	· 125	9.0	28.0	7.2	434
A. Talee	J 18	100	29.0	46.0	7.2	796
A. Maung	F 99	131	2.0	22.0	7.3	152
A. Maung	J 3	147	17.0	48.0	6.9	1334
A. Wangsapung	C 43	· 191	10.0	14.0	7.7	300
A. Sri-than	B102	112	21.0	79.0	7.0	350
<u>Udorn</u>						
A. Banpae ·	E156	100	23.0	3.0		2212
A. Nongbua	A122	180	3.5	62.0	7.1	320
-lampu A. Nongbua	A109	255	14.0	14.0	7.5	220
-lampu A. Noansang	A116	175	16.0	40.0	7.3	300
A. Noansang	A112	300	12.00	65.0	6.3	250
A. Kumpwapee	A 78	165	6.4	35,0	6.4	250
A. Kumpwapee	A 77	250	6.5 .	15.0	6.7	2155
			1			

Well Total Depth Total Fe C02 pН City number mg71 hardness ft. mg/1as CaCOa mg/1A. Maung A 99 515 0.8 9.0 7.1 9674 7.4 A. Pen A138 125 11.0 3.0 2370 A. Bandung 3.0 8.4 88 E160 105 11.0 12.0 6.8 7700 510 0.0 A.Maung A117 680 A. Nongharn A103 120 20.0 15.0 7.2 A 93 150. 11.0 77.0 6.8 789 A. Nongharn Khon Kaen 4.0 8.1 130 B104 158 5.0 A. Chumpae 240 4.0 6.0 8.0 166 A. Chumpae B101 43.0 7.4 464 A. Chumpae F126 110 8.0 220 A. Phuwieng F139 109 6.0 2.0 8.2 F141 90 5.6 2.0 8.0 262 A. Phuwieng 4.3 7.9 552 в 90 140 6.9 A. Arjsamarch 260 5.2 44.0 7.1 380 A. Arjsamarch B 88 17.0 7.6 160 A. Nongrae F173 330 7.0 A 76 255 15.0 47.0 7.0 200 A. Nampong 10.0 300 A 68 100 1.2 A. Nampong F 180 100 0.0 48.0 : 7.40 320 A. Kranuan 6.0 7.9 100 72 255 A. Kranuan Α 7.5 A. Maung 60 351 3.5 4.0 3.1 500 С 29 335 24.0 7.4 294 A. Maung С 0.2 A. Banphai С 24 244 1.0 7.0 7.8 799

-116-

-117-

City	Well number	Depth ft.	Total Fe mg/1	CO2 mg/l	рН	Total hardness as CaCO ₃ mg/1
A. Banjakri	F 152	100	0.64	20.0	7.6	466
A. Pol	F 52	253	17.0	1.0	8.4	122
A. Nongsonghong	F 51	155	3.0	4.0	7.3	2155
Chaiyapum						
A. Kaset - -somboon	B 95	170	3.0	37.0	7.0	
A. Kaset - -somboon	в 94	110	5.5	16.0	7.5	1120
A. Phukhiew	C 40	1004	3.5	39.0	7.3	1500
A. Phukhiew	в100	345	16.0	14.0	7.2	1645
A. Kaengkraw	P 59	150	2.4	86.0	6.9	656
A. Kaengkraw	P 53	120	7.6	117.0	6.8	224
A. Konswan	D 89	200	2.0	10.0	7.4	420
A. Maung	P 40	135	2.0	8.0	7.3	250
A. Saturus	C 77	100	2.8	28.0	6.3	12600
A. Saturus	C 78	400	5.5	53.0	7.0	1002
A. Banned -	G 44	100	-	131.0	6.5	5400
narong A. Bamned -	G 42	110	2.5	52.0	6.9	405
-narong A. Bamned -	G 38	645	2.8	32.0	7.1	240
-narong A. Bankhuaw	C 81	191	4.5	22.0	7.5	200
Sakonnakorn						
Ban Khok -	A 88	200	8.0	17.0	7.1	1680
-Si School Wat Ban	A 87	480	3.2	29.0	7.1	803
-Khok Si A. Uthum	B 28	346	5.0	60 .0	7.1	476
-Phonpisai						

-118 -

1			1	· · · · · · · · · · · · · · · · · · ·	·····	1
City	Well number	Depth ft.	Total Fe mg/1	CO2 mg/1	рН	Total hardness as CaCO ₃ mg/1
Ban Sai Mun School	B137	50	6.0	31.0	7.4	1010
Ban Mon School	F 24	100	0.0	8.0	7.4	1000
A.Waritcha -phum	F 29	160	0.2	24.0	6.9	200
A.Waritcha	B110	200	1.0	22.0	7.6	532
-phum Wat Thep	B113	70	10.0	6.0	6.9	241
-Wong Saram Ban Na Muang	F 31	100	2.0	2.0	7.6	50
A.Wanonniwat	A 52	250	13.0	88.0	6.8	483
A Punna nikom	F 19	119	4.0	4.0	7.3	538
Ban Phak Kham -Phu Public Area	A 90	150	1.5	3.0	8.1	139
Ban Nong Suan -Public Area	в200	375	0.26	1.0	8.6	60
Ban Sang Kho	F 7	775	2,8	0	8.5	90
Wat Ban Nong -Krabok	в130	110	1.2	7	7.1	70
Ban Phom -Yai School	B127	110	5.0	66.0	6.9	210
Wat Ban Khok	в208	100	23.0	7.0	7.6	380
-Sung Ban N.Ramai	G 8	250	8.0	60.0	£_9	270
A Kusuman	G 7	1045	0.0	66.0		808
Ban A-Kat	В118	100	3.0	21.0	58	91
Public Area Ban Phon	B153	75	4.0	4.0	7.5	460
-Ngam A.Wanonniwat	A_56	260	11.4	22.0	5.9	4445
Banchampa Dong	B.116	75	6.0	21.0	5.9	52
Public Area A.Wanonniwat	F 32	100	1.0	16.0	7.4	222
L	1		ļ <u>.</u>]		

-119-

ľ

· · · · · · · · · · · · · · · · · · ·						·····
City	Well No.	Depth ft.	Total Fe mg/1	CO ₂ mg71	рН	Total hardness as CaCO ₃ mg/1
<u>Nakornpanom</u>						
Ban Sam Kha	G 24	75	8.0	15.0	6.6	60
Ta Lad Kae/	C 10	845	11.0	12.0	7.2	3414
Highway Sect. Ban Dong Sawang	g B186	105	28.0	28.0	7.0	160.0
A Maung	C109	65	4.0	48.0	6.1	40
Ban Nong	C104	275	1.0	90.0	6.8	550
-Na Saeng Wat Ban	B128	150	1.0	34.0	7.0	298
-Chieng Su Wat Maheson	C117	80	1.0	40.0	6.7	140
Ban Pla	C113	85	1.0	29.0	7.1	310
-Pak School Wat Ban	B158	95	1.0	9.0	7.1	120
-Phiman Ban Phon Tum	C122	85	2.0	84.0	5.8	357
Public Area 500 m.S.E. of	B160	150	70.0	13.0	7.4	140
B.160NP.18 A.Thapanom	G 20	95	12.0	72.0	6.5	170
A. Mukdaharn	G 28	85	1.4	7.0	7.9	310
A.Kham-Cha-I	B175	135	15.0	3.0	5.2	64
Wat Ban Thum	B178	100	0.0	26.0	7.3	216
-Wan Lum Phraphleng Canal Const.	G120	100	0.0	20.0	7.4	222
<u>Kalasin</u>		}				
Ban Hin Lat	К 9	105	12.0	82.0	6.8	180
School Ban Wan Public	K 19	100	2.0	6.0	7.9	240
Area Huai Phung	K 24	105	6.0	31.0	7.2	238
Self-Help Settlement			<u> </u>			

Charles .

Ì

-120-

· · · · · · · · · · · · · · · · · · ·		1				
City	Well No.	Depth ft.	Total Fe mg/l	CO ₂ mg71	рН	Total hardness as CaCO3 mg/1
Ban Don Hua -Kha	K 16	100	6.8	37.0	7.3	252
Ban Nong -Saeng Public Area	D122	90	18.0	7.0	7.1	70
Huai Phung Self-Help Settlement	к 28	100	1.2	6.8	6.8	60
- do -	K 29	85	7.0	1.0	8.1	72
A. Sahat Khun	K 31	200	0.06	4.0	7.9	212
A Sahatkhun	D 46	526	10.0	22.0	5.5	24
Ban Nong -Pha Om	D 45	129	4.9	10.0	7.6	202
Wat Ban Nong So	C100	100	12.0	60.0	6.9	260
Ban Khok Si	D 37	128	4.4	19.0	7.5	210
A.Kamalesai	B 59	100	29.0	0.0	5.7	157
Wat Ban -Kabak	K 52	60	8.2	24.0	7.0	342
Ban Kaeng-Am Highway Sect.	F 6	510 -	18.0	124.0	5.5	86
Ban Nawi Public Area	K 15	120	1.0	0.0	7.3	38
Huai Phung Self Help Settlement	K 27	100	31.0	86.0	645	176
Ban Phon Thong	D 43	165	16.0	12.0	5.5	20
Kalasin Govt. Off.	D 39	118	11.0	1.2	7.9	46
A. Kalasin	G 58	230	41.0	8.0	5-2	50
Ban Nong Saeng Public Area	D122	90	18.0	7.0	7.1	70
Ban Nawi Public Area	K 15	120	1.0	0.0	7.3	38
Huai Phung Self Help Settlement	K 28	100	1.2	24.0	6.8	60

., 🏹

pН Well Depth Total Fe co., Total City mg/1 No. ft. mg/1Hardness as CaCO2 mg/1Roi-ed 6.7 A. Pontong D 136 200 1.6 45.0 346 16.0 7.3 540 A. Archsamat D 113 255 2.0 A. Salapume D 21 111 2.8 7.0 7.5 986 A. Salapume D 139 90 4.8 92.0 5.8 48 A. Salapume D 133 100 1.0 130.0 6.3 285 A. Suwannapume D 110 150 4.0 6.0 6.7 160 300 124.0 A Jaturapuk D 11 4.0 6.4 153 -piman D 107 100 5.0 13.0 7.2 448 A. Jaturapuk -piman D 104 17.0 7.4 A. Maung 200 4.4 136 A. Maung D 24 130 5.0 626.0 6.2 180 A. Maung D 105 200 7.0 9.0 6.9 70 A. Tawachaburi D 130 200 5.0 7.0 7.0 4439 Mahasarakam A. Maung D 57 80 0.02 3.0 7.9 2000 A. Maung D 27 129 10.0 13.0 7.3 420 A. Maung D 99 200 20.0 7.0 7.9 200 7.2 D 55 104 4.0 A. Maung 4.0 40 13.0 A. Wape Patum D 50 198 3.5 7.2 920 A. Wape Patum D 54 137 12.0 61.0 7.0 790

-121-

A.C.

A. Payakka

-pumpisai

A. Nang Chaek

С

С

96

88

150

400

11.0

1.5

9.0

1.0

7.6

8.2

308

60

-122-

City	Well No.	Depth ft.	Total Fe mg/l	CO2 mg/I	рН	Total hardness as CaCO ₃ mg/1
A. Chieng Yaen	G 49	200	8.7	215.0	6.1	852
Wat Ban Kho	G 54	150	4.0	2.0	8.6	90
A.Kosompisai	D 68	260	4.8	6.0	7.3	83
A.Kosumpisai	D 70	205	12.0	2.0	8.4	90
A.Kosumpisai	D 98	200	14.0	58.0	7.1	110
Wat Ban Nong -Nae	D 65	500	13.0	3.0	8.2	130
-Nae Wat Ban Dong	C 93	300	0.12	13.0	7.4	48
Wat Ban Nong -Bua Santu	C 94	300	11.0	4.0	7.4	495
Nong Khai						
A. Srichieng -Mai	A163	130	5.0	48.0	6.3	12
A. Srichieng	A160	110	12.0	12.0	5.2	0
-Mai A. Srichieng -Mai	A 68	1,00	1.2	10.0	7.7	300
-Mai A. Srichieng -Mai	A157	110	5.0	24.0	6.4	44
A Thabo	A177	115	5.0	44.0	7.0	296
A Thabo	E142	155	6.8	60.0	5.8	38
A Maung	A154	105	12.0	33.0	5. 8	560
A Maung	E 20	160	9.8	44.0	ا ويت	312
A Maung	A175	155	0.0	5.0	8.2	176
A Maung	A151	105	0.0	3.0	5.2	188
A Maung	A172	155	0.0	0.0	8.4	152
A Maung	F 65	100	14.0	0.0	8.1	1164

	· · · · · · · · · · · · · · · · · · ·					
City	Well No.	Depth ft.	Total Fe mg/l	CO ₂ mg/1	рĦ	Total hardness as CaCO ₃ mg/1
A. Maung	F 69	100	10.0	134.0	6.7	320
A Bungkan	A134	160	3.0	10.0	6.9	40
A Srichieng -Mai	A155	100	4.0	1.0	7.8	60
Ban Don Va Nang	A132	300	21.0	3.0	7.8	720
Ban Hua Rat	A136	200	1.0	17.0	7.1	390
A.Chumpolburi	C140	67	0.6	144.0	5.7	26
A. Nongtum	A 18	301	2.0	36.0	7.5	1290
A. Rattana -buri	C148	500	15.0	7.0	7.9	176
A. Rattana -buri	C149	80	6.2	36.0	6.4	56
Ban Tha Sila School	A 17	438	16.0	0.0	8.2	192
A.Jom Phra	A 24	1031	1.8	76.0	6.8	532
A.Jom Phra	A 17	142	5.6	7.0	7.8	842
A Maung	A 4	405	18.3	21.0	7.0	594
A Samrongtab	C166	100	9.0	0.0	8.5	2800
A. Sangkha	C157	120	7.0	12.0	7.7	212
A Sangkha	C156	75	4.0	6.0	7.3	262
A Prasat	C125	150	4.0	29.0	7.2	55
A. Prasat	C1 24	150	1.8	2.0	7.3	62
Burirum						
A Pakonchai	B 18	120	4.8	36.0	6.8	196
A Pakonchai	B 15	101	16.0	19.0	7.4	94

-123-

•

5

- 124.-

.

City	Well No.	Depth ft.	Total Fe mg/l	CO2 mg/1	рН	Total hardness as CaCO ₃ mg/1
A Nangrong	B 20	105	3.0	15.0	8.0	72
A Nangrong	B 21	255	4.0	52.0	7.0	408
A Maung	B 23	180	2.5	111.0	6.9	376
A Maung	B 24	513	6.3	3,3	7.5	50
A Maung	B 10	100	5.6	60.0	7.0	340
A Krasang	B 26	271	3.5	44.0	7.3	696
A Satuk	B 25	1015	10.0	60.0	6.1	576
A Krasang	B 27	94	4.2	6.0	7.4	461
<u>Srisaket</u>						
A Utumpornpi	B 31	301	4.0	4.4	7.5	1860
-sai A Maung	B 42	356	θ.5	39.0	7.1	618
A Rasisai	C198	130	6.0	24.0	6.3	2386
A Prangku	C17 0	100	0.5	5.0	7.8	1115
A Khukhun	C176	240	11.0	6.0	7.4	3380
A Khukhun	C179	130	9.0	6.0	7.0	46
A Kanthara	B 38	125	10.0	3.8	7.0	1950
-lak A Kanthara	B 39	176	2.5	49-0	£.9	1316
-lak A Kanthara	C196	130	14.0	1.0	<u>1 - 2</u>	72
-lak A Khukhun	C182	100	6.6	10.0	7.8	160
Nakorn - Rachasima_						
A Buayai	C 84	253	0.0	109.0	6.4	3780
A Buayai	E 45	55	24.0	54.0	7.0	4900

-125-

City	Well No.	Depth ft.	Total Fe mg/l	CO ₂ mg/1	рН	Total hardness as CaCO ₃ mg/1
A Pratai	C 17	375	10.0	67.0	7.0	3600
A Chumpuang	D 77	405	1.2	53.0	6.9	2700
A Pimai	D 74	180	0.8	219.0	6.1	2654
A Jakaraj	G114	300	16.0	12.0	7.4	228
A Maung	H 11	245	8.5	16.0	7.3	348
A Maung	Q 3	215	0.0	17.0	7.1	144
A Maung	н 4	145	2.0	3.0	8.2	100
A Chokchai	D 73	345	1.0	9.0	7.5	1205
A Pakthongchai	D156	190	1.0	31.0	7.1	400
Nakornracha -sima						
A Pakthongchai	G121	298	1.0	44.0	6.4	2814
A Pakchong	P 10	75	4.5	52.0	7.1	684
A.Pakchong	P 22	150	7.0	300.0	6.5	390
A Pakchong	P 18	101	0.0	135.0	6.7	859
A Sekeui	P 12	800	7.0	4.0	8.1	180
A Sungnern	A 65	170	5.9	520	7-2	222
A Dankhuntot	F 44	100	116.0	7.0	7.3	1202
A Noanthai	G 1	1465	7.7	26.0	7.3	1100
A Noanthai	G 35	1500	0.0	3.0	7.4	150
A Kong 👻	D 81	100	0.0	35.0	6.1	2200
A Kong	D 82	150	0.0	3.0	8.0	306
A Nensuang	B 80	100	0.0	70.0	6.6	1900

-126-

				······································		
City	Well No.	Depth ft.	Total Fe mg/1	CO ₂ mg71	рН	Total hardness as CaCO ₃ mg/1
<u>Ubol</u>	n 75	200		21.0	7 0	100
A. Laeng -Nokta	B 75	300	4.0	31.0	7.2	158
A. Laeng -Nokta	G 99	100	0.0	17.0	6.5	5200
A. Khemraj	A 50	310	3.5	22.0	6.6	370
A. Khong Jeam	L 12	165	14.0	12.0	8.4	48
A.Pibulmungsa -harn	B 55	125	0.5	111.0	6.5	158
A.Dej-Udom	G 65	125	1.0	5.0	7.6	90
A.Warin -Chamrap	B 50	400	0.01	1.6	7.7	134
A.Warin -Chamrap	G 61	65	4.4	63.0	6.4	16
A.Khaengnai	A 35	435	6.5	15.0	6.5	40
A.Kam Khaen -Keo	A 38	105	6.0	14.0	6.4	53
A.Yasotorn	A 44	1010	5.0	156.0	6.0	98
A.Amnaj -chareon	F 79	100	7.5	235.0	6.1	240
-chareon A.Amnaj -chareon	F 77	60	3.0	55.0	6.7	165
-chareon A.Amnaj -chareon	F 80	150	0.2	73.0	6.9	92
Song Khla			-		•	
A. Had Yai	н 42	-	2.0	12.0	£.1	40
A. Maung	н 43	90	1.2	9.0	7.4	250
Thai Marine -Food Co.	H 45	200	90.0	15.0	Ξ_B	12
A Had Yai	н 46	-	1.9	20.0	5.6	20
Songkhla Dept. of Trans.	н 48	200	8.0	12.0	7.2	144
Kho Neng A Muang	н 49	50	5.0	5.0	8.0	104

-127-

£1...

City	Well No.	Depth ft.	Total Fe mg/l	co mg/1	рH	Total hardness as CaCO ₃ mg/1
4th Mineral Resource	Н 50	170	17.0	6.0	6.4	1072
Centre A. Ranot	н 51	240	63.0	30.0	7.3	374
A. Ranot	Н 52	410	13.0	30.0	7.2	276
<u>Uttaradit</u>		•				
A. Nam Pat	к 33	250	39.0	2.0	8.1	104
A. Nam Pat	к 34	50	9.0	25.0	6.8	92
Ban Pha Luat	G 70	150	130.0	3.0	7.9	76
Ban Wang Hua Doi	G 69	100	40.0	2.0	7.9	82
Prachinburi						
Klong Nam Sai Self Help Settlement	Q 8	150	7.0	35.0	7.4	120
Ban Nong Phu	Q 11	80	2.2	40.0	7.3	396
A. Ta Phraya	Q 13	215	2.4	11.0	7.1	248
A. Taphraya	Q 15	150	2.8	107.0	7.0	264
A.Aranyapra	Q 18	150	0.0	41.0	7.1	216
-thet A.Aranyapra	Q 20	88	2.8	5.0	8.0	200
-thet Chakkraphong	Q 25	95	1.8	3.0	7.0	24
Army Camp Bandong Khilek	Q 29	150	0.1	5.0	7.7	140
Public Area Wat Phrom Senaram	Q 36	150	6.0	17.0	7.4	352
Nakorn Nayok		4 1 1 1				
Ban Na Police Station	Q 38	125	6.5	0.0	8.9	28

-128-

			÷		·····	
City	Well No.	Depth ft.	Total Fe mg/l	CO ₂ mg/1	рН	Total hardness as CaCO ₃ mg/1
Ban Phrik Health Centre	Q 39	320	1.0	5.0	7.4	410 €
Ban Koka To	Q 42	250	9.0	7.0	7.3	220
A. Pakphli	Q 43	110	8.0	23.0	6.5	2320
Khao Cha -Ngok Army Camp	Q 41	80	3.0	6.0	6.9	8
Saraburi						
A. Phraputabat	E 55	20	0.0	24.0	7.4	480
A. Phraputabat	E136	150	2.0	10.0	7.7	260
A. Phraputabat	F137	100	42.0	22.0	7.3	50
A. Kaeng Koi	P 68	150	0.4	11.0	7.8	198
A Maung	P 64	120	1.0	2.0	8.5	12
A. Uíharn	-	258	0.45	-	6.8	80
-Daeng A. Nong Kae	-	113	1.0	-	6.5	960
A. Nong Kae	-	183	0.04	-	8.0	420
Petchaboon						
A. Maung	E 83	113	20.0	3.0	8.2	153.
A. Maung	E 81	140	21.0	17.0	7.2	130
A. Nong Phai	E 73	152	8.0	34-0	7.1	269
A. Wichienburi	E 66	113	5.5	19.0	7.6	618
A.Wichienburi	E 88	308	5.0	118.0	6.6	47
A. Maung	-	157	0.6	-	7.0	450
A. Klomsak	-	350	1.7	-	7.4	228
A. Chondaen	-	157	2.0	-	7.1	2200

A.

APPENDIX B

Table B2 - Iron Concentration in Ground Water of Thailand from Department of Public and Municipal Works, Ministry of Interior.

Re-

City	Well No.	Depth ft.	Total Fe mg/1	рН	Total hardness mg/1 CaCO ₃
<u>Sukho-thai</u>					
A.Sawankaloke	178/2-08	98	2.3	7.3	248
A.Srisatchanalai	128/2-07	60	1.8	6.6	480
A.Srisamrong	^{152/} 26-07	260	0.6	7.2	94
A.Maung	147/ ₂₁₋₀₇	169	1.3	7.2	126
A.Maung	^{136/} 6-07	145	3.3	7.7	85
<u>Phitsanuloke</u>					
A. Maung	^{208/} 32-08	188	1.8	7.2	320
A. Maung	213/ ₃₇₋₀₈	240	4.8	7.1	102
A. Maung	221/ ₄₅₋₀₈	185	5.8	6.8	98
A. Maung	190/ ₁₄₋₀₇	215	5.8	6.8	205
A. Bangkatum	191/ ₁₅₋₀₇	270	5.3	6.8	208
Nakhorn Sawan					
A. Maung	^{168/} 42-07	287	6.5	6.5	132
A. Maung	175/ ₄₉₋₀₇	285	5.5	6.9	1500
A. Maung	K 32	95	12.0	8.1	116
A.Banpotwisai	207/ ₃₁₋₀₈	241	8.2	-	-
A.Banpotwisai	216/ ₄₀₋₀₈	267	4.4	-	-
A.Payukhakeri	^{145/} 19-07	131	0.8	7.3	450

Well Depth Total Fe Total pН hardness City mg/1No. ft. mg/1 CaCO3 Singh-buri 14/13-03 A. Maung 170 1.0 8.0 321 294/18-10 A. Phromburi 214 7.0 402 0.2 A. Bangrajun 283/7-10 312 0.2 7.2 216 283/9-10 A. Tachang 354 8.3 220 0.4 Kanchana-buri 171/44-07 A. Maung 113 0.2 173/46-07 A. Tamaka 215 0.9 7.9 148 A. Tamaung 55/12-03 193 2.5 7.3 164 64/4-05 A. Panomtaun 155 7.0 1200 1.2 139/12-07 A. Panomtaun 80 150 2.8 8,4 Supanburi 87/44-05 A. Songpenong 187 1.4 8.1 136 13/12-03 A. Don-jedi 178 1.3 8.0 212 17/16-03 A. Utong 152 6-5 2100 2.5 230**/**9-09 A. Utong 144 5.0 7.5 8**50** Ayudhaya 30/7-04 A. Maung 123 0.3 7.1 158 88/45-05 A.Wangnoi 350 0.2 -²⁹³/₁₇₋₁₀ A.Bang Pa-Hun 300 1.0 7.3 220 ^{249/}28-09 A. Bang Pa-in 565 0.2 -

-130-

الفت إلك

City	Well No.	Depth ft.	Total Fe mg/l	рН	Total hardness mg/1 CaCO ₃
A. Tarae	^{24/} 1-04	167	1.0	7.4	2140
A. Tarae	26/ ₃₋₀₄	167	0.3	7.2	1220
Pathum-thani					
A. Maung	^{311/} 35-10	248	0.8	7.5	542
A.Thunga-buri	279/ ₃₋₁₀	364	0.4	8.7	32
A.Klong-luang	286/10p10	248	0.4	8.1	102
A.Klong-Luang	^{289/} 13-10	312	0.2	8.4	106
Ratburi					
A. Maung	211/35-08	131	0.2	7.3	325
A.Potharam	206/ ₃₀₋₀₈	660	0.8	7.0	267
A.Paktho	146/21-07	221	0.8	7.7	550
A.Paktho	139/ ₁₃₋₀₇	300	1.8	6.9	350
A.Dannernsaduak	155/29-07	213	1.3	7.4	1100
Angthong					
A. Swanng-ha	^{307/} 30-10	112	0.2	-	-
A. Chaiyo	325/ ₄₉₋₁₀	1 7 4	0.1	-	-
Samutprakan					
A. Maung	-	760	0.5	7.3	134
A. Maung	Н 29	903	11.0	6.9	312
A Prapadaeng	н 31	403	5.0	8.1	280
A Prapadaeng			4.3	7.9	2350

-131 -

X

[!	1			
City	Well No.	Depth ft.	Total Fe mg/l	рН	Total hardness mg/l CaCO ₃
<u>Cholburi</u>					
A. Banglamung	^{125/} 2-06	141	1.0	8.5	72
A. Banglamung	^{103/} 5-06	136	2.4	7.7	280
A. Banglamung	133/ ₇₋₀₇	141	0.3	8.2	20
A. Panthong	^{131/} 5-07	160	1.3	7.4	174
Rayong			-		
A. Maung	203/ ₂₇₋₀₈	84	0.8	7.2	280
A. Maung	205/ ₂₉₋₀₈	80	1.0	7.1	53
A. Maung	151/25-07	45	2.9	5.9	80
A. Bankhai	149/23-07	67	3.3	6.2	17
A. Bankhai	^{150/} 24-07	53	1.3	5.7	80
<u>Chanthaburi</u>	J				
A. Khlung	^{144/} 18-07	7 4	1.2	6.3	40
A. Khlung	137/ ₁₁₋₀₇	75	0.8	5.0	2
Pichit					
A. Tapanhin	163/ ₃₇₋₀₇	215	2.3	7.8	136
A. Tapanhin	140/ ₁₄₋₀₇	150	1.3	-	-
A. Tapanhin	181/ ₅₋₀₈	310	8.0	-	-
<u>Chainat</u>					
A. Sanphraya	238/ ₁₇₋₀₉	- 91	0.7	7.2	302
A. Sanphra-ya	241/20-09	92	0.4	7.0	451
A. Sanburi	243/22-09	232	0.6	7.4	234

-132 -

Well Depth Total Fe pH Total hardness No. ft. mg/1mg/1CaCO₃ Prae 142/16-07 7.0 A. Maung 246 2.3 168 220/49-08 A. Sung-men 368 7.2 148 0.1 232/11-09 A. Maung 210 400 0.1 7.0 Cha-choengsao 100/11-06 7.1 A.Bangpakong 295 1.8 148 20/20-03 A.Bangpakong 500 3.8 7.3 210 Prachaupkhirikhun 91/2-06 A. Maung 750 0.3 7.4 146 A. Hua Hin н 34 7.3 140 0 1528 A. Pranburi 7.4 940 317 1.0 Wat Ban NongKae к 37 100 33.0 8.0 2640 Nakhornpathom 218/42-08 0.1 7.5 A.Kampaengsaen 350 168 200/24-08 302 0.4 7.2 400 A. Maung 191/15-08 307 0.7 7.9 497 A. Maung ^{195/}19-08 0.1 7.6 480 A. Maung 645 Nondhaburi 130/4-07 A. Maung 1.3 7.4 174 720 129/3-07 A. Pakred 565 1.0 7.1 220 82/93-05 A. Pakred 530 3.0 7.4 340 119/30-06 A. Pakred 56**7** 2.1 7.1 219

-133-

Well Depth Total Fe Total pН City hardness No. ft. mg/1mg/1 CaCO3 Phetburi 7.1 1440 A. Maung н 32 850 17.0 7.0 2044 A. Khao-yoy н 33 200 2.0 ^{13/}14-03 0.3 7.6 620 A. Banlam 512 11/10-03 644 685 0.5 7.0 A. Banlam Samutsakorn 89/56-05 0.3 7.3 197 A. Kathumban 540 212/36-08 0.1 7.1 355 382 A. Kathumban 215/39-08 542 1.8 7.5 2192 A. Kathumban 210/34-08 1.6 7.5 174 A. Kathumban 450 Dhonburi 0.7 8.4 455 A.Pasijareon 24 481 12 580 0.5 7.5 173 Wat Tongtamachart 0.2 7.6 Wat Panurangsri 9 530 98 580 1.0 8.2 154 Wat Chimtayigawat 20 0.2 8.1 552 140 Wat Craewan 19 1.2 7.8 6 670 484 Wat Warurachin 4.8 : 7.3 546 523 Wat Nang 34 1.7 7.3 Wat Porieng 10 559 214 0.7 8.4 Soi Benja 23 520 127 0.1 8.2 Sapan Put 11 580 98 0.3 7.4 Klong san 552 158 1

and the second second

-134 -

-135-

.

1

1	T	(1	· · · · · · · · · · · · · · · · · · ·	
City	Well No.	Depth ft.	Total Fe mg/l	pН	Total hardness mg/1 CaCO ₃
Bangkok					
A. Sampantawong		713	0.9	7.4	513
A. Patumwan		-	1.0	7.6	403
A. Phranakorn		607	0.5	7.2	247
A. Phranakorn	- 	597	0.5	7.2	195
A. Bangkhen		600	1.3	8.4	260
A. Bangkhen		570	1.3	7.9	126
A. Bangkapi	1 6 7	463	0.1	8.0	137
Average of overall chemical analyses from Chemical Analyses Section, Sam Sen Water Works		407 -669 (580)	0.0 -1.4 (0.7)	6.9 -7.6 (7.5)	90 -242
				-	
				ب فـــــبــــــــــــــــــــــــــــــ	

Note: A = Ampheur