How to assess normal operatıng characteristics
for pumps used in small
water supply systems
when no information
on the pumps are available and when the technicians have little technical education.

TABLE I：FORMULAS FOR ESTIMATING HEAD，FLOW，AND EFFICIENCY IN SMALL WATER SUPPLY PUMPS

TYPE OF PUMP	R．P．M．	FLOW（ $\mathrm{m}^{3} / \mathrm{hr}$ ）	TOTAL PUMPING HEAD（m）	PUMP EFFICIENCY	OBSERVATIONS
Manual Reciprocating	variable	$\begin{aligned} Q= & 16 / \mathrm{H} \text { in field condt- } \\ & \text { lions at optimal } H \end{aligned}$	Optimal Head for： $\begin{array}{lr} D<75 & D \geq 75 \\ 200-20 D & 94-063 D \end{array}$		Choose the cylinder diameter using the follow－ ing table $\begin{array}{ll} \text { For } H<50 \mathrm{~m} & \text { For } H \geq 50 \mathrm{~m} \\ D=150-16 \mathrm{H} & D=100-05 \mathrm{H} \end{array}$
Motor－driven Reciprocating	V strokes per minutean		$H_{\max }=580 \mathrm{~L}-1.4 \mathrm{D}$	－ 40%	V is usually about 30 strokes per min
Simple Centrifugal	R	$Q=\frac{R(S-10)^{2}}{100,000}$	$H=\left[\frac{1 \times R}{90,000}\right]^{2}$	$\begin{array}{ccc} & \text { For Q } \\ \leq 20 & 20-100 & >100 \\ 60 \% & 70 \% & 80 \% \end{array}$	
Multi－stege Pumps （including turbine pumps for bobreholes）	R	$Q=\frac{R(S-10)^{2}}{150,000}$	$H=\left[\frac{1 \times R}{110,000}\right]^{2} \times n$	For Q ≤ 20 $20-100$ >100 50% 55% 60%	1 The flow in a pump of n stages is the same as the flow in a pump with the same impeiler size，operating at the same rpm but with only one slage 2 The head developed in a pump with stages is n times the head developed in a similar pump with only one stage
Helical rolary Borehole pumps \qquad	R	$Q=\frac{R}{900}\left(00047 S^{2}-25\right)$	Up to 150 metres，depending on the power of the motor	$0 \leq 15$ $Q>15$ $H \leq 50$ 35% 35% $H>50$ 35% 65%	1 The rpm should not exceed 1000 rpm
Hydraulic Ram	ーー	$\begin{aligned} & Q= \\ & Q_{0} \times \frac{\text { pumping head }}{\text { working fall }} \\ & \times \text { efficiency } \end{aligned}$		Pumping head／ working fall Working <15 <15 $15-30$ >30 fall $15-30$ 50% 40% 35% （m） >30 60% 50% 35% 35%	The flow entering the drive pipe $\left(\mathrm{Q}_{\theta}\right)$ will not be greater than $Q_{\text {max }}$ but cannot be less than $Q_{\text {min }}$ ， where

| FORMULAE FOR CALCULATING THE NECESSARY SIZE OF MOTOR． |
| :---: | :---: | :---: |
| Electric motor：Instalied horsepower $=\frac{Q \times H}{200 \times \text { pump efficiency }}$ Diesel motor installed horsepower $=\frac{Q \times H}{125 \times \text { pump efficiency }}$ |

NOTATION ： $\mathrm{D}=$ dla．of cylinder in reclprocating pump（mm）； $\mathrm{E}=$ dla．of drive pipe of hydraulic ram（ mm ）； $\mathrm{H}=$ total pumpling head（m）； $\mathrm{I}=$ dla．of Im － peller of centrifugfal pump（mm）；$L=$ length of stroke in recriprocating pump（ m ）；$N=$ number of stages \ln a multistage pump； $0=$ flow dellvered by pump（ $\mathrm{m}^{3} / \mathrm{hr}$ ．）； $\mathrm{O}_{\mathrm{e}}=$ flow entering drive plpe of hydraulle $\mathrm{ram}\left(\mathrm{m}^{3} / \mathrm{hr}\right.$ ．）； $\mathrm{R}=$ revolutions per minute； $\mathrm{S}=$ dla．of discharge plpe（ mm ）； $\mathrm{V}=\mathrm{strokes} \mathrm{per}$ minute in recriprocating pump．
pumps commonly used in small

- wher supply systems in develop. ing countries As indicated in Table 1, these include manual and motor-driven reciprocating pumps, simple centrifugal and multi-stage centrifugal (including submersible and vertical-rurbine) pumps, helical rotary borehole pumps and hydraulic rams
Using manufacturers' information on a variety of makes of pump in each category, the theoretical tunctional forms were calıbrated to give equations for estimating the rated characteristics (head, flow and efficiency) for each type of pump. These results are presented on Table 1.

In interpreting Table 1 , it should be borne in mind that this is not intended to be a substitute for conventional merhods for determining the characteristics of a pump (as presented, for example, by Walker, 1972), but is merely a guide in estimating these characteristics when it is not possible to follow the regular procedure. Thus Table 1 would never be used when it is possible either to obrain technical information from the pump manufacturer, or to conduct tests to determine the characteristics.

It should.also be emphasized that pumps do not, as Table 1 suggests, have a unique operating point. In the case of centrifugal pumps, for instance, there is a trade-off between capaciry and head for any particular pump While Table 1 gives only an escrmate of the flow and head at which the pump would normally be operated, this estimate is useful because a pump should not be operated at a point very different from this "normal operation point"-due to considerations of pump efficiency and for protection of the motor and pump

APPLYING THE METHOD

MANUALLY-OPERATED RECIPROCATING PUMP (Reference: McJunkın, 1977)

Problem. We have a borehole with a yield of 3 cubic meters per hour (13 gpm) at a dynamic level of 60 merers (200 ft) We wish to install a hand pump. What diameter cyhnder should be installed, and how many people could the pump serve?

Answer. From Table 1, for $\mathrm{H} \geq$

50 meters $(164 \mathrm{ft}), \mathrm{D}=$ $100-05 \mathrm{H}$. In this case, $\mathrm{D}=100-$ $0.5 \times 60=70 \mathrm{~mm}(275 \mathrm{~m}$.) That is, we would install a $70 \mathrm{~mm}(23 / 4$ in.) cylnder. From Table 1, the flow will be about $16 / \mathrm{H}=16 / 60=$ 0.27 cubic meters per hour (1.19 gpm), which is substantially less than the capacity of the borehole. Assuming that each person requires 20 liters (53 gal .) of water per day, and that the borehole will be in use for 10 hours dally, then the borehole fited with a hand pump with a $23 /$ inch cylinder can provide water for $270 \times 10 / 20=$ 135 people. (Note: 20 hiters is a design figure used in developing countries when water is supplied chrough hand pumps.)

MOTOR-DRIVEN RECIPRO. CATING PUMP (Reference: Babbite et al, 1962)

Problem We have a recıprocating pump with a 75 mm (3 mn .) diameter cylinder and a stroke of 0.45 meters (1.48 ft). We wish to use this pump in a borehole which yields $5 \mathrm{~m}^{3} /$ hour (22 gpm) at a dynamic level of 100 meters (330 fc). We want to know if the pump can be used and, if so, what size diesel motor should be coupled to the pump

Answer. From Table 1, we assume that the pump will operate at 30 cycles per minute and that the efficiency will be 40%. $\mathrm{H}_{\text {max }}=$ $580 \mathrm{~L}-1.4 \mathrm{D}=580 \times 045-1.4$ $\times 75$; ı.e. $H_{\max }=156$ meters (512 ft), which is more than the 100 meters (330 ft) which we wish to pump. The yield of the pump is Q $=50 \mathrm{D}^{2} \mathrm{LV} / 10^{6}=50 \times 75^{2} \times$ $0.45 \times 30 / 10^{6}=3.8 \mathrm{~m}^{3} /$ hour (168 gpm), which is less than the yield of the borehole. We therefore conclude that the pump can pump against the required head, and that the pump will not pump the borehole dry. From the formula given in Table 1, installed horsepower $=(\mathrm{Q} \times \mathrm{H}) /(125 \times$ pump effictency). That is, the required horsepower $=(3.8 \times$ $100) /(125 \times 0.4) \geq 7.6 \mathrm{hp}$. We would cherefore install a $71 / 2$ horsepower diesel motor.

SIMPLE : CENTRIFUGAL PUMPS (Refererice Walker, 1972)

Problem A village has a population of 3,000 people. In the village, a dug well has been constructed. A pumpring test indicates that the well yrelds 12 cubic meters per
hour (ougpm) when the war. down is 4 meters (13 fc) below ground level Next to the well an elevated storage tank 16 meters (53 fr) high with a capacity of 50 cubic meters (13,000 gal.) has been constructed. The village council has obtained an old centrifugal pump which no longer has an identification plate and wants to know if the pump can be used to pump the well water to the storage reservorr The diameter of the 1 m peller of the pump is measured and found to be $200 \mathrm{~mm}(8 \mathrm{~nm}$.) The diameter of the discharge pipe is $32 \mathrm{~mm}(1.25 \mathrm{~mm}$.). If the pump can be used, the village council wishes to know the size of diesel motor necessary to drive the pump, and the detarls of the mo-tor-pump coupling
Answer. It's estimated the villagers use 20 liters (5.3 gal.) per person per day. Thus, the present daily consumption will be about $(3,000 \times 20) / 1,000=60$ cubic meters (16,000 gal.) per day: There should be no problems on the suction side of the pump since the lift is less than 5 meters (16 fr .). Using rhe formulae in Table 1,
$Q=R[S-10]^{2} / 100,000$ and $H=(I . R / 90,000)^{2}$,
we can construct the following table.

	Q			H
$\left(\mathrm{m}^{3} / \mathrm{h}\right)(\mathrm{m})$				

Thus the pump can run at 2,000 rpm, pumping about $10 \mathrm{~m}^{3}$ /hour (44 gpm) aganst a 20 meter (66 ft .) head. To supply the 3,000 villagers, the pump would run about 6 hours per day.
From Table 1, we estımate an efficiency of 60%, where the installed capacity of the diesel motor is

$$
\begin{gathered}
(20 \times 10) /(125 \times 060)= \\
2.7 \mathrm{hp} .
\end{gathered}
$$

That is, a $21 / 2$ or 3 horsepower motor would be adequate. To reduce maintenance requirements, it's best that relarively slow-running motors be used. If we use a motor operating at $1,500 \mathrm{rpm}$ and have a pulley diameter of 15 cm (6 in .) on the pump, then the diameter of the pulley on the motor will be $(2,000 / 1,500) \times 15=$ $20 \mathrm{~cm}(8 \mathrm{~m}$.$) .$

CENTRIFUGAL MULTISTAGE PUMPS (Reference• Babbitt et al., 1962)

This category of pumps includes borh horizontal-shaft pumps, which operate under conditions similar to those of simple centrifugal pumps (although the mult-stage pumps develop higher heads), and vertical shaft "turbine" pumps, which are used in boreholes. Included in the latter category are the so-called "submersible pumps," which are multistage centrifugal pumps. There, the electric motor and the pump rtself operate below the water level in a borehole or orher source

Problem We have a borehole that delivers 5 cubic meters per hour (22 gpm), with a dynamic level in the borehole of 45 meters $(150 \mathrm{ft})$ below ground level A small town needs 20 cubic meters ($5,300 \mathrm{gal}$.) of water per day. Alongside the borehole there is a 15 -meter (50 fr .) high storage tank that holds 25 cubic meters $(6,600$ gal) of water. The town administration has obtained a vertical turbine borehole pump with 12 stages. The discharge pipe diameter is 25 mm (1 in .) and the turbines are $100 \mathrm{~mm}(4 \mathrm{in}$.) in diameter. We want to determine whether the pump can be used in the borehole and, if so, what electric motor is necessary to drive the pump.

Answer. From Table 1, we nore the relevant formulae for this category of pump:
$Q=\left[R(S-10)^{2}\right] / 150,000$ and $H=\left[\frac{I \times R}{110,000}\right]^{2} \times \begin{aligned} & \text { number } \\ & \text { of stages }\end{aligned}$

In this case, for $S=25, I=100$, and 12 stages, we construct the follow. ing table:

R	$\mathrm{n}^{3}(\mathrm{hr})(\mathrm{m})$
1,500	2.3 ${ }^{\text {3 }}$, 22.2
2,000	$3.0 \quad 40.0$
2,500	$3.8 \div 61.7$
3,000	4.5889

The pump can thereby develop the necessary head, 60 m . (200 fr .), If it operates at $2,500 \mathrm{rpm}$ At this speed the pump will pump 38 cubic meters per hour (16.8 gpm), thus not exceeding the capacity of the borehole. It will be necessary to run the pump 20/38, 1 e. about 5 hours darly.

The capacity of the electric mo-
tor required is $Q \times H / 200 \times e_{b}$ $=3.8 \times 60 / 200 \times 0.50=2.28$ hp . We would therefore install a $21 / 2 \mathrm{hp}$ electric moror of $2,500 \mathrm{rpm}$ directly coupled to the pump.

HELICAL ROTARY BOREHOLE PUMPS (Reference: Gibson and Singer, 1969)
Problem.' We have a borehole that can supply 5 cubic meters per hour (22 gpm) at a dynamic head of 90 meters (295 ft). We want to know how much water can be pumped to ground level by a hellcal rotary borehole pump with a discharge pipe diameter of 38 mm $(1.5 \mathrm{in})$. We also wish to determine the size of the diesel motor necessary to drive the pump and to calculate the pulley diameters.

Answer We assume that the pump will function at 900 rpm , about the desirable speed for a pump of this sort. Use the relevant formula on Table 1:

$$
\begin{aligned}
& Q=R / 900\left(00047 \mathrm{~S}^{2}-2.5\right) \\
&=900 / 900\left(0.0047 \times 38^{2}-2.5\right) \\
&=4.3 \text { cubic meters per hour } \\
&(19 \mathrm{gpm})
\end{aligned}
$$

For a helıcal rotary pump delivering more than $1.5 \mathrm{~m}^{3} /$ hour (6.6 gpm), the efficiency is about 65%, where the installed capacity of the diesel motor is to be
$Q \times H / 125 \times e_{b}=4.3 \times 90 / 125$

$$
\times 0.65=48 \mathrm{hp}
$$

We would therefore install a 5 hp motor.

HYDRAULIC RAM (Refer'ence: Wagner and Lanoix, 1959)

Problem. An isolated rural community with 100 inhabitants wants to examıne the feasibility of using a hydraulic ram that has a 51 mm (2 in.) diameter drıve pıpe. A stream passes alongside the community and has a minimum flow of about 4 cubic meters per hour (18 gpm) The community has a 3-cubic-meter (800 gal) prefabrıcated storage tank that they have installed on top of the community center. The top of the tank is 65 meters (213 ft) above the proposed site for the installation of the hydraulic ram. The working fall avarlable at the proposed site is 4.5 meters (14.8 ft)

Answer From Table 1 we see that the maximum pumping head is 120 m (394 ft). Thus, there is no difficulcy in pumping to 65 meters (213 fr). The minımum flow into the ram is
\geqslant
$0.65 .(0.10 \times 51-3.0)=1.4$
cubic meters per hour (6.2 gpm) and the maximum flow is
$1.35(0.10 \times 51-30)=2.9$ cubic meters per hour (12.8 gpm)
The flow into the drive pipe, Q_{e}, will therefore be 2.9 cubic meters per hour (12.8 gpm) (which is somewhat less than the minimum flow in the stream)
Since the pumping head/work1ng fall $=65 / 4.5=14.4$ and the workıng fall is 4.5 meters (14.8 fr), the energeric efficiency of the pump is 60%. Thus, the flow delivered by the ram is $Q=Q_{c} \times$ $\mathrm{e}_{\mathrm{b}} \times$ pumping head/working fall $=2.9 \times 06 \times 4.5 / 65=0.12 \mathrm{cu}$ buc meters per hour (0.52 gpm). The ram can therefore deliver 120 $\times 24=2,800$ liters per day (740 gal.), water for about 140 people.

Whale Table 1 may be useful to water personnel in developing countries, the approximations and limitations can only be understood by those who have attempted to derive such estimating questions. To avord inappropriate use and to appreciate how the method relates to conventional methods for assessing pump characteristics, those responsible for the development of pedagogical material in water technictans' training institutions in developing countries should undertake a simılar analysis, basing their empirical estimates on the pumps commonly found in their countries.

REFERENCES

(1) Babbitt, H E, J J, Doland, and J C Cleasby (1962) Water Supply Engineering, McGraw Hill, NY, pp. 175-214
(2) Gibson, U P and R D Singer (1969) Small Wells Manual, USAID, Washingion, DC, p 120
(3) Karassik, I J (1959) "Whar are the Characteristics of the Unknown Pump"", Public Works, June 1959, p 1128
(4) McJunkin, F E (1977) Handpumps, WHO International Reference Center, The Hague, Netherlands, 230 pages
(5) Moody, L. F (1952) "Hydrauhic Machinery", pp. 555-637 in Handbook of Applied Hydraulics, ed. C V. Davis, McGraw Hell, NY
(6) Wagner, E G and J. N Lanoix (1959) Water Supply for Rural Areas and Small Communities, WHO, Geneva, 340 pages.
(7) Walker, R (1972) Pump Selection A Consulang Engineer's Manual, Ann Arbor Science Pub, Ann Arbor, MI, 120 pp

[^0]
[^0]: John Briscoe has worked in African and Asan countries on water supply and sanitation. He is an Assistant Professor in the Department of Environmental Sciences and Engineering at the Unwersty of North Carolina.

