IIBRARY
intarational "werbica Contro
sor conamicy yher Suphy

SNATHETER PHOJECT
DEETG \because CONSMRTCTION

Genert Erimoiples and Techniques
For an=urity Besed Frojects

Field Cowordinator Training Course
ASTC Enoject, Manveit

1. ITMEODUCTION 1
2. GENERAI INTRODUCTORY TECEMTIGUE FCR AIT SMATU UATER 3 EROJECT DESIGN. (FLOW Chart)
3. HLOW NESUREMENTI B
3.0. Introciuction 13.
3.1. Pipe Flow 13
3.2. Channel Flow Measurement 15
4. BROCSDURES FIR RESFGT AD OOSTIFES 19
4.1. Design and Costing oi Stone Tank 19
4.1.0. Introduction 19
4.1.1. General Calcuiations 19
4.1.2. Design of Base 20
4.1.j. Design of Walls 21
4.1.4. Design of Roor 22
4.1.5. Materials Recuired for Tank Construction 24
4.1:6. Costing of Tany 26
4.2. Design and Costing 0 E Erro-Ciment Tank 28
4.2.0. Introduction 28
4.2.1. General Information/Calculations 29
4,2.2. Design of Ease 29
4.2.3. Design of Walls 30
4.2.4. Design of Roof 33
4.2.5. Amount of Wire Mesh required for all of the Tank 3.4
4.2.6. Materials required for Tank Construction 35
4.2.7. Costing of Tank 37
5. CCRETRUUCTION FROCEDURES 39
5.0. Introduction 39
5.1. Construction Procedure for Stone Tank 39
5.1.1. Introduction 39
5.1.2. Site Preparation 3.9
5.1.3. Construction of Foundation Slab 40
5.1.4. Wail Construction ord Sipe Ilacement 42
5.1.5. Flastering of Insice Hais 44

5.1.6. Preparation of Wood 44
5.1.7. Construction of the Roof 45
5.1.8. Worik on Access inea to taps 4.6
5.1.9. Inspection 47
5.1.10. Use of Excess Water 47
5.2. Construction Procedure for Ferro-Cement Tank, : 8
5.2.1. Introduction 48
5.2.2. Site Preparation 48
5.2.3. Placement of the Vertical Reinforcine Bars 48
5.2.4. Construction of the Foundation Slab 49
5.2.5. Placement of Gircular. Horizontal Bars 49
5.2:6. Placement of Wire Mesh 50
5.2.7. Placement of Tank Fittings 51
5.2.ع. Cement Mortar Application 53
5.2.9. The Manhole Cover 54
5.2.10. Access Area to the taps 55
5.2.11. Inspection 55
5.2.12. Use of Excess Water 5.5
5.3. Design/Costing and Construction of Combination Tank. 5.5
5.3.0. Intrcduction 55
5.3.1. Design and Construction of the Base and walls 55
5.3.2. Design and Construction of the Roof 56
5.3.3. Materials and Costings $5: 9$
6. PIPEIINE FRCGEDURES 60

- 5.1. Pipeline Design and Costing 50
5.1.1. Introduction 60
6.1.2. Basic Calculations 60
6.1.3. Use of Data Book 69
6.1.4. Final Pipe Calculations 61
6.1.5. Erample 62
6.1.6. Uses of Valves and Fittings 6.3
6.1.7. Costing of the Fipeline $\varepsilon 4$
6.1.8. Pipe and Lccessory Frices 65
6.2. Dipeline Construction 66
6.2.1. Fipeline Zoute 66
6.2.2. Tools needed 66
6.2.3. Program of Work 67
6.2.4. Inspection and Repair of Individual Pipes 67
6.2.5. Connecting of Fipes 68
6.2.6. Pipe Supports 68
6.2.7. Inspection of Fipeline 69
6.2.8. Diagnosis and Correocion of Eroblems 69

Section	Page No.	Diagram No.	Title
3.1	14	1	"Pipe Flow" measurement from channel flow situation
4.1 .4	22	2	Layout of beams for stone tank roofing.
4.2 .1	29	3	View of Standard Ferrocement tertr
4.2 .3 (d)	31	4	Layout of reinforcement steel for standard ferrocement tank
4.2.3 (e)	31	5	Desired overlap of reinforcing mesh in ferrocement tank.
5.1 .3	41	6A	Design lifx for base of tank.
5.1 .3	41	$6 B$	Construction Technique for base of tank.
5.1 .4 (a)	42	7	Placement of Drain Pipe
5.1.4. (b)	42	8	Design Mix for wall mortar in stone tank.
5.1 .4 (c)	43	9	Placement of taps in stone tanko
5.1 .4 (d)	43	10	Placement of air vents/overflow pipes in stone tank.
5.1.7. (a)	45	17	Layout of beams for stone tank roofing.
5.1 .7 (b)	46	12	Manhole roof cpening.
5.1 .8	47	13	Layout of stone tank frontaje.
5.2.5 (a)	50	14	Layout of Reinforcing Steel in standard ferrocement tank.
5.2.7 (b)	52	15	Placement of tops for ferrocer.ent tank.
5.2.8	53	16	Design mix for mortar in ferrocement tank.
5.2 .9	54	17	View of Roof and Roof cover for ferrocement tank.
5.3 .2	56	18	Layout of Reinforcing steels for "combination" tank.
5.3 .2	57	19	View of "combination" tank.
5.1 .6	63	20	Profile of pipe line and positioning of "drain off" and "air release" valves.
6.2 .6	68	21	Typical Pipe Suxport.

This bookiet has been deveioped as a result of experience in the ASTC Mahweit Project in the basic technical training of field coordinators for community development woris. As will be seen from the General Introductcry 'Rechnique, the process involves a high level of (discussion with the locals and a finorough process of inforisation gathering to ensure each project has a definite chance of success by being fully researched. We have found through experierce that there is virtually no water project however small that doesn'J involve a variety of local political problems and it is only through rigorous information gathering and a complete survey of villages and springs in the area that problems, during and after constructicn of the project, can be avoided.

This point cannot be stressed enough and we would advise anyoody undertaking this to of project, involving a large commanity input, not to race anead and construct what may seem at the cutset a veتy straight-forward project without thorough investigation of the prom cess as outlined in the General Introductory Technique.

The process also involves the use of simple instruments and basic techniques in water flow measurement, and determination of difference in elevations and pipeline lengths. The basic instriments requirsd are:
(i) Stopwatch
(ii) Altimeter
(iii) Measuring Mape.

The stopwatch can be used in comjunction with either a mec:umeri bucket (10 litres or 20 litres), or a small float (for channel neasurs:ment) to measure the flow from the source. The altimeter is uss to determine the difference in elevation between the source and the recipient village, if the water is to be piped from the source to the village. The measuring tape is used to measure the flow of the source if it is a channel measurement, and also of course to measure the length of the pipeline required ir any. If a more accurate
survey of the land between the source and the village is required (as is the case for projects with a small elevation difference between the source and the village), a level or theodolite should be used.

Eopefully, this manual will provide the necessary technical guidelines in the planning, design, and construction for small water projects here in the I.A.R. Eowever, these technical giidelines on the inplementation of such a project are completely dependent on the gathering of sufficient and accurate base line data and measurements. This will include and involve input from the locai community; which, as already stated, is probably the most imporiant input to ensure a successful projectin.

The following is a flowhehtrof the process involvod in the design anc execution of a Small Werentroject (SWP).

\%

3. FLC:I MEASUREMENT

3.0. Inteoduction

The procedure used to measure the flow from a source depends on the type of slow and the constraints and restrictions on it. The two types of rilow discussed in this section are pipe flow and channel flow.

3.1. Fipe Flow

a) The measurement of flow from a pipe, or similar type of flow, is the easiest and most accurate to do. The instruments. required are a stopwatch, and bucket or container of known duantity.
b) Holding the stopwatch in one hand and the bucket in the other, begin timing as soon as the bucket is piaced under the pipe flow. Stop timing as soon as the bucket is full or reaches a level of known quantity. This procedure should be repeated at least tinree times and the volume of water collected and time recorded each repetition.
a) Now the rate of flow can be calculated by using the following formula:

$$
\text { Rate of Ilow }=\frac{\text { Volume of water }}{\text { Time }}
$$

This rate of flow shouid be calculated for each trial and the average of these used as the determined rate of flow.
d) A fluw measurement is always a volume per time ratio, whether the voiume is reasured in litres, gallons or cubic metres and the time in seconds, minutes or days. That is, if it takes 20 seconds to fill a 10 litre bucket the rate of flow would be, rate of flow $=\frac{\text { Volume }}{\text { time }}=\frac{10 \text { litres }}{20 \text { seconds }} \equiv 0.5$. Iitre/seconds. To change a litros per second ratio to litres per day ratio ve would mutipiy the litres per second ratio by the amount af seconds in one day ($86,400 \mathrm{sec} / \mathrm{day}$):
$0,5 \frac{\text { litres }}{\text { sec } 0 n d} \mathbf{x} 86,400 \frac{\text { seconds }}{\text { day }}=43,200 \frac{\text { litres }}{\text { day }}$
e_{f}^{a} It siould be remembered that the flow from a spring wili vary dir ring the fear and is usualiy dependent on the anount of rair received in its recharge area. Therefore, fiow mexasurr ments should be taken at various times of the yaar (equery 2-3 months) to determine the amount of water which will be available at any given period of time. If measurement. cannot be taken for an entire fear, remember that measurements taken in the rainy season will be greater than in the dry season and vice versa. Therefore, for example, rates of flow celculated for the rainy season should be reduced by on appropriate factor (usually at least half) to approximately give tle amount of water available on the average。
fi Since pipe flow is the easiest and most accurate to measure, it: shot ld be determined if these "pipe flow" conditions can of, procuced from any given situation. For example, in stream ur channel flow, often the water will flow over a rock lfdge. By directing the flow out and over this ledge, we can produce a "pipe plow" condition, where the water can be measured with a bucket. Care must be taiken to make sure that ajl the water i.s made to flow into the bucket, otherwise an accrrate measurement will not be possiole.

3.2. Channel Flow Measurement

a) The measurement of flow in a channel is slightly more complicated than pipe flow measurement, as the flow cften cannot be directly measured in a bucket. The instruments required are a stopwatch, a tape measure, and a small float (or piece of wooc.)
b) A relatively uniforn straight stretch of the channel must be located, preferably greater than 3 metres in lengtin. This length should be measured, and markers (such as stone) placed alongside, at the beginning and end of this stretch so as to clearly define it. Length $=I$ (cm.$)$
c.) The widths and depths must now be measured at three different points on the stretch of channel. We'll make point 1 at the Deginning of the stretch (marked by one of the stones), point 2 will be in the middle, and point 3 at the end (marised by the other stone). W_{1} is the width in cms. measured at point 1, W2 (in the middle at point 2), and W3 at point 3.
d) At the same time as measuring the widths, the average depth must be determined at each of these locations. The average depth D_{1} is found by teking a number of depth measurements across the width of the channel at point 1, and Finding the average of these. Iikewise, at points 2 and $3, D_{2}$ and D_{3} are computed. Becord these values.
e) Now take the small float, or piece of wood, and soak it with water. Hold the stopwatch in one hand, and with the other hold the float directly over the water at the beginning of the stretch, point 1 (marked by the stone.) Set the float in the water and begin timing at the same moment. When the float flows past the end, of the stretch, point 3, (narked by the other stone), stop timing. This time is t_{1}. The procedure is repected thrice to get three time values, $t_{1}, 亡_{2}$? and t_{3}. Again I cord these values.
f) How we can start calculations for the rate of flow. First we calculate the cross sectional areas at points $1 ; 2$ and 3.

$$
\begin{aligned}
& A_{1}=W_{1} X D_{1} \mathrm{~cm}_{0}^{2} \\
& A_{2}=W_{2} X D_{2} \mathrm{~cm} \cdot \\
& A_{3}=W_{3} X D_{3} \mathrm{~cm}_{\bullet}^{2}
\end{aligned}
$$

(W and. D measurements mist both be in the same units ie: cm.)
g) The average cross sectional area (A) is then computed.

$$
A=\frac{E_{1}+A_{2}+A_{3}}{3} \quad \mathrm{~cm}_{0}^{2}
$$

h) We now compute the volume of water in the stretch of the water channel: Volume $(V)=A X I\left(\mathrm{~cm}^{3}\right)$
For this calculation, A and I must both be in the same basic unit; ie. if A is in $\mathrm{cm.}^{2}{ }^{2}$, I must be in cm .
j) We will now change the units of volume from $\mathrm{cm}^{3}{ }^{3}$ to the more familiar units of litres.

Therefore

Or

$$
1000 \mathrm{~cm}_{\cdot}^{3}=1 \text { Iitre }
$$

$$
\nabla\left(\mathrm{cr}^{3}\right) \div 1000=V \text { (litres) }
$$

k) The average time of our three trials is then computed $=T$.

$$
T=\frac{t_{1}+t_{2}+t_{3}}{3}
$$

1) We mn now calculate the rate of flow
by using the following equation:
Rate of Fl OW $=0.7 \mathrm{X} \frac{V}{T}$ (litres seconds) (The waltiplying fact of 0.7 is used as the average velocity tequired is less than the surface velocity measured in this procedure.
m) Example/problem - If the length (I) of the stretch $=5$ metres, and the other measurements are as follows: point $1 \quad W_{1}=12 \mathrm{~cm} . \quad D_{1}=1.5 \mathrm{~cm}$.
point $2 \quad W_{2}=8 \mathrm{~cm} . \quad D_{2}=2.5 \mathrm{~cm}$:
point $3 \quad \mathrm{~W}_{3}=10 \mathrm{~cm} . \quad D_{3}=2.0 \mathrm{~cm}$.
time trial $1 \quad t_{1}=4$ seconds
time trial $2 \quad t_{2}=5$ seconds
time trial $3 \quad t_{3}=6$ seconds
Determine the rate of flow:
Step 1 (3.2 (1))

$$
\begin{aligned}
& A_{1}=W_{1} \times D_{1}=12 \mathrm{~cm} \times 1.5 \mathrm{~cm}=18 \mathrm{~cm}{ }^{2} \\
& A_{2}=W_{2} \times D_{2}=8 \mathrm{~cm} \times 2.5 \mathrm{~cm}=20 \mathrm{~cm}_{\bullet}^{2} \\
& A_{3}=W_{3} \times D_{3}=10 \mathrm{~cm} \times 2.0 \mathrm{~cm}=20 \mathrm{~cm}_{\bullet}^{2}
\end{aligned}
$$

Step 2 (3.2 (g)) $A=\frac{A_{1}+A_{2}+A_{3}}{3}=\frac{18+20+20}{3}=19.3 \mathrm{~cm}^{2}$
Step 3 (3.2(h)) Volume $=\mathrm{A}$ II
1 and I must be in the same basic unit, so let us change $I=5$ metres to centimetres.
$I=5 m .=500 \mathrm{~cm}$.

$$
\text { Volume }(V)=19.3 \mathrm{~cm}^{2} \text { 区 } 500 \mathrm{~cm} .=9650 \mathrm{~cm}_{0}^{3}
$$

Step 4 ($3.2(j))$
Now, we can change cubic centimetres (cr. ${ }^{3}$) to the more familiar unit of litres.

$$
\begin{aligned}
& 1000 \mathrm{cm.}^{3}=1 \text { litre } \\
& \text { Therefore, } \nabla=\frac{9650 \mathrm{~cm} \mathrm{~cm}_{0}^{3}}{1000 \frac{\mathrm{~cm}_{4}^{3}}{\text { litre }}}=9.65 \text { litres }
\end{aligned}=
$$

Step 5 (3.2 (k)) Next, the average time (T) is found:

$$
T=\frac{t_{1}+t_{2}+t_{3}}{3}=\frac{4+5+6}{3}=5 \text { seconds }
$$

Step 6 (3.2 (1)) The rate of flow can now be computed:

$$
\begin{aligned}
& =1.35 \frac{\text { litres }}{\text { second }}
\end{aligned}
$$

Daily Flow Rate - Frow our zize $6 \mathrm{f}^{2}$ flow in litres per. second we can change to a daily flow rate in litres per day. 86,400 seconds $=1$ day. 1.35 litres/sec. $X 86,400 \mathrm{sec} . /$ day = 166,640 litres/day. If we want to change litres to m .3 for design purposes, 1000 litres $=1$ m. ${ }^{3}$
$\frac{166,640 \text { litres } / \mathrm{day}}{1000 \text { litres } / \mathrm{m}}=166.64 \mathrm{~m}^{3} /$ day.

4.1.0. Introduction

Stom is the most common form of building material in Yemen, and the high quality work carried out in this medium would point to stone as the natural choice in any kind of construction. If used with a good watertight mortar, stone construction for water tanks provides both a good strong tank and an aesthetically pleasins one as well. Construction and material costs though are much higher than for any comparable ferro-cement tank, although, obviously the technique of building in stone is much more widely accepted throughout the whole of Yemen.

4.1.1. General Calculations

a) Decide on Tank VoIume $=V$ metres ${ }^{3}$. This is dependent on the amount of water that will be used from the spring flow during the maximum flow period according to the water . availibility and population to be served. (See Section 2 Flow Chart, regarding the revised Q to be used for design purposes.)

It is important to remember that the level of water should 2lways be at least one metre above the level of the taps to maintain adequate pressure, Thus it may become necessary to divide or section the tank into two compartments to ensure this adequatr tap pressure in times of low flow, while providing the extra storige required for maximum flow.
b) The inside width of the tank is dependent on the length of the redwood beams (150 mm . $X 100 \mathrm{~mm}$) which will span the final roofing. These are sold in two lengths:
(i) 4.0 m .
(ii) 6.5 m.

For this reason and recause the average width of stone wall construction is 0.5 m . we assure the inside width of the tanis to be either:
(i) 3.9 m. or
(ii) 5.5.m.
c) Decide on insice width of tank $=(W-1)$ metres; Decide on inside length of tank $=(\$-1)$ metres; Decide on heigit of tank - H matres.
d) $V=(W-1) X(I-1) X$ E qetre ${ }^{3}$.
e) Outside measurements of the tank are as follows:
iength $=I$ metres
width $=W$ metres
neight = H netres

4-1.2. Desien of Base

a) The base is a concrete mix in the proportions 1 cement : 2 sand : 4 gravel. Its thickness is $10 \mathrm{~cm} .=0.1 \mathrm{M}$.
b) Volume of base $=\nabla_{1}$

$$
=L X \times X 0.1 \text { metre }{ }^{3} .
$$

c) The Eravel is assumed to ocuupy this entire volume and the interstices between the gravel pieces are occupied by the sand and the cecent.
d) Volume of cement $=\nabla_{1} \div 4$ metres ${ }^{3}$

$$
1 M^{3}=1000 \text { metres }
$$

$$
=250 \nabla_{1} \text { Litses. }
$$

e) Each bag of cement contains 35 Iitres, therefore: No: of bags of cement required for base construction $=C_{1}$

$$
\begin{aligned}
& =250 \div 35 \\
& =\frac{50 V_{1}}{7} \text { bags }=C_{1}
\end{aligned}
$$

f) Volume of sand required $=S_{1}$
$=$ Volume of cement X 2
$=\frac{\nabla_{1}}{4}$ ¥ 2 metre ${ }^{3}$

$$
S_{1}=\frac{\nabla_{1}}{2} \text { metre }{ }^{3}
$$

g) Volume of gravel required $=G_{1}$

$$
=\nabla_{1} \text { metre }^{3}
$$

h) Volume of water required $=W_{1}$
$=$ Volume of Cement
$w_{1}=\frac{\nabla_{1}}{4}$ metre 3

4.1.3. Desien of Walls

a) The walls are constructed entirely in stone and mortar.
b) The mortar mix used for the walls is 1 cement : 3 sand.
c) Each $1 M^{2}$ oi wall area needs approximately 25 stones, therefore, 25 stones per M^{2} of wall area.
d) The outsile area of the + walls $=A_{2}=2 X E X(I+W) r e 2$ Therefore, number of stones required $=N_{1}$

$$
\begin{aligned}
& =-25 X A_{2} \\
& =25 X 2 X \mathbb{X}(I+W) \\
N_{1} & =50 X X X(I+W)
\end{aligned}
$$

e) Jach 1 metre ${ }^{2}$ of wall area needs approximately 2 beg; of cement for mortar and plaster, i.e. 2 bags of cenert per M^{2} of wall area.
f) Outsice area of 4 walls A2 (see above)

Therefore, number of bacs of cement required for wall construction $\quad=C_{2}=2 X A_{2}$
g) Volume of 1 bag of cement $=35$ litres

Volume of cement required for wall construction
$=35 \times 2 \times \mathrm{A}_{2}$ litres
$=70 A_{2}$ litres
h) Volume of sand required $=3 \mathrm{X}$ Volume of cement
$=3 X 70 X A_{2}$ litres
$=210 \times \mathbb{A}_{2}$ litres
and
So,
$M^{3}=1000$ litres
$S_{2}=$ Volume of sand required (M^{3})
$S_{2}=\frac{210 X A_{2}}{1000} M^{3}$
j) Volume of water
= Volume of Cement
$=70 \mathrm{~A}_{2}$ litres
$W_{2}=$ Volume of water (in metre ${ }^{3}$) required.
$W_{2}=\frac{70 X \mathrm{~A}_{2}}{1000}$ metre ${ }^{3}$
4.1.4. Design oi Roof
a) The rixdwort beams (150mma $100 \mathrm{ma}_{\mathrm{m}}$) are placed every O. SM (centre to centre) with one beam on each and wall as in the diagram shown below. Plywood sheeting is placed over this.

Diagram 2 - Lay rut of Beams for Stone Tank Roofing.
b) Number of wood lengess squired $=N_{2}=L X 2+1$
c) Area of roof $=\mathrm{LI} \mathrm{N}$ metre ${ }^{2}$ Area ul 1 sheet of rigwood $=1.22 \times 2.44$

$$
=2.98 \mathrm{M}^{2} \text { say } 3 \mathrm{M}^{2}
$$

d) - Ifmber of plywood sheets required $=\mathbb{N}_{3}=\frac{I \times W}{3}$
e) The wood roof is covered in a concrete mix 1 cement : 2 sand : 4 gravel.
f) This has an approximate depth $=5 \mathrm{~cm}$.
$=0.05 \mathrm{M}$.
Therefore, volume of concrete mix = IX W X $0.05 \mathrm{~m}^{3}$ Calculations are as in 4.1.2.

Volume of cement $=\frac{\text { Volume of mix }}{4}=V_{3}$
$\nabla_{3}=\frac{I X W X 0.05}{4} i I^{3}$
$=\frac{\text { IX XX } 0.05}{4}$ I 1000 Mitres
$=\frac{I X W X 50}{4} \quad$ İtres
\&) Number of bags of cement $=C_{3}$

$$
\begin{aligned}
C_{3} & =\text { Vol wine of cement in litres } \therefore \text { 汭 } \\
& =\frac{\Psi \Psi W X 50}{ \pm X 35} \\
C_{3} & =\frac{I X W Y 10}{28}
\end{aligned}
$$

h) Volume of sand required $-S_{3}$ metre ${ }^{3}$

$$
\begin{aligned}
s_{3} & =2 X \text { volume of cement } \\
& =2 X V_{3} \text { metre }
\end{aligned}
$$

j) Volume of gravel required $=G_{3}$

$$
\begin{aligned}
G_{3} & =\text { Volume of mix } \\
& =I X W X 0.05 \mathrm{M}^{3}
\end{aligned}
$$

2). Volume of water required $=W_{3}$

$$
W_{3}=\text { Volume of cement }=V_{3}
$$

4.1.5. Fiaterials Reauinad for Tank Corstiocticn
a) Cement - The total number of begs of sement required
$=C=c_{1}+c_{2}+C_{3}$
b) Tine Sand - The totai arount of sand required $=5$ netres ${ }^{3}$
$=\left(s_{1}+s_{2}+s_{3}\right)$ metre ${ }^{3}$.
c) Gravel - The total ancunt of qravel required = G witre ${ }^{2}$
$=\left(G_{1}+G_{3}\right)$ metre ${ }^{j}$.
d) Water - The amount of water required for construction
$=W_{1}+W_{2}+W_{3}$
Water is also required for curing of the base and rectored walls at the rate of erproximate? 2 metre ${ }^{3}$ for onixiob Therefore total arownt of water required $=W$ metrs = $\left(W_{:}+W_{2}+W_{j}+2 j\right.$ metre ${ }^{3}$.
e) Stones - The tota number of stones recuired fos construction $=\mathrm{N}_{\mathrm{i}}$

1) Pedvood Beans - The totai number ci redwood veans (150 m. X 100 mm) requine: $=\mathrm{N}_{\mathrm{N}} \mathrm{m}^{\circ}$

h) Maps a Taps ane piaced on the tonk at the zatc of ? toy per 50 people.

$-\bar{x}_{1}$
Etra taps requirec for zuture repairs = $F_{1} \div 2$

P.S. Taps should preferably be of the "push" tap variety rather-therem top as the loss of water from the tank is usually less, since-tise autogaticallv sprivig shut:
j) Piping - Each tap requires approximately 1 etre of $1 / 2^{n}$ tubular steel piping: Thereforo, length of piping needed for taps $=R_{1}$ metres. \quad in air vent/overflow pipe is provided for each wall section of a tank. For example if the tank is a simple rectangular 4 walled tank then the nuriber of air vents $=4$; if the tank is divided in 2 sections then the number of air vents is increased by 2 to a total of 6.

Each air vent/overflow pipe is approximately 1 M long. Nu-bis of air vents/overflow pipes $=R_{2}$
Therefore, total length of $1 / k^{\prime \prime}$ piping for air vents $=R_{2}$ metres Therefore, total length of $k_{k \prime \prime}$ piping required $=\left(R_{1}+R_{2}\right)$ metres but piping is sold in 6 M . lengths.
Therefore, number of 6 M . Iengths required $=\frac{B_{1}+R_{2}}{6}$.
This should be a whole number $=B$
o.g. if $\frac{R_{1}+R_{2}}{6}=2.5$ Then $B=\bar{j}$

$$
\text { II } \frac{R_{2}+R_{2}}{6}=3.6 \text { then } B=4 .
$$

i.e. Actual number of $\nless /$ I 6 M. pipe lengths required $=\mathbb{B}$
k) Fittings - Each tap requires $2 \times 1 / 2$ " couplings. Each air vent/overflow pipe requires one coupling. Therefore, number of $1 / 2^{\prime \prime}$ couplings required $=\left(2 I R_{1}\right)+R_{2}$. This amount
should be doubled in case of future repairs required. Therefore, number of couplings to be purchased $=4 X R_{1}+2 R_{2}$
Each air vent requires $1 \times 1 / 2^{\prime \prime} 90^{\circ}$ elbow $=F_{1}$ Therefore, number of $1 / 2^{\prime \prime} \times 90^{\circ}$ eloows required $=R_{2}$ This anount should be doubled in case or fature repains $=2 R_{2}$
$=F_{2}=$ amount of $z_{2}^{\prime \prime} \cdot X 90^{\circ}$ elbows to be purchased./..

1) Other Construction Materials - The normal tarir will require the following tools/materials for construction:
```
4 Shovels
6 X 10 Iitre buckets
2 trowels
\(T\) sand sieve (screen with frame)
1 carpenter's level
Earmer and nails
1 Wood saw
```


4.1.6. Costing of Tank

a) Material Costs - (example given as per Hodaydah April 1980 prices except where otherwise stated.)
C bags of cement e 36 Y.R. per bag.
\mathbb{N}_{1} stones © 10 Y.R. per stone (local Mahweiti price for delivery on site)
N_{2} redwood beams ($150 \mathrm{~mm} \mathrm{I} 100 \mathrm{~mm} X 6.5 \mathrm{M}$. Iong) © $160 \mathrm{Y} . \mathrm{R}$. per beam.
\mathbb{N}_{2} redwood beams ($150 \mathrm{~mm} X 100 \mathrm{~mm}$ X 4.0. M. long) $\& 100$ Y.R. per beam.
N_{3} plywood sheets (18 mm, thick) 125 Y.R. per sheet.
B. No. $1 k^{\prime \prime}$ push taps © 12 Y.R. per tap.

B No. 6 M. $\bar{X} \nmid 2^{\prime \prime}$ tubular steel pipe lengths e 25 Y.R. per 6 M. length.
F_{1} No. $1 / 2^{\prime \prime}$ pipe couplings e 2 Y.R. per coupling.
F_{2} No. $1 / 2^{\prime \prime} 90^{\circ}$ elbows e 2 I.R. per elbow.
Other construction materials should be separately priced as per the list abore of 4.1.5. (1).

The cost of these above materials will of ccerse vary frot time to time and place to place but the above example is merely given to show the rough price levels.

All sand, gravel, and water costs aro included under transport (cf (b) below) as they are generally non-purchasing and only require transport to the site.
b) Iransport Costs - The transport costs for all of the materials in (a^{\prime} above should be computed froll the place of purchase to the actual site. This may include transport by vehicle, animal, or man and shouid be fully taken into account. For example it may be one truck load from Eodariah to the village at a.certain rate = then further transport to the site from the village if $山$ ucessary by animal or man. Corputation of sand and water transport to the site (if necessary) should. be worled out by contacting local drivers and finding out their rates." An ordinary Toyota pick-up holds approximately $1 \mathrm{M}^{3}$ of sand or gravel. Therefore, No. of pick-up loads required $=S+\dot{G} \downarrow$. But, if a large truck is arailable (usually 8 ton) it will hold approximately $5 M^{3}$. Therefore, number of truck loads $=\frac{S+G}{5}$.
These should then be computed at the local prices to see which system is cheaper. Mransport of water (if necessary) should also be computed on a similar basis.
c) Labour Costs--The Iabcur aosts are computed as follows:
(i) 2 -andays per M^{2} of construction on the base.
(ii) 1 son day per 50 stcnes (i.e. per $2 M^{2}$) on the tank walls.
(iii) 4 mandeys (belpers and cutters) per 50 stones (i.e. per 2 MC) on the tank walls.
(iv) 1 carpenter ciay per $6 M^{2}$ of tank roofing.
(v) 1 manday (camenter's helper) per $6 M^{2}$ of tanix rooling.
(vi) 1 manday per M^{2} of rool area (in construction of final concrete layer on roof).
(vii) 2 mandays for pipe connections,

Therefore, total number of worirers, deys required to comprete'construction:
$=(i)+(i i)+(i i i)=(i v)+(\nabla)+(v i)+(v i i)$
$=2 X A_{1}+\frac{A_{2}}{2}($ mason daỵs $)+\left(\frac{A_{2}}{2} I 4\right)+\frac{A_{7}}{6}$ (carpenters days) $+\frac{A_{3}}{6}+A_{3}+2$

Now if we assume thet the cost of unscilled nazivil labor = 60 Y.R.; per day; and the cost of a daily mason's hire $=30$ Y.R. and the cost of a daily campenter's hire $=300$ Y..... Then, 1 mason day $=1$ carpenter day

$$
=5 \text { mandans (in terms of costs) }
$$

Thus, assuming these rations are roughiy correct the tetal rumber of mandays required for the construction of the tank $=1$
$D=\left(2 \times A_{1}\right)+\left(\frac{A_{2}}{2} \times 5\right)+\left(\frac{\dot{x}_{2}}{2}\right.$ I 4$\left.\left.)+\frac{h^{h}}{6} \times 5\right)+\frac{\left(\dot{A}_{3}\right.}{6}+A_{3}\right)+2$
$=2 \dot{A}_{1}+\frac{5 \dot{A}_{2}+4 \dot{i}_{2}}{2}+\frac{5 A_{3}+\dot{A}_{2}}{6}+A_{3}+2$
$D=\left(2 A_{1}+\frac{9 i_{2}}{2}+2 A_{3}+2\right) \operatorname{manctys}$.
Therefore, total labour costs = (daily labourcr's rate) y D_{c} Cost per aday (daily lebcureris rate) will very frow region to region but is nermeily jetween 60 Y. ㄹ. and 100 Y.R. per day.
d) Encillaries/axtras - It is acvisable tc inciude a contingency figure of aperozinetely $15 \%(o f(a)+(b) \div(0)$ to ensure enough sunds ane Ev:ilable due to any inflation in costs between time of design of the project and the actual implementation and for any other unforeseer circuastances.
e) Cverall Total Costs - Whe overall cost cif tine frcject is thus the sum of the separate sections ($(a)+(b)+(c)+(d)$, shown abore.

4.2.0. Introduction

Ferro-cement water tarks axe a reintively new idea here in

design and costing ui anni \%eter projects because of:
(i) Extremely low cost of materials.
(ii) Very simple construction frocedures.
(iii) Long term durabiiity and strength.
(iv) No need for highif skilled labour/can be done at Village Level.

This design outiined below is similar to that shown in Appropriate Technology Vola 4 Ho. 3, but much larger tanks can be constructed. For more information contact, International Ferrocement Information Centre, Asian Institute of Technology, Bangl:ok, Thatland.
4.2.1. General Infurmation/Calculations
a) The tark is circular in shaye with a low inverted saucer-shape roof.
b) The vertical height of the walls is taken as 1.8 metres (this is to conform to size of rcils oi wirs ausna)

Diagram 3-View of Standard Ferro-
c) The warimum voliune required to be stored $=V$ metre ${ }^{3}$ 。
d) The area of the base $=A_{1}$ metre ${ }^{2}$.
e) $A_{1}=\frac{I f}{D_{4}}$? metre ${ }^{\text {? }}$; where $D=$ diameter of base (metre).
f) $V=10 \xi_{i} X A_{1}$ metre e^{3}
$V=1.5 \sum \frac{\pi D^{2}}{4}$ inerefore,
$D=\frac{4 V}{10 \pi}$
4.2.2. Desion \therefore Frase
a) Detti ul base $=10 \mathrm{~cm}$ 。
b) Are: al beise $=A_{1}$ metre $e^{\text {c }}$.
c) Therefore Volume of base $\left(V_{1}\right)=L_{1} \times 0.1$ metre ${ }^{3}$

$$
\nabla_{1}=A_{1} \div 10 \text { metre }^{3}
$$

d) Concrete mix required is $1: 2: 4$, i.e. 1 cement; 2 sand; 4 gravel.
e) The entire volume of the concrete mix is assumed to be taken up by gravel, with the cement and sand settling into the gravel interspaces, ie. Volume of gravel $=V_{1}=G$.
f) Volume of cement $=\frac{V_{1}}{4}\left(\right.$ metre $\left.^{3}\right)$; but 1 metre ${ }^{3}=1000$ Litre:; Therefore Volume of cement $=\frac{\nabla_{1} X 1000}{4}$ litres $=250 \nabla_{1}$ litres
g) Volume of 1 bag of cement $=35$ litres Therefore number of bags of cent required (C_{1}) $c_{1}=\frac{250 X \nabla_{1}}{35}$
h) Volume of Sand $\left(S_{1}\right)=2 X$ Volume cement

$$
s_{1}=2 x \frac{\nabla_{1}}{4} \text { Metre }^{3}
$$

i) Volume of Water $\left(W_{1}\right)=$ Volume of Cement

$$
w_{1}=\frac{\nabla_{1}}{4} \text { metre }^{3}
$$

-4.2.3. Design of Walls

a) The walls are constructed of a combination of wire mesh, reinforcing steel and cement mortar.
b) The average thicicmess of the walls is approximately 5 cm . or 0.05 M .
c) 8 mm diameter reinforcing rods are placed vertically at intervals of $30 \mathrm{~cm} .(0,3 \mathrm{M})$ around the circumference or the base. They should extend 0.5 in into the ground and be held in the concrete base. They extend from the top of the
unis omto the roof, joining close to the top central pcint where a small csrcuiar openiog is made.
d) 6 an. diameter reinforcins rods are placed horizontally at an average $1 n t e r v a 1$ of 0.54 Irom the base to the Boof and ing the circumperence of the tank.

2 Diagram 4 -Layout of Beinforcement Steel por Standard Ferrocement Tank.
e) The wire mesh is rolled out and connected by wire strands on both sides of the reinforcement. Two layers of tie Wire mesh are needed, one inside and one outside, and the wire mesh should overlap as in the diagram shown below.

Diaeram 5 - Desired Overlap of Reinforeing Mesh ir ferrocement tank.

1) Length of walls
(I) $=$ length of circumference.
Lヵm $\quad \pi D$ metre
g) Height os waIls:
$=1.8$ metres
h) Thickness of wallis $=0.05$ metres.
j) Therefore Volume of walls $\left(\nabla_{2}\right)=I X 1.8 \times 0.05$ metre ${ }^{3}$

$$
\nabla_{2}=.09 \pm(\pi X D) \text { metre } e^{3}
$$

k) Mortar Mix in walls = 1:2 ie. 1 cement : 2 fine sand.

1) Volume of Cement $=\frac{\nabla_{2}}{2}$ Metre ${ }^{3}$

$$
=\frac{\nabla_{2}}{2} \times 1000 \text { Litres }
$$

m) Volume of 1 bag of cement $=35$ litres; Therefore number of bags of cement required $\left(\mathrm{C}_{2}\right)=\frac{1000 \mathrm{~V}_{2}}{2} \div 35$

$$
c_{2}=\frac{1000 \mathrm{v}_{2}}{70}
$$

n) Volume of sand $\left(S_{2}\right)=2 X$ Volume of cement

$$
\begin{aligned}
& s_{2}=2 \frac{x^{V_{2}}}{2} \text { metre } \\
& s_{2}=\nabla_{2} \text { metre }^{3}
\end{aligned}
$$

0) Volume of Water $\left(W_{2}\right)=0.75 \mathrm{X}$ volume of cement

$$
W_{2}=0.75 \times \frac{V_{2}}{2} \text { metre }^{3}
$$

p) Amount of 18 mm \& steel bars required:

Length of each piece of vertical steel
$=0.5 \mathrm{M}$ (embedded in ground) +1.8 M (height of walls) + n. 5 D (length required for roof)
$=(0.5 \mathrm{D}+2.3$) metres.
Steel is sold ir 12 M lengths on the market No. of steel pieces in $12 \mathrm{M}_{5}=\frac{12}{(0.51+2.5)}$

This should be a whole number $=\mathrm{E}$
For example if $\frac{12}{(0.5 D+2.3)}=1.5$ then $E=1 \quad \ldots / .$.

If $\frac{12}{(0.5 \mathrm{D}+2.3)}=2.2$ then $E=2$ etc.
Vertical steel is placed at intervals of $30 \mathrm{~cm} .=0.3 \mathrm{M}$ Length of circumference (L) $=T X D$
Therefore number of piecss of steel $=\frac{I}{0.3}+1=N$
Therefore number of 12 M lengths of steel required $=\frac{\pi}{5}$
This should also be a whole number $=\mathbb{N}_{1}$
For example if $\frac{\mathbb{N}}{E}=5.2$ then $\mathbb{N}_{1}=6$

$$
\text { if } \frac{N}{E}=3.7 \text { then } N_{1}=4
$$

q) Amount of 6 mm . ϕ steel bars required in the wails
= length of circumference $=I$
Number of pieces oi $6 \mathrm{~m} \phi$ steel required $=5$
Therefore total length of $6 \mathrm{~mm} . \phi$ steel required $=5 \mathrm{xi}$ metres.
Steel is sold in 12 M lengths
Therefore number of lengths of $6 \mathrm{~m} . \phi$ required
$\equiv \frac{5 \pi I}{12}$ lengths
$=\mathbb{I}_{2}$

4.2.4. Design of Roof

a) This design is on the same principle as the walls.
b) Area of roof (A_{3}) ≈ 4.5 I area of Base (approximately)

$$
A_{3}=1.5 \pi A_{1}
$$

c) Thickness of roci $=0.05 \mathrm{M}$

Therefore Volure of roof $\left(\nabla_{3}\right)=0.05 \times \mathrm{A}_{2}$
d) Volune of Cement required

$$
\begin{aligned}
& =\frac{\nabla_{3}}{2} \text { metre }{ }^{3} \\
& =\frac{\nabla_{3}}{2} \times 1000 \text { litres }
\end{aligned}
$$

e) Volume of 1 bag of cement $=35$ litres Therefore, No. of bags of cement required $\left(C_{3}\right)=\frac{1000 V_{3}}{2} \div 35$

I) Volume of Sand $\left(S_{3}\right)=2 X$ Volume of Cement.

$$
s_{z}=2 I \frac{\nabla_{3}}{2}=\nabla_{3} \text { retre }{ }^{3}
$$

g) Volume of Water $\left(W_{3}\right)=0.75$ I Volume of Cement

$$
w_{3}=0.75 \times \frac{v_{3}}{2} \text { netre }{ }^{3}
$$

h) Amount of 6 mm . \varnothing steel bars required for the roof: Three circular horizontal bers will be placed on the roof. They will be of varying lergth as the circles get smaller as they proceed to the ridcla of the roof. There need only be 3 of these for this size of tark and they should be spaced evenly. Their average length (L_{1}) can be taken as $I_{1}=\frac{3 L_{\text {wher }}}{4} \mathrm{I}=$ circurference of the walls of the tank.
No. of these bars in 12 M. lengths $=\frac{12}{L_{1}} \div \frac{12 X 4}{3 I}=\frac{16}{I}$ This should be a whole number $=\mathrm{E}$ i.e. if $\frac{16}{L}=2.7$ then $E=2$

$$
\text { if } \frac{16}{L}=5.3 \text { then } E=5
$$

There will be three of these bazs, so the number of 12 M . lengths required $=\frac{3}{2}=N_{3}$
4.2.5. Amount of Wire Mesh Required for all of the Tank:

$$
\text { a) } \begin{aligned}
\text { Length of each roll of wire resh } & =45 \mathrm{M} . \\
\text { Width of each roll of wire zesh } & =90 \mathrm{~cm} .=0.9 \mathrm{M} . \\
& =0.9 \mathrm{Mrea} \text {. } 45=40.5 \mathrm{Metrs} \varepsilon^{2} \\
& \left(\text { say } 40 \mathrm{~m}^{2}\right)
\end{aligned}
$$

i) Area of walls (-2) ciromference X height

$$
\begin{aligned}
& \dot{b}_{2}=D \times 1.8 \\
& A_{2}=5.65 \text { Metre }^{2}
\end{aligned}
$$

c) area of roof $=i_{3}$ metre 2 (cr. 4.2.4. (b))
d) Total area to be covered by wire mesh $(A)=\left(A_{2}+h_{3}\right)$ metre ${ }^{2}$
e) Two lagers of wire mesh are required to cover this area $=A$ metre ${ }^{2}$;
therefore, Area of wire mesh required $=2 A$ metre ${ }^{2}$.
f) Number of rolls of wire mesh required -

$$
\frac{\text { Area of wire mesh required }}{\text { area of each roll of wire mesh }}=2 A \div 40=M
$$

4.2.6. Materials Required for Tank Construction:

a) Cement - The total number of bags of cement required

$$
=c_{1}+c_{2}+c_{3}=c
$$

b) Fine Sand - The total amount of sand required:

$$
=s_{1}+s_{2}+s_{3}=s \text { metre }
$$

c) Gravel - The total amount of sand/gravel required =G metes ${ }^{3}$
d) Water - The amount of water required for construction is $\left(W_{1}+W_{2}+W_{3}\right)$ metre ${ }^{3}$.
Water is also required for curing of the concrete mix after= construction at the rate of approximately $2 M^{3}$ for one west.. The total amount of water required $=W_{1}+W_{2}+W_{3}+2$

$$
=\mathrm{W} \text { metre } 3
$$

e) Reinforcing Steel - The amount of $8 \mathrm{~mm} \phi$ steel bars required $=\mathbb{N}_{1}$ (12M lengths).
The amount of $6 \mathrm{~mm} \phi$ steel bars required $=\mathbb{N}_{2}+\mathbb{N}_{3}$ (1 an lensing
f) Wire Mesh - The no. of rolls of wire mesh required $=$ M
g) Taps - One (1) tap per 50 people to be placed on tank. $E_{2}=$ total population of riliage $X 1.2$. Number of taps , 1 tan ix $=\frac{P_{2}}{50}=R_{1}$

Extra taps for repairs ic susten in future $=\frac{B_{1}}{2}$
i.e. total nc. $0:$ tins required $=1.5 \bar{N}_{1}=\mathrm{E}$ 。
P.S. Taps should preferably be of the "pusil" variety rather than scrow top as the loss of water froz the tank is likely to ba less.
h) Piding - Each tap on tine ta:ik requires approxiaatel: 0.5M of $1 / 2^{\prime \prime}$ piping therefore, leagtli of piping needec for taps $=R_{1} \mathbb{Z} 0.5 M_{0}=B_{1}$.
dir vents/overflow pipes should be provided at tine rate of one for each 4 taps i.e. number of air vents $=\frac{R_{1}}{\frac{4}{4}}$.

Each air vent requires approximateiy 0.25 M of $/ 2^{\prime \prime}$ pipirg Therefore length of $k^{\prime \prime}$ piping reouired $=\frac{R_{1}}{4} \times 0.25=\frac{R_{1}}{\frac{1}{6}}$-etres
$=B_{2}$.
Total length of $k^{\prime \prime}$ 2iping required $=B_{1}+B_{2}$.
Piping is sold in 6M, lenfths therefore, number of lengths of $k^{\prime \prime}$ pipe required $=\frac{B_{1}+B_{2}}{6}$,

This should be a whole number $=B$, For example
if $\frac{B_{1}+B_{2}}{6}=2.3$ ther $B=3 \quad \underset{\sim}{ } \frac{E_{1}+B_{2}}{\sigma}=4.8$ then $3=5$
 Drain pipe: approxiaately 1 . of $11 / 2^{\prime \prime}$ or $2^{\prime \prime}$ pipe is needec for draining the tank.
j) Fittings - Eacin taj requires tw (2) $1 / 2 "$ couplings and each air vent/overflow p.pe requires one (1) $1 / 2 "$ coupling. Therefore, number if in" couplings $=2 X R_{1}+\frac{R_{1}}{4}=\frac{9 R_{1}}{4}$

This amount should be covtled in case of future repains, therefore, number of $h^{\prime \prime}$ ccuplings to be purchased $=\frac{9 R_{1}}{2}=F_{1}$

Each air vent requires $1 \mathrm{X} / \kappa^{\prime \prime} 90^{\circ}$ eibow.
Number of 90° eibor:s recuired $=\frac{R_{1}}{4}$

This amount should be dcubled in case of future repairs $=\frac{R_{1}}{2}=F_{2}$.
The drain pipe will need one union and one gate valve of similar size.
k) Cther Construction Materials - The normal tank widl require the following tools/naterial for construction purposes

4 Shovels
6 X 10 litre buckets
2 trowels
6 pairs of rubber gloves (for hand laying of mortar)
1 sand sieve (wire screen and frame)
1 plywood sheet for concrete-mixing surface.
1 carpenter's level
Metal wire for tying
3 pliers.

4.2.7. Costing of Tank

a) Material Costs - (hs per Hociayiah prices, April 1980)
C...bags of cenent at 36 Y.R. fer bag
$\mathbb{N}_{1} \ldots$...lengths of $10 \mathrm{~mm} . \phi$ reinforcing steel at 20 Y. R. $/$ length
$\mathbb{N}_{2}+\mathbb{N}_{3} \ldots$...lengths of $6 \mathrm{~mm} . \varnothing$ reinforcing steel at 15 Y. … 1 Ienstin
M...rolls of wire zesh at 250 Y.R. per roll.
T....number $1 /{ }^{\prime \prime}$ push taps at $1 \mathfrak{2}$ Y.R. per tap

B,...lengths of $1 / 2$ tribular steel pipirg at 25 Y.R. per 6M length.
F 1 ...number $1 / k^{\prime \prime}$ pipe couplinss at 2 Y.R. per coupling.
$F_{2} \ldots$...number $k k^{\prime \prime} 90^{\circ}$ elbcws at 2 Y. . . per elbow.
Other Constructicn Materials (as per list of 4.2.6.(h) abc ${ }_{3}$) The coat diftthese: abcte raterials will, natarallf, vary".. fron time:tottine and place to place but the above example is merely given to show the rough price levels.
ill sand, and gravel and water costs are included under transport costs (cf (b) below) as they are generally nonpurchasing and only require transport to the site.
b) Transport Costs

This section is the same as Section 4.1.6. (b).
c) Labour Costs

The labour costs are computed as follows:
2 mandays per M^{2} of construction on base, walls and roof +2 mandays for pipe connections, i.e. total number of mancays $=D$:

$$
\left(2 A_{1}+2 A_{2}+2 A_{3}+2\right) \text { days }=D
$$

Total labour costs = daily labourer's rate \bar{X}. .
Cost per manday will vary from area to area but is ncmally in the region of 6 C Y.R. to 100: Y. R. per day.
d) Ancillaries/Extras

This section is the same as Section 4.1.6. (d).
e) Overall Total Costs

This section is the sane as Section 4.1.6. (e).

5. CONSTRUCTION PROCED JRES

5.0. Introduction

5.1. Construction Procecure for Jtone Tank

5.1.1. Introduction

The selection of the site for the water tank can be ons of the most cruciai steps, as the limitations of the site car: determine the size and shape of the tank itself, as well si the ease or difficulty: of its construction. Some points to remember in choosing a site are as follows:
a) The site shculd be accessible, preferably by a road if materials such as stone, sand, sement etc. need to be traisported to the site. Otherwise the site should be close i.: proxinity to most of these aaterials.
b) The site should require a minimum of rock excavation as this type of work is costly and tine consuning.
c) The site should ie located sc as to provide goct accessibility to potential users.
d) The soil or ground siould be strong enough to support the tank.
e) And of course, with gravity flow systems, water rarely flows up, therefore position the tank accordingly with respect to the water source.

Often it is impossible tc meet. all these criteria and it becones necessary to compromise on sume of these points. Choose the site which makes the best fit to this list.

5.1.2. Site Preparation

a) Site Clearance - Clear reservoir site of all rock eto. which will interiere with the construction of the rator
tank, and level the frolicd sumpace.
b) Delivery of Materials - All worly naterials, such as cement, stones, sand, gramel, pipe, wood and water shor-." be delivered to the site prior tc the start of constrictir. or be delivered to the worix site at eppropriate intervais so as not to impede the progress of work. Materials suct as cement and wood should be glaced in stonage facilitios or adequately protected from the weather.
c) Layout and excavation of Eundatior - The dimensirne $-\hat{z}$ the length (I) and width (W) for the outside area, should be taken from the raservcir design ard these dijensions should then be measurec ana parikec out on the reservoir site surface making sure $\varepsilon l l$ sices are at right angles and straight. The lines can be marked out with stones, parnt, or string tied on $W C O$ or metal stakes placed so that thr string follows the straignt course of the dimension line3.. Adequate drainage arcurd the site should be provided sc that no water from rain or a spring source car flow over the site.

The foundation area shoulc then be excarated to a cepth of apprcximately 20 cm . below the Eround surface.
5.1.3. Construction of Foundation Slab

A 10 cm . deep bed of gravel ($3 \prime^{\prime \prime} 4^{\prime \prime}$ - $1 \not k^{\prime \prime}$ dianeter stone.) should then be placed in the excavated area. The gravel should be watered. Then either of the two procetures is or B, shown below, can be user to make the foundation siab.

A
Maxe a series of $1: 2: 4$ concretie mixes i.e. 1 bucket of cement with 2 buckets of sand and 4 buckets of gravel. Mix these thoroughly with 1 bucket of water.

$\xrightarrow[\text { Diagram 3A - Design Mix for }]{\text { Base or Mank }}$
Shovel tiis concrete mix over the watered gravel, making e iough to bring the slab to sound level. (approx: 10cm. high).

B

Lay a level of stones, L2 higher than 12 cm . on the watered gravel, allowinf a space of at least 3 cm 。bet. c : the stones. Water the store then shorel a 1:2:4 concrat? mix over and between the :. to bring the slab to grom: level.

Diaeram 6B - Construction Technique for Base of Tas:

This proceri re will redure the amount of concrete regairs

The sans used in ali work should be as clean as possible, being frye uf dirt and small stones. It should be sifted througk : wire mes'l which can be used to selectively remcve the larais latitaleso The gravel used should be siminar
to phat user proviouslo.
In bith procedures, the ficuncation slab sfoula be sloped po ther boint where tre drain will be placed. It should thes be illowed to set for a day, keerine the dab constantly wetfreit to eusure the concrete attains maxinum strereth zud to f.esist crackinf.
5.1.4. AbIt Constructicu and -ipe Flaceinent
a) Lacenent of irain pine -. After the foundation simb has ieep allewerl to set for ane day, construction of the walis lat: he startect. inst, however, a $2^{\prime \prime}$ steel drsin pipe wit at:|ches $2^{\prime \prime}$ gate valve should be placed in position fot the

Diarram 7 Flicerent of Drinin Fipe.
b. : SIl Comrtruction - At this time wall conetruction may ne: proced. The iinengions of the ingide area of the reservor. shalla be aurked out on tiee foundatian slab with paite or cialr, awine sure the lines are straiteht and at riefit aniries. Roufhiy chiselod stones of daequate streagth and 2 moptur of a $1: \equiv$ min shnuld then be ysed for corntrpetingo

1 CEMENT

$+$

3 SAND

1 WATER 1

Diamme Deim cirr for wil Kortiar in Utone,

The sifted sand and cement should be thoroughly mixed to 3 uniform greyish color and then mixed with the water. The mortar is placed above, below, and between all stones and the, 2^{n} steel drain pipe should be cemented between two stciris. Initially one level of stones is built up on all :ides.
c) Tar ilacement - At this time the $1 / 2 \mathrm{n}$ taps with connected pipe sri put in position at the desired locations. At least is po mo spacing should be allowed for between taps, aud the .connecting pipes from the taps should extend into the reservoir about 10 cm. , with the nozzle of the tap extending 15 cm . fran the outside wall.

Diagram 2-Flacement of taps in stone tanir.
() asir vent/ Overflow Pipes and Connection Five from the Spring

From there the walls are built up to the desired height, according to the design. Che walls should be constantly watered. On tor of the last level of stones are placed the overflow and in vent f pipes. These should be made of K" steel pipe with $3 / 2^{\prime \prime}-9 J^{\circ}$ elbow connected on one and aril he of adequate l inti $s j$ as to extend approximately 5 em. Into the inside of the tank and 5 cm . to the outside.

There should be one (1) overflow/air vent pipe for every side wall of tank i.e. they should be located on each wall. Alternatively, the air vent pipes can be placed extending out of the roof with one overflow pipe placed on the wall as described above. At this time, the pipe from the spring source should be connected to the reservoir and cemented through the wall like the overflow pipe. There should be a globe valve attached to this pipe to allow the water to be shut off to the tank if repairs or cleaning of the inside of the tank needs to be done. in overflow pipe from the enclosed water source may thus be required.

5.1.5. Plastering of Inside Walls

Lt this point the inside walls of the tank should be plasteret with a rich mortar mix of 1 cement : 2 sand : 0.75 water. That is each bucket of cement should be first dry mixed completely with 2 buckets of sand and approximately $3 / 4$ buckets of water should be added in. (Slightly more water may be required depending on the most workable consistency.)

This mortar mix should be applied to a thickness of approximately 2 cm . overall and the plastering should be constantly watered. Water can be allowed to flow to the tank the next day.

5.1.6. Preparation of Wood

Before construction ai the roof begins all the wood to be used should be primed and coated with at least 2 coats of paint/sealant.
a) Beawi - Next, the 150 mm . 100 mm . wood beams can be put ir fosition. Ihese will be placed on the tor lev: of stonc :und should be spaced at 50 cm . intervals icentaz to certiry, with their. 1 ra mm. sile placed from top to bottom. 't'te beams shouid span the width of the tank with i berm being placed ai both ends, on the inside of the erii walls

Diacram 17 - Iavout ot beam for Stone Tank Mootine.
Stome should tiaen be cesented on tor of the walls bejweer the woor beaus arul on the ends so as to make tine rains flush w th tho beams, but they must not be higher than the oeam themedves so that the rocring can be placec level on the: beami.
b) Roofing and larincle - t're piywood sheeting (out to size it necessory', is treat placed in top of the beams and nailed to them. Again, remerber, this wood slould te primed and paisited before usen a masinole opening 50 cm . i 55 cm . shupld be cut from trit plyword shert al one one of the wails,
 boatd is then hailoc pround the manole opening. with the $4^{\prime \prime}$ dimension :ual i, 1, botrom.

Diagram 12 - Manhole Rooi Openiag.
On top of this will be placer a hinged wooden covis. (This should also be painted ar covered with meta, sheeiing.)
c) Top Later of Concrete - Now a concrete layer siould be placed over the plotrood. The concrete will be made of the same 1:2:4 mix as mentioned eariier and the iayer should he approximately 5 cm . trick, although sloper so ratiwater will run off. This concrebe lajer is tren allow:d to set and is constartly watered for at least 5 consecut:-ve days.

5.1.8. Work on Access Area to Taps

The area in front of the reserroir can now be worised on。 This will include digging at the ground in front of the taps so that a 20 iitre jerry can can be set unde: the taps and filled. The area dug out as such should be mout ino wide to ailow easy access to the taps, and then tilis req should be laid with a 5 cm . dsep, $1: 2: 4$ concrete $\mathrm{m} x$ on top fi a bed of gravel, and any sxcavated sides built up with stones.

This access area should te sloged to a drainage pint, sr. that any water wicil collecta on the surface will be drained
off. This may require the building of a water channel from tinis area to a point where the water can be drained. Water drained from the tank flows out onto this surface and out tho drainag'e channel?

5.1.9. Increction

The tank muld be incriectel for a few days after it is filled and in use to deteruine if it is properly sealed and the taps is ryood werking condition. Also the drainage should be iuspected to determine if water which collects on the access area, roof, an around the tank is adequately drained suryo

$\therefore \therefore 10$. Une ol Excess Water

In areas where water is scare or water conservari on is to be fractised iemenk: that ill drain water, overllow water, 31.j runoff raix water can be put to good use. lyce water droiting off tie acen:is area cin he used for wasting or drinking by animals it allowen to collect in a frjol. (It
 ran water flowing off the rool cin ensily be chameled or pi.ped to a collecting point for the same use or fir human consumption if the roof is clearat ali tines.

5.2. Corstructicn Frocodure For Ferro-Cement Tank

5.2.1• Introduction

The sane criteria used in site selection for stone tanks applies to this section. Refer to Section 5.1.1. for these.

5.2.2. Site Preparation

a) Site clearance - rencre all rock etc., which will interfere with the construction of the water tank, and level the ground surface.
b) Delivery of naterials - all work materials required, such as cement, sand, stores, steel reinforcing, wire mesh, gravei, water, and tools should be transported to the site before beginning actual construction or delivered at appropriate intervals. Protect the cenent from the weather.
c) Layout and excaration of foundation - the dimension for the diameter of the base (D) is taken irom the design and a string or piece of rope cut to a length 15 cm . longer than the dimension $D / 2$, i.e. length of string $=(D / 2+0.15)$ M. a short metal stake then should be driven into the grourd at the location of the centre of the proposed watar tank. The string or rope is tied to the stake in a loop which winl allow the string to nove around it, and tied so that the distance from the stake to the end of the string is ($D / 2+0.1$) M. The string is moved arcurd the stake in a circular manner so as to cutline the circumference of the bese of the tank with a dianeter of ($D+0.2$) M. This outline should bc marised with paint or "Ecss" so as to clearly define the limit of the base.

This circular area is then excavated to a depth of approximately 20 cm . belcw the ground surface.
5.2.3. Placenent of the Vertical Reinforcins Bars (8 mm) The retal stake is now driven into the excavated ground at
the center of the base and the string tied to it. This time the marised length of string $=D / 2$. Describe a circle with the string and maris the cutline with "goss" or paint.

Then, decide on a point on the circumerence where the first $8 \mathrm{~mm} . \phi$ bar will be sunk, and mark cut each successive position for the vertical bars at intervals of $30 \mathrm{~cm} .(0.3 \mathrm{M})$ around the marised line (the circumference). Excavate at each of these points to a depth of $30 \mathrm{~cm} .(0.3 \mathrm{M})$.

Now, cut the $8 \mathrm{~mm} \phi$ steel bars to a lergth $=(0.5 D+2.3) \mathrm{M}$. and piace then in the excavated holes securing then with dirt and rock and if necessary some cement mortar. Make sure that these bars are 211 at a distance of D/2 from the center stake.

5.2.4. Construction of the Foundation Slab

\& 10 cn . deep bed of gravel ($3 / 4^{\prime \prime}-1 / 2^{\prime \prime}$ diameter) is now placed at the botton of the excavated area and around the vertical steel, and it is watered. Then, either of the two procedures described in section 5.1.3. for stone tanks is used to make the founciation slab for this tank. Remenber that the slab should je sloped to the point where the drain pipe will be placed, and also that it should be constantly watered. Lilow it to set for at least 3 days. (More time is allowed for setting thar was outlined in Section 5.1.3. as the vertical steel bars must be secured firmly in the slab.)

5.2.5. Placement of the Circular Forizcntal Bars ($6 \mathrm{~mm} . \varnothing$)

a) Walls - these bars are cut to a length $=\mathbb{T} X D$ netres long ard bent arcund the outside of the vertical bars $(8 \mathrm{~mm} \phi)$ and tied to ther by metal wire. There will be a total of five of ther placed in the positions shown in the following diagram.

Dias: Tam 14 - Layout of Reinforcing Steel in Standard Ferrocement Tank.

b) Roof - There will be three (3) Gm. horizontal bars placed on the roof. Cut the first bar to a length $=1.9$ metres, bend it into a circular shape and place it at the top: of the roof where a 60 cm . diameter opening should be left for access to the tank. (If necessary, cut the extended and bent over \&mm. vertical bars go as to allow fut this opening; of above diagrams) The 8 ma. bar ends should then be tied firmly to this circular steel ring. The second bar should be cut to a length $=(D / E+0.2)$ metres. Cut the third bar $=(D / 3+0.2)$. metres.

Bend bese bars into a circular shape and plate them on the poof where they will lay flat on the extended 8 un. bars. Connect them both firmly to the Ram. bars with metal wire to attain the final steel framework as shown in the above diagram.

Ho 3.6. Flucement of Wire Mesh
At this time the wire mesh can be put into place. Unroll the wire id d attach the free end to one of the vertical 8 mm. bars so that the bottom ot the wire res is on the surface of the slab and extends upwards the width of the Foll (G) came) all coancetione are mane with metal wire and twisted tight with a pliers.

The wire mesh is unrolled arcund the entire circumference of the tank making sure the wire is fairly tight and connected firmly to the vertical and horizontal bars. Overlap the free end of the mesh (which was connected first), by about 30 cm . Cut themesh at this length but do not connect the final 60 cm . in order to leave an opening for access during construction work.

Next, connect the aesh to the top part of the wall above this lower width. This should be done in the same narner as the first but naking sure the top level of mesh overlaps with the bottom by about 2 cm . and connecting the wire mesh firmly to the reinforcing bars all the way through. (Io not leave an access opening on top.)

Now, wire mesh has to be conrected to the inside of the tank to form a double layer. This should ideally be done by running the mesh from top to bottom of the walls rather than around the circurference. This will achieve the greatest strength for the ferro-cement. The access openirg is not corered.

Wire mesh is then placed on the inside and outside of the roof area except for the 60 cm . Circular opening at the roof apex. Since the area to be covered is not a flat surface, the wire mesh may have to be slit in order for it to lay flush with the surface.

5.2.7. Placement of Tank Fittings

a) Drain Pipe - The drain pipe used is a 50 om. long X $11 / k^{\prime \prime} \phi$ steel pipe, cornected at one end with a $1 / 2 /$ gate valve and at the other erd with a $11 / 2^{\prime \prime}$ urion. The union is connected so as to provide greater resistance to slip along the surface of the base and through the wall. It is placed at the low (drainage) point of the tank and should extend approxiatately 15 cm . inside the tank and 30 cm . outside.

Hock should be cemented over this pipe so as to secure it to the slab surface.
b) Taps - The ψ^{n} push taps may be put in position befors the mortar is placed on the walls. A kilo steel pipe is cut to a length of 50 cm - and threaded with a union at one end and a coupling and tap at the other. It should then be placed in its desired position, pushing it through the wire mesh and supporting it with rock cemented above and below the pipe which should be at least 15 cm . above the slab surface. The pipe should extend approximately 30 cm . outside the tank and 15 cm . irside (cf diagram below). The union provides =esistance to slip. All taps are connected similarly but they should be placed at least 60 cme apart.

Diagram 15 - Placement of Taps for Ferrocement Tank。
c) Operflow/Air Vent Pipes - The $1 / 2^{\prime \prime}$ o steel pipe is cut in 10 cm . long lengths and threaded at one end on which a SO elbow is connected. They are placed at the top of the walls and are secured in position by tying them firmiy to the wire mesh and reinforcing bars with metai rive.
d) Pipe from the Source - The connecting pipe from the source should be connected to the top of the tank in the same manner as the overflow/air vent pipes.

The cement mortar for the work can now be made．A very fine sand is desired，so the sand should be run through a fine wire screen which will select out the larger particleso This sand should be thoroughly mixed with the cement in a ratio of：

1 bucket cement ： 2 buckets of sand．
This will then be mixed with $3 / 4$ buckets of water．

Diagram $1 . j$－Design Mix for Montar in Ferrocement Tank．
The finul mortar shouid be slightly drier than normal and the thaptation to add more water should be resisted．

It is preicrable if the mixing is done on a smooth clean surface，such as plywood sleet．The mortar is applied with tiednt of two people，（rreferably wearing gloves to protact cleir ramis）one stationed inside the tank and the other autsille wihile one ferson holds his／her hards aeainst the wire wesh，the Iersun from the other side forces the mortar into the mesh andur against his／her companion＇s havils．This is dore until the entire surface of the wall and rcuf are witresed．（except the bottom hali of the ＂acress＂：unl and tie panels on either side of ito）Don＇t worry about fevtint it perfect as it must be gone over aerin a secons tine．Let the completed work set for a day or Tiwo，hisne coistantly wateredo
when the roof his ac buired piunth strength to allow peorle to wouk on it sad eain acces．thrcueh the roof，tre＂access＂ pancl and che two adjuinine faels should be firally wirei up with the wire uesth，bied irmly and impregnated with mortiar as wasdutie when the rest of the tank．

After this apply a second application of this aame 1:2 mortar to all surfaces of the tank making sure it is entirely sealed. As for all mortar work, keep it watered constantly until curing is completed (for at least 3 days).

A third light application miay be necessary after testing of the tiank to. plug any leak points, although this should not be recessary if the work has been carried out as desired.

5.2.9. The Mantule Cover

A cover is now made in fit the 60 mm . diameter opening left on the top of the roof section. This will also be made of ferrocement and should be curved to fit on the roof as shown in the foollowing diagram. i 6mm. reinforcing bar is cut tia a leagth oi 2.2. metres and bent into a circular shape (tiiis will give a cover diameter of 70 cm.) Next, 6mon. reirforcing barr are cut and placed on the inside of this circle, as shown in thr diagram. They should be tiec to the circular bar.

Dingras: 17 - View of Roor and Roor Cover For Ferrocement Tank.
Wire mes:a it now planed on both sides of this cover irame and tied to it, with metal wile. A small handle is made frim thit A mm. steel and firmiy secured to the cover (cf diapras bovt? Cenert mortur is then applied to the wire me:, as was dun: to thu walis and roof of the tanis. Apply mure coment motar as needed after allowing the sover tr: sit a day buwean afplications. Keep the mortar conctuit θ whered a. was dure with the tank.

5.2.10. Access Area to the Tads

The area in front of the taps must ncw be worized on to allow a container to be set under the taps for fillins and to allow easy access to the taps thenselves. This shrrict be done in the sane way as was described in Section j.1. ε for construction of the access area for stone tanks. The inportant thing to renerber is that proper drainage rust be provided for from this access area.

5.2.11. -Inspection

Inspection shouid be carried cut as described in Sectior. 5.1.9. for stcre tanks.

5.2.12. Use of Excess Water

Use the drainage water aic rain munoff water as recomendec previously in Section 5.1.10.

5.3. Design/Costing and Construction of Combination Tank

5.3.0. Introduction

The concept behind this tank is to use the more generally accepted construction of buildirs with stone in conbinatioir with a ferro-cement roof. The design and construction process is sinilar to what has already been covered in the previous sections, with orly the roof being disferent firc= what has already been described. The ferro-ceneut ruci will be less expensive that the wood and cerent roof described in Section 4.1. due to the high cost of wooi in the Yemen.
5.3.1. Design and Construction of the base and walls

The design will be the same as with the stone tonk explairec in Section 4.1.1., 4.1.2, :nch 4.1.3. Constructicn will be carried out as per Section 5.1.1., 5.1.5. through 5.1.8.
inclusive。
5.3.2. Desimn and Construction of the Roof

A rejnforcing bar frame must be constructed for the arched roof of the tank, on which the wire mesh for the ferrocement work will be tied. Reinforcing bars (6 mm. ϕ) span the width in an arch shape and must be imbedded into the walls $i 0$ a depth of 80 cm . to support them, which means that this should be done before the top three levels of stone are planed on the walls since each stone level is 20 cm. high. These bars should be bent in their arch shape, leavini! $: 0 \mathrm{~cm}$ on bach end to be keyed in the walls. See diarsram below.

Diartin 13-Tayout of Reinforeime Steels for "Combination" Next, Gulle roinforcing bars will be cut to a dimension equal to the 1 wifith of the tank, and placed on tof of the arched bars manimp at rigrt angles to the arched bars. Ihese stould in: , f.aced ev:ry 30 man , and be tied to the arched bars.

The walls at the endis of tie tank should then be built up se w to completeiy fi:li. id the arched openings witr. stone
 entrance cankir lart in ons an\} si these built up walle to allow for access to is thutio a wood door and frame should be fitted and semennom to the ogerimero

Diagran 19 - View of "sumbination" tork。
a) 6mm. Bars requireil for arsines - The length of the 3xcher bars (L_{1}) will be $=105 \mathrm{XW}+102$ wher: $: J=$ outrife uristi: of the tinlt.

$$
I_{1}=3 / 2 n-1.2
$$

 number of these archod aidos per 12 Ma $=12 \div I_{1}=\frac{12}{I_{n}}$
This shoula be a whole numbar $=\mathrm{E}$ (round down)
ioe if $\frac{12}{I_{1}}=206$ then $Z=e_{0}$

$$
\text { if } \frac{12}{L_{1}}=3.2 \tan I=2
$$

The numbr of these aroise vars neeried will be $=\frac{L}{0.5}-1$ where $I=$ outside length of tantro
Now we can calculate rhe rumber of 12m。 lengths required;

$$
=\frac{\frac{L}{0.3}: \hat{1}}{E}
$$

This should also be a hiole nomber $=\mathbb{N}_{9}$ (round up this timo. .

$$
\text { i.e. } i \frac{\left(\frac{\mathrm{~J}_{2}}{\mathrm{~J}_{0}^{3}}+1\right)}{5}=\text { Noi then } \mathrm{N}_{1}=3
$$

b) 6 nm. bars reauired for le: tin diectes - The inension $0:$
 The number of length fieies will be

$$
=\frac{5 \mathrm{~W}}{2} \times \frac{10}{3}=5 \mathrm{~W}(\mathrm{~W}=\text { width of tarc in metres })
$$

Therefore total length of reinforcing stesl (am. of for the length pieces required = I \mathbf{X} 5N zetres.

Now we can calculate the number of 12 M . iengths reguired $=\frac{I X}{12} 5 \mathrm{~W}$, this should also be a whole murber $=\mathbb{H}_{2}$ (round ME this time):
if $\frac{5 W}{E}=15.3$ then, $H_{2}=16$
if $\frac{\sum \mathrm{W}}{\mathrm{E}}=6.9$, then $\mathbb{N}_{2}=7$
c) Totai number of 6 mm . ϕ bans recuines - Total nis of 6 m .
 for costing.
d) Wire mesh reauired (M) - tire aesh is to be slaced on to oh sides of the reinforcing steel.

$$
=1.5 \pi
$$

Therefore, the numer of roins zequired $=24_{3}$, trea of 1 roll cis wire resh $: 40 \mathrm{M}^{2}$
Therefore, the zumber cf rolls required $=\frac{2 h_{z}}{40}=\frac{h_{\bar{j}}}{20}=: 1$
e) The cement mortar is appliec to the wire mesh as cutlizad
in Section 5.2.8. Using an avirace mortar Jichacess of
0.05 M. , anount of ncrtan required $=$ area of roof $\overline{\mathrm{I}} 0.05$

$$
=0.05 \mathrm{H}_{3}
$$

 up the entire volure of the air the arount of cerent meduire: is:

$$
\begin{array}{ll}
C_{3}=\frac{0.05 A_{3}}{2} \text { metres } 3 & 1000 \text { litres }=1 \mathrm{~m}^{3} \\
C_{3}=\frac{50 A_{3}}{2} \text { litres } & 35 \text { litres }=1 \text { bag. }
\end{array}
$$

$$
C_{3}=\frac{50 A_{3}}{2 X 35} \text { bags }=\frac{5 A_{3}}{7} \text { bags cement. }
$$

p) . Sand $\left(S_{3}\right)-$ Volume sand $=.05 A_{3}$ metres ${ }^{3}=S_{3}$
g) Door and Frame - One 4 M. Length of $100 \mathrm{~nm} \times 50 \mathrm{~mm}$ white wood. - $0.36 \mathrm{~m}^{2}$ of 18 me . gunge plywood i.e. 1 sheet. of 18 mm . gage plywood. - hinges and latch.
5.3.3. Materials and "Costings

The sane procedure is followed as shown in Section 4.1.5., 4.1.6., 4.2.6. and 4.2.7. using the figures computed in the above sections icy 4.2.6. and 4.2.7.

6. PIPELINE PROCEDUEES

6.1. Pipeline Design and Costirg

6.1.1. Introduction

The design of a pipeine involves determining the size of pipe required for a specific flow rate (or range of flow rates), and for a set elevation difference between the inlet and cutlet of the flow through the pipe. What is required for this design is as follows:
(i) hycrological data book with tables of pipe flow head losses versus flow rate for specific types and sizes of pipes.
(ii) Basic information for the pipeline to be designed including pipeline profile (length of pipe line and elevation neasurenents), the namimum flow rate to be delivered, the type of pipe to be used, and the sizes of pipe available.

If the above data book is not available or the following design procedure proves to ve too conplicated, take the basic information in (ii) abcve to a qualified person for the design of the pipe.

The pipeline for a gravity flow system (no pump) will be considered here, although the same pricniples are irvolved for a pung line design, with the only differences being the positive head (driving force) is provided by the purp and not gravity, and the elevation difference is part of the head loss if the water is being purped up.

6.1.2. Basic Calculations

a) Deterane the elevation between the inlet and outlet of the pipeline. If h_{1} is the elevation measured at the inlet (source) and h_{2} is the elevation neasured at the outlet (tainc) the elevation difference.is:

$$
h_{1}-h_{2}=\text { elevation differerce (H) }
$$

(h_{1} and h_{2} should both $k e$ in netres).
b) Determine length of pipeline $=\mathrm{I}$ (metres)
c) Determine the naximun fiow rate to be given (See sactive 3 for flow rate geasurenent), Maximu flow rate $=6$ (litres/min.). (This will be the maximun flow to be expected in the raing seascn.)
c) Since many of the tabies in hydrological data bocks cre in gpa (gallons per minute) flow ratea, we might have.t change Q in litres/cin. to spa.
Q litres/rin. \div 3.785 litres/sallon $=Q$ gpr

6.1.3. Use of data book

a) Now open the data book to the tables which list tine Jee of pipe which will be used (use $1 C$ year old steel pipe listing) and which lists the flow rate which we wert to use versus the various head loss ratios.
b) Choose a pipe size (usually between $/ 4^{\prime \prime}$ and $2^{\prime \prime \prime}$) which is comercially availabis.
c) Open to the table which lists this chosen pipe size a: 1 type and the flow rate fesirec. Lcok down the colum under the chosen pipe tjpe and size until the row with the desired flow rate is intersected. This number is the bead loss ratio (f) to be used for calculations. This numiber will be in $\mathrm{ft} . / 100 \mathrm{ft}$. or $\mathrm{K}_{\mathrm{o}} / 100 \mathrm{M}$. It nay be necessar to interpolate between numbers if the exact ilow rate desin?1 is net listed.

6.1.4. Final Pipe Calculations

Now we can determine if the pipe size chosen is adequate.

$$
I \div 100=I^{1}
$$

Head loss (K_{L}) $=I^{1} Y \geq$

If h_{L} is greater than elevaticn disference (H) the chosen pipe size is inadequate, and we nust repeat the procedure described in 6.1.3. and 6.1.4. with a larger pipe size. If h_{I} is less than elevation difference (H) the pipe is adequate. However, it right be oversized and we zust repeat the above procedure 6.1.3. and 6.1.4. with the next smaller pipe size and continue this repetition until the smallest adequate pipe size is found.

IH should be greater than h_{I} by anything from 5 M . to 40 M . to allow for flow to the top of the reservoir and as a safety factor.

6.1.5. Example

If the elevation of the water source is 1500 M (above sea level) and the location of the proposed water tank is 1485 mo , and is 850 m . exay fron the water source, and the
 what pipe size of steel pipe should be used? $3 / 4^{\prime \prime}$, 1 ", $1^{\prime \prime}$ and $2^{\prime \prime}$ pipe is available.

$$
\begin{aligned}
& \text { Step } 1-E=h_{1}-h_{2}=1500 \square-1485 m=15 \mathrm{~m} . \\
& \text { Step } 2-I=850 \text { m. } \\
& \text { Step } 3-Q_{0}=57 \text { litres per ainute } \\
& \text { Step } 4 \text { - } 57 \text { litres/ain. } \div 3.785 \text { lit./gal. }=15 \text { gpa. } \\
& \text { Step } 5 \text { - Look in the data book under 10. year old steel } \\
& \text { pipe and find the table which lists } 2 \text { " pipe } \\
& \text { (standard gage). Look down this column until } \\
& \text { the row with the flow rate of } 15 \mathrm{gpa} \text { is inter- } \\
& \text { sected. This number is our } f=1.11 \mathrm{ft} . \mathrm{MCC} f+ \\
& \text { Step } 6-I^{1}=I \div 100=850 \div 100=8.5 \text { m. } \\
& h_{I}=f X I^{1}=1.11 \times 8.5 \mathrm{~m} \text {. }=9.44 \mathrm{~m} \text {. } \\
& \text { Step } 7 \text { - } H=15 \mathrm{~m} . ; b_{L}=9.44 \text { - } \\
& \text { Therefore, } h_{I} \text { is less than } H \text { so the pipe is } \\
& \text { adequate. (Also it is at least } 5 \mathrm{~m} \text {. greater } \\
& \text { than } b_{L} \text {) }
\end{aligned}
$$

Step 3-Repeat steps 5-7 with $11 / 2^{\prime \prime}$ pipe. If we do this we'll find h_{L} is greater than H therefore, we must use 2' $^{\prime \prime}$ pipe。
6.1.6. Use of Valves and Fittings
a) Gate (shut off) valves should be placed at the beginning of the line (near the water source), upon entrance to the water tink, and on iny branch liues.
b) inis release valves should be placed at the bigh points uf the :ipeline if the pipeline rises and falls in elevation $a \equiv i t$ trarerses its course。
c) Drain off valves (Eate valves connected to tee coanection; should be placed at the low points.
(i) If the pipe line las sharp surves or bends an aprropriat: numbrr ul 45° and 90° bends should be ordered.
e) Uniuns should bu flaced every five pipe lengthso
f) Extri couplings should de ordered as replacementso

> Di M Profiln oitye line and positionine of "drai i رf" anf "air release" valveso

6.1.7. Costins of the Pipeline

a) Labor - The cost of labor depends on the size of the pipe being lajed. For pipe between the sizes of $3 / 4^{\prime \prime}-2^{\prime \prime}$ an average of 18 n . per manday can be laid (slightly higher for 3/4", lower for $2^{\prime \prime}$). This includes work on construction of supporits, inspection and repair eic. Length of pipeline $(\mathrm{I}) \div 18 \mathrm{n} .=\mathrm{No}$. of mandays required $=$ (M). M X 100 Y. R-/manday = Cost of labor $-I_{1}$ N.B. This will of course vary iron aree to area.
b) Fipes - From the length of pipe needed, determine the anount of 6m. secticns of pipe required, since pipe is sold in 6m. lengths.

Length of pipe (5) $\div 6 m .=$ Number of 6n. lengths $=$ (N_{p}). Multiply this number by 10% to allow for replacenent pipes.

$$
\begin{aligned}
& N_{p}+\left(N_{p} X 0.10\right)=N_{p^{\prime}} \\
& N_{p^{\prime}} X \text { price of pipe }=\text { Cost of Pipe }=I_{2}
\end{aligned}
$$

c) Valves, Fittings, Extra Couplings, etc. (Accessoriss)

The incividual number of these iters can be determined and costed or what is often done is to use the figure of 10% of the cost of the pipe used.

$$
0.10 X \Psi_{2}=\text { Cost of iccessories }=\Psi_{3}
$$

d) Ionls - The tocls required for the connecting of the pipeline are as follows:
(i) Pipe threader (1)
(ii) Pipe clanp or vice grip with stand (1)
(iii) Pipe wrenches (3)
(iv) Metal file (1)
(v) 3m. tape measure (1)
(vi) Pipe cutter with extra blades (1)
(vii) Fipe tape or compound (1 roll/can per 50m. of pi玉s). (viii) Oil can and oil.

Multiply the rumber of these items by their individual costs to get the cost of tools $=Y_{4}$.
e) Cenent - Cenent will be required if supports need to be built for the pipe, if the pipeline is placed over irregular terrain. The exact amount will depend on the aroart anc size of supports required, but an average that may be used is 1 bag of cement per every 100m. of pipe line.

I $\div 100=$ No. of bags of cement required No. of bags X price per bage $=I_{5}$ cost of cement.
f) Sand - Sand will be required for the cenent gix. Twice -as auch sand will be required as cemert.
$1 \mathrm{bag}=35$ Iitres $=0.035 \mathrm{M}^{3}$
Amount of sand required $=\frac{\text { No. bags of cement } x 2}{X 0.035(m 3)}$ hoount of sand X price of sand/n $=\frac{I^{3}}{6}$ cost of sand.
g) Transportation - The cost of transportation of the fipes and other materials from the place of purchase to the work site nust be determined $=Y_{7}$.
i) The total cost of the pipeline ($(\mathbb{)}$) equals the sum of these different costs.

$$
Y-Y_{1}+Y_{2}+Y_{3}+Y_{4}+Y_{5}+I_{6}+Y_{7}
$$

6.1.8. Pipe and Accessory Prices (as of Jan. 1980 Hodeidah)

SIZE	City			PUSE TAPS	90° ETSOM
	PIPES	VhLVES	UNTONS		
\% 2 "	22 IR/6m.	8 YR	5 YR	12 IR	$2 Y$ IR
314	$48 \mathrm{YR} / 7.5 \mathrm{~m}$	11 YR	8 YR		3 IR
1"	$48 \mathrm{YR} / 6 \mathrm{n}$.	15 IR	10 YR	35 YR	4 IR
144"	55 YR/6m.	25 YR	12 YR		6 IR
192"	74 YR/6n.	30 MR	15 IR		9 YR
$2^{\prime \prime}$	94 YR/6m.	40 TR	20 YR		12 YR
2121	155 YP/67.	74 YR	35 YR		25 IR
$3 "$	$180 \mathrm{YR} / 6 \mathrm{~m}$.	100 TR	55 R		40 YR
4"	$280 \mathrm{MR} / 6 \mathrm{~m}$.	170 IP	90 YR		50 YR

Jointing pipe tape	$5 \mathrm{YR} / \mathrm{roll}$
Icinting pipe conpound	$8 \mathrm{YR} / \mathrm{can}$.
$\# 18$ pipe wrench	35 YR
$12-2^{\prime \prime}$ pipe threader (Chinese) 500 YR.	
$1 / 2^{\prime \prime}-4^{\prime \prime}$ pipe clarp (chain)	250 YR
$2^{\prime \prime}$ pipe cutter	200 YR
45° elbows only available in $1^{\prime \prime}$ size 5 YR.	

6.2. Pipeline Construction

6.2.1. Pipeline Route - The initial phase of pjpeline construction should involve the marking of the proposed pipeline course on the terrain which must be traversed. For gravity flow lines, if the elevation difference between the water source and proposed tark is fairly great the pipeline ccurse may be readily apparent without any exact mariking of location. If not, it may be necessary to mark out the course with the use of survey equipment to ensure that the pipeline has the proper elevation drop on each part of the line. This can be checked by using the elevation drop to any point on the line and calculating the head loss (h_{L}) to that point as described in section 6.1. Make sure the elevation drop is greater than h_{L}.

Take the straightest and nost direct route, avoiding excessive berds, rises and drops, although this is often impossible due to geographical constraints.
6.2.2. Tools Needed - The equipment and tools required for the construction of the pipeline are as cescribed in the previous section on design 6.1. out will be listed here again. The size of these tools are dependent on size of pipe to be used: (i) Pipethreader (1)
(ii) Pipe clamp and stand (1)
(iii) Pipe wrenches (3)
(iv) Pipe cutter with extra blacies (1)
(v) Metal file (1)
(vi) Oil can anc oil
(vii) Pipe tape
(viii) 3m. measuring tape.
6.2.3. Progran of Work - Typically, the pipes will be delivered to the village which is the recipient of the water project and sometimes they will be danaged fron shipping. As suchz it has been found that to set up the pipe inspection and repair operation in the village and to then carry and distribute the pipes along theppipeline route is the most efficient means of getting this worls done. Work can begir on the pipeline as the pipes are distributed. The prograr. of work will thus be as follows:
a) Delivery of pipe tc village
b) Inspection and repair of individual pipes, and cutting ard threading if necessary.
c) Distributing pipe along pipeline course.
d) Connecting the pipe.
e) Buying the pipe where necessary.
f) Building of pipe supports where required.
g) Inspection and testing of pipeline.
6.2.4. Insoection and Reoain of Individual Fipes - The pipes are first inspected to determine if the threading on both ends is acequate. This can be accomplished siaply by trying a coupling on each end. If the threads are not good, use the pipe threader to rethread the damaged enc. If it is severly daraged, this part may have to be cut off and then rethreaded. Lid.just the threader to the proper size settine and apply sufficient oil to the surface to be threaded to minimize wear on the threading teeth and to ease the effort required for this work. The total length of the thread should be about 1" (slightly less for $1 / 2$ " and $3 / 4$ "pipes, larger for pipes bigger thar 2"). One coupling or union should be connected to one of the ends after this. It is often easier to conrect it ncw than in the field. The pipe is left in the clamp or vice grip, pipe tape or joint compound is put on the threads so as to cover all of then, and the coupling or union is tightened onto the
pipe with one of the pipe wrenches. (Remember a union should be placed on every fifth pipe). Pipes can also be cut ind threaded for the tap, airvent, and overflow pipes firr the water trak. The pipe can now be distributed where lueded, being careful not to damage the threaded ends.
6.2.5. Connectiur the I'ipe - The pipe is connected, first by placing tape or sompound on the threaded end, and then connecting it int. the coupling or union of the previously connected pipe. Uae pife wreach should be used to hold the coupling and pije or the prerious pipe in place, and another wrench used to tighten the connecting pipe. Make sure the.inside pipe j :: fref of dirt and obstructions. The steel pipe can generrily be laid on top oi the ground surface. Any pipe which arosses a road or frequently travelled patitway should be buriad. Crossing a road, bury the pipe 80 cm . from the top of the lipe to the road surface. Always place the pipe where it is gristected froll vehicle, animal, or buman trnffi.: filling rccks, flowing water etc.

All valves on special fittinss which are connected on the pipeline stiuuld be proceeled or followed by a union which will all ow liur eacy disconnection of the line if the valves need repl asment or repair.
6.2.ண. Fire Silconta - Hipe supports should be built under, or in special crese tien from abuve, any pipe connections which are suspender in giro The threaded part of the pipe is the weakest pirct of tice pine anit therefore mast be supported in the eRound : 2 frace ar with specially built supportso The supfort cante as simple as a rock placed under a pipe consection a 1 i h is orily a few centimeters above the grounl Suriace or tigear structures as shown below.
gircoved tis lake pape

6.2.7. Inspection of Pipeline - Water should be allowed to flow through the pipeline to detemine if leaks exist, and if the line is properly placed with regards to elevation drop. This can be doze as work proceecs, inspecting a completad section of pipe before continuing on to the next.

Remember, that when working on a connected pipeline, tightering one end of a pipe has the effect of loosening the other end or an exd of a following connected pipe. Therefom, if alot of tightening is required, it may be necessary to disconnect the pipe at the union, tighten the pipe or pipes and then connect the union again. The advantage of the union is that it can be disconnected and reconnected without affecting the rest of the line.
6.2.8. Diagncais and Correction of Problens - If water coes not flow through the pipeline it is usually the result of a blockage of the line, leakage, or insufficient elevation drop on a gravity flow line. For blockages of the pipeline, the line must be opened up to detemine the exact locatior :I the block and the line cleared. For insufficient elevaticn drops, the section of line which is too high rust be located and placed at a lower elevation. This section car be fouri where the water is not flowing.

