Irrigation water storage tanks made of ferrocement and a combination of ferrocement and brickwork

A manual for design and construction

September 1982

IJITV

DHV Consulting Engineers

TWO
Technical Working Group for Develoninn Countries
$217-82$ IR-6932
CONTENTS PAGE

1. PREFACE5
2. INTRODUCTION 6
3. SUMMARY OF THE SEVERAL TYPES 8
3.1. Water permeability 8
3.2. Quantity of materials 8
3.3. Realization 9
3.4. Durability, need of maintenance 10
3.5. Frost-resistance 10
3.6. Resistance against changes in humidity and temperature 10
3.7. Quality of workmanship 10
3.8. Summary 11
4. CONSTRUCTION MATERIALS 12
4.1. Cement 12
4.2. Sand 12
4.3. Water 12
4.4. Aggregate 12
4.5. Mortar mix 13
4.5.1. Mortar for concrete 13
4.5.2. Mortar for screed concrete 13
4.5.3. Other mortar mixes for concrete 13
4.5.4. Mortar for ferrocement 14
4.5.5. Mortar for brickwork 15
4.6. Bricks 15
4.7. Steel bars 15
4.8. Tying wire 16
4.9. Admixtures 16
4.10. Plastic foil or polyethylene sheeting 16
4.11. Types of meshes 16
4.11.1. Hexagonal wire mesh or chicken mesh 16
4.11.2. Welded wire mesh 17
4.11.3. Woven mesh 17
4.11.4. Expanded metal mesh 18
4.11.5. Watson mesh 18
4.11.6. General characteristics of different types of meshes 19
4.12. Formwork/Mould 20
4.12.1. Formwork made of a bamboo frame reinforced with-palmfibre mats 20
4.12.2. Formwork made of flattened oildrums 21
CONTENTS (continue) PAGE
4.12.3. Formwork made of circular corrugated galvanized iron sheets 21
4.12.4. Formwork made of iron rings with a lining of plywood 23
4.13. Painting and coating 24
4.13.1. Types of coating 24
4.13.2. Methods of application 24
5. CONSTRUCTION 26
5.1. Location, site clearance and preparation of foundations 26
5.2. Construction of the floor slab 27
5.3. Construction of the wall 27
5.4. Curing 30
5.5. Testing 31
5.6. Painting 31
5.7. Earth bund wall 31
5.8. Instructions for bricklaying 31
6. TOOLS 32
6.1. List of necessary tools 32
6.2. Simple tool for bending concrete bars 34
7. WORK INSTRUCTIONS DRAWINGS
BILL OF QUANTITIES 36
7.1. Watertank Type I 37
7.2. Watertank Type II 52
7.3. Watertank Type III 60
7.4. Watertank Type IV 71
7.5. Watertank Type V 86
8. TESTING 104
8.1. Simple field identification tests for soil 104
8.2. Testing steel bars 106
8.3. Testing the tank 106
CONTENTS (continue) PAGE
9. CALCULATION OF THE TANK (General) 107
9.1. The foundation 108
9.2. The walls 109
9.3. Design assumptions for calculations 109
9.4. Calculation of the tanks 112
9.4.1. Type III, Ferrocement tank; wall and slab constructed with a sliding joint 112
9.4.2. Types I-II-IV and V, ferrocement tank, wall and slab connected 113
9.4.2.1. Tank capacity of $30 \mathrm{~m}^{3}$ 113
9.4.2.2. Tank capacity of $60 \mathrm{~m}^{3}$ 119
9.4.2.3. Tank capacity of $90 \mathrm{~m}^{3}$ 122
9.4.2.4. Tank capacity of $150 \mathrm{~m}^{3}$ 126
Annex 1: Sizes of wires and steel rods 133
Annex 2: Conversion of common units 134
Annex 3: List of symbols 135
Annex 4: Bibliography 135
Annex 5: Design coefficients tabel "Joint plastic" 138
Annex 6: Design coefficients tabel "Joint rigid" 139
Annex 7: Steel area and weight reinforcement bars 140

1.

PREFACE
The SWD (Steering Committee on Wind-energy for Developing Countries) has designed and built windmills for irrigation purposes in several developing countries. One of the essentials for achieving properly regulated irrigation with windmills is water storage.
Experience has shown that the cost of the water storage tanks involved can equal the cost of a windmill. Also some types of storage tanks are liable to become damaged during use, sometimes due to lack of know-how.
Discussions in TWO (a non profit organization set up by employees of DHV) about the technical problems at water storage tanks resulted in a contract between SWD and DHV. Under this contract DHV has prepared designs and construction manuals (as described in this publication for irrigation waterstorage tanks made of Ferrocement).
A design and construction manual for brickwork tanks was prepared in December 1981. The Ferrocement tanks will have storage capacities of $30 \mathrm{~m}^{3}-60 \mathrm{~m}^{3}$ $90 \mathrm{~m}^{3}$ and $150 \mathrm{~m}^{3}$ just as the brickwork tanks.

Designs will also be made for tanks constructed of earth bunds with various linings.
Designs for tanks constructed with a combination of Ferrocement and brickwork are included in this manual.

The authors are grateful for the support, and the critisism, they received from the SWD.

The authors:
J. Costa
J. de Lange
C. Pieck

Watertanks for storage of irrigation water may have some losses due to the permeability of the walls. In certain circumstances, a 10% loss of water per day may not be a problem.
If such losses are not acceptable, the walls of the tanks have to be thickened and/or treated with a coating. Some suitable coatings are described.

Ferrocement is a type of thin wall reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous and relatively small wire diameter mesh.
The mesh may be may of metallic or other suitable materials.
The construction of ferrocement can be divided into four principal phases:

- fabricating the formwork/mould
- applying mesh and reinforcement to the skeletal framing
- plastering
- curing

The mortar is a cement-sand mix that is trowelled onto and between the wire mesh.
Because its very high tensile strength in comparison to reinforced concrete, thin walled ferrocement is an attractive material for the construction of water storage tanks.

The tanks designed and described in this manual are cylindrical with a flat floor. Cylindrical tanks are rather simple to construct and require considerably less material in comparison with other tanks.
Tanks have been designed with a capacity of $30-60-90$ and $150 \mathrm{~m}^{3}$ in the following types.
Type I Range of preference
Ferrocement tank, wall and slab connected, for the following capacities and heights:

- capacity $30 \mathrm{~m}^{3}$	height 1.25 m	
-	capacity $60 \mathrm{~m}^{3}$	height 1.25 m
- capacity $90 \mathrm{~m}^{3}$	height 1.25 m	
-	capacity $150 \mathrm{~m}^{3}$	height 1.90 m

Type II Ferrocement tank, wall and slab connected, with a capacity of $150 \mathrm{~m}^{3}$ and a height of 1.25 m .

Type III Ferrocement tank, wall and slab constructed with a sliding joint, for the following capacities and heights:

- capacity $90 \mathrm{~m}^{3}$ height 1.25 m
- capacity $150 \mathrm{~m}^{3}$ height 1.25 m

Type IV Ferrocement tank, wall and "foundationring" (trench beam) connected, but with a separate bottom slab consisting of concrete or impermeable soil Furthermore as type I

Type V As type I but with an extra outer brickwork wall.
The main chapters is this manual are:

- "Summery of the several types", which describes the advantage and the disadvantage of the several types.
- "Construction materials" which describes the materials to be used.
- "Construction" giving the skills required and the methods of working.
- "Tools" the tool to be used.
- "Types of tanks" the description of the tanks with 4 storage capacities including drawings, bill of quantities and sequence of work.
- "Testing" describes the test to be carried out to be certain that material faults will be avoided during construction.
- "Calculation" describes the structural calculations and the design criteria.

In Annex 4 a bibliography is given for the readers who want more information on ferrocement.

3. SUMMARY OF THE SEVERAL TYPES

In this chapter a comparison is made between the several properties of the different types.
These properties can be distinguished as follows:

- water permeability
- quantity of materials
- realization
- durability
- need for maintenance
- frost-resistance
- resistance against charges in humidity and temperature
- quality of workmanship

Because of lack of skilled labour, lack of good materials, lack of money it is not always possible to build the best tank. But this comparison may serve as a guideline in making a choice of a suitable tank for specific circumstances and limitations.

3.1. Water permeability

Water tanks for storage of irrigation water may suffer some losses due to permeability of the walls. A daily loss of 10% of the water may not be a great problem under some circumstances. In other cases it may be of importance that some types are more waterproof than others.
Type I is a good waterproof structure. The floor is continuous with the wall and the diameter is limited to 10 meter.
Type II (for capacity of $150 \mathrm{~m}^{3}$ only) gives less certainty in regard to waterproofing. The floor is still continuous with the walls but the diameter is 12.36 m so that the tankwall will have more shrinkage-cracks and more chance of waterpermeability.
Type III avoids the shrinkage-cracks inherent to large diameters because of the sliding-joint structure. Special attention should be paid to the connection between the bottomslab and the wall.
If this connection is carried out carefully and with skilled labour, this type can also be ranked under the rather good waterproof structures. Type IV has the disadvantage in comparison with type I that there is a seam in the bottom of the slab. The seam will be filled with tar. If the tar is of a good quality and the seam is filled accurately, this type can be ranked under the rather good waterproof structures. Type V is am improvement of type I. The brickwork outerwall gives better protection against changes in humidity and temperature. So this type may be ranked under the very good waterproof structures.

3.2. Quantity materials

The final price of the tanks will vary according to local conditions but will mainly depend on the following:

Materials:
the cost of the sand, cement and steel wire or mesh reinforcement
Formwork:
the cost of the formwork, made either for one usage with temporary local materials, or being a more permanent construction made of steel sheeting and angle iron. The latter may be used many times.
In type V the outer brickworkwall is used as formwork.

Wages:

the cost of wages of plasterers and labourers, if the tank is not built entirely by self help

Supervision:
-------.---
the cost of supervision during construction

Transportation:

the cost of transporting the materials and supervisors
The relative quantities needed for tanks made with different materials are shown in the bill of quantities and a more detailed breakdown of wire mesh and woven mesh is added.
Depending on the country and the area concerned, great differences of costs may be expected when building one or more of these tanks. On the basis of the bill of quantities and a breakdown of the reinforcement, the user of this manual can easily calculate the cost per ferrocement tank.

3.3. Realization

In particular the small capacity tanks (30 and $60 \mathrm{~m}^{3}$) have been desgined for construction by relatively unskilled workers.
When larger tanks are to be built (90 and $150 \mathrm{~m}^{3}$) it is advisable that skilled labour carries out the supervision or even the works themselves. The sliding joints, formwork and the survey are very important items. Formwork for small tanks may be simple, but when the formwork is intended to be reused or is for large tanks it can be rather complicated. Tanks up to a capacity of $150 \mathrm{~m}^{3}$ can be built by one man in about 100 hours, using powered mixing equipment and a pick-up truck to collect the aggregate. The advantage of type V is that no formwork is needed. The outer brickworkwall has the function as formwork.

3.4. Durability, need for maintenance

Maintenance costs for these tanks after construction are usually negligible they will give a trouble free life.

Tanks up to $150 \mathrm{~m}^{3}$ have been built for over 30 years. Up till now the costs for maintenance have been low and the tanks are still in use.

3.5. Frost resistance

Not one type of the tanks described in this manual can be built in frost areas.
The tankbottom is projected at the same level as the surrounding area. For a good frostresistant tank the bottom should be at least 500 tot 600 mm below surface level. When it is considered to build an irrigation tank in frost-areas, a completely different type of tank should be designed.

3.6. Resistance against changes in humidity and temperature

Immediately after trowelling the tankwall (after each day) the finished parts of the tank must be protected against weather influences. Therefore these parts should be moistened or covered during at least the first week.
In tropical areas it is advisable to continue moistening for another week.
All the tanks described have good resistance to changes in humidity and temperature. Tank type V has even better resistance to weather influences due to the outer brickwork wall which gives more protection from temperature changes. Only in combination with a large diameter (> 10 meter), tropical areas and a arid climat the chance of cracking of the brickwork wall is great.
As the above circumstance occurs tank type V can not be used. The variant mentioned on page 100 is then advisable.

3.7. Quality of workmanship

It has already been mentioned that relatively small tanks can be constructed with unskilled workers.
Experience has shown that farmers are able to construct these ferrocement tanks themselves. Small equipment such as P-loaders and powered mixing machines are very useful. When larger tanks are to be built (90 and $150 \mathrm{~m}^{3}$) it is advisable that skilled labour carries out the supervision.
Preparing the formwork requires special knowledge. If the formwork is going to be re-used 10 or 20 times, skilled labour should gave special attention to its construction and its assembly.

The properties of the various tanks, as described above, are given in table form hereunder.
3.8. Summary

type					
I	II	III	IV	V	Properties
+	\square	+	\square	++	water impermeability quantity materials realization:
+	-	\square	ㅁ/+	+	- small tanks
\square	\square	\square	\square	\square	- large tanks
+	+	+	+	++	durability
+	+	+	+	+	need for maintenance
-	-	-	-	-	frost-resistance resistance against changes in humidity and temperature
+	+	+	+	++	- small tanks
+	+	+	+	\square	- large tanks quality of workmanship required:
\square	\square	ロ/+	- $/+$	+	- small tanks
+	+	+	+	+	- large tanks

```
- poor
\square reasonable
+ good
++ very good
```


4. CONSTRUCTION MATERIALS

4.1. Cement

The cement to be used in the mortar should be an ordinary Portland Cement (in accordance with BS 12 or similar specification). In the case of aggressive soil due to a high salinity, Portland Cement 5 or blast furnace cement must be used.
Lower strength cements are not recommended. The cement must be stored in a dry place.

The Portland cement should be fresh. Old and/or wet bags containing Portland cement must be removed.
Water should be clean and free from harmful matter, (see Chapter "Testing").
Where tests can be carried out they should be in accordance with the local standards.

4.2 .
 Sand

The first requirement for sand is that it should be free from organic and chemical impurities which may weaken the mortar.
A coarse silica sand is probably the best for the purpose. The use of coarse sand will lessen the workability of the mortar but its resistance of shrinkage will be greater than that of a mortar made with fine sand.
4.3. Water

The water must be clean and free from acid chemicals, salt and organic matters.
Salt water should never be used.
4.4. Aggregate

Coarse aggregate for concrete used for construction of the water tankbase should be well graded with a maximum size of 20 mm , crushed gravel, strong and non-porous and should be free from acid chemicals, salt and organic matters.

Aggregates with a high shrinkage percentage during drying (e.g. dolerites and whinstones) should be well wettened before using.
4.5. Mortar mix
4.5.1. Mortar for concrete

A general mix is:

- $\quad 1$ volume part of cement
- $\quad 2$ volume parts of sand
- 3 volume parts of aggregate
- $\quad 0.45$ weight parts of water

4.5.2. Mortar for screed concrete

A general mix is:

- 1 volume part of cement
- $\quad 3$ volume parts of sand
- 5 volume parts of aggregate
- $\quad 0.45$ weight parts of water

4.5.3. Other mixes are allowed if skilled labour is available These mixes should be in accordance with the local standards.

4.5.4. Mortar for ferrocement

The mortar consists of sand, cement and water with the following mixtures:

- $\quad 1$ volume part of cement
- 2 volume parts of sand
- $\quad 0.4$ weight parts of water

The importance of water - cement ratio on the permeability of the concrete can be seen from the figure below:

Water cement ratio in mortar (by weight)
The diameter of the sand for mortar for ferrocement should be between 0.015 mm (minimum) and 2.5 mm (maximum) but there should not be an excess of fine particles.

Handmixing is satisfactory, but for better quality the paddle-bladed mixer is recommended.
Conventionally powered concrete mixers are also suitable, but they can only handle rather wet mixes.

4.5.5. Mortar for brickwork

Mortars for brickwork are a mixture of cement, sand and water, each in the correct proportion. In this case cement mortar mixes are advisable:

WATER	CEMENT SAND	
$0.4 / 0.5$	1.0	2.0

- $\quad 1$ volume part of cement
- 2 volume parts of sand (fine aggregate)
- $0.4 / 0.5$ weight parts of water

If bricks of a somewhat lower quality are used, the quality of the mortar should also be lower (for instance 1 : $4 \frac{1}{2}$) in order to prevent shrinkage differences between brick work and mortar.
The mortar must be thouroughly mixed and workable although one should remember that a dry mortar is stronger than a wet one.
In any event the weight ratio of water to cement must not exceed $0.5: 1$.

4.6. Bricks

The bricks must be of good quality in order to obtain a watertight structure. Prior to laying, the bricks must be moisten with water. To prevent cracking of the mortar caused by shrinkage and high temperalures brickwork should be moistened during the first week or protected by means of a cover (plastic foil).

4.7. Steel bars

Steel bars with a diameter of $5,6,8$ and 10 mm are used, depending of the size of the water tank. The surface of these bars should be totally free from greese, oil, detergents and other organic matter. They should be conform to BS 4449-4461 and BS 4482 (or equivalent).

4.8. Tying wire

For tying the steel bars and the mesh layers galvanised wires of gauge number 24,25 or 26 (see Annex 1) are recommended.
4.9. Admixtures

Water proofing chemicals or other additives to the cement mortar should be given special consideration. The choice of additive, the amount added and the method of use should comply with approved standards or should be based on actual performance tests. However, by definition admixtures should not be used in ordinary structural concrete, but only in special structural concrete. Calcium chloride should never be added in the case of reinforced concrete slabs.
4.10. Plastic foil or polyethylene sheeting

It is advisable to spread plastic foil or polyethylene sheeting over the site of the tank before the mortar is poured. This sheeting prevents direct contact between wet mortar and soil. The floor of the tank can be formed of a layer of polyethylene sheeting, $0.25 \mathrm{~mm}-0.50 \mathrm{~mm}$ thick, laid between two layers of sand. To ensure a more watertight construction it is advisable to place an overlap of polyethylene sheeting in the groove of the ringbeam both the sheeting and overlap then being joined by means of a flat or soldering iron (especial type IV).

4.11. Types of meshes

There are many different kinds of reinforcing meshes available for ferrocement structures. A general requirement is flexibility. The wire mesh could be woven on site from coils; a simple handloom could be adapted for weaving the wire into mesh.
Generally the mesh does not need to be welded.
Nongalvanized wire is suitbable, but it will rust if it is stored in the open air too long. Standard galvanized meshed are adequate. Never use aluminium of aluminium painted wire because aluminium may react with the cement and give a very poor bond between the wire and the mortar.
In the following pages some types of meshes are described, i.e.:

1. Hexagonal wire mesh or chicken mesh
2. Welded wire mesh
3. Woven mesh
4. Expanded metal mesh
5. Watson mesh
4.11.1. Hexagonal wire mesh or chicken mesh

Hexagonal mesh or chicken mesh is fabricated from cold drawn wire which is generally woven into hexagonal patterns. It is -galvanised either before or after fabrication.

This mesh is fabricated in different sizes and gauges.
Hexagonal wire mesh or chicken mesh is the most popular and commonly used mesh readily available in most countries.

4.11.2. Welded wire mesh

Welded wire mesh is fabricated from gauge wires, half-inch spaces are normally used in this mesh. These wires are made of low to medium tensile strength steel and are much stiffer than hexagonal wire mesh. However, welded wire mesh may have weak spots at intersections inadequate welding during the manufacturing process.
In general welded wire mesh is galvanised after welding.

4.11.3. Woven mesh

The wires of woven mesh are simply woven into the desired grid size and have no welding at the intersections.
In this mesh the wires are not perfectly straight and there is a certain amount of play.
One of the difficulties is that it cannot easily be held in position but once-stretched it readily conforms to the curves required.

4.11.4. Expanded metal mesh

Expanded metal mesh is also known as metal plasterer's lathing.
It is made by cutting a thin steel sheet in such a way that diamond shaped openings are formed when the metal is stretched out. Expanded metal is not as strong as the woven mesh, but on a cost to strenghth ratio, expended metal has the advantage.

4.11.5. Watson mesh

Watson mesh consists of straight high-tensile wire held together by transverse crimped wire. The high-tensile wires are placed in two planes, parallel to each other, and are crossed in a transverse direction by mild steel wires.
The elastic limit is only exceeded in the tie wire and then only in the vicinity of the crimp.
Also the wire of Watson mesh is straight without twists , crimps, pressings, punchings or welds.
Watson mesh provides complete flexibility and is thus adaptable for a variety of shapes.

4.11.6. General characteristics of different types of meshes

			number of wires per m^{\prime} (running meters)		surface steel area A $\mathrm{mm}^{2} / \mathrm{m}^{\prime}$		$\begin{aligned} & \text { standard } \\ & \text { sizes } \\ & m(1 \times h) \end{aligned}$	
	wire spacings	wire surface mm^{2} /wire	longitudinal	transverse	longitudinal	transverse		roll
	$\left[\begin{array}{lllll} 13 & \times & 13 & \times & 0.7 \\ 20 & \times & 20 & \times & 0.7 \\ 25 & \times & 25 & x & 0.8 \\ 40 & \times & 40 & \times & 0.9 \\ 50 & \times & 50 & \times & 1 \end{array}\right.$	$\begin{aligned} & 0.38 \\ & 0.38 \\ & 0.50 \\ & 0.64 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 77 \\ & 50 \\ & 40 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 77 \\ & 50 \\ & 40 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 29.26 \\ & 19 \\ & 20 \\ & 16 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 29.26 \\ & 19 \\ & 20 \\ & 16 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned} \quad 1$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
		$\begin{aligned} & 0.28 \\ & 0.50 \\ & 0.64 \\ & 0.79 \\ & 1.54 \\ & 2.00 \\ & 2.00 \end{aligned}$	$\begin{array}{r} 167 \\ 125 \\ 100 \\ 83 \\ 56 \\ 42 \\ 42 \end{array}$	$\begin{array}{r} 167 \\ 125 \\ 100 \\ 83 \\ 56 \\ 42 \\ 20 \end{array}$	$\begin{aligned} & 46.76 \\ & 62.5 \\ & 64 \\ & 65.57 \\ & 86.24 \\ & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 46.76 \\ & 62.5 \\ & 64 \\ & 65.57 \\ & 86.24 \\ & 84 \\ & 40 \end{aligned}$	25 x 1.22 25 x 1.22	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
$\begin{aligned} & \text { g } \\ & \stackrel{y}{0} \\ & 0 \\ & 0 \\ & \hline 1 \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 9 \times 9 \times 1.2 \\ 10.9 \times 10.9 \times 1.8 \\ 11.3 \times 11.3 \times 1.4 \\ 14.9 \times 14.9 \times 2 \end{array}\right\|$	$\begin{aligned} & 1.13 \\ & 2.54 \\ & 1.54 \\ & 3.14 \end{aligned}$	$\begin{array}{r} 111 \\ 92 \\ 88 \\ 67 \end{array}$	$\begin{array}{r} 111 \\ 92 \\ 88 \\ 67 \end{array}$	$\begin{aligned} & 125.43 \\ & 233.68 \\ & 135.32 \\ & 210.38 \end{aligned}$	$\begin{aligned} & 125.43 \\ & 233.68 \\ & 135.52 \\ & 210,38 \end{aligned}$	$\begin{array}{lll} 25 & \times & 1.20 \\ 25 & x & 1.20 \\ 25 & x & 1.20 \\ 25 & \times & 1.20 \end{array}$	$\left\lvert\, \begin{aligned} & X \\ & X \\ & X \\ & X \\ & X \end{aligned}\right.$
	$\left\lvert\, \begin{array}{lllll} 10 & \times & 4.3 & \times & 0.5 \\ 10 & \times & 4.4 & \times & 1 \\ 28 & \times & 10 & \times & 1 \\ 42 & \times & 12 & \times & 1 \\ 42 & \times & 13 & \times & 2 \\ 44 & \times & 0.7 & \times 2 \\ 62 & \times & 21 & \times & 2 \end{array}\right.$	$\begin{aligned} & 1 \times 0.5=0.5 \\ & 1.5 \times 1=1.5 \\ & 2.5 \times 1=2.5 \\ & 2.5 \times 1=2.5 \\ & 3 \times 2=6.0 \\ & 2 \times 2=4.0 \\ & 2.5 \times 2=5.0 \end{aligned}$	$\begin{array}{r} 232 \\ 227 \\ 100 \\ 83 \\ 77 \\ 115 \\ 48 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 36 \\ 24 \\ 24 \\ 23 \\ 16 \end{array}$	$\begin{aligned} & 116 \\ & 340.5 \\ & 250 \\ & 207.5 \\ & 462 \\ & 460 \\ & 240 \end{aligned}$	$\begin{array}{r} 50 \\ 150 \\ 90 \\ 60 \\ 144 \\ 92 \\ 80 \end{array}$	$\begin{array}{r} 25 \times 0.5 \\ 25 \times 0.5 \\ 10 \times 0.5 \\ 10 \times 0.5 \\ 10 \times 0.5 \\ 2 \times x \end{array}$	$\begin{aligned} & X \\ & X \end{aligned}$
	Only	available in	ustralia	nd New	aland			

4.12. Formwork (Moulds)

For the construction of ferrocement watertanks as described in this publication a mould is needed to support the reinforcement before trowelling and to provide a base for the first rendering of the wall and the cover.

Well made formwork is expensive but will, with care, last for many years so that the initial cost can be spread over the numerous tanks that are built.

In publications several mould designs are given, varying from makeshift formwork or weld mesh frames to steel/plywood moulds.

Experience has shown that quality formwork makes construction work almost foolproof and is therefore recommended for any tank programme in which more than a few tanks are to be built.
In particular, for the fairly large and large types of tanks described in this manual, it is highly recommended to make use of a solid formwork. Locally available materials are often suitable for use in the construction of moulds.
The main requirement of the formwork is that it should be rigid enough to hold without deflection the weight of the mortar as it is being applied and cured.

The following types of formwork are described in this manual:

1. Formwork made of a bambooframe reinforced with palmfibre mats
2. Shuttering made of flattened oildrums
3. Formwork made of circular corrugated galvanized iron sheets
4. Formwork made of steel rings with a lining of plywood
4.12.1. Formwork made of a bambooframe reinforced with palmfibre mats

This is a woven mat of palmfibre which is wrapped around a bamboo framework and is fastened with ropes. It does not give support to the reinforcement which therefore must be self-supporting (e.g. vertical reinforcing wire or bamboo strips are needed to support the horizontal reinforcement). This mould is not stable either so that during plastering from the inside the mould will tend to become pressed slightly outward resulting in a thicker wall and a higher cement and sand consumption. Palm fibre mats can be used for the construction of about 5 tanks before replacement becomes necessary.

Mould made of a bambooframe reinforced with palmfibre mats

4.12.2. Shuttering made of flattened oildrums

If these are available, a mould made of flattened oildrums is cheap and easy to construct.
Oildrums are cut and flattened, after which the flattened sheets are connected and bent into a circular shape
This can be done by drilling small holes in the sheets and fixing the sheets together with tie-wire. This type of formwork has been constructed successfully by farmers in Arizone, U.S.A. It should be classified under the "outside moulds", in other words the mortar should be applied on the inside of the tank.
4.12.3. Formwork made of circular corrugated galvanized iron sheets

This type of formwork has been used with great success.
The formwork consists of 0.6 mm corrugated galvanized iron sheets rolled to the prescribed radius.
Steel angle iron ($40 \div 40 \div 5 \mathrm{~mm}$) is bolted vertically on the inside face at the ends of each set of sheets - this allows the sheets to be bolted together to form a circle. Between the ends of each section a wedge is placed; this can be pulled out to allow the formwork to be dismantled.

The main advantage of the corrugated sheets - besides durability, cheapness and lightness in transportation - is that they allow an accurate measure of the final wall thickness, because the corrugations on both the inside and outside faces of the tank must be filled with mortar and trowelled smooth.
This is of great importance in self-help construction as it reduces the need for skilled supervision and the risk of thin, weak spots in tank wall.

Example of a standard formwork to make a $30 \mathrm{~m}^{3}$ tank

ASSEMBUING THE FORMWORK

4.12.4. Formwork made of iron rings with a lining of plywood

This type of formwork is the most expensive but also the most solid. If a number of the same tanks, with the same capacity and diameter, are to be built it is highly recommended to use a formwork made of a solid plywood structure.
A steel/plywood mould consists of three steel "rings" which are faced on the outside with sheets of plywood.
The first plastering is done on the outside and the rigidity of the mould makes a good control of the thickenss of the plastering possible.

The "assembled" steelrings can be used hundred of times if properly maintained, while the plywood sheets need replacing after being used about 20 times.
An alternative shows that some of the steelrings and the plywood sheets can be constructed in advance and that all parts are to be assembled (bolted together) on the area chosen for the tank.
If the ring section can be stocked properly after use the mould can be used time and time again.

Example of a standard formwork to make a $60 \mathrm{~m}^{3}$ tank

DETAIL COWNECTION STEELRING

4.13. Painting and coating

After curing and drying the watertank for a week painting operations can be carried out.
In general, experience has shown that plastered ferrocement structures need no protection, but in many cases painting or coating is used as waterproofing, to provide more protection for the reinforcement bars and mesh, or for aesthetic reasons.
4.13.1. Types of coating

The outside of the tank

The outside of the tank can be painted with an non-toxic ordinary paint, as normally used for aesthetic purposes. For added protection, organic coatings (vinyl and epoxy types are well-known) can be used, but any type of coating applied should have several of the following characterics:

- good adhesion ot mortar
- impermeability to water and chemicals
- tolerance of alkanity in the ferrocement
- non-toxicity
- suitable for use by unskilled labour
- simple application technique
- the painting/coating should be fast drying
- maintenance should be easy

Vinyl coatings will fulfil all these demands.
Another successful waterproof finish coating can be made on site. An exemple of a good home-made sealing solution is a mixture of:

- 73% water
- 26% calcium chloride
- $\quad 1 \%$ sodium silicate (waterglass)

The inside of the tank
If a better impermeability is required (perhaps after the testing results) the inside can be coated with two or three coats of the following mix, using the preparation described above:
1 gallon sealing solution (as above)
2 gallons of water
$\frac{1}{2}$ bag of Portland cement

4.13.2. Methods of application

Any surface to be coated or painted must be dry and thoroughly cleaned. Interior and exterior surfaces should be brushed with a wire brush to ensure that loose particles, dust or dirt are removed.

Generally two coats of paints are applied.
One coat of paint is applied in vertical strokes, followed by a second coat in horizontal strokes.
Coatings should normally not be applied at temperatures lower than $50^{\circ} \mathrm{F}$ $\left(10^{\circ} \mathrm{C}\right)$.

It is necessary to allow a 24 hours drying period between the two coats, or as specified by the paint manuafacturer.
The coating must be capable of sealing by absorption cracked surfaces, hairline surface cracks, pinholes and other minor defects and also of preventing corrosion of exposed parts of steel frames and mesh.

5. CONSTRUCTION

5.1. Location, site clearance and preparation of foundations

For irrigation from the tank by means of gravitational flow, the tank has to be situated at the highest part of the field.
If the land is rather flat, the base of the tank has to be constructed about 0.50 m above ground level.
Points to be considered are:

- location in the highest part of the field that has to be irrigated
- site as close as possible to the windmill to reduce the cost of the delivery line
- no obstructions to other field operations
- avoid damage by roots or falling branches by choosing the site away from trees
- it is advisable to choose the site near a road or track, but not one on which a lot of heavy traffic passes

The site chosen for the tank should be cleared. At least the topsoil with a layer of approx. 270 mm is to be excavated to be sure that all vegetation, loose surface soil and black soil are removed. If necessary the surface should be (roughly) levelled. After clearance it is advisable to backfill a sand and/or gravel layer of approx. 200 mm thick.
The ensuing compaction is achieved by ramming with (self-made) tampers. If sand is used for backfill, compaction can also be done by sprinkling with a little water and ramming.

When the site for the tank is cleared, its surface is levelled. The setting out can be done by driving a post into the ground at the centre point of the tank site and describing a circle, while marking the ground with pegs at approx. 1 meter core to core. Levelling can be done by means of a levelling tool.
Put one pole of the levelling tool on top of the centre peg and the other pole on the peg on the circle. Hammer the peg on the circle till the water level in the tube is at the desired marks. Repeat this for all pegs on the circle.
See figure below.

LEVELLING TOOL

Now the ringtrench can be dug and the ring of the formwork made from board or plywood.

It is advisable to spread plastic foil or polyethylene sheeting over the site of the tank before the screed layer or slab is poured.

5.2. Construction of the floor slab

If necessary, depending on the type of soil, a blinding layer of sand or screed concrete, 2 cm thick, can be made.
After the bars are cut to the specified lengths and bent to proper profiles, they have to be tied to each other as indicated on the drawings. After placing the reinforcement and controlling the position of the starterbars, the concrete can be poured. The position of the starter bars is very important. The surface of the slab can then be levelled. The concrete can be cured by wettening or covering with plastic foil or wet sacking. Now a week must be allowed for the concrete to harden.

Refill with soil
After finishing the floor slab, the outer circumference must be refilled with soil.

5.3. Construction of the wall

Mould

After the week's curing time, the formwork or mould has to be erected and slightly oiled. Some of the various types of formwork are described in this manual (see page 16). In general the formwork should be rigid enough to hold the weight of the mortar when it is being applied.

Mesh and reinforcement wire
Step-by-step method for choosing reinforcement.
Example I
Tank type I, capacity of $30 \mathrm{~m}^{3}$ (height of 1.25 m)

1. Look into chapter "Calculation of the tanks" page 131 graphics.
2. Graphic one shows the results of the calculation for a tank with a capacity of $30 \mathrm{~m}^{3}$.
Necessary reinforcement for:
3. a. bending stress on the connection wall/slab $=140 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$ To reach a good surface bording with the wire mesh the cover on the first layer should be in between of 8 mm and 12 mm . The starter bars can be chosen:
4. In this case $65-150\left(A=131 \mathrm{~mm}^{2}\right)$ will be sufficient.
5. b. Bending stress on certain height of the wall $=75 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$ To reach a good surface bording with the wire mesh the cover of the first layer should be in between of 8 m and 12 m . The wire mesh can be chosen:
6. Make a choise out of the different types of meshes indicated on the table on page
7. In this case a hexagonal wire mesh type $13 \times 13 \times 0.7$ is suitable. ($A=29.26 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$ in longitudinal and transversal direction).
8. $\quad 4$ layers of this type will be sufficient to reach the reinforment required.
9. c. hoop stress $=210 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
10. check this with the indicated hoop stress in the tables on page 131.
11. The reinforcement can be built up in two elements:
12. 13. hoop wire bars $\emptyset 5-150=131 \mathrm{~mm}^{2}$
1. 2. wire mesh $4 \times 29.26=117 \mathrm{~mm}^{2}$
total
$248 \mathrm{~mm}^{2}$
which is sufficient.

Example II

Tank type III capacity of $90 \mathrm{~m}^{3}$ (height of 1.25 m).

1. Look into chapter "Calculation of the tanks" page "ferrocement tank, wall and slab constructed with a sliding joint".
2. hoop stress indicated in this table $=544 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$.
3. The reinforcement can be built up in two elements:
4. 5. hoop bars $\emptyset 8-150=336 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
1. 2. wire mesh $5 \times 62.5=312 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
total
$648 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
which is sufficient.

In vertical direction a distribution reinforcement is necessary. If a wire mesh is chosen with the same steel area in longitudional and transverse direction than this will provide sufficient for distribution reinforcement.

The wire mesh and the reinforcing wire can be wound and carefully tightened around the formwork with number and distances as indicated on the drawings.

Mortar mixing
The mortar must be prepared with the correct proportions of materials. To assure these proportions it is very important to use measuring boxes or buckets. Measuring the materials on a shovel does not give reliable results. It is not advisable to use more water, because then the mortar will have a higher permeability to water and will be less strong and durable.
To make a mix more workable, a better graded sand or a greater proportion of cement should be used.
Although increasing the proportion of cement in the mortar will make it more workable, the risk of wide shrinkage cracks will be greater and of course the cost will also rise. Hand mixers can handle drier mixes than the concrete mixer.

Plastering

The plastering of the tank is the major part of the construction work. It is very important that this is done within one day. Choose a day on which no rain can be expected. In order not to waste time on the day of plastering, the mesh wire cylinder and all materials and tools required should be put ready the day before. Make firm arrangements with a gang of masons and helpers who will have to start early in the morning and continue till the job is over. For a $30 \mathrm{~m}^{3}$ tank a gang of at least 7 masons and 5 helpers should be arranged.
The sequence of work is as follows:

- mix cement and sand to a dry mortar (1 : 2)
- for the volume-batching use measuring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer - add water to the dry mortar in the proportion of cement : water $=1: 0.45$ (by weight)
- carry the prepared mortar to the side of the wall on a trowelling board; the board prevents dirt from reaching mortar, and any surplus mortar can be caught on it
- start plastering; apply the mortar to the wall quickly; this can be done by hand with a plasterer's steel handfloat and a handhawk. The mortar is trowelled from the base of the wall upwards. Each layer of plastering should be approx. 10 mm thick; depending on the wall thickness, 4-5-6- or 7 layers are to be applied.
- each layer should be bonded sufficiently but not hardened completely; after this the surface has to be roughened by a wire brush or a trowel.
- if the first layer is not finished or plastering must be interrupted for several hours, it is desirable to keep the construction joint as free of dust as possible
- clear the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is compeleted when the total thickness has been reached
- remove the formwork/mould after hardening of the last layer of the wall
- plaster the inside of the tank to the indicated thickness and until the reinforcement is fully covered
- trowel both surface very smooth by means of a toe-slipper; if a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge.

The joint between the tankslab and the tankwall should be painted twice with a bituminouspaint (on both sides) to get a watertight joint.

5.4. Curing

Curing should be such that the concrete will have satisfactory durability and strength, that the tank will suffer a minimum of distortion, be free of excessive effloreseence and that subsequent shrinkage will not cause undue cracking in the structure.

To achieve these objectives it may be necessary to insulate the concrete so that it is maintained at a suitable temperature, or so that the rates of evaporation of moisture from the surfaces are kept to appropriate values, or both.
The curing period should be the first week after plastering. In that time the surface should not be permitted to dry out, therefore the walls should be covered with black plastic or wet sacking.

Curing is very important to ensure strong tanks and to avoid cracking due to shrinkage.

5.5. Testing

After curing the water tank should be tested by filling it with water (see also chapter 8).

5.6. Painting

If after testing the water tank shows a cracked surface, thorough painting/coating should be sufficient to seal the cracked surface. After drying of the water tank for a week, the tank is ready for painting if desired. For paint application see the description in this manual (page 24).

4.7. Earth bund wall

To make easily accessible, watertank type I - $150 \mathrm{~m}^{3}$ (variant A) may be considered for this type.
Such a bund is formed by heaping the excavated earth against the outside of the tank. If bad soil conditions are found (vegetation, black soil, loose surface soil) the bund earth wall should also have a proper foundation. This involves site clearance and preparation of the foundations being extended to the outer circumference of the bund earth wall.

After the excavated earth has been piled up against the outside of the tank the bund is finished by compaction.
This is done by ramming with (home-made) tampers together with sprinkling with a little water, if the soil is sandy.

5.8. Instructions for bricklaying (type V)

- Clean foundation where bricks are to be laid
- Mark line of brickwork every 1 meter or so with pegs
- Mix the mortar (see mortar for brickwork page 11)
- Add water to the dry mortar until the mortar can be handled well (beware of too much water)
- Moisten the bricks before laying so that the bricks do not transport water from the joints, since this can cause joint cracks due to shrinkage.

Bricks are not to be moved or repositioned once the hardening process has begun.
Spread a good and ample mortar bed for the first layer, making certain that the correctly placed masons line is worked to.

- Do not place the mortar too far "in advance" of the proceeding bricks as the hardening process will start before the bricks are laid in their final positions.
All heading joints (vertical) must be completely filled.
- Trowel off all excess mortar from the joints and re-use it. No "dead" mortar retrieved from the ground or other surface must be re-used.

While laying bricks it is important to pay attention to the following rules for bonding:

- No vertical joints should be placed above each other.
- No closers must be used which are smaller than half the standard brick size locally available.

6. TOOLS

6.1. List of necessary tools

Excavation and marking out tools		```post pegs tape (measure) 2 kg hammer string line wheelbarrow shovels pickaxes for excavation mattocks for groundlevelling woodsaw spirit level```
Mixing mortar tools	-	plastic sheeting mix box $70 \times 120 \times 35 \mathrm{~cm}$ gauging/measuring box $50 \times 50 \times 40 \mathrm{~cm}$ sieve 5 mm maximum openings for sand shovel for mixing water container/bins concrete mixer
Tools for the formwork (mould)		depends on types of formwork

Tools for the wiremesh

Tools for bending reinforcement
Tools for placing the mortar mix

Tools for finishing

- wire snips for mesh
- cutter for mesh
- cutter for wire
- spanners for mesh
- tool for tightening by kinking
- crowbar, 1 meter long
- see hereafter
- plasterers steel hand floats
- hand hawks
- trowelling boards
- wire brush
- trowel combform
- chisels
- toe-slipper
- plastic sheeting or sacking for curing the mortar
sponge

WOODEN MORTOR HOLDER (HAWK)

floAt

PLASTERERS STEEL HAND

6.2 .

 A simple tool for bending reinforcement barsThis tool consists of the two parts (part A and part B as indicated on figure 1) of T shaped iron, each with the dimensions of $30 \times 30 \times 3 \mathrm{~mm}$ and a length of $600-700 \mathrm{~mm}$.
A 30 mm section is removed from both parts (see figure 1).
A tube with an inside bore of 12 mm is welded in the hole that is drilled in the L-part left from part A (figure 1).

TOPVIEW
TOPVIEW

Figure 1

A bar ($\emptyset 12 \mathrm{~mm}$) is welded in the hole that is drilled in the L-part left from part B (figure 1).
Both parts are jointed like a hinge by putting the bar of part B into the tube of part A (figure 2).

Operation of the tool

Put one part into a vice and join both parts as described above.
Place the concrete bar in the tool at the bending point and pull the

Figure 3
Now it is also possible to bend the concrete bars in the shapes as indicated in figure 4.

7.1. Water tank type I PAGE

- General layout 38
- Work instructions 39
- Capacity $30 \mathrm{~m}^{3}$: details and dimensions 43
bill of quantities 44
- Capacity $60 \mathrm{~m}^{3}$: details and dimensions 45
bill of quantities 46
- Capacity $90 \mathrm{~m}^{3}$: details and dimensions 47
bill of quantities 48
- Capacity $150 \mathrm{~m}^{3}$: details and dimensions 49
bill of quantities 50
- Vertical section variant A 51

TYPEX

IRRIGATION WATER STORAGE TANKS	
TYPICAL DESIGN	
FERROCEMENT	
CONSTRUCTION	
TYPE I	
GENERAL LAY OUT	Masares in mm

Type I
work sequence and description notes and recommendations

- clear the area of the site
where the tank is proposed to be constructed
- remove a layer of approx 270 mm of the topsoil
- refill with a sand and/or gravel layer of approx. 200 mm
- the refill is to be compacted with tampers (own manufacture); if this fill consists of sand only the compaction can also be done by sprinkling with a little water and ramming
- if necessary the surface is to be levelled
- mark the circumference of the tank slab and the ringtrench with pegs (pegs core to core 1 meter)
- excavate the ringtrench to the proper depth and line its outer edge with formwork
- formwork can be made of: bricks, stabilised sand or plywood
- polythylene sheets are to be spread over this area
- an alternative is a layer of screed of approx. 20 mm
- place the reinforcement for the - for bending the bars the ringtrench and for the floorslab and fix the bars together with tying wire
- check the circumference of the starterbars by describing a circle with a rope from the post to the centre of the proposed tank - mix cement, sand and gravel to a dry mortar (1 : $2: 3$)
- add water to the dry mortar in the proportion: cement-water: 1 : 0.45 (by weight)
- cast and compact the mortar for the floorslab and ringtrench
- level and finish the surface of the slab with a straight edged board or plywood
- immediately after casting protect the slab against weather influences by covering it with plastic sheeting or wet sacking for a week
- refill the outer circumference with soil
- this refill must be compacted
- assemble and erect the formwork (mould) on the floorslab
- re-check the right position in relation to the starterbars
- .the formwork is to be cleaned and slightly oiled to allow easy removal of the mould after plastering
- wind the wire mesh around the outside surface of the formwork
- in combination with the wire mesh, the reinforcing wire is to be wound around the mould at the distances indicated on the drawings; tie the wire mesh and the reinforcement firmly into place with tying wire
- mix cement and sand to a dry mortar (1 : 2)
- add water to the dry mortar in the proportion of cement : water $=1$: 0.45 (by weight)
- carry the prepared mortar to the side of the wall on a trowelling board. The board prevents dirt from reaching the mortar, and any surplus mortar can be caught on it
- start plastering or trowelling: the mortar can be applied by hand to the walls with a plasterer's steel hand float and a hand hawk. The mortar is trowelled from the base of the wall upwards. Each layer of plaster should have a thickness of approx. 10 mm . Depending on the wall thickness, 4-5-6 or 7 layers are to be applied.
- this is very important in tropical climates
- using the topsoil that was removed earlier
- some types of formwork and their construction are described in this manual (see page 20)
- old motor oil can be used for this purpose
- for choosing the meshes and the reinforcement see the step-by-step method on page 28
- several types of meshes and their characteristics are described in this manual (see page 16)
- the wire mesh and reinforcement should overlap by at least 500 mm
- volume-batching: use measuring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer
- apply the mortar quickly; once the mortar is more than half an hour old it must be removed from site
- tools for plastering and trowelling are described in this manual (see page 33)
- it is important to trowel
in an upwards direction in order to fill the corrugations and fully cover the reinforcing wire
- each layer should be bonded sufficiently, but not hardened completely. After this the surface has to be roughened with a wire brush or a trowel (combform)
- clean the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is completed when the total thickness has been reached
- remove the formwork/mould after hardening of the last layer of the wall
- plaster the inside of the tank to the indicated thickness and until the reinforcement is fully covered
- trowel both surfaces very smooth with a toe-slipper. If a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge
- IMPORTANT: cover the wall with plastic sheets or wet sacking for a week to protect the structure against weather influences.
(This procedure is called: "curing")
- after curing and drying of the tank the joint between the tankslab and the tankwall is to be painted twice with bituminous paint (both sides)
- then the water tank is to be tested by filling it with water A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water at the bottom before filling completely.
if the first layer is not finished or the plastering must be interrupted for several hours, it is desirable to keep the construction joint as dustfree as possible before starting the next plastering operation the joints should be brushed with a wire brush and be coated with cement grout to give a strong bond for the fresh mortar the layers must be of uniform thickness with no gaps or weak spots especially in tropical climates the wall of the tank must be covered with black plastic or wet sacking between the application of each layer.
- during the first 24 hours after plastering the surface should not be permitted to dry
- curing is described on page 30 of this manual
work sequence and description notes and recommendations
- after testing and after drying - for the application of paint the water tank for a week, painting can be carried out if desired
or coating see page 24 in this manual

IRRIGATION WATER	STORAGE TANKS
TYPICAL DESIGN	S WDD
FERROCEMENT CONSTRUCTION	
TYPE I DETAILSAND DIMENSIONS	TWO

6.2. Water tank type II PAGE

- General layout 53
- Work instructions 54
- Capacity $150 \mathrm{~m}^{3}$: details and dimensions 58
bill of quantities 59

SECTION
cexpacity $150 \mathrm{~m}^{3}$

0123
$+1+\quad+$
scale in meters

m coopennation.mitn-Tmo-avenarooer

IRRIGATION WATER	StORAGE	TANKS
trpical design	S WD	
FERROCEMENT CONSTRUCTION		
	1ete $92 \alpha=2$ dete $42 \alpha=$ ह1	
TYPE II GENERAL LAY OUT	TWOTav	

Type II
work sequence and description notes and recommendations

- clear the area of the site where the tank is proposed to be constructed
- remove a layer of approx. 270 mm of the topsoil
- refill with a sand and/or gravel layer of approx. 200 mm
- the refill is to be compacted with tampers (own manufacture); if this fill consists of sand only, the compaction can also be done by sprinkling with a little water and ramming
- if necessary the surface is to be levelled
- mark the circumference of the tankslab and the ringtrench with pegs (pegs core to core 1 meter)
- excavate the ringtrench to the proper depth and line its outer with formwork
- polythylene sheets are to be spread over this area
- formwork can be made of: bricks, stabilised sand or plywood
- place the reinforcement for the ringtrench and for the floorslab and fix the bars together with tying wire
- check the circumference of the starter bars by describing a circle, with a rope from the post to the centre of the proposed tank
- mix cement, sand and gravel to a dry mortar (1 : $2: 3$)
- add water to the dry mortar in the proportion: cement-water: 1 : 0.45 (by weight)
- cast and compact the mortar for the floorslab and ringtrench
- level and finish the surface of the slab with a straight edged board or plywood
- immediately after casting protect the slab against weather influences by covering it with plasticsheeting or wet sacking for a week
- refill the outer circumference with soil
- this refill must be compacted
- assemble and erect the formwork (mould) on the floorslab
- re-check the right position in relation to the starterbars
- the formwork is to be cleaned and slightly oiled to allow easy removal of the mould after plastering
- wind the wire mesh around the outside surface of the formwork
- in combination with the wire mesh, the reinforcing wire is to be wound around the mould at the distances indicated on the drawings; tie the wire mesh and the reinforcement firmly into place with tying wire
- mix cement and sand to a dry mortar (1 : 2)
- add water to the dry mortar in the proportion of cement : water $=1$: 0.45 (by weight)
- carry the prepared mortar to the side of the wall on a trowelling board. The board prevents dirt from reaching the mortar, and any surplus mortar can be caught on it
- start plastering or trowelling: the mortar can be applied by hand to the walls with a plasterer's steel hand float and a hand hawk. The mortar is trowelled from the base of the wall upwards. Each layer of plaster should have a thickness of approx. 10 mm . Depending on the wall thickness, 4-5-6 or 7 layers are to be applied.
- this is very important in tropical climates
- using the topsoil that was removed earlier
- some types of formwork and their construction are described in this manual (see page 20)
- old motor oil can be used for this purpose
- for choosing the meshes and the reinforcement see the step-by-step method on page 28.
- Several types of meshes and their characteristics are described in this manual (see pages 16)
- the wire mesh and reinforcement should overlap by at least 500 mm
- volume-batching: use measuring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer
- apply the mortar quickly; once the mortar is more than half an hour old it must be removed from site
tools for plastering and trowelling are described in this manual (see page 33)
- it is important to trowel in an upwards direction in order to fill the corrugations and fully cover the reinforcing wire
work sequence and description notes and recommendations
- each layer should be bonded sufficiently, but not hardened completely. After this the surface has to be roughened with a wire brush or a trowel (combform)
- clean the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is completed when the total thickness has been reached
- remove the formwork/mould after hardening of the last layer of the wall
- plaster the inside of the tank to the indicated thickness and until the reinforcement is fully covered
- trowel both surfaces very smooth with a toe-slipper. If a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge
- IMPORTANT: cover the wall with plastic sheets or wet sacking for a week to protect the structure against weather influences. (This procedure is called: "curing")
- after curing and drying of the tank the joint between the tankslab and the tankwall is to be painted twice with bituminous paint (both sides)
- then the water tank is to be tested by filling it with water A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water at the bottom before filling completely.
if the first layer is not finished or the plastering must be interrupted for several hours, it is desirable to keep the construction joint as dustfree as possible before starting the next plastering operation the joints should be brushed with a wire brush and be coated with cement grout to give a strong bond for the fresh mortar the layers must be of uniform thickness with no gaps or weak spots especially in tropical climates the wall of the tank must be covered with black plastic or wet sacking between the application of each layer.
- during the first 24 hours after plastering the surface should not be permitted to dry
- curing is described on page 30 of this manual
work sequence and description notes and recommendations
- after testing and after drying - for the application of paint the water tank for a week, painor coating see page 24 in ting can be carried out if desired this manual

7.3. Water tank type III PAGE
- General layout 61
- Work instructions 62
- Capacity $90 \mathrm{~m}^{3}$: details and dimensions 66
bill of quantities 67
- Capacity $150 \mathrm{~m}^{3}$: details and dimensions 68
bill of quantities 69
- Vertical section variant A 70

PLANS

SECTIONS
 IM COOPGAATION WITM-IWO-AHEGSFOORT

TYPE III

IRRIGATION WATER	STORAGE TANKS
trpical design	SMD
ferrocement CONSTRUCTION	
type III	mosurat in mm dato 820623
general lay out	Two \|inu

- clear the area of the site where the tank is proposed to be constructed
- remove a layer of approx 270 mm of the topsoil
- refill with a sand and/or gravel layer of approx. 200 mm
- the refill is to be compacted with tampers (own manufacture); if this fill consists of sand only the compaction can also be done by sprinkling with a little water and ramming
- if necessary the surface is to be levelled
- mark the circumference of the tank slab and the ringtrench with pegs (pegs core to core 1 meter)
- excavate the ringtrench to the - formwork can be made of: proper depth and line its outer edge with formwork bricks, stabilised sand or plywood
- polythylene sheets are to be spread over this area
- place the reinforcement for the ringtrench and for the floorslab and fix the bars together with tying wire
- check the circumference of the hair-pins by describing a circle with a rope from the post to the centre of the proposed tank - mix cement, sand and gravel to a dry mortar (1 : 2 :3)
- add water to the dry mortar in the proportion: cement-water: 1 : 0.45 (by weight)
- cast and compact the mortar for the floorslab and ringtrench
- level and finish the surface of the slab with a straight edged board or plywood
work sequence and description notes and recommendations
- immediately after casting protect the slab against weather influences by covering it with plastic sheeting or wet sacking for a week
- refill the outer circumference with soil
- this refill must be compacted
- assemble and erect the formwork (mould) on the floorslab
- Apply 2 layers of tarredpaper to the bottom of the slab, where construction of the tankwall is proposed
- the formwork is to be cleaned and slightly oiled to allow easy removal of the mould after plastering
- wind the wire mesh around the - for choosing the meshes and outside surface of the formwork
- in combination with the wire mesh, the reinforcing wire is to be wound around the mould at the distances indicated on the drawings; tie the wire mesh and the reinforcement firmly into place with tying wire
- mix cement and sand to a dry \quad volume-batching: use measumortar (1 : 2)
- add water to the dry mortar in the proportion of cement : water $=1$: 0.45 (by weight)
- carry the prepared mortar to the side of the wall on a trowelling board. The board prevents dirt from reaching the mortar, and any surplus mortar can be caught on it
- start plastering or trowelling: the mortar can be applied by hand to the walls with a plasterer's steel hand float and a hand hawk. The mortar is trowelled from the base of the wall upwards. Each layer of plaster should have a thickness of approx. 10 mm .
this is very important in tropical climates
using the topsoil that was removed earlier
- some types of formwork and their construction are described in this manual (see page 20)
- old motor il can be used for this purpose the reinforcement see the step-by-step method on page 28. several types of meshes and their characteristics are described in this manual (see pages 16)
- the wire mesh and reinforcement should overlap by at least 500 mm ring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer
- apply the mortar quickly; once the mortar is more than half an hour old it must be removed from site
- tools for plastering and trowelling are described in this manual (see page 33)
- it is important to trowel in an upwards direction in order to fill the corrugations and fully cover the reinforcing wire
notes and recommendations
Depending on the wall thickness, 4-5-6 or 7 layers are to be applied.
- each layer should be bonded sufficiently, but not hardened completely. After this the surface has to be roughened by a wire brush or a trowel (combform)
- clean the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is completed when the total thickness has been reached
- remove the formwork/mould after hardening of the last layer of the wall
- plaster the inside of the tank to the indicated thickness and until the reinforcement is fully covered
- trowel both surfaces very smooth with a toe-slipper. If a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge
- IMPORTANT: cover the wall with plastic sheets or wet sacking for a week to protect the structure against weather influences.
(This procedure is called: - curing is described on page "curing")
- a concrete plinth, 50 mm high, is to be poured onto the outer circumference of the tankslab. Keep 25 mm free between this plinth and the tankwall to allow the tankwall to move
- seal the underneath of the joint by binding string round it
- fill the outer sliding joint with hot bitumen
- if the first layer is not finished or the plastering must be interrupted for several hours, it is desirable to keep the construction joint as dustfree as possible before starting the next plastering operation the joints should be brushed with a wire brush and be coated with cement grout to give a strong bond for the fresh mortar the layers must be of uniform thickness with no gaps or weak spots especially in tropical climates the wall of the tank must be covered with black plastic or wet sacking between the application of each layer.
- during the first 24 hours after plastering the surface should not be permitted to dry 30 of this manual
- take care that the surface around the joint is completely cleaned before the works involving the plinth, the hot bitumen and the bituminous paint are started
- after curing and drying of the tank the inside joint between the tankslab and the tankwall is to be painted twice with bituminous paint
then the water tank is to be tested by filling it with water A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water at the bottom before filling completely. after testing and after drying - for the application of paint the water tank for a week, painting can be carried out if desired
or coating see page 24 in this manual

7.4. Water tank type IV PAGE
- General layout 72
- Work instructions 73
- Capacity $30 \mathrm{~m}^{3}$: details and dimensions 77
bill of quantities 78
- Capacity $60 \mathrm{~m}^{3}$: details and dimensions 79
bill of quantities 80
- Capacity $90 \mathrm{~m}^{3}$: details and dimensions 81
bill of quantities 82
- Capacity $150 \mathrm{~m}^{3}$: details and dimensions 83
bill of quantities 84
- Vertical section variant A and B 85

TYPEIV

IRRIGATION WATER	STORAGE TANKS
TYPICAL DESIGN	
FERROCEMENT	L
CONSTRUCTION	
TYPETV	mearuros in mm dele 220623
TYPE IV	9010 820623
GENERAL LAY OUT	TWO ${ }^{\text {andu}}$

```
work sequence and description notes and recommendations
```

- clear the area of the site where the tank is proposed to be constructed
- remove a layer of approx 270 mm of the topsoil
- refill with a sand and/or gravel layer of approx. 200 mm
- the refill is to be compacted with tampers (own namufacture); if this fill consists of sand only the compaction can also be done by sprinkling with a little water and ramming
- if necessary the surface is to be levelled
- mark the circumference of the tank slab and the ringtrench with pegs (pegs core to core 1 meter)
- excavate the ringtrench to the proper depth and line its outer edge with formwork
- polythylene sheets are to be spread over this area
- place the reinforcement for the ringbeams and fix the bars together with tying wire
- check the circumference of the starterbars by describing a circle with a rope from the post to the centre of the proposed tank
- mix cement, sand and gravel to a dry mortar (1 : 2 :3)
- add water to the dry mortar in the proportion: cement-water: 1 : 0.45 (by weight)
- cast and compact the mortar for the ringbeam
- in the top of the ringbeam a circular groove of $30 * 30 \mathrm{~mm}^{2}$ should be made
- level and finish the surface of the ringbeam with a straight edged board or plywood
- formwork can be made of: bricks, stabilised sand or plywood
- an alternative is a layer of screed of approx. 20 mm
- for bending the bars the bendingtool described on page 34 can be used
- take special care that the bars are in the right position
volume-batching: use measuring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer
notes and recommendations
- immediately after casting protect the ringbeam against weather influences by covering it with plastic sheeting or wet sacking for a week
- refill the outer circumference - using the topsoil that was with soil
- this refill must be compacted
- assemble and erect the formwork (mould) on the floorslab
- re-check the right position in relation to the starterbars
- the formwork is to be cleaned and slightly oiled to allow easy removal of the mould after plastering
- wind the wire mesh around the outside surface of the formwork
- in combination with the wire mesh, the reinforcing wire is to be wound around the mould at the distances indicated on the drawings; tie the wire mesh and the reinforcement firmly into place with tying wire
- mix cement and sand to a dry mortar (1 : 2)
- add water to the dry mortar in the proportion of cement : water $=1: 0.45$ (by weight)
- carry the prepared mortar to the side of the wall on a trowelling board. The board prevents dirt from reaching the mortar, and any surplus mortar can be caught on it - start plastering or trowelling: the mortar can be applied by hand to the walls with a plasterer's steel hand float and a hand hawk. The mortar is trowelled from the base of the wall upwards. Each layer of plaster should have a thickness of approx. 10 mm . Depending on the wall thcikness, 4-5-6 or 7 layers are to be applied.
this is very important in tropical climates removed earlier
- some types of formwork and their construction are described in this manual (see page 20)
- old motor oil can be used for this purpose
- for choosing the meshes and the reinforcement see the step-by-step method on page 28. several types of meshes and their characteristics are described in this manual (see page 16)
- the wire mesh and reinforcement should overlap by at least 500 mm
- volume-batching: use measuring boxes or buckets
- the mortar can be mixed by hand or by a powered concrete mixer
- apply the mortar quickly; once the mortar is more than half an hour old it must be removed from site
- tools for plastering and trowelling are described in this manual (see page 33)
- it is important to trowel in an upwards direction in order to fill the corrugations and fully cover the reinforcing wire
work sequence and description \quad notes and recommendations
- each layer should be bonded sufficiently, but not hardened completely. After this the surface has to be roughened with a wire brush or a trowel (combform)
- clean the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is completed when the total thickness has been reached
- remove the formwork/mould after hardening of the last layer of the wall
- plaster the inside of the tank to the indicated thickness and until the reinforcement is fully covered
- trowel both surfaces very smooth with a toe-slipper. If a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge
- IMPORTANT: cover the wall with plastic sheets or wet sacking for a week to protect the structure against weather influences.
(This procedure is called: - curing is described on page "curing")
- apply polyethylene sheeting on top of the sand layer and around the inside of the tank foundation up to the groove.
The joints in the plastic foil must be sealed by means of a flat or soldering iron
- the plastic foil is to be inserted in the groove of the ringbeam as indicated on the drawing
- if the first layer is not finished or the plastering must be interrupted for several hours, it is desirable to keep the construction joint as dustfree as possible before starting the next plastering operation the joints should be brushed with a wire brush and be coated with cement grout to give a strong bond for the fresh mortar the layers must be of uniform thickness with no gaps or weak spots especially in tropical climates the wall of the tank must be covered with black plastic or wet sacking between the application of each layer.
work sequence and description notes and recommendations
- fill the bottom of the tank with - the groove should be a layer of impermeable soil, approx. 150 mm deep
- fill the groove with hot bitumen
- after curing and drying of the tank the joint between the tankslab and the tankwall is to be painted twice with bituminous paint (both sides)
- then the water tank is to be tested by filling it with water A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water at the bottom before filling completely.
- after testing and after drying - for the application of paint the water tank for a week, painting can be carried out if desired
cleaned before it can be filled
or coating see page 24 in this manual

Developing ísumraict-swo-on sur as

0
$+\quad 5 \quad 10 \quad 15$
+
scale in centimeters
IRRIGATION WATER STORAGE TANKS
TYPICAL DESIGN
FERROCEMENT
capacity $30 \mathrm{~m}^{3}$
TYPE IX
DETAILSANO DIMENSIONS

7.5. Water tank Type V PAGE

- General layout 87
- Work-instructions 88
- Capacity $30 \mathrm{~m}^{3}$: Details and dimensions 92
Bill of quantities 93
- Capacity $60 \mathrm{~m}^{3}$: Details and dimensions 94
Bill of quantities 95
- Capacity $90 \mathrm{~m}^{3}$: Details and dimensions 96
Bill of quantities 97
- Capacity $150 \mathrm{~m}^{3}$: Details and dimensions 98
Bill of quantities 99
- Vertical section variant A 100
- Brickwork bond 101
- Different types of shuttering 102
- Detail top of the wall type V 103

- clear the area of the site where the tank is proposed to be constructed
- remove a layer of approx 270 mm of the topsoil
- refill with a sand and/or gravel layer of approx. 200 mm
- the refill is to be compacted with tampers (own manufacture); if this fill consists of sand only the compaction can also be done by sprinkling with a little water and ramming
- if necessary the surface is to be levelled
- mark the circumference of the tank slab and the ringtrench with pegs (pegs core to core 1 meter)
- excavate the ringtrench to the - formwork can be made of : proper depth and line its outer edge with formwork bricks, stabilised sand or plywood
- polythylene sheets are to be spread over this area
- place the reinforcement for the ringtrench and for the floorslab and fix the bars together with tying wire
- check the circumference of the - take especial care that the starterbars by describing a circle with a rope from the post to the centre of the proposed tank
- mix cement, sand and gravel to a dry mortar (1 : 2 :3)
- add water to the dry mortar in the proportion: cement-water: 1 : 0.45 (by weight)
- cast and compact the mortar for the floorslab and ringtrench
- level and finish the surface of the slab with a straight edged board or plywood
work sequence and description notes and recommendantions
- immediately after casting protect the slab against weather influences by covering it with plastic sheeting or wet sacking for a week
- refill the outer circumference with soil
- this refill must be compacted
- re-check the right position in relation to the starterbars
- mark the circumference of the brickwork wall with pegs (pegs core to core 1 meter)
- mix cement and sand to a dry - mortar for brickwork is mortar
- add water to the dry mortar until the mortar can be handled well
- start bricklaying of the outerwall put pieces of tying wire $(0.3 \mathrm{~m}$ lenght) in the inside joints of the wall at distances of 0.5 m in horizontal and vertical direction
- the brickwork outerwall is the formwork for the inside ferrocement wall
- wind the wire mesh around the - for choosing the meshes and inside surface of the brickwork wall
- in combination with the wire mesh, the reinforcing wire is to be wound around the brickwork at the distances indicated on the drawings; tie the wire mesh and the reinforcement firmly into place with tying wire
- mix cement and sand to a dry - volume-batching: use measumortar (1 : 2)
- add water to the dry mortar in the proportion of cement : water $=1: 0.45$ (by weight)
- carry the prepared mortar to the inside of the wall on a trowelling board. The board prevents dirt
- from reaching the mortar, and any surplus mortar can be caught on it
this is very important in tropical climates
using the topsoil that was removed earlier
indicated on page 13.
the bond is indicated in the details (see page 32) immediately after bricklaying (at the end of each day) the finished parts of the wall are to be protected against weather influences the reinforcement see the step-by-step method on page 28 described in this manual (see page 16)
the wire mesh and reinforcement should overlap by at least 500 mm

> ring boxes or buckets

- the mortar can be mixed by hand or by a powered concrete mixer
apply the mortar quickly; once the mortar is more than half an hour old it must be removed from site
work sequence and description notes and recommendations
- start plastering or trowelling: the mortar can be applied by hand to the brickwork with a plasterer's steel hand float and a hand hawk. The mortar is trowelled from the base of the wall upwards. Each layer of plaster should have a thickness of approx. 10 mm . Depending on the wall thickness, 4-5-6 or 7 layers are to be applied.
- each layer should be bonded sufficiently, but not hardened completely. After this the surface has to be roughened with a wire brush or a trowel (combform)
- clean the surface and remove loose materials before applying the next layer; if joints are necessary they must be made in a horizontal line around the tank
- the plastering operation is completed when the total thickness has been reached
- trowel the inside surface very smooth with a toe-slipper. If a rough surface is required to ensure a good bonding surface for painting, the wall should be washed down with a sponge
- IMPORTANT: cover the wall with plastic sheets or wet sacking for a week to protect the structure against weather influences. (This procedure is called: - curing is described on page "curing")
tools for plastering and trowelling are described in this manual (see page 33) it is important to trowel in an upwards direction in order to fill the corrugations and fully cover the reinforcing wire
- if the first layer is not finished or the plastering must be interrupted for several hours, it is desirable to keep the construction joint as dustfree as possible before starting the next plastering operation the joints should be brushed with a wire brush and be coated with cement grout to give a strong bond for the fresh mortar the layers must be of uniform thickness with no gaps or weak spots especially in tropical climates the wall of the tank must be covered with black plastic or wet sacking between the application of each layer.
- during the first 24 hours after plastering the surface should not be permitted to dry 30 of this manual

```
work sequence and description notes and recommendations
- after curing and drying of the tank the joint between the tankslab and the tankwall is to be painted twice with bituminous paint (both sides)
- then the water tank is to be tested by filling it with water A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water at the bottom before filling completely. after testing and after drying - for the application of paint the water tank for a week, painor coating see page 24 in ting can be carried out if desired
- on top of the tankwall a brick layer of edge coping is to be applied (see page lol);
```


IRRIGATION

FERROCEMENT CONSTRUCTION
type II DETAILSAND DIMENSIONS

TWO '

VERTICAL SECTION
$0 \quad 5 \quad 1015$
$+\quad+$
scale in centimeters

TYPE
capacity $90 \mathrm{~m}^{3}$

IRRIGATION WATER STORAGE TANKS

TYPICAL DESIGN
FERROCEMENT
STD
CONSTRUCTION

TYPE I
DETAILSAND DIMENSIONS TWO Dow ..

brickwork bond for a wall of lio mm thickness.
irrigation water storage

TESTING
8.1.

Simple field identification tests for soil
Preliminary

- Look at the whole sampel.
- Is it mainly a coarse or fine soil?
- Are there any fibres or roots?
- Is it dull or dirty?
a. Appearance

If the soil is fibrous or dirty in appearance, test for organic material.
b. Feel

Sands and gravel feel coarse and gritty. Silts and clay are hard or floury when dry and soft or sticky when wet. Clay when wet will stain the fingers and can only be removed by washing.
c. Composition

Estimate how much of each fraction is in the soil and separate coarse from fine material by hand.
d. Organic (smell) test

Take a sample of th soil and smell it. If it has an earthy or vegetable smell it is probably organic. Warm the sample and the odour will become distinct.

Vibration test
(For particle size distribution). Place a dry sample on a board. Hold the board at a slope and tap lightly with a stick. The finer material will move up the slope or remain in place, the coarser will move down the slope.

If there are many different sizes between the largest and the smallest, the sample is well-graded. This means it will compact well. If only a few sizes can be seen, then it is single-sized or poorly graded.

Settling test

This test can also be used to determine the amount of soil (dirt) in river sand used for brick or concrete work.

Place a sample in a bottle or a glass jar with straight sides. Fill the bottle with water and shake well. Then put it down to allow the mixture to settle. Gravel and coarse sand will settle immediately. Fine sand and coarse silt will settle more slowly taking about 30 seconds. Clay and fine silt fractions will not settle for several hours.

In the sample, the approximate quantities of each size can be seen as layers, the finer materials being different in colour. For sand which is used for masonry and concrete work, the amount of clay and silt must be less than 6%, otherwise the sand has to be washed.

Cohesion test
 (To show whether there is sufficient building material in the soil).

Take a handfull of damp sample material and mould it into a ball.
a. With gravels the material will not stick together unless there are fine materials present.
b. With sands the damp material will stick together, but if no fine materials are present it will crumble at a touch.
c. If the ball stays toegether, even when placed on a sheet of paper, silts or clays are present, which means the material is suitable for building.
8.2. Steel bars

A simple test can be conducted as follows:

- bend the bar into a U-shape with an inside diameter of 25 times the bardiameter and then straighten it out.
- bend it into a U and if no cracks appear at the bend on re-straightening the bar is acceptable.

8.3. Testing the tank

The watertank is tested by filling it with water. A newly built empty tank should always be filled slowly and it should be left for a week with a shallow depth of water in it before filling completely. If no seepage of water appears or only very small seepages, the ferrocement watertank may be considered acceptable.
To obtain an even more waterproof tank it may be considered to paint the inside of the tank with a thick cement slurry or a type of paint such as is described in the manual for sealing the tank.

9. CALCULATION OF THE TANKS

The great advantage of wire reinforced mortar over conventional reinforced concrete for watertank construction is its ability to resist shrinkage cracking during curing, its resistance to severe cracking under tensile load, and the need for only one set of forms for construction, whereby the mortar is applied by hand to one side. Pouring a thin shell of concrete between two closely spaced shutters - the conventional method of reinforced concrete construction - is a highly skilled and difficult task.

Unreinforced mortar and concrete are strong under compressive loads but very weak at resisting tensile or pulling loads; if structures made from these materials are subject to excessive tensile forces or bending, they can fracture suddenly without observable stretching and development of fine cracks.
The reason for the weakness in tension and the brittle type of failure is that, however carefully the mortar is mixed and placed, there will be always planes of weakness between the edges of discrete lumps that make up the mortar. These are exaggerated by shrinkage during curing and by imperfect bonding between each layer of mortar that is trowelled on. In compression these planes of weakness are held together by the load, but under tensile loading they will open up beyond their elastic limit coalesce with other cracks and rapidly cause the mortar to fail. Conventional reinforced concrete is designed to overcome this characteristic by allowing the tensile loads to be taken completely on the reinforcing bars - the concrete in tension being assumed to have no strength. In reality, however, the reinforcing steel works to limit and control the tendency of the concrete to crack under tensile load. The amount and distribution of the steel bars or wires should be in correspondence with the maximum tensile laoding.
In reinforced cement-mortar under moderate tensile loads, such as those found in the small watertanks described, the mortar may be assumed to contribute greatly to the tensile strenght of the composite layer. This occurs because the wire mesh, distributed relatively densely through the mortar, will allow the load to be taken throughout the complete layer and will prevent the early concentration of critical stresses in planes of weakness.
Any cracks that do appear under moderate loading will not be wide enough to allow water to reach the reinforcing wires and start corrosion. The structural behaviour of a wire-reinforced mortar shell is difficult to calculate with any exactness especially if the wires, in the case of cylindrical tanks, are fixed mainly in one plane around the tank. In addition, the mortar that is trowelled by hand onto the tank will inevitably be of varying thickness or strength.
The calculations shown, however, suggest that the smaller tanks are not highly stressed and there would seem to be a large factor of safety in most of the designs.

The succesful use of the tanks over many years may considered to confirm this supposition. The tanks described in this manual are the cylindrical with a flat floor.
Cylindrical tanks are rather simple to make. The stress at the base of the tank where the wall join the floor is comparatively large and the joint must be made strong enough.

9.1. The foundation

The foundation of the tanks carry the weight of both tank and water down to the ground. The floor in the smaller tanks (less than 10 m in diameter) is usually continuous with the walls; the floorslab carries the weight of the walls and the water directly onto the foundation. The larger tanks (over 10 m in diameter) usually have the floor built seperately from the walls, and the floorslab therefore supports only the weight of water in the tank; separate foundations are needed for the walls.
Preparing the foundations is one of the most important steps in tank construction and is considered in another chapter (Chapter 5.1. Construelion of the foundation).

Small tanks
Large tanks

9.2. Walls

If the thin cylindrical walls were free to move at the base when the tanks were full of water, they would stretch under load to give only hoop tension forces within the walls.
To prevent leakage, however, a flexible watertight seal of some sort would then be needed between the floor and the walls.
Such a watertight seal may lead to complications in design, delivery and construction. For this reason most of the tanks described in this publication have walls built continuously with the floor or foundations. Although this produces some design difficulties, it is an almost universally adopted technique for the relatively small shallow tanks under consideration.

In the last resort also tanks with capacities of 90 and $150 \mathrm{~m}^{3}$ (large tanks, over 10 meter in diameter) will be designed with a "sliding joint". This type of tank avoids shrinkage-cracks due to free movement of the special joint.
A short building instruction is given for these tanks, including some characteristic properties.

9.3. Design assumptions for calculations

- The tanks are assumed to be made of an uniform-homogeneous, elastic material. The same elastic modulus in both horizontal and vertical direction. Poissons ratio for reinforced mortar is taken to be 0.2 .
- Due to the fine distribution of the reinforcement there will be very little cracking.
- A low water-cement ratio gives good water-proof structures.
- The tanks have a cylindrical wall with a flat floor. No account has been taken of creep, which would relieve some stress in the mortar.
- In publications the maximum tensile stress in the ferrocement structure occurs on the inside face at the junction of the wall and the base and is limited to approx. $2.0 \mathrm{~N} / \mathrm{mm}^{2}$.
- The maximum tensile stress in the reinforcement is limited to 110 $\mathrm{N} / \mathrm{mm}^{2}$.
- The wall of the tanks should be made not less than 40 mm thick.
- In the New Zealand standard "Code of practice for concrete structures for the storage of liquids part 1 " rules are given for types of tanks described in this manual. The designs are based on "resistance to cracking".
In this code, the following minimum wall thicknesses are given:
- tanks up to $25 \mathrm{~m}^{3}$: min. wall thickness 33 mm
- tanks up to $40 \mathrm{~m}^{2}$: min. wall thickness 44 mm
- Shrinkage and cracking can be prevented by raising the ground around the perimeter of the irrigation tank to a level of approxiamately 0.40 m above the bottom of the tank floor.
- In particular the connection between the bottomslab and the wall should be carried out very carefully; the connecting surface has to be rough and dustfree before wall trowelling can start.

For the calculation two different methodes have been taken in consideration:

1. Floor and wall separated by means of a sliding joint

If the thin cylindrical wall is free to move at the base when the tank is full of water, it would stretch under load to give only hoop tension forces within the wall.

On the bottom of the tank with a height "l" the water pressure will be:

$$
p_{w}=10 \div 1
$$

The tensile force " N_{Q} " on the bottom of the tank is:

$$
\mathrm{N}_{\mathrm{q}}^{0}=\frac{1}{2} \div \text { tank diameter } \div \text { water pressure }=\frac{1}{2} \div(2 \mathrm{a}) \div \mathrm{p}_{\mathrm{W}}
$$

At a height " η " the tensile force will be:

$$
N_{Q}^{\eta}=\frac{1}{2} \div(2 a) \div p_{w}^{*} \eta
$$

According to this theory tank type III has to be calculated.

2. Floor and wall connected

If the thin cylindrical wall and the floor are composite and the tank is full of water, both tensile stresses and bending stresses will occur. The way how to calculate these tensile forces and bending forces is described in "Theorie und Berechnung rotationssymmetrischer Bauwerke" by Dr. Gjula Markus.
The coefficients for the forces and moments are taken from this publication.
The applicable tables are included in this manual (annex 5 and 6).
With the above theory the following formulae are used:

$$
\begin{aligned}
& K \quad=\quad \sqrt{ } \frac{\sqrt{3}\left(1-\mu^{2}\right)}{a h} \\
& N_{Q}=p a F_{N} \\
& M_{y}=p a \operatorname{F} \frac{F_{M}}{W} \\
& \mathrm{~K} \quad=\text { the stiffness of the cylindrical wall } \\
& \mathrm{N}_{\mathrm{Q}}=\text { ring force } \\
& M^{Q}=\text { bending moment in the height of the wall } \\
& =\text { coefficient for } N_{Q} \\
& \frac{F_{M}}{W}=\text { coefficient for } M_{y}
\end{aligned}
$$

Irrigation tanks with capacities of $30,60,90$ and $150 \mathrm{~m}^{3}$ have been calculated in five types:
Type I Range of preference
Ferrocement tank, wall and slab connected, for the following capacities and heights:

- capacity $30 \mathrm{~m}^{3}$ height 1.25 m
- capacity $60 \mathrm{~m}^{3}$ height 1.25 m
- capacity $90 \mathrm{~m}^{3}$ height 1.25 m
- capacity $150 \mathrm{~m}^{3}$ height 1.90 m

Type II
Ferrocement tank, wall and slab connected, with a capacity of $150 \mathrm{~m}^{3}$ and a height of 1.25 m .

Type III Ferrocement tank, wall and slab constructed with a sliding joint, for the following capacities and heights:

- capacity $90 \mathrm{~m}^{3}$ height 1.25 m
- capacity $150 \mathrm{~m}^{3}$ height 1.25 m

Type IV Ferrocement tank, wall and "foundation ring" (trench beam) connected, but with a separate bottom slab consisting of concrete or impermeable soil
Furthermore as type I
Type V As type I but with an extra outer brickwork wall.
9.4. Calculation of the tanks
9.4.1. Types III Ferrocement tank; wall and slab constructed with a sliding joint

Scheme

Exemple for a $60 \mathrm{~m}^{3}$ tank
$\mathrm{l}=1.25 \mathrm{~m} \quad \mathrm{a}=3,91 \mathrm{~m} \quad \mathrm{~h}_{\mathrm{w}}=0.05 \mathrm{~m}$
On the bottom of the tank with wheight of 1.25 m the water pressure will be:

$$
\mathrm{p}=10 * 1.25=12.50 \mathrm{kN} / \mathrm{m}^{2}\left(\mathrm{~m}^{\prime}\right)
$$

The tensile force $" \mathrm{~N}_{\mathrm{O}}{ }^{\circ}=\frac{1}{2} \div(2 * 3.91) * 12.5=48.87 \mathrm{kN} / \mathrm{m}^{\prime}$
The hoop stress with ${ }^{0}{ }_{Q}{ }^{\circ}=48.87 \mathrm{kN}$ will be:

$$
\sigma_{\mathrm{h} . \mathrm{s}}=\frac{\mathrm{N}_{\mathrm{Q}}^{0 \div 10^{3}}}{1000^{\star} \mathrm{h}_{\mathrm{w}}}=\frac{48.8 .7 \star 10^{3}}{1000^{\star 5} 50}=0.98 \mathrm{~N} / \mathrm{mm}^{2}
$$

The reinforcement with $\mathrm{N}^{\circ}{ }^{\circ}=48.87 \mathrm{kN}$ will be:

$$
A=\frac{48.87 * 10^{3}}{F y}=\frac{48.87 \star 10^{9}}{110}=444 \mathrm{~mm}^{2} / \mathrm{m}^{1}
$$

On the basis of the above exemple the reinforcement for the other capacities can be calculated as follows:

$\mp \quad$ Uneconomical solution
9.4.2. Types I - II - IV and V; Ferrocement tank Wall and slab connected
9.4.2.1. Tank capacity of 30 m 3

With a waterheight in the tank of 1.25 m the tank diameter will be:
$(2 \mathrm{a})^{2}=\frac{30 \star 4}{1.25 \div \pi} \quad \rightarrow \quad a=2.77 \mathrm{~m}, \begin{aligned} & \mathrm{D}\end{aligned}=5.54 \mathrm{~m}$.

$h_{w}=40 \mathrm{~mm}$
$\mu^{W}=0.2$

Calculation example for a $30 \mathrm{~m}^{3}$ tank

Without reduction the water pressure on the bottom of the tank will be:

$$
\mathrm{p}_{\mathrm{w}}=10 \div 1.25=12.50 \mathrm{kN} / \mathrm{m}^{2}\left(\mathrm{~m}^{\prime}\right)
$$

and the tensile force:

$$
\mathrm{N}_{\mathrm{Q}} \mathrm{Z}=\mathrm{p}_{\mathrm{w}} \times \mathrm{a}=12.5 \div 2.77=34.6 \mathrm{kN} / \mathrm{m}^{\prime}
$$

However, reductions must be introduced since the wall and slab are composite.
$K=\sqrt{ } \frac{\sqrt{3\left(1-\mu^{2}\right)}}{a h}$
$K=\sqrt{\frac{\sqrt{3\left(1-0.2^{2}\right)}}{2.77 \div 0.04}}=3.91$
$\mathrm{K} 1=3.91 * 1.25=4.89$
$p_{\mathrm{w}} \mathrm{ah}_{\mathrm{w}}=34.6 \div 0.04=1.384 \mathrm{kNm} / \mathrm{m}^{\prime}$
Since there is no certainty whether the joint is "plastic" or "rigid" both tables, annex 5 and 6, are used to find the least favourable stresses.
With Annex $5 \quad$ "joint plastic"
$\mathrm{Kl}=4.89$, by $\mu=0.7 \rightarrow$
$\rightarrow \mathrm{F}_{\mathrm{N}}=0.67$ and $\mathrm{N}_{\mathrm{Q}}^{(0.7)}=0.67 * 34.6=23.18 \mathrm{kN} / \mathrm{m}^{\prime}$
${ }^{\rightarrow} \mathrm{F}_{\mathrm{M}}=0.067$ and $\mathrm{M}_{\mathrm{y}} \underline{(0.7)}=0.067 \div 1.384=0.091 \mathrm{kNm} / \mathrm{m}^{\prime}$

- With Annex 6 "joint rigid"
$\mathrm{Kl}=4.89$ by $\mu=0.6$
$\rightarrow \mathrm{F}_{\mathrm{N}}=0.55$ and $\mathrm{N}_{\mathrm{Q}}^{(0.6)}=0.55 * 34.6=19.0 \mathrm{kN} / \mathrm{m}^{\prime}$
$\rightarrow \frac{F_{M}}{W}=-0.048$ and $M_{y}(0.6)=0.048 * 1.284=0.066 \mathrm{kNm} / \mathrm{m}$,
All tensile forces and bending moments in the height of the wall are worked out in graphs.
For this case see page
From these graphs the maximum tensile forces and bending moments
will be taken to find the max. reinforcement (A) in cross and longuatudinal
directions of the wall.
For calculation of the stresses and the reinforcement the following formulae have been used:
- hoop stress $\sigma_{\text {h.s }}=\frac{N_{Q} \eta^{*} 10^{3}}{h_{W}^{2} 1000}$

$$
\sigma_{h . s}=\frac{23 \cdot 18^{*} 10^{3}}{40^{2} 1000}=0,58 \mathrm{~N} / \mathrm{mm}^{2}
$$

r.f. due to hoop stress $A_{h . s}=\frac{N_{Q} 10^{3}}{F y}$
$A_{h . s}=\frac{23.18 \div 10^{3}}{110}=211 \mathrm{~mm}^{2} / \mathrm{m}^{\prime}$
Use ($05-150+$ meshes $3 * 30 \mathrm{~mm}^{2}$)

- bending stress

$$
\sigma_{b . s}=\frac{M y^{*} 10^{6} \div 6}{1000^{*} h_{W}^{2}}
$$

with joint plastic: $\sigma_{b . s}=\frac{0.16 * 10^{6 * 6}}{1000 \div 40^{2}}=0.6 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{~m}^{\prime}\right)$
with joint rigid: $\quad \sigma_{b . s}=\frac{0.33^{*} \div 10^{6} \div 6}{1000^{*} \times 40^{2}}=1.24 \mathrm{~N} / \mathrm{mm}^{2} \quad\left(\mathrm{~m}^{\prime}\right)$

- r.f due to bending

On the basis of the above calculation the tank wall for a $30 \mathrm{~m}^{3}$ tank can be reinforced as follows:

$h=$ lever arm $\approx 23 \mathrm{~mm}$ (for assign $h=27.5-2.5325 \mathrm{~mm}$) with this example the reinforcement for the other capacities can be calculated easily.

Tank capacity $30 \mathrm{~m}^{3} \mathrm{l}=1.25 \mathrm{~m}$

$$
\mathrm{n}_{\mathrm{Q}}=\mathrm{pa} \underset{\mathrm{~F}}{ } \quad\left(\mathrm{kN} / \mathrm{m}^{\prime}\right)
$$

$M_{y}=\operatorname{pah}_{W} \frac{F_{M}}{}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)$

coefficients in accordance with design tabel 1 (Annex 5)
JOINT PLASTIC
=============

Coefficients in accordance with design tabel 2 (Annex 6)
JOINT RIGID
===ニ=======

Tank capacity of $30 \mathrm{~m}^{3}$
$\mathrm{a}=2.52 \mathrm{~m}$
$D=5.04 \mathrm{~m}$
p.a. $=10 * 1.5 * 2.52=37.8$
p.ah ${ }_{W}=37.8 * 0.04=1.512$
$K=\sqrt{ } \frac{\sqrt{3\left(10.2^{2}\right)}}{2.52 * 0.04}=4.10 \quad K l=4.10 * 1.5=6.15$

	F_{N}		$\mathrm{N}_{\mathrm{Q}}\left(\mathrm{kN} / \mathrm{m}^{+}\right)$	F_{M} / W		$M_{y}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)$
		position η			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0,7412	0.7	28.02	0.0938	0.9	0.142
joint rigid	0.620	0.6	23.44	$\begin{array}{r} -0.0564 \\ +0.2450 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.085 \\ & 0.37 \end{aligned}$

Tank capacity of $30 \mathrm{~m}^{3}$
$1=1.75 \mathrm{~m}$
$\mathrm{a}=2.34 \mathrm{~m}$
$D=4.68 \mathrm{~m}$
p.a. $=10 \div 1.75 * 2.34=40.95$
$\mathrm{p} \cdot \mathrm{ah}_{\mathrm{w}}=40.95 \div 0.05=2.048$
$K=\sqrt{ } \frac{\sqrt{3\left(1-0.2^{2}\right)}}{2.34 * 0.04}=4.26 \quad K l=4.26 * 1.75=7.45$

9.4.2.2. Tank capacity of $60 \mathrm{~m}^{3}$

With a water height in the tank of 1.25 m the tank diameter will be:
$\begin{aligned}(2 \mathrm{a})^{2}=\frac{60 * 4}{1.25 * \pi}=\rightarrow a & =3.91 \mathrm{~m} \\ \mathrm{D} & =7.82 \mathrm{~m}\end{aligned}$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{w}}=50 \mathrm{~mm} \\
& \mu^{2}=0.2 \\
& \text { p.a. }=10 \div 1.25 \div 3.91=48.88 \\
& \text { pah }_{\mathrm{w}}=48.88 \div 0.05=2.44
\end{aligned}
$$

$\mathrm{N}_{\mathrm{Q}}=\mathrm{p} \cdot \mathrm{a} \cdot \mathrm{F}_{\mathrm{N}}\left(\mathrm{kN} / \mathrm{m}^{\prime}\right)$

$$
M_{y}=p \cdot a h \cdot \frac{F_{M}}{W}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)
$$

coefficients in accordance with design table 1 (Annex 5)
JOINT PLASTIC

$$
N_{Q}=p \cdot a \cdot F_{N}\left(k N / m^{\prime}\right)
$$

$M_{y}=p \cdot a h \cdot \frac{F_{M}}{W}\left(k N m / m^{\prime}\right)$

coefficients in accordance with design tabel 2 (Annex 6)
JOINT RIGID

Tank capacity of $60 \mathrm{~m}^{3}$

$$
1=1.50 \mathrm{~m}
$$

$\mathrm{a}=3.57 \mathrm{~m}$
$\mathrm{D}=7.14 \mathrm{~m}$
p.a. $=10 \div 1.5 \div 3.57=53.55$
p.ah ${ }_{w}=53.55 * 0.05=2.68$
$K=\sqrt{ } \frac{\sqrt{ } 3\left(1-0.2^{2}\right)}{3.57 * 0.05}=3.08 \quad K 1=4.63$

	F_{N}		${ }^{N} \mathrm{Q}(\mathrm{kN} /$			$M_{y}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)$
		$\begin{aligned} & \text { position } \\ & \eta \end{aligned}$			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0,65	0.7	34.81	0.0919	0.8	0.25
joint rigid	0.52	0.6	27.85	$\left\lvert\, \begin{aligned} & -0.06 \\ & +0.223 \end{aligned}\right.$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.60 \end{aligned}$

Tank capacity of $60 \mathrm{~m}^{3} \quad 1=1.75 \mathrm{~m}$
$a=3.305 \mathrm{~m}$
$\mathrm{D}=6.61 \mathrm{~m}$
p.a. $=10 * 1.75 * 3.305=57.84$
p.ah $=57.84 * 0.05=2.89$
$K=3.205 \quad K 1=5.6$

	F_{N}		${ }^{N} \mathrm{Q}\left(\mathrm{kN} / \mathrm{m}^{\prime}\right)$	$\mathrm{F}_{\mathrm{M}} / \mathrm{W}$		$\mathrm{M}_{\mathrm{y}}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)$
		$\begin{gathered} \text { position } \\ \eta \end{gathered}$			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0.7164	0.7	41.44	0.0885	0.9	0.26
joint rigid	0.593	0.6	34.3	-0.0583 +0.24	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.69 \end{aligned}$

9.4.2.3. Tank capacity of $90 \mathrm{~m}^{3}$

With a water height in the tank of 1.25 m the tank diameter will be:
$(2 \mathrm{a})^{2}=\frac{90 * 4}{1.25 * \pi}=4.78 \mathrm{~m} \rightarrow \begin{aligned} a & =4.785 \mathrm{~m} \\ \mathrm{D} & =9.57 \mathrm{~m}\end{aligned}$
With this diameter the limit of a tank in which the wall and floorslab are connected has been reached.

An alternative is to raise the waterheight in order to reduce the diameter.
Calculations are made for waterheights of both 1.25 m and 1.50 m
waterheight $\quad 1=1.25 \mathrm{~m}$

$$
\begin{aligned}
& K=\sqrt{ } \frac{\sqrt{3}\left(1-\mu^{2}\right)}{\mathrm{ah}} \\
& \mathrm{~K}=\sqrt{ } \frac{\sqrt{ } 3\left(1-0.2^{2}\right)}{4.785 \div 06}=2.43 \\
& \mathrm{~K} 1=2.43 \div 1.25=3.04
\end{aligned}
$$

$\begin{aligned} h_{w} & =60 \mathrm{~mm} \\ \mu^{w} & =0.2\end{aligned}$
$a=4.785 \mathrm{~m}$
pea. $=10 \div 1.25 \div 4.785=59.81$
$\mathrm{pah}_{\mathrm{w}}=59.81 \div 0.06=3.59$
$N_{Q}=p \cdot a \cdot F_{M}\left(k N / m^{\prime}\right)$

$$
M_{y}=\dot{p \cdot a \cdot h \cdot \frac{F_{M}}{W}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right), ~\left({ }^{\prime}\right)}
$$

$7 \sqrt{7}$

coefficients in accordance with design table 1 (annex 5).
JOINT PLASTIC

$$
N_{Q}=p \cdot a \cdot F_{M}\left(k N / m^{\prime}\right)
$$

$$
M_{y}=p \cdot a \cdot h \cdot \frac{F_{M}}{W}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)
$$

coefficients in accordance with design table 1 (Annex 6)
JOINT RIGID

Tank capacity of $90 \mathrm{~m}^{3}$

$\mathrm{h}_{\mathrm{w}}=60 \mathrm{~mm}$
$\mu^{\mathrm{w}}=0.2$
$(2 a)^{2}=\frac{90 \div 4}{1.5 * \pi}$
$\begin{aligned} \rightarrow \mathrm{a} & =4.37 \mathrm{~m} \\ \mathrm{D} & =8.74 \mathrm{~m}\end{aligned}$

$$
\begin{aligned}
& \text { p.a. }=10 \div 1.5 * 4.37=65.55 \\
& \text { pah }_{\mathrm{w}}=65.55 \div 0.06=3.93
\end{aligned}
$$

$N_{Q}=p \cdot a \cdot F_{N}\left(\mathrm{kN} / \mathrm{m}^{\prime}\right)$

$$
M_{y}=p \cdot a \cdot h^{F_{M}} \frac{\left(k N m / m^{\prime}\right)}{W}
$$

coefficients in accordance with design table 1 (Annex 5)
JOINT PLASTIC

coefficients in accordance with design table 2 (Annex 6)
JOINT RIGID

Tank capacity of $90 \mathrm{~m}^{3} \quad 1=1.75 \mathrm{~m}$
$(2 \mathrm{a})^{2}=\frac{90 * 4}{1.75 * \pi}=4.05 \mathrm{~m} \quad \rightarrow \quad \mathrm{a}=4.05 \mathrm{~m}, \begin{aligned} & \mathrm{D}\end{aligned}=8.10 \mathrm{~m}$.
p.a. $=10 * 1.75 \div 4.05=70.8$
p.ah ${ }_{w}=70.8 \div 0.06=4.25$
$K=\sqrt{ } \frac{\sqrt{3\left(1-0.2^{2}\right)}}{4.05 * 0.06}=2.64 \quad K l=4.63$

		F_{N}	$\mathrm{N}_{\mathrm{Q}\left(\mathrm{kN} / \mathrm{m}^{\prime}\right)}$	$\mathrm{F}_{\mathrm{M}} / \mathrm{W}$.		$M_{y}\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)$
		$\begin{gathered} \text { position } \\ \eta \end{gathered}$			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0.65	0.7	46.0	0.0919	0.8	0.39
joint rigid	0.52	0.6	36.8	$\begin{aligned} & -0.06 \\ & +0.223 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.95 \end{aligned}$

9.4.2.4. Tank capacity of $150 \mathrm{~m}^{3}$

With a limited diameter of 10 m the waterheight for a tank of $150 \mathrm{~m}^{3}$ will be:
$(2 * 5)^{2}=\frac{150 \div 4}{1 * \pi} \quad \rightarrow \quad 1=1.90 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{h}=70 \mathrm{~mm} \\
& \mu=0.2 \\
& \text { p.a. }=10 \div 1.9 \div 5=95 \\
& \text { pah }_{\mathrm{w}}=95 \div 0.07=6.65
\end{aligned}
$$

coefficients in accordance with design table 1 （Annex 5）
JOINT PLASTIC
＝ニニニニニニニ＝ニニニ＝

coefficients in accordance with design table 2 （Annex 6）
JOINT RIGID

Tank capacity of $150 \mathrm{~m}^{3}$
With a waterheight in the tank of 1.25 m the tank diameter will be:

$$
\begin{aligned}
(2 a)^{2}=\frac{150 \div 4}{1.25 \div \pi}
\end{aligned} \quad \rightarrow \quad \begin{aligned}
& a=6.18 \mathrm{~m} \\
& D
\end{aligned}=12.36 \mathrm{~m}
$$

In publications this is called a large tank (over 10 m in diameter) and usually the floor has been built separately from the walls.
If the floor and the wall is continuous, special attention should be paid to the joint, and additional reinforcement is required to protect the tankwall against crecking due to shrinkage and termperature differences.

Furthermore it is advisable only to build this kind of tank where skilled labour, good materials and good workmanship is available.

$\mathrm{h}=70 \mathrm{~mm}$
$\mu=0.2$
p.a. $=10 \div 1.25 \div 6.18=77.25$
pah $_{w}=77.25 \div 0.07=5.41$

coefficients in accordance with design table l(Annex 5)
JOINT PLASTIC

coefficients in accordance with design table 2 (Annex 6)
JOINT RIGID
$==========$

Tank capacity of $150 \mathrm{~m}^{3}$

$$
1=1.50 \mathrm{~m}
$$

$(2 \mathrm{a})^{2}=\frac{150 * 4}{1.5 * \pi}$

$$
\begin{aligned}
& \mathrm{a}=5.64 \mathrm{~m} \\
& \mathrm{D}=11.28 \mathrm{~m}
\end{aligned}
$$

$\mathrm{pa}=10 \div 1.5 \div 5.64=84.6$
$\mathrm{pah}_{\mathrm{W}}=84.6 \div 0.07=5.92$
$K=\sqrt{ } \frac{\sqrt{3}\left(1-0.2^{2}\right)}{5.64 \div 0.07}=2.07$
$K I=2.07 * 1.5=3.11$

	F_{N}		$\begin{aligned} & \mathrm{N}_{\mathrm{Q}} \\ & \left(\mathrm{kN} / \mathrm{m}^{\prime}\right) \end{aligned}$	$\mathrm{F}_{\mathrm{M}} / \mathrm{W}$		M^{y} (kNm/m')
		$\begin{gathered} \text { position } \\ \eta \end{gathered}$			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0.501	0.6	42.38	0.09	0.7	0.533
joint rigid	0.347	0.5	29.36	$\begin{aligned} & -0.056 \\ & +0.194 \end{aligned}$	$\begin{array}{r} -0.6 \\ 1.0 \end{array}$	$\begin{aligned} & 0.332 \\ & 1.149 \end{aligned}$

Tank capacity of $150 \mathrm{~m}^{3}$

$$
1=1.75 \mathrm{~m}
$$

$$
\begin{array}{ll}
(2 a)^{2}=\frac{150 * 4}{1.75 * \pi} \pi & \rightarrow
\end{array} \begin{aligned}
& a=5.22 \mathrm{~m} \\
& \text { p.a. }=10 \div 1.75 \div 5.22=91.35 \\
& \text { p.a. } h_{W}=91.35 \div 0.07=6.39
\end{aligned} \quad \begin{array}{ll}
\mathrm{D}=10.44 \mathrm{~m} \\
K=\sqrt{ } \frac{\sqrt{3}\left(1-0.2^{2}\right)}{5.22 \div 0.07}=2.16 & K 1=2.16 \div 1.75=3.77
\end{array}
$$

	F_{N}		$\begin{aligned} & \mathrm{N}_{\mathrm{Q}} \\ & \left(\mathrm{kN} / \mathrm{m}^{\prime}\right) \end{aligned}$	$\mathrm{F}_{\mathrm{M}} / \mathrm{W}$		$\mathrm{M}_{\left(\mathrm{kNm} / \mathrm{m}^{\prime}\right)}$
		$\begin{gathered} \text { position } \\ \eta \end{gathered}$			$\begin{gathered} \text { position } \\ \eta \end{gathered}$	
joint plastic	0.58	0.6	52.98	0.0842	0.7	0.538
joint rigid	0.4337	0.5	39.62	$\begin{aligned} & -0.059 \\ & +0.212 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.377 \\ & 1.360 \end{aligned}$

TABLES
Calculated stresses and reinforcement with a continuous wall/slab structure in thin walled cylindrical tanks

	wall thickness (mm)	maximum hoop stress $\mathrm{N} / \mathrm{mm}^{2}$	position of max. hoop stress	reinforcement for hoop stress $\mathrm{mm}^{2} / \mathrm{m}^{1}$	max. bending stress on inside face $\mathrm{N} / \mathrm{mm}^{2}$	position of max. bending stress η	reinforcement for bending stress $\mathrm{N} / \mathrm{mm}^{2}$
$30 \mathrm{~m}^{3} \mathrm{l}=1.25 \mathrm{~m}$							
joint plastic	40	0.58	0.7	210	-0.60	0.8	$68 \quad \mathrm{~h}=25 \mathrm{~mm}$
joint rigid	40	0.48	0.6	173	$\begin{aligned} & -0.30 \\ & +1.24 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 34 \\ 141 \end{array}$

$60 \mathrm{~m}^{3} \quad 1=1.25 \mathrm{~m} \quad \mathrm{a}=$							
joint plastic	50	0.56	0.6	253	-0.54	0.8	$73 \mathrm{~h}=33 \mathrm{~mm}$
$\begin{aligned} & \text { joint } \\ & \text { rigid } \end{aligned}$	50	0.41	0.5	187	$\begin{aligned} & -0.34 \\ & +1.23 \end{aligned}$	0.6 1.0	$\begin{array}{r} 46 \\ 166 \end{array}$

$90 \mathrm{~m}^{3} \mathrm{l}=1.25 \mathrm{~m}$							
joint plastic	60	0.492	0.6	268	-0.55	0.7	88
joint rigid	60	0.34	0.5	184	$\begin{aligned} & -0.33 \\ & +1.15 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 53 \\ 184 \end{array}$

	wall thickness (mm)	maximum hoop stress $\mathrm{N} / \mathrm{mm}^{2}$	position of max. hoop stress m	reinforcement for hoop stress $\mathrm{mm}^{2} / \mathrm{m}^{\prime}$	max. bending stress on inside face $\mathrm{N} / \mathrm{mm}^{2}$	position of max. bending stress m	reinforcement for bending stress $\mathrm{N} / \mathrm{mm}^{2}$
$90 \mathrm{~m}^{3} \mathrm{l}=1.50 \mathrm{~m}$							
joint plastic	60	0.64	0.6	349	-0.61	0.8	$98 \quad \mathrm{~h}=40 \mathrm{~mm}$
joint rigid	60	0.48	0.5	262	$\begin{aligned} & -0.39 \\ & +1.40 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 62 \\ 225 \end{array}$
$150 \mathrm{~m}^{3} \mathrm{l}=1.90 \mathrm{~m}$							
joint plastic	70	0.84	0.6	533	-0.77	0.8	$135 \mathrm{~h}=50 \mathrm{~mm}$
joint rigid	60	0.65	0.5	413	$\begin{aligned} & -0.48 \\ & +1,81 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 83 \\ 317 \end{array}$
$150 \mathrm{~m}^{3} \mathrm{l}=1.25 \mathrm{~m} \quad \mathrm{a}=6.18 \mathrm{~m}$							
joint plastic	70	0.45	0.5	287	-0.53	0.7	$93 \mathrm{~h}=50 \mathrm{~mm}$
joint rigid	70	0.30	0.3	191	$\begin{aligned} & -0.26 \\ & -1.10 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 46 \\ 192 \end{array}$

ANNEX 1
SIZES OF WIRES AND STEEL RODS

A. Gange Numbers and Millimeter Equivalents of Wires

Gauge no.	Wire diameter		Gauge no.	Wire diameter	
	in.	mm		in.	mm
1	0.300	7.620	16	0.065	1.651
2	0.284	7.214	17	0.058	1.473
3	0.259	6.579	18	0.049	1.245
4	0.238	6.045	19	0.042	1.067
5	0.220	5.588	20	0.035	0.889
6	0.203	5.156	21	0.032	0.813
7	0.180	4.572	22	0.028	0.711
8	0.165	4.191	23	0.025	0.635
9	0.148	3.759	24	0.022	0.559
10	0.134	3.404	25	0.020	0.508
11	0.120	3.048	26	0.018	0.457
12	0.109	2.769	27	0.016	0.406
13	0.095	2.413	28	0.014	0.356
14	0.083	2.108	29	0.013	0.330
15	0.072	1.829	30	0.012	0.305

B. Common Sizes of Steel Rods Used for Skeletal Steed

Size in.	Rod diameter		Cross-sectional area		Perimeter		Weight	
			$\begin{gathered} \text { per fy } \\ \mathrm{lb} \end{gathered}$	per m kg				
	in.	mm			in^{2}	mm^{2}	in.	mm
3/16	0.187	4.749	0.027	17.419	0.587	14.909	0.094	0.042
0.200	0.200	5.080	0.031	19.999	0.628	15.951	0.107	0.048
1/4	0.250	6.350	0.049	31.612	0.785	19.939	0.167	0.075
0.276	0.276	7.010	0.059	38.064	0.867	22.021	0.203	0.092
5/16	0.312	7.924	0.076	49.032	0.980	24.892	0.261	0.118
3/8	0.375	9.525	0.110	70.967	1.178	29.921	0.376	0.170
7/16	0.437	11.099	0.150	96.774	1.373	34.874	0.511	0.231
1/2	0.500	12.700	0.196	126.451	1.571	39.903	0.688	0.312

ANNEX 2

CONVERSION OF COMMON UNITS

Metric and SI (International System) Units
l.ength

1 in. (inch)	$=$	25.4000 mm	(railimeter)
1 in . (inch)	=	2.5400 cm	(centimeter)
1 in . (inch)	$=$	0.0254 m	(meter)
1 ft (foot)	=	0.3048 m	(meter)
1 yd (yard)	=	0.9144 m	(meter)
1 mik (mile)	=	1.6093 km	(kilometer)
1 n mile (nautical mile)	$=$	1.8531 km	(kilometer)

1 in. ${ }^{2}$ (square inch)		$645.1600 \mathrm{~mm}^{2}$	(square milimeter)
$1 \mathrm{ft}^{2}$ (square foot)		$0.0929 \mathrm{~m}^{2}$	(square meter)
$1 \mathrm{yd}^{2}$ (square yard)		$0.8361 \mathrm{~m}^{2}$	(square meter)
1 acre (acre)		4,046.8600 m ${ }^{2}$	(square meter)
I sq mile (square mile)		$2.5899 \mathrm{~km}^{2}$	(square kilometer)
Volume			
1 in. ${ }^{\text {S }}$ (cubic inch)	$=$	$16.3871 \mathrm{~cm}^{\prime}$	(cubic centimeter)
$1 \mathrm{ft}^{3}$ (cubic foot)		$0.0283 \mathrm{~mm}^{3}$	(cubic moter)
$1 \mathrm{yd}^{3}$ (cubic yard)	*	$0.7645 \mathrm{~m}^{\prime}$	(cubic meter)
Force			
1 ib (pound)	=	4.4482 N	(Newton)
1 kg (kilogram)	a	9.8066 N	(Newton)
1 ton (ton)	=	9.5640 kN	(kilo Newton)

Force (wetght)/mit length

$\mathrm{l} \mathrm{lb} / \mathrm{in}$. (pound per inch) $=0.1751 \mathrm{~N} / \mathrm{mm}$ (Newton per millimeter)
$1 \mathrm{lb} / \mathrm{ft}$ (pound per foot) $=14.5939 \mathrm{~N} / \mathrm{m}$ (Newton per meter) I ton/ft (ton per foot) $\quad=32.6903 \mathrm{kN} / \mathrm{m}$ (kjlo Newton per meter)

Prempre, thees, strugth (force per milt area)

$1 \mathrm{lb} / \mathrm{in}^{2}$ (pound per square inch, psi)	$0.6895 \mathrm{~N} / \mathrm{cm}^{2}$ (Newton per square centimeter)
$1 \mathrm{lb} / \mathrm{in}^{2}$ (pound per square inch, psi)	$=6,894.7600 \mathrm{~N} / \mathrm{m}^{2}$ (Newton per square meter)
$1 \mathrm{lb} / \mathrm{ft}^{2}$ (pound per square foot, paf)	$47.8803 \mathrm{~N} / \mathrm{m}^{2}$ (Newton per square meter)
$1 \mathrm{lb} / \mathrm{ft}^{\mathbf{2}}$ (pound square foot. p	$4.8820 \mathrm{~kg} / \mathrm{m}^{2}$ (kilogram per square meter)
1 tosfini (ton per square inch)	- $15.4443 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (Newton persquare meter)
1 toe/ft ${ }^{2}$ (ton per square foot)	$=107.2520 \mathrm{kN} / \mathrm{m}^{2}$ (kilo Newton per square meter)
$1 \mathrm{~N} / \mathrm{m}^{2}$ (Newton per square meter)	- 1 Pa (Pascals)
$1 \mathrm{~kg} / \mathrm{cm}^{2}$ (kilogram per square cent	- 0.0981 MPa (Mega Pascals)

Berling raomet or tortpe

1 ib in. (pound inch)
1 lb fi (pound foot)
$=\quad 0.1129 \mathrm{Nm}$ (Newton meter)
1.3558 Nm (Newton meter)
i ton $\mathrm{ft}($ ton foot $)$

- 3.0370 kNm (kilo Newton meter)

Mas

| 1 g (gram) | $=28.35 \mathrm{oz}$ (ounce) |
| :--- | :--- | :---: |
| l lb (pound) | $=453.5929 \mathrm{~g}$ (gram) |
| l lb (gound) | $=0.4536 \mathrm{~kg}$ (kilogram) |
| 1 ton (ton) | $=1,000.00 \mathrm{~kg}$ (kilogram) |
| 1 kg (kilogram) | $=2.2046 \mathrm{lb}$ (pound) |

Deanty (nam per crit rolumo)

$1 \mathrm{lb} / \mathrm{in}^{3}$ (pound per cubic inch)	$=27.6799 \mathrm{~g} / \mathrm{cm}^{3}$	(gram per cubic centimeter)
$1 \mathrm{lb} / \mathrm{ft}^{3}$ (pound per cubic foot)	$=16.0185 \mathrm{~kg} / \mathrm{m}^{3}$(kilogram per cubic meter)	
I ton/yd ${ }^{3}$ (ton per cubic yard) $=1,328.94 \mathrm{~kg} / \mathrm{m}^{3}$(kilogram per cubic meter)		
$1 \mathrm{lb} / \mathrm{yd}^{3}$ (pound per cubic yard) $=0.5933 \mathrm{~kg} / \mathrm{m}^{3}$(kilosram per cubic meter)		

Menvrument of $\mathrm{H}_{\text {quid }}$

11 (liter)	$=0.2200$ Imperial gallon
11 (liter)	$=0.2642 \mathrm{U} . \mathrm{S}$. gallon
1 gal (gallon)	$=0.0038 \mathrm{cu} \mathrm{m}$ (cubic meter)
$1 \mathrm{gal} / \mathrm{min}$ (gallon per minute)	$=0.0038 \mathrm{cu} \mathrm{m} /$ min (cubic meter per

ANNEX 3
List of symbols
$A_{h s}=$ reinforcement for the ring forces (hoop forces)
$A_{b m}=$ reinforcement for the bending moments
a $=$ radius of a tank
D $=$ tank diameter
$\frac{F_{M}}{W}=$ coefficient for $M y$
$\mathrm{F}_{\mathrm{N}}=$ coefficient for N_{Q}
$\mathrm{f}_{\mathrm{y}}=$ yiels stress of the steelbars
${ }_{\mathrm{h}}^{\mathrm{w}}=\quad$ wall thickness
$h^{\mathrm{W}}=$ leverarm
$\mathrm{K}=$ the stiffness of the cylindrical wall
$\mathrm{K}_{\mathrm{N}}=$ kilo Newton
$1=$ the max. waterheight in a tank
$M \quad=\quad$ bending moment (general)
$M_{y}=$ bending moment in the height of the wall
$\mathrm{m}=$ meter
$N_{Q}=$ ring force
$p_{w}=$ water pressure on the bottom of a tank
$\mathrm{q}=$ uniform load on a beam or slab
$\mathrm{W} \quad=\quad$ resisting moment to bending
$\sigma_{b s}=$ bending stress in $\mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{\text {hs }}=$ tensile stress in $\mathrm{N} / \mathrm{mm}^{2}$ (hoop stress)
$\mu=$ poisson ration
$\eta=$ coefficient of the height
$\emptyset \quad=\quad$ diameter, wire mesh or reinforcement

ANNEX 4

Bibliography

Watt, S.B.,
"Ferrocement water tanks and their construction"
ITP, London. 1978
"Ferrocement: Applications in developing countries"
National Academy of Sciences, Washington, D.C. 1973
Tuinhof A., Kerkvoorden v. W.R., Suwiantoro, L., and Djumena., "Water tanks of ferrocement"
IWACO B.V. Bandung
Harmelen v., R.,
"Ferrocement, goede aansluiting op plaatselijke techniek"
VRAAGBAAK V, nr. 31977
Pieck, C.,
"Het bouwen van ferrocement watertanks"
VRAAGBAAK IX, nr. 21981
Abdul Karim, E., and Paul Joseph, G.
"Small capacity ferrocement water tanks"
Structural engineering research centre.
Madras, India. 1978
P.C. Sharma and V.S. Gopalaratnam
"Ferrocement Watertank"
IFIC, Bangkok 1980
Code of Practice on concrete tank construction, prepared by the New Zealand Portland Cement Association P.O.Box 2792, Wellington New Zealand

Markus, Gyula
Theorie und Berechnung rotations symmetrischer Bauwerke
Paul, B.K., and Pama, R.P., "Ferrocement"
International Ferrocement Imformation Center
A.I.T. Bangkok, 1978

Application of ferrocement and related composite materials in Indonesia. Final report. ITB, Bandung, 1982

ACI Committee 549
State of the art report on ferrocement Concrete International, 1982

Karanaratne A.D.M. and Mueller Alexander Ferro-soilcrete tanks, a construction manual WAU 82-7, Sri Lanka

Basic course in rural technology for gramodya workers and leaders
Sarvoday Shramadana Movement, Rural Technical Surveys Colombo, 1980

David Maddocks
"Methods of creating low cost waterproof
membranes for use in the construction of rainwater, catchment and storage systems"
ITDG, London 1975
Costa J., de Lange J., Pieck C.
"Irrigation water storage tanks made of brickwork" A manual for design and construction
SWD/TWO, Amersfoort 1981

ANNEX 5
Design tabel 1: for "Joint plastic"
In acoordance with:
Markus, "Theorie und Berechnung rotationssymmetrischer Bauwerke by Dr: Gyula Markus"

$$
\boldsymbol{F}_{\boldsymbol{N}}
$$

ANNEX 6
Design tabel 2: for "Joint Rigid"
In accordance with:
Markus "Theorie und Berechnung rotationssymmetrischer Bauwerke by Dr. Gyula Markus

ANNEX 7

Steel area and weight reinforcement bars.

$\int_{\mathrm{mm}^{2}}^{\text {bar diameter }}$	distance c.t.c. in mm							\emptyset	KG per m'
	50	75	100	150	200	225	250		
14	250	168	126	84	63	56	50	4	0.009
$\emptyset 4^{5}$	319	213	160	106	80	71	64	4^{5}	0.125
$\emptyset 5$	394	262	196	131	98	88	79	5	0.154
$\emptyset 5^{5}$	475	318	237	159	119	106	95	5^{5}	0.187
$\emptyset 6$	567	377	283	188	141	126	113	6	0.222
$\emptyset 6^{5}$	666	444	333	222	166	148	133	6^{5}	0.261
$\emptyset 7$	772	515	386	258	193	172	155	7	0.303
97^{5}	885	592	442	296	221	197	177	7^{5}	0.348
$\emptyset 8$	1004	672	502	336	251	224	201	8	0.395
$\emptyset 8^{5}$	1139	760	569	380	285	254	228	8^{5}	0.445
$\emptyset 9$	1272	850	636	425	318	284	256	9	0.500
99^{5}	1423	950	712	475	356	316	285	9^{5}	0.558
$\emptyset 10$	1577	1050	789	525	394	350	315	10	0.617
$\emptyset 10^{5}$	1733	1157	867	578	434	386	348	10^{5}	0.680
$\emptyset 11$	1900	1271	950	635	475	424	382	11	0.746
$\emptyset 11^{5}$	2080	1385	1040	692	520	462	417	11^{5}	0.815
$\emptyset 12$	2262	1509	1131	754	566	504	454	12	0.888
	Steel area reinforcement bars in mm^{2}								

