1
232.0

78 WA

Deutsches Zentrum für Entwicklungstechnologien Centre allemand d'inter-technologie appropriée Centro Alemán para Tecnologías Apropiadas

in

Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), GmbH

> 16.9
> 232.0
> $786 A$

WATER PUMPING SYSTEMS

 USING
RENEWABLE ENERGIES

WATER PUMPING SYSTEMS

USING
RENEWABLE ENERGIES

S $2 / 2$

PREPARED BY

Gabriele Heber, Dip1.-Chem.

PUBLISHED BY	German Appropriate Technology Exchange (GATE)
	in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), GmbH Postfach 5180, D-6236 Eschborn 1, Federal Republic of Germany

CONTENTS:

I. A General View on Water Pumps	Page
Using Renewable Energies	1
A. Different Types of Water Pumps	1
B. Pump Components	
C. Cormon Hand Pump Troubles	12
\quad and Reredies	18
D. Schedule for Maintenance of	
Simple Hand Pumps	21

II. Available Solutions
A. Table of Institutions 22
B. Short Descriptions 1)-12) 24
C. Enclosures to B 1)-12) 36

QUESTION-AND-ANSWER-SERVICE
for "appropriate technologies"

The question- and-answer-service - a major service provided by GATE - supplies information, free of charge, on appropriate technologies. In performing this function, GATE is part of an international information and documentation system called SATIS (Socially Appropriate Technology Information System), in which ITDG (Great Britain), TOOL (Netherlands), ATOL (Belgium), VITA (USA), GRET (France) and SKAT (Switzerland) also participate.

The question-and-answer-service is made available to public and private institutions and selected persons in developing countries who are concerned with the development, adaptation, introduction and application of appropriate technologies. With this service GATE is aiming to supplement commercial private-enterprise activities by making a contribution to non-commercial technology transfer, particularly in the field of traditional, intermediate and alternative technologies. In addition to technology transfer from industrialized nations to developing nations, particular attention is given to cooperation between the developing nations themselves.

The activities of the question-and-answer-service are geared to the actual technological requirements indicated by the enguiries received from developing countries. At the same time, the demand Eox particular solutions is determined with the aid of a questionnaire distributed to institutions in developing countries dealing with situation-related solutions. Parallel to this, the questionnaire also makes it possible to ascertain solutions already avajlable within these institutions. The question-and-answer-service relies not least on the documentation on newly-developed or traditional technologies supplied to it by such possessors of know-how.

When answering enquiries the question-and-answer-service uses documentation resources built up in this way. The information accumulated there on particular technological problem areas is - if frequently requested - combined to form "modules".

These answer packages, intended for dispatch, contain, where possible, technical descriptions and design drawings and are thus directly appli-cation-related, i.e. they provide an outline of technologies suitable for self-construction. The know-how of national research instititions and universities, with whom GATE works in close cooperation, is drawn upon to help answer specific enquiries, which can often be expected as feedback from the communication started with "modules".

In the event of enquiries dealing with typical problems encountered by a number of developing nations, but for which no suitable solution is available or can be obtained, GATE has the opportunity to suggest appropriate R \& D measures to various sources of finance.

With the modules edited within the question-and-Answer-Service we AIM TO GIVE AND COMPILE INFORMATION ON VILLAGE-LEVEL-TECHNOLOGY, We try to stimulate the development of mainly rural areas with a STRONG EMPHASIS ON THE SELF-HELP CONCEPT.

By no means do we intend to present a sort of recipe for an APPROPRIATE WAY OF DEVELOPMENT OR FINAL TECHNICAL SOLUTIONS WHICH We consider to be the answer to the problems concerning the QUESTION OF DEVELOPMENT IN RURAL OR SUBURBAN AREAS.
Knowing well that information is the first step when choosing ACTIVITIES AND that - ESPECIALLY in the field of technology there is a great amount of information available, we tried to SELECT SOME OF THE SPECIFIC TECHNOLOGY NEEDS OF THE MAJORITY OF PEOPLE IN DEVELOPING COUNTRIES. THESE PEOPLE LIVE IN AREAS WITH a LACK OF WATER SUPPLY, SANITATION FACILITIES, APPROPRIATE HOUSING possibilities, where generally the food production is low and inefficient, the energy demand is not at all met and the majority OF PEOPLE IS ONLY PARTLY OR NOT AT ALL EMPLOYED.

The selection of topics within our information service normally is the result of an evaluation of inquiry-statistics, i.E, AFTER having received several questions in the field of solar cooker, FOR instance, we decided to compile the information concerning this topic and edited the "Survey of Solar Cookers".

Thus, the feedback we get from institutions and individuals in the Third World plays an important role for the quality of our moduls and ti'Eir orientation to practical work. Therefore we ask you NOT JUST TO READ OUR information but write back to us and tell us YOUR OPINION AND CRITICISM.

As you can imagine, this is the best way for us to check the QUALITY AND EFFICIENCY OF OUR QUESTION-AND-ANSWER-SERVICE, AND FOR YOU IT COULD BE OF HELP, TOO, BECAUSE WE MIGHT SUPPLY YOU WITH MORE DETAILED INFORMATION WHEN NE KNOW MORE ABOUT THE SITUATION you are in and take into consideration your specific problems.

In addition, the experience you have gained and informed us about, Might be useful for others. Having contacto with many organisations in different parts of the world we are in a position to forward your ideas and proposals in the field of technology transfer and appropriate tecunology.

Please fill in the questionnaire (next page) to encourage our EXCHANGE ACTIVITIES FOR A MUTUAL BENEFIT.
gate
c/0 Deutsche Gesellschaft für TECHNISChe Zusammenarbeit
(GTZ), GMBH
Postrach 5180
D-6236 EsChborn 1
FEDERAL REPUBLIC OF GERMANY

$-I V-$

Please fill in this questionnare
and send it to

Your name and address:

GATE c/o
Deutsche Gesellschaft fuir
Technische Zusammenarbeit, GmbH P.O. Box 5180

D-6236 Esch born 1

QUESTIONNAIRE

MODULE No.

DATE

1. How did you get this information?
o I made a request at GATE and asked for it
o Someone else gaveito me (Who was it? \qquad
o or:
2. Did you read the complete module?
o yes, from the beginning to the end
o only in parts

- only the parts I was specially interested in
o or:

3. What is your opinion about it?
a) general understanding

- diEficult
- just right
- easy
i) theory and basic knowledge
- too much of it o just right o too few
c) orientation to practical work
- lacking o limited o just right
d) language, over-all presentation
- appropriate for your needs o too complicated
e) what else do you think is worth mentioning? (Please use back page for additional remarks and suggestions!)

4. Do you see any practical application for the received information?

I. A General View of Water Pumps Using Renewable Energies

In this chapter short information about the different types of water pumps is given. Mostly these pumps are used for drinking water supply and irrigation.

The necessary energies for the described pumps are belonging to the so-called renewable energies: man, animal, or water power, but also wind and solar energies.

This general view mainly refers to the folloving book: "Hand Pumps for Use in Drinking Water Supplies in Developing Countries", published by the UNEP and the WHO, Technical Paper no. 10, Juli 1977, Netherlands, x) which is highly recommended for more intensive studies of the problem.
x) Postal address: IRC, P.O. Box 140

2260 AC Leidschendam, the Netherlands

A. Different Types of Water Pumps

1) Traditional Water Lifting Devices

There are a lot of water lifting devices which have a long tradition and are made from indigeneous material One example is given here with the "Shaduf", a counterweighted bailer.

Shallow well pumps are suctions pumps and use atmospheric pressure to lift the water by producing a partial vacuum with the piston. The theoretical max. lift for a suction pump is about 10 meters, but due to frictional resistance and inefficiencies in pump design and operation the practical maximum lift is about 6 m or less. It depends on the altitude above sea level and the temperature of the water (see table and figure). The graph shows under which conditions the lift pump works, otherwise the priciple of a deep well pump should be used.

3) Deep Well Pump .

The principle of operation is the same as desribed for the shallow well pump, the difference is the location of the cylinder which is installed below the lowest water level.

Pump discharge depends on the diameter of the piston, the length of the stroke and the number of strokes per minute. If the water level is less than 9 m below the surface of the ground, the cyjinder could be up to $11-12 \mathrm{~cm}$ in diameter. If the water level is farther from the surface, the long. colum of water that must be lifted becomes heavy and a great effort is required to operate the pump. The greater the distance to the water level, the smaller the diameter of the piston should be, so it is not too hard to pump. It is also possible to vary the distance from the well to the post supporting the pump handle to give better leverage. The closer the handle pivot is to the well, the easier it will be to pump, but the length of stroke will be smaller and so will the discharge.
4) Force Pumps

Force pumps are designed to pump water from a source and to deliver it to a higher elevation or against pressure. They are used primarily to pump water into reservoirs and pressure tanks. All pressure-type water systems use force pumps. They are enclosed so that the water can be forced to flow against pressure. They are available for use on shallow or deep wells.

FORCE PUMPS

5) Diaphragm Pump

CROSS-SECTION OF A DIAPHRAGM PUMP

The diaphragm pump is a suction type pump. As the diaphragm (an elastic membrane) is lifted, liquid is drawn in through the inlet valve at the left. When the diaphragm is depressed, liquid is forced out at the right. It will pump the largest quantity of water, but can only operate when the water level in the well is not more than about 4 meters below the pump. This type is often used for irrigation.
6) Rotary Pumps

7) Bucket and Chain Pumps

Small buckets attached to an endless chain are rotated over sprockets as shown so that each bucket dips water from the source at the bottom, carries it to the top, and empties it into the spout as it passes over the top sprocket.

> In the chain pump rubber discs attached to an endless chain running over a sprocket at the top are pulled upward through a pipe to lift water mechanically up to the spout.
Both are mostly used on cisterns and shallow dug wells.

BUCKET PUMP
Chain remp

8) Hydraulic Ram

A hydraulic ram is a self-powered pump which uses the energy of falling water to lift some of this water to a level above the original source.

The water starts to run down through the drive pipe, going faster and faster until it forces the impulse valve to close suddenly. The weight of moving water, suddenly stopped, creates a pressure and forces some of the water past the delivery valve and into the air chamber, compressing the air more and more till the kinetic energy of the moving water is spent. The compressed air acts as a spring and forces the water up the delivery pipe to the storage tank.

In areas which have a sufficient annual wind supply water pumping is a very useful way to use wind energy, because the machine will run the whole day and work whenever there is enough wind.
During windless periods it should be possible to operate the pumps by men or animals.

Several of the hand-pumps discussed here can easy be adapted for windmill drive. Also here it is necessary to decide between high quality, factory made equipment which can be made locally, often from local materials, but using some imported components and which make demands on local people both for operation and maintenance.

Only a few, simple mechanisms will be mentioned here:

1. The Cretan sail-windmill with a piston pump or an Archimedian screw (see figures on page 34).
2. The Lubing windmill pump, a 4-or 6-bladed windwheel which is self-directing in the wind. This model can be connected with a piston suction pump or a deep well pump.
3. The GS-windmill and waterpump, a 2-bladed windwheel combined with a suction or a deep well pump (see figure).
4. The Sahores windmill, suitable for construction in a rural situation. It has 16 small canvas sails in a 3 -metre diameter wheel and reeds much less adjustment than the sails of the Cretan machine (the sail turns away from the wind automatically).

It is easy to construct but parts have to be replaced frequently. (Developed with the help of the World Council of Churches, plans available from CCPD, P.O. Box 66, Geneva, Switzerland.)

There are several other types of wind pumping systems. For further information on wind energy and source lists please contact our institution.

10) Sun Powered Water Pumps

Solar energy is perhaps the largest and most permanent source of power available to man, but the great difficulty is to convert solar energy into a different form of energy that canbe stored and used.

At the present moment most of the existing solar water pumps are expensive and very complex although new discoveries and mass production will inevitably bring the price down.

Even if there are some solar water pumps produced in small series one can say that all the obtainable pumps are in an experimental stage.

The principle of the operation of a solar water pump shows the following picture.

First thereare large flat collecting plates underneath which are jackets containing water. The water heats up to a temperature of about $80^{\circ} \mathrm{C}$ and then circulates to a storage tank. The heat of water is transmitted to a liquid gas (e.g. butane) which evaporates and expands, and so drives an engine which is connected with the water pump. The cold pumped water condenses the gas, and the cycle can begin anew.

Further information about solar energy you can get from our institution.

B. Pump Components

1) The Handle

The figure below illustrates the simplest type of handle mechanism: a one piece handle with two connecting pins, one at the pump rod, the other at the fulcrum. This is a common arrangement for shallow well pumps.

Note in the figure that the arc cd swept by the pump rod pin defines the vertical distance S, equivalent to the plunger stroke length, and a horizontal distance Z. That is, the top of the pump rod moves horizontally as well as vertically. Because the drop pipe and the pump cylinder are fixed.in place, the lower end of the pump rod (attached to the plunger) although free to move vertically is not free to move horizontally. Thus if Z is too large the pump rod will strike the drop pipe (or the pump stand wall, depending on relative dimensions). A second problem is that the horizontal movement of the pump rod makes sealing the top of the pump stand assembly against contamination difficult. A third problem is that the resulting angular tilting of the plunger may cause excessive wearing of the plunger cup seals. A fourth problem, related to the second above, is that the top of the pump must be sealed for force pumps.

! IANDII. G:OMETRY

LEVER AND LINKAGE MECHANISMS FOR VERTICAL OPERATION OF PUMP RODS WITHOUT LATERAL MOVEMENT
typical in-lime slidea caank mechanism

c_{c} - Strome lengern
$s=2 n_{c}$

= Modius of nandie
colalion
\qquad

1*)
Eaternal wiom of iypical Cuianer wien of ippices unit (0 eplechin)

Reciprocating hand pumps generally contain two valves within the cylinder: one valve in the plunger assembly, the other in the bottom or suction end of the cylinder. Both the plunger valve and the suction valve are check valves, that is, valves restricting flow to one direction, in the case of wells, verticaily up.

Ball valves: rather than a disc, the valve opening is closed by a ball made of metal or of other material of appropriate specific gravity. The ball is usually guided by a ribbed cage. These valves are sometimes recommended for use with deeper wells.

Flapper valve: a valve in which a flexible, hinged, horizontal disc, gensrally made of leather; opens and closes over the valve opening. This is the oldest and least expensive pump valve also and is still widely used as a suction check valve in shallow well pumps. Its major disadvantage is the need for relatively frequent replacement of the leather flappers. Reinforced neoprene is a promising flapper material in this regard.

Poppet valve: a rising and falling horizontal metal disc covers the valve opening and is guided by a vertical stem or spindle concentric with its center. A section through the disc and stem - usually formed in one piece - forms a "T".

Bo!l Valve

[^0]3) Cylinders

The cylinder is a pipe or tube which houses the plunger assembly and the suction (foot) check valve. The water seal formed by the moving contact between the cylinder wells and the plunger cup seal(s) creates the partial vacuum which makes suction iift possibie.

The cylinder length is a function of the stroke length which is Lypically 12,5 to 25 cm for hand pumps, up to several times longer for windmill pumps. Additional length is required for caps and for the plunger and suction valve assemblies, for tolerances in measurement of drop pipe and pump rod lengths, and to prevent operator abuses such as driving the plunger into the suction valve with excessive handle lift. Cylinders which wear rapidly are sometimes constructed double length allowing the plunger depth to be reset and pumping to be continued without pulling and replacing the cylinder. Standard cylinder lengths available range from about 25 to 110 cm .

Cylinder diameter generally decreases with increased pumping head. Typical standard diameters range from about 7 to 10 cm for shallow wells down to 5 cm or less for deeper wells. Standard cylinders are available in diameters as small as 4 cm which will fit into a 5 cm diameter well.

Cylinders may be located in one of three places depending on suction lift and type of pump or well construction:
(1) Pump stand location: for shallow wells with suction lifts the cylinder may be an integral part of or a liner inserted in the pump stand. Pumps with cylinders located in the pump stand frequently have difficulty holding their priming water. Also, repeated wetting and drying of pump leathers shortens their useful life and increases maintenance requirements. However this configuration of punp stand and cylinder is the lowest in initial cost and its components are the most readily accessible for maintenance.
(2) Drop pipe location: for deep wells the cylinder must be located in the well, preferably below the water table. In conventional practice the cylinder is suspended from the drop pipe. Cylinders for use with drop pipes are commercially available in two basic types: closed-type and open-type cylinder.
(3) Well casing location: in wells cased with smooth pipe of appropriate diameter, the pipe casing itself can serve as the well cylinder. In some wells a short length of brass or brass-lined steel pipe may be inserted in the well casing to serve as the cylinder. In this type of installation the well casing also serves as the drop pipe. This technique was common during the heyday of wooden pumps and holds promise today with development of new well casing pipe materials, especially pipe of polyvinyl chloride (PVC). The drop pipe can similarly be simultaneously used as the cylinder. Drop pipes are usually mandatory for hand pumps atop dug wells due to their large diameter.

4. Handle springs up after down stroke (continued)	C. Suction pipe too smal.1. . or D. Water too far be-- low pump (suction pipe too long).	Replace with larger suction pipe. Place cylinder nearer water.
5. Leaks at stuffing box	A. Packing worn out or loose. or B. Plunger rod badly scored.	Kenew or ígincen packing. packing nut loose enough to allow a slow drip of water. The water serves as a lubricant. Renew plunger rod.
6. Pump is noisy	A. Bearings or other working parts of the pump are loose. or B. Pump is loose on mountings. or C. With deep-well plunger pumps having a steel plunger rod the rod may be slapping against the drop line.	Tighten or renew parts. Righten mountings. Use a wooden rod or install guides for rod or straighten drop pipe if crooked.

How to replace woan - out pacxing

APPROPRIATE TECHNOLOGIES
Collection of available solutions
Water Supply and Sanitation

	Institution/Āāäress	Device/Specificaition	Infullation Material/ Comments
1	VITA Volunteers in Technical Assistance 3706 Rhode Island Avenue Mt. Rainier Maryland, USA, 20822	Piston pump - shallow well pump - deep well pump	Details and construction description enclosed (page 36)
2	```TOOL Mauritskade 61 a Amsterdam, Netherlands```	Salawe or Shinyanga pump	Details and construction description enclosed (page 43)
3	Robert Tayabji UNICEF 9, Jorbagh New Delhi, India	Sholapur or Jalna pump - deep well hand pump	Details and short descrip tion enclosed (page 51)
4	Ets. Pierre Mengin B.P. 163 45203 Montargis, France	Hydro-pump Vergnet (Obervolta)	Details and description enclosed (page 54)
5	Chatiketu WHO, P.O.Box 765 Kano, Kano State, Nigeria	Wood and bamboo reciprocating pump	Only short information
6	Asian Institute of Technology P.O.Box 2754 Bangkok, Thailand	Inertia pump	Details and construction description enclosed (page 57)
7	IInt. Rice Res. Institute P.O.Box 933 Manila, Philippines Asian Institute of Techn. P.O.Box 2754 Bangkok , Thailand	Two designs of diaphragm pumps	Details and construction description enclosed (page 65)
8	H. Dickinson \& T.L. Winnington School of Engineering Sciences, University of Edinburgh,U	Double acting lift pump	Only short information available
9	Petro Pump Carl Westmans Väg 5 s-13300 Saltsjöbaden Sweden	Petropump - diaphragm pump	Short description entlosed (page 77)

APPROPRIATE TECHNOLOGIES Collection of available solutions	$-23-$	-
Water Supply and Sanitation		Pumps

	Institution/Address	Device/Specification	Information Material/ corments
0	Robert G. Young VITA 3706 Rhode Island Av. Mt. Rainier Maryland, USA, 20822	Chain purmp - shallow well pump (for irrigation)	Details and construction description enclosed (page 79)
1	```S.B. Watt ITDG 9 King Street London WC 2 E 8 HN```	Hydraulic ram	Details and construction description enclosed (page 83)
2	IPAT, TU Berlin Lentzeallee 86 D-1000 Berlin 33 W-Germany	Cretan sail-windmill with Archimedean screw	Information on Cretan Sail Windwheels enclosed (page 95)

B.

APPROPRIATE TECHNOLOGIES		
Collection of available solutions	Pumps	
Water Supply and Sanitation		Pas

1) Piston Pump

VITA, USA

This classical type of pump is used in most countries for family use and irrigation.

The piston pump may either be operated as a suction or shallow well pump or, if the water level is more than: 6 m below the surface, the piston can be installed below the lowest water level and thus become a deep well pump.

It is possible to drive the piston pump by wind energy (pages 42-45)

$\|l\|$ APPROPRIATE TECHNOLOGIES Collection of available solutions	O 983
Water Supply and Sanitation	

2) Shinyanga Pump

TOOL, Netherlands
(also known as Salawe Pump)

The Shinyanga District Shallow Wells Project has created its own manufacturing facility. The pump has a wooden pumping head and uses a PVC plastic cylinder (Cast iron could not be used because of the $\mathrm{pH}=3$ of the groundwater in Shinyanga). Neoprene ball valves are used in both the plunger and suction check valves.
A standard industrial rubber piston with a steel core (cost 4 US \&) imported from western Europe is used in lieu of the usual cup seals.

APPROPRIATE TECHNOLOGIES	
Collection of available solutions	Pumps
Water Supply and Sanitation	

3) Sholapur or Jalna Pump .. R. Tayabji; India

Many breakdowns of deep well hand pumps occur in the handle assembly. The Sholapur-pump developed in India by a group of voluntary agencies can be expected to work for a year between overhands for maintenance. Locally manufactured it is being installed in Indian villages complete with 30 meters of drop pipe and pump rod for about US $\$ 235$ per unit.

This pump has a single pivot action connecting the handle to the pump rod through a short length of motorcycle chain. All moving parts are enclosed in a steel housing (for details see enclosures page 51)

APPROPRIATE TECHNOLOGIES Collection of available solutions	U43\%3
Water Supply and Sanitation	

Hydro-Pompe Vergnet
Pierre Mengin, France

This pump designed in Upper Volta uses a hydraulic pilot system operated by a foot pedal. The flexible hose inside the rigid cylinder is alternatively streched and contracted, thereby pumping water from the rigid cylinder to the surface. The pump can be fitted into a bore hole of 10 cm diameter.

bore hole depth (m)	20	40	60
output $\left(m^{3} / h\right)$	1,5	0,7	0,5

HYORO-POMPE VERGNET schematic arrangement

APPROPRIATE TECHNOLOGIES Collection of available solutions	(1)
Water Supply and Sanitation	

5)
6) Wood and Bamboo Reciprocating Pump Nigeria

An example of a pump made by village artisans is the "DIY"-pump used in Nigeria (Chatiketu) in shallow wells.

One long unjointed length of bamboo can be used for the pipe, the handle is made from wood (see figure). A PVC plastic pipe may be substituted for the bamboo, because of the durability problem of wood (without a good maintenance lasting only a short time).

GAMBOO OR PVC PIPE HANO PUMP (VALVES)

APPROPRIATE TECHNOLOGIES
Collection of available solutions
Water Supply and Sanitation

Inertia Pump
AIT, Bangkok

Perhaps the simplest pumping device is the inertia pump, whose basic pump design was modified here by a bicycle-type drive and a flywheel to achieve more efficient pump performance.

The inertia pump is a device for lifting water. short distances ($1,5 \mathrm{~m}$ to $2,5 \mathrm{~m}$).
There are four designs developed and tested which are described here.

For details see enclosures (page 57)

APPROPRIATE TECHNOLOGIES	
Collection of available solutions	
Water Supply and Sanitation	

7) Diaphragm or Bellow Pump

AIT, Bangkok

IRRI, Manila

There are two types of double-chambered diaphragm pumps which are foot-operated. They are low cost pumps, simple to be manufactured by small machine shops.

The entire unit has about 20 resp. 28 kg , the pump capacity is about 75 to 120 liter/min to a height of 2,5 to one meters.

Schematic drawing of the Diaphrogm pump

MANUALLY OPERATEO GELLOW PUMF
FOR RURAL COMMUNITY WATER SUFFLY

2

For details see enclosures (page 57)

APPROPRIATE TECHNOLOGIES Collection of available solutions	
Water Supply and Sanitation	

Double Acting Lift Pump
Dickingson \& Winnington, Edinbourgh

This device is an example of rural technology used in China since a long time. The hand-operated pump can lift water to a height of about 120 cm from very shallow ponds or irrigation ditches. Its operation principle is similar to the diaphragm pump.

This lift pump can easily be constructed from wood by a carpenter.

Double Acting Lift Pump

(1) Handle	(4) Plunger valve
(2) Piston	(5) Water trough
(3) Under-water Inlet	(6) Piston box
with valve	(7) Water level

APPROPRIATE TECHNOLOGIES Collection of available solutions	$(14 / 3$	
Water Supply and Sanitation		$-3 / 4$

9) Petro Pump

Sweden

Another type of a diaphragm pump is the petro pump which can be used in deep wells with the water level deeper than 7 meters. The pumping element consists of an elastic rubber hose reinforced by two layers of spirally wound brasscoated steel. There are two types commercially available (expensive), but it may be difficult to make this pump-type by yourself.

For details see enclosures (page 77)

APPROPRIATE TECHNOLOGIES Collection of available solutions	Pry33	
Water Supply and Sanitation		Pumps

Chain Pump
R. Young, VITA, USA

The chain and washer pump is a pumping device that has been known and used for many centuries both in China and Europe. It can be powered by man or animal and is primarily a shallow well pump to lift water for irrigation. It works best when the lift is less than 6 meters. The water source must have a depth of about 5 chain links. (For details: construction description and some other examples of chinese chain pumps, see enclosures, page 79)

CHAIN LINKS

APPROPRIATE TECHNOLOGIES Collection of available solutions	? 93
Water Supply and Sanitation	

11) Hydraulic Ram

ITDG, London

The hydraulic ram uses the power from falling water to force a small portion of the water to a height above the source. The described ram can be constructed from commercial pipe fittings. Detailed information about choosing a suitable site for the ram, installing and adjusting etc., and which sort of maintenance the pump needs are enclosed (page. 83).

APPROPRIATE TECHNOLOGIES Collection of available solution	Pumps
Water Supply and Sanitation	

2) Cretan sail - Windmill IPAT, Berlin
with Archimedean Screw

A large amount of water can be pumped from a medium depth using the Cretan sail - windmill.

The slow rotation of the windmill is directly transfered to the rotation of the Archemedian screw which consists of a flexible hose wound round the slanting axle of the windmill. The wind pumping system moves according to the direction of the wind around a fixed verical support in the water.

The system is mostly used for irrigation by pumping water from ditches, rivers or lakes and can be manufactured from simple local materials.

[^1]
Enclosures to No. 1

P I S T O N P UMP

1. Introduction

Manually nperated numbs of various designs are lisen in most. countries to lift relatively small quantitios of water from wells for either family use andior irrigation. There are two general typps of nump. oiston and d faphragm. Rith types have two cherk values. cither on carch silic of the dapliangun (fla. I) or one heliwe the ntaton and the other incorporate quantity of water hut can only operate when the water level in the we is within about is reet or less of the pump. It is a suction trpe numn. the piston pump may either he operated as a suction pump or, if the water level is more than about 20 feet helow the surface, the piston can be installed below the lowest water level and thus become a deep well pump.

Shallow well or suction punps use atmospheric pressure to lift the water by producing a partial vaculum with the dlaphragm or piston. The thenretical maximum lift for a suction pumn is 34 reet but, due to frictional resistance and inefficiencles in pump desiqn and nperation, the practical

Choice of pump is determined by the distance from the surface of the ground to the lowest water level in the well during the dry season. If this distance is less than about 15 feet, either a diaphranm or piston pumn can be used. For domestic use, a diston nump is the best and will discharge about 5-15 gallons per minute. The diaphragm numb will nump un to 2.5 gallons per mimute and can be usef for freination and watering livestock. (The remainder of this paper will discuss exclusively the piston pump. Mnre information about diaohranm pumns may be nbtained fromin Ihr Edson Cornoration, 460 Industrial Park Roald. New Badford, MA
02745 . IISA.)

If the water level drops more than shout 20 feet below the ground surface below the lowest water level.

Fig. 1 Diaphrogm Pump
(Courtesy Edsen C.orp.)

Pump discharqe depends on the diameter of the piston, the length of the stroke and the number of strokes per minute. If the water Ievel is less than 30 feet below the surface of the ground. the cylinder could be up to 4 nr 5 inches in diameter. If the water level is farther from the and a greater effort is required istance to the water level be, so it is not too hard to pimp. It is also possible to vary the distance from the well to the post sucporting the pump handie to give better leverage. The closer the handle divot is to the well. the easier it will be to pump, but the lenath of stroke will be smaller and so will the discharge.

2. The Piston Pump

Piston pumps have a lower valve, a cylinder containing a piston with'ía valve incorporated in it, a rod to connect the oiston to the handle, and a discharge pipe. The traditional dump stand is make of cast iron pumps, or shallow well pumbs, have the piston. Inwer valye and cylinder contained in the purp stand. Depo well pumps have the cylinder with oiston and valves below the lowast water level in the well and suspended from the base of the pump stand by the discharge pipe.

The standard dump was decigned for the use of a single family and the continual use in mast villages causes it to wear rapidiy. In attemntina to nrevent rapid wear, the pump has beon madified to strengthen the wear nints and this has resulted in heavier, more elaborate and more cylinders were usually cast iron but it is not possible to get the surface smoth ennuah to prevent radid mear and reolacement of the leathers or buckets. A brass cylinder or thin brass liner has been used and is much smoother than cast iron An even better material is now available at lower cost - poly-vinyl-chloride (PVC) Dide. PVC oipe is available in most countries and is usually lower in cost than any other pipe material in sizes beliow 4 inche; (100 mm) in diameter. The use no this matorial in wells makes it possible to develop a nump hat is much simgler, less expensive and eissier ta maintain and repair. he oump stand has usigatly been cast iron and mod guality cast iron is difficult to ghtain from many incal foundrias and is now much more expensive than previously. The pump ctand ordinarily sumports the handle, supporied on a spoparater post beside the well and pumn stand. The post sunoorting the handle can bo made of coscrete, tricks or wnor deapnding sunoorting the hande can be made of concrete, bricks or wnor, deopnding
an loral dvailability and cost. The mandle can be made of wond that can be reolaced lorally when worn or brokell. The attarhment of the purp rad to the handle slinuld have some pliay because the pump rod moves vertically while the ent of the handle moves also a small distance horizontally as it describes a small are. The handle should also have ston on the support pier so it will not sitrike the ton of the pump stand

on local availability and cost. The handle can he marfe of wond that can he redlacet locally when worn or hroken. The attachment of the oump rod to the handlp should have some play hecause the numb rod moves vertically while the end of the handir moves also a 5 man 11 distance stod on the sudport nier so it will not strike the tod of the pump s tand.

The distance from the post supportino the handle to the pump can vary so as to opt the test leverage, dependina on the fepth to water and on the weight of water. diston and rod to he lifted. The nump stand
without the handle only provides a nassage for the rod, a channel for the upard flow of the water, and a discharge spout. In shillinw wells it also contains the cylinder and suncorts the suction pipe. Since the umn stand does not hear the load and stress caused by the handle, it need not be so strona and does not have to be of cast iron.
Three dossible nump designs are presented. These pumps are designed to the inexnensive, simnle, pasy to renair, and make maximm use of incal materials and skilis. It is sugaested that a local desian should ba develoned usina these ideas and several numbs should then he given a be necessary to ohtain a casiisfactorv attarhment of the rod to the handle. hounht and careful field testing should lear to improvements in the design. lower cost, and easier reoairs.

3. Shallow Hell Pump

Fia. 2. The suction tyoe pump is usually used with shallow walls but may also be used with deep driven, jetted or drilled wells where the aressure in the aquifer is enough to keep the water level at all time of $3^{\prime \prime}$ PVC pipe which also serves as the nump cylinder. The well casing itself may be the suction pide in the casp of driven or small-diameter jotted ar drilled wells. In the case or dug wells, the $11 / 2^{\prime \prime}$ suction ipe is suspended from the $3^{\prime \prime}$ PVC pump stand which in either case must he set firmly in the piatform. The scout need only he a 2 " hole in the side of the pvC pumn stand with a small lin so the water will nour into a bucket or can.

Fig. 2 Shallow Well Pump

Fig. 3 Deep Well Pump

The top of the pump stand should be several inches above the spout and have a removabie cap with a slot to allow for the small back and forth movement of the rof. To remove the piston and replace the leather hucket it is only necessary to disconnect the rod from the handle, remove the cap and pull out the piston. If the lower valve is a poppet type valve it can have a small loop at the top and can he fished out using a wire with a hook at the end.
If the PVC pump stand needs. protection, a concrete pide. brick pier or wooden post can he placed around it, with the spout extending beyond and should be easily repaired

4. Deep Well Pump in Cased Well

Fig. 3. PVC casing can be used in either jetted or drilled wells In jetted wells the hole is full of water and the FVC tasing can he placed in the hole with little possibility that there will be caving before. the casing is in place. The same is true of wells drilled by the rotary nrocess. With percussinn drilled wells the best grocelyure is to drive has heen penetrated The metal casing is then removed to he used again. In wells with pyc casings, the pyc casing can also act as the cylinder.

If the water level is less than 50 feet below the surfiace. the handle support should be placed to enable the pumner to lift the colunn of water in a $3^{\prime \prime}$ PVC casing without too much exertion. If the water level is deeper than 50 feet, d $21 / 2^{\prime \prime}$ or 2^{*} PVC casing may he required.
The lower valve seat can be of fur, and can be cemented inside the casing The lower valve seat can be of ave and can be cemen
at a joint helow the farthest travel of the piston
Length of rod is choseri to place the piston below the lowest water level in the well. The piston may be standard, with one or two leathers The rods can to metal or woor. The wooden rads have several advantages: they do not corrode, they are lighter in weicht, and usually can be produced from wood available in the conntry. creating i small local imported metal rads. Peraase the word rads are usuglli" bunvant in water and have a greater dianister than metal rods, therely displacing more water, a well havino a defp water le:ol would he easier to pump with wonden rods than with metal rads. The top of the well and the handle suoport are the same is in the suction type pumo. It is easy to remove the rod and piston for repairs.

Fiq 4 Deep Welf Pump-Uncased Hole in Rock

Fig. 5 Pump Base
5. Deep Nell Pump in Uncased Well

Figs. 4 and 5. In this case the oVC casing onlv extends to the rock. The standard cylinder (PYC) is suspended by the discharge pipe from a suponrt plate bolter to the platform. The pump stand can be cast iron, or PVC pipe clamped to a base plate, holted to the platform.

The discharge pipe, if metal, would be threaded to the support plate. If PVC is used for the discharge pipe, which is preferable, the end tan be heated and exnanded slightiv to slip over a short pipe extension of the support plate. The PVC oipe is clameed to the short pipe extension.

The cylinder can be of $3^{\prime \prime}$ PVC. and will contain the lower valve and piston the rad passes down therjugh the discharge pipe. If the rad is of mood, care should be taten that the discharge pipe is large enough in inside diameter not to restrict the upward flow of water betwoen the rod and the pipe.
The discharge oipe should have clamped or threaded joints every 20 feet so the dipe can be disconnected when it is necessary to romnve the cylinder for repairs. A joint in the red should be located at each joint. in the discharge olpe. .f the cylinder is of metal, it should that will areatly prolong the life of the leather burket.
6. Pump Components

The dump should be simple. depentable and as low in cost as dossible The object should ne to develoo a oumo that can he produced in ouantity hy local technoloay to meet the needs of most of the rural population in the area. A pump similar to that shown in fig. 2 has heen develaped per minute. it is being used for irrigation as vell as for domestic per minut.

Pump components can usually be manufactured or fabricated in most countries. The parts are relatively simple and machine shops or small metal working factories or foundries can supply carts for a given design. Poost countries now have plants to extrude PVC pide. even where the raw material is imported. The seal netween the piston and the cylinder wall is usually provided oy d leather disc with a turned ue edge ralled d "bucket". some cnuntries these are made of moldot rubter. Quality control is

Fig 6 Types of Volves
are not erpensive and if good ones cannot be ohtained locally, they can he imported from many countries in the developing world, for examole india, Fakistan, Korea, Thailand, and prohably many others.
The lower valve can he a ball valve in a seat, a leather or rutber flad valve, or a podpet valve. (Fio. 6) if the lower valve seat is a FVC ring. it can be cemented inside the casing at a ioint as the casing is

Annther mpthod has neen used by Dev. Fieorge fotter of the Buhanaija Pission in Shinvanga. Tanzania. This is to crimn or sfypoze in place the nlastic rina (PVC) which acts as a seate for the stem hall making lower end is immarsed in hat oil ontil soft, the ring is inserted an inch or two wo the dige. and commn auto radiator hose clames are used to squepze the dine ahnve and below the rinn cosition. The hase elamps can he used again and dadin as tha P\% pine will not return to its orininal shade onre it has cooled. The easipst way to handle the hot oil is simply to have a paint can (or nther metal container) of used that one ond of action of pic pipe can te snftenod aud flared to ounr a metal pipa or anotrar section of pue pipe by this samo mothad

A simplified diston with anolded ruther hucket is uspd in rores (ria. 7) This should be mich less oxpensive to fathirate than the standard tyo piston with popont valve.

7. Installation

Hand operated piston type pumos are the mast cormon methanical device for lifting water frnm toth shallow and desp walls. Unfortunately. the standard pumo designed for sinnle family use does not stand ub too well under 12 -hour-a-day use in a village. and in many programs half or mere

Most villaqes have not estanlished a resconsible local nfficial or coumitiee to maintain the rumo, and the lact of finds. tanls and spare parts in the village corolicate the prohlom. usually a onvernment aqency has installed the well ant puro and the viliagers take the attitude, It is a gnvernment well, lot the govornment maintain it." In most countries, maintenance oy thei governeant is vary expensive bocause it

[^2]
means motor vehicles, drivers, mechanics, tools, fuel, and oromization with administrative peoole, clerks, supervisors, storage of soare parts, and a method of notification for emergency repairs. fiovernment maintenance is not required if a program is properly set. up, pumps are designed for easy maintenance, and soare parts are rearify available to the village. In mest countries, lack of technical skills in the village to repair the dump is no longer a problem, because in most villages there are bicyeles, motorcycles, and small gasoline or diesel engines to oump irripation water or arind grain, and these devices are much more com plicated than a hand oump. If the village can maintain these more sophisticatod devices, it can maintain a hand pump

A well and pump should not be installed unless the village, throunh its leaders, agrees that they want the well. thev are willing to contribute and aiso will agree to pay for spare parts and repairs to keep the pemp oderating. Villane ownershid and responsibility for maintentnce should be incorporated in a formal written agreement hotween the agoner installing the well and the village leaders. The well should be turned over to the village in a public ceremmy at which time the local official or water sommittee that will be responsible for the well should be presented with a cony of all the data on the well and pump some spare parts. address of the nearest plare ehere additional sparo parts the name and and name address and phone number to notify in case a problem develops that is beyond the village capability.

VITA's Services

ro provide more information or assistance on questions of small scale technology, VITA maintains a Technical Inquiry Service. Simoly direct the inquiry tn VITA, 3706 Rhode Island Avenue, Mt. Rainier. MD 20822. USA, giving all association of over 5000 volunteer enoineers. scientists, farmers and technicians, who respond by mail and free of charge to inquiries from less develnged areas.

FROM: "Hand Pumps for Village Wells" by C.D. Spangler VITA, USA, 1975

1. Mh:at/resp 100 cournction
II. madlesumport post cirmection

A smooth metal rod that works as bearing. 5/8" in diameter.
B cotter pins to nold bearing in place.
C PIn throuch tearina and suorort so bearing will mot rotate. The sitght angular rotailan

- The tistance tinng the tindie tetreen the bearino holes shoutd te set so the mid-scine of

The bearing holes in the handle should qive a sreoth. eifhe fit on the bearr nas. The holes
sheuld be sosked with used motor sil before installation. and after installition should be shubicated orten with ofil.

Salawepump

General

The Salawe pump is a simple pump with you can build yourself. Originally the pump was designed by Rev. G. Cotter M.M. for the inhabitants of Salawe Village in Tanzania.

Where/when With this pump water can be pumped from a to use? maximum depth of 6 meter (about 20 feet) for example in an existing pit or pool.

Essentials: You build two parts:

1. Pit of self-made bricks (maybe you gct one already)
2. Pump, made from a steel pipe to be fastened in a cover plate.

Advantages: 1. Siear water; There is protection aqainst debris from leaves, children, animals etc.
2. Cheap; cost of materials: steel pipe plus two bags of cement, about US \$ 40,-
3. Construction time two days: one day you make the bricks, the next day you build the pit and mount the pump.

Parts

If the material is not available in the proper sizes, other sizes can be used; however, make sure that all parts fit together.

1. Pump handle
Made from a steel rod (as used in reinforced
concrete), $\frac{1}{2} "$ or 1.3 cm in diameter. The
bottom portion of the rod should be threaded
over a length of $1 \frac{1}{2} "(4 \mathrm{~cm})$, so that parts
nr. 12 through 16 which form the plunger and
pressure valve can be screwed into the rod.
The length of the rod is dependent on the
cicpth of the pit and can easily be calculatod.
Remember that the rod better be too long than
2. Stopping plug

Diameter $1 \frac{1}{2} "(3.8 \mathrm{~cm})$. The pump handle fits through a $\frac{1}{2}$ " (1.3 cm) hole in the top. The stopping plug is screwed onto the:

Dimensions $1 \frac{1}{2} \times \frac{3}{4}$ ($3.8 \mathrm{~cm} \times 1.9 \mathrm{~cm}$). Attached to the side of the T-plece is the:
4. Tap

Size: in (1.9 cm). Prevents the wasting of water.
5. Extension pipe

6. Tapering piece

Diameter: $1 \frac{1}{2} "(3.8 \mathrm{~cm})$; length 15 " $(40 \mathrm{~cm})$. Both ends of the pipe need to be treaded.

Tapers from $2^{\prime \prime}(5 \mathrm{~cm})$ to $1^{\frac{1}{2} \prime \prime}(3.8 \mathrm{~cm})$

8. Cover place

Diameter $2^{\prime \prime}(5 \mathrm{~cm})$. This coupling piece is to be welded onto two strips of angeled steel, each $l^{\prime \prime}$ wide and about 10" long ($2.5 \times 25 \mathrm{~cm}$). Instead of angeled steel, sturdy wire netting can be used. Welding is necessary because these parts will be cast in the cover plate and without welding the coupling piece would become detached too easily. During the weldinc operation care should be taken not to damage the internal thread: for example, put cotion waste inside. To cover the pit in order to keep out dirt. Made of concrete. For construction; see instructions under Pit Construction
9. Pump tube

10. Steel ball

Consists of $2^{\prime \prime}(5 \mathrm{~cm})$ diameter pipe.Again, the length of the tube is dependent on the depth of the pit, but should be shorter than the depth of the pit by 6" (15 cm). Once more, better too long than too short: The top of the tube has to be threaded and will be attached to the coupling piece. At the bottom will be the bottom valve (see also 11.

Part of the bottom valve. Diameter 1 1/8" (about 2.8 cm). Made from stainless steel, if possible. You can try several balls of different diameter to determine which one gives the best results.
11. Tapering piece

2.5 cm
13. Steel ring

14. Bolt

0
15. Springtype ring

16. Bolt
0×1

Tapers from $2^{\prime \prime}(5 \mathrm{~cm})$ to $\left.\mathrm{l}^{\prime \prime} 2.5 \mathrm{~cm}\right)$. Note: Parts nr. 10 and 11 constitute the bottom valve. Construction is as follows: After the pit has been built, cover plate nr. 8 with pump tube nr. 9 attached, will be placed on top of the pit. Pump tube nr. 9 will then be cut to the proper length such that the distance between the bottom of the tube and the bottom of the pit is 6" (15 cm). The bottom end of the tube must be threaded and the tapering piece screwed onto it. If threading is difficult, an alternative construction is possible (see under Bottom Valve).

Attach and move to the end of the thread of the pump handle.

Inner diameter: $\frac{1}{2}$ " (1.3 cm). Attach to bottom of pump handle nr. 1. The outer diameter of the ring should be such that the clearance between the ring and the pump tube is about $1 / 16^{\prime \prime}(0.2 \mathrm{~cm})$. Thickness of ring: about $\frac{1}{4} "(0.6 \mathrm{~cm})$. Attach to pump handle nr. 1 such that the ring is almost tight, but not quite.

Supporting bolt nr. 14 .
r'ighten against ring nr. 15 and bolt nr. 14. Make sure that ring nr. 13 is not entirely tight.

These are the parts of the pump. Now some remarks about the construction of the bottom valve.

Bottom Valve

1. It is possible that no thread can be made to attach tapering piece nr. 11 tc the pump tube. A similar construction can then be made using a plastic ring with outer diameter of $2^{\prime \prime}(5 \mathrm{~cm})$. and inner diameter of $3 / 4 "(1.2 \mathrm{~cm})$ The ring

should be such that it can be fitted tightly into the pump tube, otherwise. the bottom valve will leak.
2. After pump tube nr. 9 has been cut to the proper length, four cuts are made in the tube in a direction perpendicular to the length of the tube and at a distance of about $\frac{1}{2}$ to $1^{\prime \prime}$ (1.3 to 2.5 cm) from the bottom of the tube.

3. The plastic ring, which should have a groove around the outside, is pushed inside the tube from the bottom side up. Then the tube is indented at the cuts and the ring should be tight.

Construction of the pit
Before you install the pump, the pit should be built. This is to be done with trapezium-shaped bricks, made with concrete. There are two kinds of bricks: large ones and small ones. They are to be cast in wooden moulds (see figure 2).

The shaping of the bricks

1. With the largest opening down, put the moulds on a smooth surface (like plywood).
2. Mix cement with sand (ratio 1 : 10)
3. Cast the mixture into the two moulds.
4. Press with a stick or something similar.
5. The moulds can be lifted immediately.
6. Remove the water from the pit (save two buckets full).
7. At the bottom of the pit, make a circle from 9 large bricks. Make sure the bricks are level, otherwise the construction will be tilted. No mortar is needed.

Cover plate 8

3. On top, make a circle of 8 large bricks and 1 small one, etc.
4. End up with a ring of 9 small bricks. If the top of the construction is not yet level with the ground, then continue with circles of 9 small bricks.
5. Fill up the exterior with sand or soil.

1. Make a circular mould from carton or tin with a diameter of $42^{\prime \prime}$ (110 cm). so that the plate will cover the pit. Height of the mould: about $2 \frac{1}{2} "(6.3 \mathrm{~cm})$.
2 Put the mould on a smooth surface.
2. Put coupling piece nr. 7 with welded strips in the center of the mould.
3. Fill with mixture of cement, gravel and sand (ratio 1:2:4). Keep the coupling piece straight and keep the cement out of it (cover with paper).

You can reinforce the cover plate by incorporating a piece of sturdy wire netting.
Place the wire just off the b cttom, on some gravel.

Mounting the pump

1. Mount pump tube nr. 9 into cover plate nr. 8.
2. Mount the bottom valve according to one of two methods.
3. Defosit cover plate with pump tube and bottom valve on the pit.
4. Attach parts nr. 2 through 6 to each other, pull the pump handle through and attach parts nr. 12 through 16.
5. Sink the pump handle with all narts attached into the pump tube nr. 9 until it rests on the rottom valve.
6. Nount tapering piece nr. 6 on the cover plate and tighten.
7. Lift pump handle nr .1 about 2 to $3^{\prime \prime}(5$ to 8 cm$)$ and bend the top part. This way one prevents damaging the bottom valve when the pump is in use.

Now the pump is ready for operation.
Pour two buckets of water in the pump tube (this can be done by turning the tap nr. 4 upwards or by loosening the stopping plug nr. 2).
If the handle is moved up and down rapidly, the water will pour out of the tap. The water will be dirty at first, but this will get better in several days.

Tinles.slers for:

	iarco brickit	Small
\therefore	$0^{\prime \prime}(15 \mathrm{~cm})$	$6^{\prime \prime}(15 \mathrm{cmi})$
B	154" (38 cпi)	
C	3" 1.5 -	3" (7, Ј ¢ ¢)
D	13" (32.j ca)	ソ! ! (23.1!

from: "The Salawepump", Construction Manual, TOOL, Amsterdam 1975

Construction of the wooden handle

Courtesy: Shinyanga Shallow Wells Project
SHINYANGA hand pump

Contact Agency : Robert Tayabji, UNIGEF, 9, Jorbagh, New Delhi.
Introduction : A very successful pumphead was designed by War On Want Mission at Jalna, Maharashtra. It was further refincd by Sholapur Well Scrvice, Sholapur and UNICEF, and became known as Sholapur-type pump. This is a subnergible type pump whose valve renains submerged in the water surface and is linked to the operating handle by means of a connecting rod. Therefore, it does not depend on the suction head of the water and can be made to draw water from any depth. UNICEF has further improved the pumphead of the Sholapur-type pump.

Description of the pump : A complete pump is shown in Plate LIVB. The main parts are the head, the water tank, the pedestal, and the casing pipe through which the connecting rod goes down to the surface of the water and gets connected to the piston with valve which draws water. When the handle is pressed down, the piston gocs up and allows the water to get into the casing pipe. After a few operations of the pump the water is drawn up to the water tank from where it comes out through the spout. Since the water volume on both the sides of the piston is balanced, no extra effort is required to operate the handle and it works smoothly and easily.

Sholapur-type pumphead : All pumpheads employ mochanisms to iransfer the novement of the handle to the connceting rod, and thence to the piston and valve. Traditional pumpheads have a complex arrangement of levers, pivots and sliding parts, which must be cleaned and oiled regularly. In the Sholapur pumphead, a totally enclosed mechanism has been provided which uses heavy-duty roller chain, thus making it more durable and improving the reliability and efficiency of the pumphead. The essential features of the pumphead are the three parts, which are as follows :
(i) The head which contains the handle and working mechanism.
(ii) The water tank or reservoir, which ensures a steady flow of water from the pump and thus helps to prevent spillage and waste.
(iii) The pedestal or stand, which supports the water tank and head. The pedestal is made from steel pipe and is thus lighter and sturdier than the cast iron bodies of traditional designs. The pedestal has three projecting legs which are anchored in the cement of the platform.

Installing a pumphead : In installing a pumphead, the podestal is first fitted ower the casing pipe of the tube-well. The threc legs are then embedded in a cement foundation. Gement fills the space between the casing pipe and the pedestal and hardens there. This ensures that waste water cannot enter the tube-well and contaminate it. convenient height for the operator, the pivot being about 102 cms . ($40^{\prime \prime}$) above the platform.

Hand pump conversion head: Most handpump breakdowns are caused by mechanical failures of the moving parts. The cast iron body of the Sholapur pumphead seldom needs replacement as it has no moving parts. Its purpose being mercly to support the mechanism above. It is possible to change the pumphead of a traditional design by a conversion head of the Sholapur designs. Gonversion heads incorporate the Sholapur mechanism which is more efficient, rugged and reliable than the conventional type. The UNIGEF and the Sholapur Well Service have prepared drawings and specifications according to which the conversion heads can be manufactured casily. The handpump repair and substitution of a conversion head entails the following :
(a) Installation of conversion heads on an ordinary pump
(b) Gonstruction of platforms and drains
(c) Occasional replacement of other components, such as cylinders, pistons and washers

Price : (1) Approximate cost of conversion is as follows :
Cost of conversion head 300

Cost of new piatiorm and drain .. 250
Cost of new cylinder, if needed .. 250
Total .. 800
(2) Installing a complete Sholapur-type pump will cost Rs. 1,500/- in addition to the cost of boring.

INDIA MARK II HAND PUMP

SHOLAPUR DEEP WELL HAND PUMP TOP END MECHANISM

Complete with Base plate or Sprogg Footing

The Inter-African Comittee on Hydräalic Stídies (CIEH), an interna- . tional organization headquartered in Ouagadougou, under a 1973 agreement with WHO and with assistance from UNICEF, is studying the use of small hand pumps for water supply in West Africa. The study comprises inventory and testing of pumps manufactured in Africa, including "ABI", Bodin "Majestic", Briau "Africa", and Craelius "Uganda", and imported pumps including Dempster "23F Ex" (US), Briau "Royale" (France), and Godwin "W1H 5!" and "54" (UK).

An importart part of these studies is the field testing of a newly developed pump, the French-made (by Mengin) "Hydro-Pompe Vergnet". Several prototypes of these pumps, provided by WHO and UNICEF, are being tested in Ouagadougou and in the village of Koupela, about 140 kms east.

1. The "Hydro-Pompe Vergnet" (Description)

This pump has a novel operating mode. A flexible diaphragmatic hose (cylinder) is located inside a rigid cylinder immersed in the well. Using a hydraulic pilot system operated by a foot pedal, at ground level, the flexible hose is alternatively stretched, and left to contract, thereby pumping water from the rigid cylinder to the surface. Its operation is best explained stepwise in conjunction with the fig.Beginning with the pump primed ${ }^{*}$ and the foot pedal in the high position:
(1) The operator steps on the pedal, forcing the piston down into the cylinder.
(2) The water in the piston cylinder is forced from the cylinder, through the pilot pipe or hose, and into the diaphragmatic hose with flexible, springlike walls.
(3) The increasing water pressure in the flexible hose stretches its walls, thereby expanding its volume.
(4) The increased volume of the smaller cylinder increases the pressure of the water within the larger, rigid cylinder surrounding the smaller cylinder.
(5) The rising pressure within the rigid cylinder closes the suction valve and opens the delivery (discharge) valve.
(6) The water within the rigid cylinder is forced to the surface through the discharge valve and discharge pipe or hose as the smaller cylinde. expcids.
(7) The operator lifts his foot, relieving pressure within the pilot system.
(8) The flexible, springlike cylinder contracts to its initial position, forcing water up the pilot hose and pushing the pedal back to its high position.
(9) The contraction of the flexible cylinder reduces the pressure of the water within the rigid cylinder.
(10) The falling pressure within the rigid cylinder closes the delivery valve and opens the suction valve, refilling the rigid cylinder.
(11) The operator again steps on the pedal and the cycle begins anew.

[^3]The diaphragmatic hose as well as the pilot cylinder and pipe are filled with water from the surface upon installation in the well. The pilot system being completely closed, apart from a refilling valve, there should be no potential for contamination of the pumped water.

2. Observations

In spite of careful development work and many laboratory tests (including testing of the flexible diaphragmatic hose for over 2 million cycles, without failure), some modifications of the "Vergnet" pump's original design proved necessary in view of difficulties experienced under field conditions. The PVC used for the rigid cylinder was found to develop cracks due to the continuous pressure variations, and was replaced by stainless stee l. Leather cup seals used in the pilot cylinder did wear very quickly; a marked improvement was achieved by the introduction of piston rings with leather or urethane seals.

In wells less than 30 meters deep, light-weight flexible piping can be employed in the "Vergnet" pump assembly facilitating its installation and maintenance. Pipes and pumping unit are readily pulled from the well. Normally, two men should be able to do this by hand so eliminating the need for tripods or scaffolding. The use of light-weight materials also should save on transport costs.

In reciprocating hand pumps the short life of cup seals is a major maintenance problem, especially for deep well pumps where the pump rod, discharge pipe and cylinder have to be pulled up in order to replace the seals. In the "Vergnet" pump all rubbing parts are readily accessible at the surface.

Another group of maintenance problems in conventional hand pumps is associated with handles, pump rods, and handle/pump rod linkages - components which are non-existent in the "Vergnet" pump.

Because the "Vergnet" pump is foot-operated, it can be pumped with more power and less fatigue than the conventional lever operated pumps. The linear movement of the foot pedal eliminates all rotating components.

The "Vergnet" pump requires a well casing of 4-inch (100 man) or more. It can be used as a lift pump or lift-and-force pump, but not as a suction pump; its pumping cylinder must be immersed.

According to the manufacturer (Mengin), of the 2000 "Vergnet" pumps instulled mofir (Junc 1977), about $70 z$ operates at pump depths between 20 m (70 ft) and 60 m (200 ft). In most African countries "Vergnet" pumps have been installed, with the largest number (500) in Ivory Coast where a first government programme has just been completed (June 1977). Outside Africa, the pump has not yet found wide-spread use.

Factors likely to influence wider acceptance of the "Vergnet" pump are: (1) It is relatively high priced at U.S. $\$ 600$ (October 1976 price list) for pump Type A or C complete with one set of service parts and tools. (A set of maintenance parts including one pedal guide and four leather piston rings, is quoted at U.S. \$ 4).
(2) The need to import the unique parts, i.e. the flexible diaphragmatic hose, the stainless steel cylinder and foot pedal, and piping.

3. CIEH Report

The report of this study is scheduled for some time in 1977. An earlier CIEH study (circa 1964) is a descriptive account of the man and animal powered pumping methods then in use in West Africa including many of ancient origin. (Also see papers by Benamour, CIEH, Gagara, and Vergnet and manufacturer's literature from Mengin).

III INERTIA PUMP

The inertia pump, perhaps the simplest pumping device so far designed, was originally conceived from the mud-lifting tube that is used for digging shallow tube wells in many parts of the world. The main pump body (riser) consists of a long pipe with a check valve and a discharge spout located near the top end. The name of the pump derives from the belief that part of the function of water lifting by this device is due to the inertia of the mass of water held in the riser. The design of an inertia pump for use in irrigation has been reported earlier by DAWSON in 1969 - $/$. In the present study the basic pump design was modified to incorporate a prime mover assembly consisting of a bicycle-type drive and a flywheel with a view tc achieve more efficient pump performance, as shown in Fig. 3.1.

3.1 Pump Description

In this study, the initial design for an inertia pump, designated here as IP-1, consisted of a riser made of 8 cm diameter cast iron (CI) pipe. The upper end of the riser pipe was plugged and fitted with a bracket to which the pump handle was attached using a 7 m bolt. Near the top end of the riser at an angle of 30 degrees another short $C I$ tube; also 8 cm in diameter, was welded on to serve as the pump outlet. At the mouth of this tube was attached a 6.4 cm flapper valve seated in a flange followed by another short length of 8 cm CI piping. The design details of the pump are given in Fig. 3.2.

During operational testing some difficulties (to be discussed subsequently) were encountered with the above design necessitating some modifications. In the modified version the flapper valve was located in the riser instead of in the spout as in the previous design. Two pumps were constructed, one with a 5 cm diameter riser and the other with a 7.6 cm diameter riser, both of cast iron piping. Another short CI piping welded at right angle onto the riser near the upper end, 2.5 cm above the valve seating formed the spout. The pumps were designated as IP-2 (5 cm riser) and IP-3 (7.6 cm riser). A 5 cm diameter flapper valve was used in each of these designs. A third unit of the modified inertia pump designated as IP-4, was also constructed using a 7.6 cm riser and a 6.4 cm flapper valve. Design specifications for the three inertia pumps are shown in Fig. 3.3 and 3.4 while Fig. 3.5 shows a dismantled unit.

[^4]

3.2 Prime Mover Assembly

The prime mover assembly consisted of a triangular wooden supporting frame on which was mounted a bicycle-type drive mechanism including pedals, chain and a sprocket as shown in Fig. 3.6. A seat for the operator as well as a handle-bar were also provided so that the operator would assume a position approximating that on a bicycle. At one end of the driving shaft on which the sprocket was mounted was a flywheel with a disc crank. The pump handle was connected to the disc crank through a wooden connecting rod.

3.3 Pump Operation

Operation of the inertia pump consists of causing a steady up and down motion of the pump body with the lower end of the riser immersed in water. In the present designs the rotary motion of the prime mover is converted into reciprocating motion by the disc crank and transmitted to the pump handle and to the pump through the connected rod. In the downward stroke the pump returns to its lowest position under the force of gravity. The function of the flywheel is to help recover some of the otherwise lost energy when the pump is on the down stroke.

NOTES

1. Al dimensions are in centimeters
2. Flanges are made of 5.0 mm thick cast iron
3 Flapper valve is mode of rubbir

NOTES:

1. Al dimensions ore in ems.
2. Flanges are made of 5.0 thick Cast Iron
FIG. 3.3 DESIGN OF INERTIA PUMP IP-2
3. Flopper volve is mode of rubber and strength and with 65 mm . 0 steel sheet.

CROSSECTION OF THE PUMP

FIG. 3.4 DESIGN OF INERTIA PUMP IP-3 a IP-4

Two fundamental forces are believed to exist during pump operation. When the pump body moves down a portion of air or water leaves through the flapper valve. During the upward stroke the flapper valve is closed under atmospheric pressure, creating a suction inside the riser which forces water up into it from the source. In the downward stroke water is apparently pushed up in the riser due to the inertia of the mass of water held in the river. It is this force that helps open the flapper valve and force water out through the spout.

Fig. 3.7 shows the inertia pump in operation.

3.4 Experimental Testing

Experimental testing of inertia pump performance was carried out at the Regional Engineering Experimental Centre of the Asian Institute of Technology. The testing procedure was primarily aimed at determining the relationship between the operating head and output of the pump as well as to examine the best stroke length and operational speed for working the pump over extended periods. As in the case of the bellow pump a labourer was asked to operate the pump.

3.4.1 Testing of Inertia Pump IP-1

A few preliminary test runs using Ip-1 pump were carried out to determine the best stroke length and speed of operation at three levels of operating head, namely, $1.0,1.5$ and 2.0 meters. A riser of appropriate length was used for operation at a particular head. Segments of $C I$ piping were joined together by welding to yield a riser of required length. Several operational difficulties were encountered during these trial runs leading to abandoning of the design and development of modified designs as noted earlier. Further detailed evaluation of pump performance was not therefore undertaken for this unit.

3.4.2 Testing of Inertia Pumps IP-2, IP-3 and IP-4

Pumps IP-2, IP-3 and IP-4, based on a modification of pump IP-1, were evaluated with respect to stroke length in the range of 10 to 20 cm and operating speed in the range of 140 to 200 strokes per minute at three levels of operating head of $1.5 \mathrm{~m}, 2.0 \mathrm{~m}$ and 2.5 m . The stroke length was varied by using different diameters of disc crank. In these test runs a constant operational speed was maintained for long periods of operation by using a variable speed DC motor to drive the pump. For a given run at specified values of stroke length, operating speed and head, the pump output was recorded by cumulating the discharge
over fifteen minute periods and computing the mean discharge rate from several samples. Subsequently the pumps were manually operated to determine the most favourable stroke length and operating speed for various values of operating head. The maximum value of operating head investigated here was 2.5 m since a pump body longer than this created excessive weight problem.

Pig. 3.j - Inertia Pum: IP-: Disas:embled.

3.6 Conclusions

The initial des'g of an inertia pump IP-1, with the valve assembly located in an inclined side arm, is not only inferior to the bellow pump in performance but is also difficult to operate because of a tendency to swing. The later designs IP-2, IP-3 and IP-4, in which the valve is housed ' n he r'ser, are free from the shortcomings of the
a lie model The construct on and mantenance of the inertia pump is much simpler than that of the bellow pump. In addition, each of the three designs studied is in general superior to the bellow pump in performance. The inertia pump therefore appears to be a superior al ternative to the bellow pump for incorporat on into mal ual water supply systems. It may bé necessary to use two or more pumps in series if the total lift required is greater than about 25 m . The output of pump IP-2 is sufficient for the daily requirement of about 500 people with the pump operated 3 to 4 hours daily. Pumps IP-3 and IP-4 are capable of serving a larger population.

Volumetric output of inertia pump increases with increased riser diameter and size of valve opening. Other operating conditions being maintained constant, increasing the speed of operation of the pump linearly increases pump discharge. The discharge also increases monotonically with increased stroke length. At constant stroke length and operating speed the discharge decreases with increasing head on the pump.

For manual operation, a pumping speed of 140 to 160 strokes per minute is most suitable for extended periods of operation with a bicycle type drive assembly. A stroke length of pump IP-2 may be operated at 20 cm stroke length while a 15 cm stroke was found to be optimal for IP-3 and IP-4.

Table Bl - Mean Volumetric Discharge Rates ($\boldsymbol{l} / \mathrm{min}$) of Inertia Pump IP-2 under Various Operating Conditions :

Head	1.5 m			2.0 m				2.5 m					
Operating Speed Stroke Strokes/ min	140	160	180	200	140	160	180	200	140	160	180	200	
20		108	125	138	152	81	95	106	116	68	83	100	116
15	56	79	88	102	56	68	9.5	101	47	62	78	100	
10	-	41	56	78	25	36	53	68	23	35	58	66	

Table B2 - Mean Volumetric Discharge Rates ($\ell / m i n$) of Inertia Pump IP-3 under Various Operating Conditions

Head	1.5 m				2.0 m				2.5 m			
$\begin{aligned} & \text { Stroke } \underbrace{\text { Strokes/ }}_{\text {cm }} \text { min } \\ & \text { Length, } \end{aligned}$	140	160	180	200	140	160	180	200	140	160	180	200
20	172	192	232	298	142	181	208	222	156	178	199	209
15	104	141	185	209	113	135	165	169	106	129	151	167
10	69	86	90	106	61	73	67	71	37	47	61	59

'he pump

he foot operated diaphragm pump is outle-chambered and performs well in ow-lift irrigation applications. The ump casing consists of a light shee.ctal cylinder with a central partition o provide two chambers. Rubber flap alves are used on the intake and exaust ports. The two rubber diaphragms re made from automotive inner tube and re mounted so that they can be easily eplaced.
he entire unit, equipped with a handle or converient carrying, weighs 28 kg . t was designed for long service and zsy repair yet simple enough to be anufactured by small machine shops.

Schematic drawing of the Diaphrogm pump

ow it works

:e operator stands on the two foot きsts and shifts his weight from one oot to the other. This compresses a lamber, forcing water from the outlet alve. By alternately shifting his eight in a rhytmic manner, the operator dmes a contiridous flow of water.

What it does

This low-cost pump can lift 190 to 120 liters of water fer minute to a height of 1 to 2 meters.

The IRRI diaphracm pump is well suited for pumping water from irrigation ditches, oper channels, river barks, and shaliow wells. Unlike most pumps, it can hardle water with mud or other small impurities.

Machine specifications

[^5]

(6) discharge chamber

(28) INTAKE VALVE SEAT and CLAMP

(16) INNER CENTER PLATE

(21) STAND BRACE

(39) PIVOT FOOT PEDAL

(2) OUTER CENTER PLATE

(1) PLUNGER

(22) STAND BRACE

(18) STIFFENER

II THE BELLOW PLMP

The idea of a very simple water lifting device utilizing a pair of flexible bellows as the pumping elemenc was originaily coolved at the International Rice Research Institute (IRRI), Failippines, where a prototype pump design was developed for use in irrigation ${ }^{1 /}$. The bellow pump invectigated in this study was a modified version of the original design and was constructed at the Asian Institute of Technology.

2.1 Pump Description

The IRRI design was such that the pump body needed to be partially submerged during operation. Since this might not often be desirable for pumping from the usual sources of surface water supplies the design of the pump was modified by providing external suciion lines to deliver water to the bellows. Foot-valves on suction lines were substituted for the flapper valves provided in the IRRI pump. Fig. 2.1 schematically iliustrates the pump configuration adapted for the present work.

The basic components of the bellow pump consisted of:

- a supporting frame and a base plate

- a pair of metal-reinforced flexible canvas bellows
- a discharge box
- a pair of suction lines and foot-valves, and
- a pair of foot rests

The bellows constituted the basic pumping element and consisted of an outer layer of cotton canvas and an inner layer of rubber lining stuck together with rubber cement. The rubber lining served, to render the bellows impermeable while the cotton sanvas sheet was tough enough to withstand the pressures generated during pumping. The bellows were

[^6]reinforced with galvanized-iron (GI) metal plate inserts between the inner and outer layers to prevent it from deforminz during operation. The bellows were supported at the botcom by the base plate fixed to the wooden frame. The suction lines deliver water to the bellows and these discharge into the discharge box which in turn is connected to the delivery pipe.

The base plate as well as the discharge box having a volume of about 3 \& were made of GI sheets. Flow of water between the bellows and the discharge box was controlled by a pair of flapper values also made of GI sheets, lined with cotton canvas. During compression of the bellows the flapper valves open and allow water to flow up into the discharge box. The valves close during the suction stroke preventing water from flowirg back into the bellows from the discharge box. The discharge box was provided with a 5 cal spout to which the delivery pipe was connected.

The foot-valves for the suction lines were 2.5 cm in diameter and were procured from the local markets. These being standard fittings for the conventional types of pumps, are easily available in most areas. The foot rests for the operator to stand on while pedalling the pump were made of wooden planks.

Detailed specifications for the component parts of a prototype pump model are shown in Fig. 2.2 to Fig. 2.9.

2.2 Pump Operation

The bellow pump is easy to operate. The operator stands on the foot-rests and merily shifts his weigint from one foot to the other thus expanding one bellow while compressing the other. The expanding bellow sucks in water from the source while that in compression forces water out into the discharge box. By alteratively shifting his weight in a rythmic manner, the operator pumps a continuous flow of water. Fig. 2.10 shows the pemp in operation.

FIG. 2.1 MANUALLY OPERATED GELLOW PLUMP
FOR RURAL COAMUNITY WATER SUPPLY

ALL DIMENSIONS ARE IN CENTIMETERS

FIG. 2.2 SPECIFICATION OF•A BELLOW

ALL DIMENSIONS ARE IN CENTIMETERS

FIG 23 METAL INSERTS FOR BELLOW REINFORCEMENT

FIG. 2.4 BELOW CLAMPS

FIG. 2.7 BOTTOM OF DISCHARGE GOX

FIG.2.8 RUBBER TIE FOR DISCHARGE BOX

FIG.2.fi DISCHARGE BOX
all dimensions are in centimeters

Tests for evaluating the perfornance of the bellow pump were carrled out at the drainage canal of the Regional, Engineering Experimental Centre of the Asian Institute of Technology, Bangkok. A labourer was asked to operate the pump and the volumetric discharge capacity of tine pump was noted as a function of total static head thrcugh which water was lifted. The pump was operated at three levels of static head $1.5,2.5$ and 3.5 m . Different operators were asked to work the pump, each of them weighing between 50 to 53 kg . Normally a single operator pedalled the pump during each test run, but the increase in pump output when two operators simultaneously worked the pump was also recorded. Initially it took about five minutes for the operator to develop a stroke rython. Once the operator established the stroke rythm, the pump output was recorded by cumulating the discharge over fifteen minute periods and computing the mean discharge rate from several samples. Continuous operation of the pump for extended periods was tiresome for the operator, but with a five to ten minute rest after every half hour of operation, the pump could be worked over a period of several hours.
2.4 Results and Discussion

For each operating head several test runs were carried out and the mean volumetric discharge rate of the pump recorded when one and two operators pedalling the pump. These data are tabulated in the Appendix A. The results of the tests usirg a single operator are summarized in Table 2.1. Pump output at 1.5 m head. ranged from 77 to 100 limin with a mean of about $89 \mathrm{l} / \mathrm{min}$. At 2.5 m static lift the range was 73.3 to $76.7 \mathrm{l} / \mathrm{min}$ while at 3.5 m head the discharge obtained was between 37.1 and $40.3 \mathrm{l} / \mathrm{min}$. The observed decrease in pump output with increasing head was to be expected since the work done in raising a given quantity of water increases with head wille the energy input remains more or less the same. The head-discharge relationship for the bellow pump is presented graphically in Fig. 2.11. It has been estimated that the energy outplut from sustained human labour is of the order of 0.1 hp tils value was used for the a derage energy input in computing the values of overall efficlency of the pump at various cperating heads, shown in Table 2.1 and ploted in Fig. 2.12. The pump efficiency was calculated as follows:
 on it and simultaneously pedal the pump. The performance of the found that per increase in the pump output. Althous the operators tired less easily in thls arrangement, especially at 3.5 m head, from the point of view of energy economy simultaneous operation by two workers appeared undesirable. Furthemore, the 30 minute operation followed by a 5 to 10 miniute rest suggested earlicr for a single operator appeared, on the whole, to be quite satisfactory for the optimal operating head of 2.5 m .

Recently THANH and PESCOD ${ }^{1 /}$ have reported on the development of low-cost series and dual-media filter units for small rural community watur supply systens. Each of these units was estmated to serve a popilation of about 250 people and required the water to be lifted from a surface source through about 4 to S meters. Using a figure of

1/ THANH, N.C. and PESCOD, M.B. (1976) Application of Slow filtration for Surface Water Treatment in Tropical Developing Cuntries, Research Report No. 65, Asian Institute of lechnology, Bangkok.

30 lipd for the per capita water consumption by rural population, it can be seen that twe bellow purps, considered in this study, arranged In scries, each operating at the optimal head of 2.5 m , could deliver the daily water requirement of two filter units (or a population of 500) in 3 co 4 hours of daily cperation.

Operational experier.ce with the pump also throws some light on the problems to be expected with this device. Operation at a head exceeding 2.5 m , in addition to quickly exhausting the operator, also resulted in significant leakages along the sticking on the bellows. This could be due to poor sticking which cal perhaps be improved with experience. Rusting of the mild steel rod forming the hinge between the bellows was also a problem causing excessive friction loss. This could be largely alleviated by frequently lubricating the hinge and smoother pedalling could be achieved.

2.5 Conclusions

On the basis of the results and discussions presented above it may be concluded that the modified bellow pump developed in this study can form an integral part of small rural community water supply systems in Southeast Asia. The essential characteristic of the pump is the relative simplicity of its construction and maintenance compared to conventional puraps. It is reasonably expected that any necessary repair work can be easily carried out by the village artisans, which would minimize disruption of water supply caused by pump failure. Even where conventional types of pumps are provided as regular equipuent, the bellow pump may be used as a dependable and econoaical stand-by unit. Incorporation of the pump into typical village water treatment systems may require an arrangement of two or more pumps in series in order to achieve the desired lift. The optimal operating head for the pump is about 2.5 m . . tc this head the pump can deliver approximaiely $75 \mathrm{l} / \mathrm{min}$, sufficient to satisfy the dally requirement of about 500 people in 3 to 4 hours of operation.

The stitching of the bellows should be done with care in order to achieve water-tightness and minimize leakages. Frequent lubrication of the hinge can controi nesting and ensure smoother operation.

[^7]The Petro Pump (Sweden)
An interesting new variation of the diaphragm pump, suitable for use in deep wells, is the Petro pump. The pumping element or 'cylinder' consists of an elastic rubber hose, reinforced by two layers of spirally wound brasscoated steel and equipped with a stainless steel check valve of the poppet type at each end. The suction valve housing at the lower end of the hose is fixed within the well by expander j aws which are wedged against the well casing, and which can be disengaged by turning the pipe string a dozen turns clockwise. The discharge valve housing is attached to a string of \boldsymbol{i}-inch (19 nuil) galvanized pipe serving as buth the pump connecting rod and the drop pipe. The upper end of the pipe string with the delivery spout is connected to the pumping head.

A new pumpirg head has been specially designed to work in correct conjunction with the elastic characteristics of the pumping hose, but a traditional pumping head may also be suitable.

The discharge capacity of the standard pumping eiement is approximately 0.5 liter per 10 cm (4 -inch) stroke, and can be increased by using a longer hose. The 'Petro' pump can be made in small diameters

The 'Petro' pump is operated as follows:
(1) Push down the handle, thereby lifting the pipe string and stretching the reinforced rubber hose approximately 10 cm (4 inches).
(2) Due to the effect of the spirally wound steel wires, the hose decreases in volume (displacement); the increased pressure within the hose opens the discharge valve, and water is forced through the pipe string to the surface. (3) On the return stroke of the handle, the rubber hose retracts to its original, larger volume; the suction check valve opens, and fresh water is sucked in.

Obvious advantages of this new pumping concept are:
(1) The elimination of the usual cup seals or buckets. There is practically no mechanical friction during pumping, and water containing fine sand or silt may be pumped without appreciable wear to the pumping hose.
(2) The combining of pump rod and drop pipe results in considerable savings in piping. The relatively low weight of the required piping facilitates installation, inspection and maintenance. It is claimed that the pumping element together with the string of pipes can be readily installed by hand, so that no tripod, scaffolding or installation truck will be needed.
(3) No stiffing box is needed, when the pump is used as a force pump.

At present (June 1977), two types of the 'Petro' pump are commercially available:

- Type 95, with standard wedges, suitable for wells of 4 to $4 \frac{1}{2}$ inch (95 to 120 mm).
- Type 48 , suitable for 2 -inch wells (diameter 48 to 60 mm).

The latter type should be of particular interest for use in smalldiameter wells with the water table deeper than 22 feet (6.7 meter), i.e. where suction pumping is not practicable.

The price for one complete pump (pumping element with anchor, and pumping head) is: Swedish Kronor 2.000 (U.S. \$ 440).

Shipping weight of a complete pump is only $43 \mathrm{~kg}(95 \mathrm{lis})$ which should save on transport costs.

The chain pump, which can be powered by man or animal, is primarily a shal-low-well pump to lift water for irrigition (see Figure l). It works best wion the lift is less than 6 meters (20'). The water source must have a depth of about 5 chain links.

Both the pump capacity and the power reguirement for any lift are proportional to the square of the diameter of the tube. Figure 2 shows what can be expected from a 10 cm (4") diameter tu'je operated by four men working in two shifts.

The pump is intended for use as an irrigation pump because it is difficlit to seal for use as a sanitary pump.

Tools and Materials
bielding or brazing equipment
Seさál-cutting equipment
Weodworking tools
Pipe: $10 \mathrm{~cm}\left(4^{\prime \prime}\right)$ outside diameter, length as needed
$5 \mathrm{~cm}\left(2^{\prime \prime}\right)$ outside diameter, length as needed

Criain with links about 8 mm ($5 / 16^{\prime \prime}$) in diameter, length as needed

Sheet steel, 3 mm (1/8") thick
Sr.eet steel, 6 mm (1/4") thick
Sees 1 rod, $8 n m$ ($5 / 16^{\circ \prime}$) in diameter
Steal rod, $12.7 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ in diameter
Leather or rubber for washers
Tre entire chain pump is shown in Figure 3. Ces.ils cf this pump can be cranged to fit materials available and siructure of the well.

- 79 -

FIGUREE

The piston links (see Figures 4, 5, 6 and 7) are made from three parts:

1. a leather or rubber washer (see Figure 4) with an outside diameter about two thicknesses of a washer larger than the inside diameter of the pipe.
2. a piston disc (see Figure 5).

3 a retaining plate (see Figure 6).
The piston link is made as shown in Figure 7. Center all three parts, clamp them together temporarily, drill a hole about 6 mm ($1 / 4^{\prime \prime}$) in diameter through all three parts and fasten them together with a bolt or rivet.

The winch is built as shown in Figure 3. Two steel discs 6 mm ($1 / 4^{\prime \prime}$) thick are welded to the pipe shaft.

FIGURE 2
$\angle / F T$
QUANTITY

6 METERS (18 FEET)	//CUBIC METERS/HOUR (2906 GALLONS/HOUR)
3 METERS (9 FEET)	20 CUBIC METERS/HOUR (5284 GALLONS/HOVR
1.5 TO 2 METERS (4.5 TO 6 FEET)	25-30 CUBIC METERS/HOUR (6605 TO 7926 GALLONS/HOUR

Twelve steel rods, $12.7 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ thick, are spaced at equal distances, at or near the outside diameter and are welded in place. The rods may be laid on the outside of the discs, if desired.

A crank and handle of wood or metal is then welded or bolted to the winch shaft.

The supports for the winch shaft (see Figure 3) can be V-notched to hold the shaft, which will gradually wear its own groove. A strap or block can be adced across the top, if necessary, to hold the shaft in place.

The pipe can be supported by threading or welding a flange to its upper end (see Figure 8). The flange should. be 8 mm to $10 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right.$ to $\left.3 / 8^{\prime \prime}\right)$ thick. The pipe passes through a hole in the bottom of the trough and hangs from the trough into the well.

Sources:

Robert G. Young, VITA Volunteer, Now Holland, Pennsylvania, Chapter

Water Lifting Devices for Irrigation, by Aldert Molenaar, Rome: Food and Agricuiture Organization of the United Nations, 1956.

FIGURE 5
step 1:
CUT CIRCULAR DISK ANO ORILL HOLE IN EENTER

PIPE DIAMETER LESS THVICE THE rHICKNESS OF LEATHER WASHER

FIGURE 6
RETAINING PLATE

FIGURE 7
PISTON LINK
ASSEMBLED

FIGURE 8 PIPE SUPPORT

Examples of Chinese Chain Pumps
Ref.: "Chinese Chain and Water Pumps" by S. Watt, ITDG, London, April 1976

- IRAN CRANC SMAPT

HAND OPERATED - SPOKED WHEEL WATER PUMP

DUAL-DRIVE THREE WHEELS PUMP

CYCLE TYPE WATER PUMP
ON WOOOEAS

WEASING MACMIALE

FIG. 1 THE ARRANGENENT OF A TYPICAL PAM ASSENBLY

The vertical distance betiveen two water leve!a i.: \because : 3 : ; the fiead of rater avrilahle and is a measuac of tor wnit: $\because \because \quad \therefore$.
 not pumping, is jnown as the supply head: siallarly il. : : , : : : : : .

1. A Description

The automatic hydraulic ram is used for pumping water. It works by pumping a smal: fraction of the water that flows through it from a supply source, to a level that can be much higher than the source. The ram can only be used in places where there is a steady and reliable supply of water, with a fall sufficient to operate the ram.

The ram described in this manual needs to have a fall of at least 1 metre from the source to the ram, and a flow at the source greater than 5 litres per minute. The amount of water that it can pump to different heights is given in Table l. (Page 7)

In places where this ram can be used, it has many advantages over other pumps powered by hand, animal, wind, or motors, despite the fact that it wastes a lot of water:-
a) It does not reed an additional power source and there are no running costs,
b) it has only two moving parts, and these are very simple and cheap to maintain,
c) it works efficiently over a wide renge of flows, provided it is tuned in correctiy,
d) it can be made using simple work shop equipment. 2. How it works

The pressure surge or hamer in the ram is partly reduced by the escape of water into the air chamber, and the pressure pulse 'rebounds'
labelled diagram o a typical working ram installation is shown in rig. 1.

Water fiows down the drive pipe from the source and escapes out through the jmpulse valve. When the flow of water past the impulse valve is fast enough, this flow and the upward force on the valve causes the valve to shut suddenly, halting the column of water in the drive pipe. The zomentum of the atopped column of water produces a sudden preseure rise in the ram, which will, if it is large enough, overcome the pressure in the aur chamber on the delivery valve, allowing water to flow into the alr chamber and then up to the header tank.
back, up the drive pipe prodacing a slight suction in the ray body. This causes the delivery valve to close, preventing the pumped water from flowing back into the ram. The impulse valve drops down, water begtre to fiod out ajain, and the cycle is repeated.

A saall amount of air enters through the air valve during the suction part of the ram cycle, and passes into the air chamber utith each surge of water up through the delivery valve. The air chamber io necessary to even out tive drastic pressure changes in the ram, allowing a core steady flow of water to the header tani. The air in the chanter is always confressed, and needs to be constantly replaced as it becomes mixed with the water and lost to the header tank.

The ram is 'tuned' to pump the greatest amouns of water possible, and this normally occurs when the zan cycle is repeated or beais' about 75 times each zinute.

3. Is your site suitable for the ram?

You can install this ram at your site without doine any survey wor: to measure the flow of water at the source, or trie supply and delivery heads at the site, and it will prozably work perfectly wall. However, it is often necessary to know if the ras is cajeble of pumping the emount of rater you need, or whether you neod a larger ram. Neasurinc for this information is rot difficult, and is described below.

The first thins you -..ust measure, is the flow of water at the source, to see if it is erouch to operate the ran; suae people with experieace can exticute this by eye.

Naturally occuring sources of water tend to dy up durine the year, and you mast nuse allcwance for this if you use your megaureaent of water flow to calculate the purping rate of the ran, otherwise your water supply may be leas than you planned for.

a) Measurini a small flow, such as a snring.

When the flow is very sasll, zil can reasure it by constructine a tecporary dam, and catcrires the watar in a bucket. The amount of water (in litms) that flows into the bucket in one minute can then be measured. The don may te ance from aw material, wood, metal oteet, plaine eic., but you mat make gum that there'are no learis:-

a) MEASURINGA STAALL FLOW.

b) Neasurine larger flows.

The ram described in this marmal requires only a small amount of water to make it work, and of ten you can see by looking if the flow is large enough. Eowever, if you are going to make or buy an expensive larger ram, it is essential to know how much water there is to be taken from the source.

Larger flows are measured using a timber plank or ply wood weir, with a $90^{\circ} \mathrm{V}$-notch cut into the top:-

The depth of water flowing through the weir is measured about 1 metre upstream of the welr, and you can then use the graph in Figure 2 to read how much water is flowing

Example.

Depth of water measured 1 metre upstream - 10 cns. From graph, ithe flow is then read as 275 litres/min.

4. Designing the ram
4.1 HOW MOCH WATER CAN TEE RAM POMP

The simple ram pump rade from commercial pipe fittings described in Section 5 of this manual, needs a supply flow of at least 5 litres each minute. Deinif this supply flow, the amaliest amounts of vater that this ram may be expected to pump each day for different supply and delivery hoade, are given in Table 1.

TARLE 1 DAILY PUMPING RATES FOR RAM PIMP (litres of water)

Supply Eead (wetres)	5	7.5	10	15	20	30	40	50	60	80	100
1	400	200	150	80	70	50	30	20			
2		550	390	250	200	130	80	60	50	30	
3			650	450	320	220	150	130	100	70	40
4				650	430	300	200	150	130	90	60
5				750	550	370	300	250	200	120	90
6					700	450	350	300	250	150	120
7						550	410	320	270	200	150
8							450	370	300	250	150
10							600	450	400	300	230
12								750	550	470	350
14									650	550	400
16									620	470	370
18									700	520	420
20										600	450

We have not been able to test the ram pump over this wide ranse of aupply and delivery hesds. We have assumed that it will purp at only one half the rate of a comparable comercial ram manufactured by Blakea Eydrana Ltd. (vee Table 2, page 30).

The ram vill pump at a faster rate if the impulae valve is properly tuned, or if the supply flow is nore than 5 litres per minute.If for example, your ram installation can be tuned to allow a flow of 15 litres por winute down the supply pipe, then the ram will pump three times the anount given in Table 1.

The greatest amount of water this ram can use from the source is governec by the size of the ram itself and if the ram installstion is to use more water (and therefore be able to pump more water), then a larger ram should be chosen. How to choose the correct ran size is given in Part 11 of this manual.

If you find that your ram installation is not large enough to pump the amount of water you need, you con construct a duplicate ram alonsside the oraEinal ram. The drive pipes should be separate, but you may use the same deliver: pipe. Some installation have batteries of small rams, often 5 or more, next to each other.

4.2° CHGOSIN MHL SIEE OF THE DRIVE PIPE.
The drive pire is really the mest important part of tho ram insti:liaiion it carries the water from the source to the ram, and contains the pressure sur: e
 plastic and cuncrete pijes are useless for drive pipers.

The diameter and lonit: c. the jrive pipr is very important, altheer. in.:
 between the limits $\frac{L}{i}=150$ to 1000 . These are very broal limits. we suñeis that yod try th insiall a ir ve ribe with an $\frac{L}{D}$ matio of 500 , or chouse a lopat:
 beind tre drive pipe is de rice: in oreater doiais in par: 11.

Exanole

$$
\begin{aligned}
& \text { Suaply dead - } \quad \text {.0 mins: } \\
& \text { Drive pire diateraz (J) }=25 \cdots \text {. }
\end{aligned}
$$

a) Use $\frac{L}{D}=500$
$\mathrm{L}=500 \times 25=12500 \mathrm{~mm}$ or 12.5 metres.
b) Jse L $=4 \times$ Supply head
$\mathrm{L}=4 \times 4.0=16.0$ metres.
The ram will work equally well if the drive pipe is cut from 25 mm gipe at either of these lencths, and you should choose the length which is most convenient for your site.

4.3 CHCOSING WHE DELIVLNY PIPE SIZE

Unizixe the drive pıpe, you can make the delivery pipe from any material, provided it can stand the pressure of water leading up to the delivery tank. The delivery pipe should have an internal bore of 20 mm ; plastic hose pipe is quite satisfactory if it is strong enough.

The water from the ram can be pumped for great distances provided that the delivery head is small enough; in thas case, the ram has to spend effort forcing water tirough the plpe, and you should try to keep the delivery pipe fairly ahort.

4.4 CECCSIMG TEE SILE OF THE HEADER TANK.

One of the great advantages of a ram pump is that it works automatically ard continuousiy, which means that it is alvays pumping water to the header tan..

If you thin' about the way that you use water in your household, you will sec t_{i} at curams certain periods of the day, you will need a relatively large afount fron the heacer tank. At'other times, during the night, for instance, you whll aos: likely use very little water.

The meader tank mast therefore be large enough to hold enough water in reserve to suppij your needs during periods of peak demand.

Even when you cioose a header tank of correct size, there will be times when i: overflows. You should therefore fit an overflow pipe to the tank, and lead the waste water to your garden or righ tank.

The way to choose the tank size is to estimate your daily water requirements, and make your tarik to contain half this amount. If you find the tank is tou suali, you can easily add a second tank.

5. Building the ram.

You can build a ram from any size of pipe fittings that you have available, and the way that these will work is described in Part 1l. The ram described here has a drive pipe bore of 30 mm . The ram body is made from pipe fittings of 50 mm internal bore, so that the impuise and delivery valves can have large openings: the relatively small sizes of commercial pipe fittings are a major disadvantage for ram construction, and effectively limit the mayimun ram size that can be made. The finished ram is shown below and in Fig. 3

The main points you should note whon you intent to build this ram are:-
a) the capacity of the ran depends on the size of tie impulse valve which allows the water to discharee. The pipe fittings are therefore several oizes larger than the drive pipe.
b) the flow of water thruligh the ram st:ould not be restricted by sharf chenges of direction of water flow or by the sudten junction of different sized pipes.
c) the ran experiences savafe pounding durinf its workine life and all the parts, connections and valvos mast be strons enough to stard the 3tresses.

d) there are obviously any number of combinations of pipe fittings which can make up a ram body, and the one described below can be modified to suit available fittings.

51 MAKING THE IMPULSE VALVE.

Weld or braze a 50 mm threaded pape jurction onto the valve plate shown in Fig.4.l centrally over the 30 m diameter hole:-

HELDING CDNNELTOR TO PLATE

This will lea e a lip inside the pipe onnection about 10 min wide all round, which will act as a seating for the impulse valve washer. File or rub and smooth the valve plate over the valve seatine area to urevent wear on the valve washer. The wo elongated holes, each 6 mm diameter on the valve plate, re to hold the vaive spring.

The valve spring is made from a strip of mild steel, 650 min lone, $30 \times 2 \mathrm{~mm}$ in cross section, marked out and drilled as shown in Fig.t. 3. Bend the sprine to shape around a 50 mm pipe, with the bend centre line ont te strip in the position as shown below, this will set the sprine with the drilled roles

Bolt the spring onto the valve plate, which has elongated holes to allow the impulse valve stem to be adjusted for correct seating.

The impulse valve itself is made up from a 6 mm diameter bolt, tube and wasiers which you assemble through the valve plate to the valve spring, Fig. 4.4

Finally, add spring tension and the valve stroke adjusting bolts. These allow the ram to be tuned for maximum efficiency. You can see that the impulse valve assembly can be removed from the ram for maintenance by just unbolting the spring, then unscrewing the pipe connector and valve plate:-

We nave chosen this system of impulse valve assembly because it has no wearins parts except for the valve rubber. It is possible that with time, the valve spring will work narden and brear; it is also possible that the spring assemb:y will be damaged durn fis floods if the ram is installed on the side of a stream. An alternative anre robust design for the impulse valve assembly is described leiow.

S.2 B AN ALTEMLATITE IMPMLE VALEE.

The impulse vaive assembiy deacribed above has been taken frem a design by VITA, ans as far as we know, it works quite atiafactorily.

elongared
holes.

4.5. SpRI:IG "ELSEICN BOLT

We include in this section a more robust impulse valve with a sliding valye which will wear in tıme. The impulse valve in this case works by falling under its own weight at the finnsh of each ram cycle:-

The valve stem is fitted through a fixed plpe guije suppoted above the valve plate by arms welded both to the pipe and vaive piate. The pipe connector is welded as before over the centre of tine 30 cm diameter hole in the valve plat.

Choose the pipe guide and the valve stem bolt so that they have a close but easy fit. Alternatively, the pipe guide can be chosen to hold a replaceable brass or plastic sleeve which will take the wear from the moving valve stem bolt.

The valve stroke is set by adjusting the nuts on the top of the valve stem bolt, and the weight of the valve can be altered by adain weichts onto the bolt.

We have not built or tried this impulse vaive assembly, int there is no reason why it should not work. Munire the ram will be a similar process to that describèd in Section 7.

5.2 MAYING TUE DELIVERY VALVE.

The delivery valve prevents t.e fumped water from flowind back into the ram after the pressure pulse has been dissipated. It is therefo a non return valve, and you can make it very simply by velding or brazins a cet and drilled piece of 3 wisteel plate into the top of a 50 mm pipe connectur:-

FIC. 5 CONSTROCTION OF DELIVEEY VALVE.

Take care when the valve plate is welded or brazed into the pipe connector that the plate remains clean, otherwise the value rubber will not seat correctly and the value will Leak.

Non Return valve from 3 mm steel plate -
drilled with 5 mm dia holes and polished smooth. Larger holes may cause the value rubber to distort and Leak

Cut the plate to shape and file smootil to fit exactly into the end of the pife cornector, and weld or braze it inte place. Attach a ru:ber washer to the plate and bult it into position; the washer mast be flexiole enough to allow water to pess
 Ti.e cuoped waster above the fither valve holds the valve in place.

Tre air valve is tade simply by cailline a seall nole 1.0 an in diameter in the side of the pipe connector and below the delivery valve. Tlis is purtialiy blocked by a fine wire oplit fin wich soves with preasure chanices in the rain, keeping the hoie opta and ailowirz air to enter. Fig.j.

Yare sure on asscmbly that the air valve is placed on the opposite side to the delivery pire outhet, othemise the atr entering the air chamber is likely to escape into the delivery pipe; at is, of course, essential that the air feeder valve is located belcw the delivery valve.

Cat a 1 metre leneth of 50 m dianeter water pipe, and thread each end. Screw one end into the delivery pipe \bar{j}-junction pipe rittins, and seal the top with a cep.

5.4 Whylit the Moidmidg Lics.

Mixe tho mountire lees from any available scrap strip iron, and drill, bend, and bolt these around the ram body. The legs can be bolted to the ground when the rim fo assembled at the site if you wart the ran to be a perwarent fixture.

6. Assembling the ram at the site.

a) Asserble the pipe fittings using plenty of pipe joint compound. Screw these firmly together and adjust them for the correct position in the ram assembly. They wust be completely free from leańs.
b) The impulse ard delivery vaives must move freely and when closed seat evenly on the valve piates.
c) Set the ram level on the rounting legs at the required site, and attach the drive and delivery pipes. Flush these pipes with clean water before connection.
d) The drave pipe should be laid as straight' as possible with no sharp bends, and it should have no upward kinks which will trap air.
e) The inlet to the drive pipe aust always be submerged, or air will enter the pipe and prevent the ram from woring.
7. Tuniug the ram.

The ran should be tuned to pump the greatest amount of water to the delivery tani. Tunirg is rot difficult, and you will find that the ran will pump sone water at most settings of the impulse valve assembly.

The anount of water that ti:e ran will pump, and th:e number of valve bents each mismite, are measured for different valve settinss, and the results compared to find the best settine for the raw. You can do this quite easily:-
a) Hold the impulse valve closed, and 'adjust the istroke adjustment bolt' ($\mathrm{G} A B$) until thore is a \quad ap of about 15 mon between thas bolt and the valve plate. This can most simply be done by slippinf a measured pile of steel washers under the bolt and screwirs the bolt down onto then.
h.) Remove the washers, release the impulse valve, and adjust the 'sprine tension bolt' (STB) until the SAB just touches the valve plate. Shortering the STB will bend the spring down.

value closed
c) Nip tigint the STB and SAB nuts, and allow water to enter the drive pipe. Hold the impulse valve closed until the drive pipe is full of water, then release the valve, movine it up and down by hand several times. The ram should now work by itself.
d) If the valve stays open allowing water to flow out, the spring is too tight, and you should stop the flow of water, and reset the SAB and STB in the way described in a, b, and c, above to give a stroke of 13 mm .
e) When the valve wor's correctly, repeat a, b, and c, above for valve stroi:e settings of $13,11,9,7,5,3$, willimetres, measuring for each setiong the amount of water that is pumperi and the valve beats each minute.
f) Compare the pumpine rates, and reset tiie $5: 5$ and SiB as described in a, b, and c, to the stroke settire that gave the best purning rate. If the pumping rates for sevoral of the valve setinge are similar, choose the sctting with the small. est stroke - this will mean a smaller spring terision und therefore less wear.
B) The results of our experiments on one of these rams are given in part 11 of this manual. We obtained the besi purpins rate from an initial valve stroke setting givine a valve beat of 100 cycles per minute, by tightening the spring tension bolt until the valve beat was 75 cycles per minute. The ram you ake will work in a different way to ours, and yois will have to fiddle with the impulse valve to find the best settine.

8. What to do if the ram doesn't work.

There are only two movine parts in an automatic hydraulic ram, and there is yery little that can go wrons. However, possible causes of failure are listed below:-
a) Impulse valve does not work.

Check seatinc of valve washer on valve plate; the valve should not lea: when held closed, and snouid not catch on ti:e side of the pipe connector
Check to see if there is any debris or obstruction in the drive pipe or ran body.
b) Delivery valve does not operate as a non-return valve. This can be seen if the water level in the delivery pipe surges during operation, or falls when the ram is not wor:ing. ine valve should be cleaned and checked for wear.
c) Nin purps too nuch air.

Uock air feejer vaive; if it is too big it will allow
inrou volumes of air to enter the rafi, and a larcer wire artii fir, stoxad be used.
Lapc: thas air does not enter the rara through loose foints; the jointu sircuid be well sealed with nipe compound. Chesk that inlet to drive pipe is subcerged, otherwise air will enter inive pipe, spoiling the performance of the water hamger.

1) \vdots an plitr: with a loud metallic sound.

Chec. t:at air fceder valve is working to allow enoler air to enter beloi the mn-return valve; a small spupt of water Acu:: oun from this: valve with each cycle. If there is not
 fir.
chare thai air freder valve is on the omosite side to the delivery pipe, or the nir will be pumped with the water directly to the header tank.
Ghock tiat there are no air leaks from air charber due to

. Maintenance of the ram after installation.

.
9.1 TGE SUPPLY SOURCE

It is obviously essential to prevent dirt from enterine the drive pipe or leaves from blocking its entry. So it may be necessary to provide a grating at the off-take from the river or streaa supplying the water in order to keep back floating leaves, and a sump should be provided at the feeder tank to collect silt.

9.2 MINTENAICE TASF:S

Naintenarce involves keeping gratings and filters clear, and cleaning the feeder tanis and sump, as well as carine for the ram itself. The mainterance tasks which you must carry out are likely to be as follows:
(a) dismantling the ram to remove dirt,
(b) clearing air locks in the pipe system,
(c) adjusting the tuning; tightening bolts which work loose,
(d) changing the valve rubber; adjusting the sea' ns of valves,
(e) keeping the inflow to the drive piye free of debris;
clearing filters and gratings.

9.3 RREQUSiCY OF lanteraice

Rams have en exceptionally good reputation for trouble free running, and maintenance will probably not need to be very frequent. The way in whicil the necessary catintenance is arranced, and the question of whether this type of ran is suitable for a particular acplication, depends very nuch on wio is availuble to carry out the ratinterance. Is there sozebody livine locally who can rave a look a: the ran at least once every week, of is there a technician fruci somewhere else who can.corie only at intervals of several weeks?

Tunint, and the adjustaent of valves and bolta, may need to be done mure frequently with this farticular ram than with'gomo comerciai codels made frou purpose-desicned alloys and components; and the need for aaintenurce any beobad greater as the delivery head becoscs greatar. On the other hand, specinlised iools and spare pazts aay be needed for the axintanance of a comarerialij-built puap. So in general, this ram is best suited to a situation where the jergon responaible for maintenance lives nearty, and where the delivery head is not tou great. A comercial puap aay be the best choice when maintensince is done

```
from: "A Manual on the Hydraulic Ram
    for Pumping Water"
    by S.B. Watt, ITDG, 9, King Street,
    London WC2E 8HN, England
further Ref.: "A "Yydraulic Ram for Village
    Use", by E.N. Kindel,
    VITA, 3706 Rhode Island Avenue,
    Mt. Rainier, Maryland, USA 20822
```


The Cretan Sail Windwheel as a Power Source

S.B. Watt, ITDG Projects Officer

ackground

The Cretan sail windwheel is still widely used in many countries around the Mediterranean for water pumping and corn yrinding. It is used even in areas which have been supplied with electric power lines, and this indicates its present sconomic value. A typical installation for water pumping s shown in Fig. 1.

The origins of the sail windwheel are obscure, most probably he device evolved from intimate knowledge of and cluse contact with sailing ships. It achieves its power in an exactly ;imilar way to the modern sailing yacht, the triangular canras salls rigged on the wooden spars are set to provide the

Fig. l. Cross Sic:an ilerough wpiral (retan hinal Pump)
maximum turning force on the axle. The spars, which can number from six to twelve, radiate out from a hub which turns on a horizontal axis. The sails are set according to the strength of the wind, and are reefed by hand around the spars if the wind speed increases. In the areas of Crete where the device has been widely used, the characteristic wind conditions during the irrigation season are very gentle breezes, which will not threaten the device.
$=$
The sail wind wheel is thus beautifully simple, using the minimum of skills and materials in its construction and operation. Before it is described in detail, it is useful to state the major characteristics of the wind as a source of power.

The wind as a source of power

The variation in wind speed: The most noticeable thing about the wind is its variability: changing from periods of calm and slight breeze, to howling gales. Each region, each area, and even each focality, will experience a unique pattern of wind movement uver the year, known as the "wind régime’. The use to which wind power can be put depends on the local confidence that the wind will blow when it is needed. This variation can be overcome during water pumping by storing the water in tanks for use during calm spells.

The power of the wind: the power of the wind varies as the cube of the wind speed. This means that if wind speed doubles, the power of the wind increases by a factor of eight. A windwheel therefore has to work very efficiently at low wind speeds, and either be strong enough to withstand gales, or have an efficient shat off device built into it to prevent catastrophic failure in gales. In addition. a wind whed can only extract a proportion of the power of the wind passing through its swept area and if a reasonable anount of power is to be obtained in light winds, the size of the device must be large. These difficulties probably explain why uind power has been leit in relative obscority over the last 30 years.

The characteristics of the sail windwheel

The obviuus advantage of the sail windwhe is the athility of the sab to shape hemselves to the wind. The device can thereiore start itself and wort in wery how wind speeds of less itan 2.75 metres per sec (0 m.p.h.).

It operates at a slow speed. high torgue dexice - - that is, it rotates stowly an less than 25 r.p.m. with a puwerial tuming force, and can therefore be coupled diectly twa simple piston or chain and waisher pump with no expensite geang. There are fer of the dynamic poblems assiciated with modern high speed wind turbines.

A second matior duantage which is porved by the experience of centuries is its boilt in safety asamst ovenpeeding. W the

Partly rigged Cretan sail windwheel pumiping water to greenhouses growing cash crops.

Corn gramding sall windwhed in fixed direction on stome tower
device overspeeds in high winds, the canvas sail 'luffs' or changes shape, causing a rapid reduction in power and speed of revolution. The device is therefore self governing.

A comparison with the multiblade windwheel

The multiblade windwheel is a comparable low speed, high torque, der: e that has been proved over the last 100 years, and many thousands are still working efficiently and sately in all parts of the world. It consists of a series of sheet metal blades arranged radially around a hub which ro. tates on an horizontal axis, and is, in effect, like a sail windwheel machine with rigid sails. They are made commercially with engineering precision, and are designed to operate under even extreme climatic conditions with the minimum of attention. They are designed to tumatumatically out of the wind $i n$ high winds, and are self controlling.

The sail windwheel works, of course, in an exactly sinilar manner to the multiblade device, but it is made with the simplest materials, wood, canvas, éte., and can be made locally with the minimurn of equipment and skills. Its man limitation is that it needs constant atienton to trim and med the salls around the spars when strong, winds start to blow.

Power output from the sail windwheel

There have been only limited attempts to investigate the sat windwheel in a scientific way, but the device appears to be able to extract over 30% of the power of the wind that passes through its swept area; this compares very favomrahly with the multiblade machines. Modern, high pertormance airscrew type turbines, on the other hand, achieve efticiencies ereater than 45%.

Measurements of a satil windwheed buiit with nylon sails and ball bearings (Ref. !) indicate that a dm diameter machine set within a wind speed of 3.5 metres sec (about $\$ \mathrm{~m} . \mathrm{p} . \mathrm{h}$.),
a lieht heere. can develop a prover of 100 watis ($0.13 \mathrm{~h} . \mathrm{p}$.) os çuivalent to the rate of work of a man. In stronger wind or with latger diameter, mole power will be generated.

Typical construction

The Cretan sail windwheel has been built in several ways, in fixed position on a stone tower, or on a steel angle iron tow with a taming carriage. The fixed dinection devices were usu used for corn grinding, and were set to tace the plevailing winds. The multi-directional device has a rudder down wind keep the sails pointing into the wind.

The water pumping machines in Crete take the powe from the rotating shaft though a crank mechanism, to a veitical rod which is cunnected directly to a piston pump in the wel diceclly below. The radius arm of the crank is about $5 .-7 \mathrm{cn}$

The windwhed axk is carricd on a rotating carriage which may be built cither of metal or wood. The bearings are mad of oil soaked wood blocks, which ren steadity for long perit whomut attention, and can be chaply re-placed.

The cormed rigging and setting of the sails has not been tece ded in any of the hiterature, and that and error methods nu be used. Further information on the Cretan anii windwhed can be found from the references and contacts given below.

 the New (ermens Suctery, Vol. 141ソ71-7., p. 1 17-144.
 ahorarrmd ont evpermmental work ont lhe device.)

 (A lald deseription mal working drames of a wil windwhecl.)
3. Himfuowhs. Bo i29, Koute 3, Muhwanago, WISCONSiN 5.3it4
 wark on the sul womdwheet. They atcrentblan an excellent biblio r.ijutiv.

[^0]: Types of Volves

[^1]: For some explanations to the Cretan sail-windmill see page 95.

[^2]: * "Shinyanga lift Pump", VITA Pub. No. 4311.6. Dut of Print.

[^3]: * Rigid cylinder around flexible hose primed; the pilot system is filled with
 water upon installation.

[^4]: 1/ DAWSON, R.W. (1969) Inertia Hand Pump, Paper presented at a Workshop on Rural Water Supply, University College, Dar es Salaam.

[^5]: Drawings can de obtained from the nternational Rice Research Institute, PO Box 933 , Manila, Pniuppines codle RICEFDUND, MANILA

[^6]: 1/ KHAN, A.M. and DUFF, B. (1975), Agricultural Mechanization TechnoRAN, A.M. and
 logy Development at the Irternationsi Rice Insticute, Spectal Report, The International Rice Research Institute, Los Banos, Laguna, Philippines.

[^7]: from: "Design of Simple and Inexpensive Pumps for village "ater Supoly sortoma"

