NTERNATIGNAL RFFERENCE CENTRE FOR COMMUNITY WATER SUPPLY ANO SANITATION IRCI
 Understanding Computer Use in Ground Water Science: An Anthology

24 papers on how computer technology can be used to better understand and. illustrate ground water conditions.

September 1991

National Ground Water Association 6375 Riverside Drive Dublin, OH 43017

614-761-1711

Understanding Computer Use in Ground Water Science: An Anthology

This anthology contains 24 papers selected because the National Water Well Association believes they are among the best contributions on explaining the role computers can play in understanding and illustrating ground water concepts.

NWWA uses its anthologies as a means to disseminate information about narrow, but very important subjects.

All the articles presented within the anthology are available at the National Ground Water Information Center and are stored within Ground Water On-Line, the 65,000 record bibliographic data base operated by the Center. The National Ground Water Information Center was established in 1960 as a repository available to scientists, government, contractors, business and the public.

The NWWA, a not-for-profit professional society and trade association, represents all segments of the ground water industry. Its more than 23,000 members from nearly 70 nations include the world's leading ground water geologists and hydrologists, ground water contractors, engineers, manufacturers, and suppliers of ground water-related products and services. From its Dublin, Ohio headquarters NWWA provides the industry, government, business, and consumers guidance for sound scientific, economic, and beneficial development, protection and management of the world's ground water resources.

Understanding Computer Use in Ground Water Science: An Anthology

Order of Appearance

Aquifer Analysis / Pumping Tests

1. A Simple Computer Program for the Determination of Aquifer Characteristics from Pump Test Data (Ground Water, September/October 1976) by Joseph C. Holzschuh III
2. Pumping Tests in Patchy Aquifers (Ground Water, March/April 1982) by J.A. Barker and R. Herbert
3. Program HVRLV1 - Interactive Determination of Horizontal Permeabilities within Uniform Soils from Field Tests Using Hvorslev's Forumlae (Ground Water, May/June 1982) by K.U. Weyer and W.C. Horwood-Brown
4. Analysis of Leaky Aquifer Pumping Test Data: An Automated Numerical Solution Using Sensitivity Analysis (Ground Water, May/June 1982) by P.M. Cobb, C.D. McElwee, and M.A. Butt
5. Numerical Method of Pumping Test Analysis Using Microcomputers (Ground Water, September/October 1984) by K.S. Rathod and K.R. Rushton
6. A Computerized Technique for Estimating the Hydraulic Conductivity of Aquifers from Specific Capacity Data (Ground Water, March/April 1985) by Kenneth R. Bradbury and Edward R. Rothschild
7. A General Purpose Microcomputer Aquifer Test Evaluation Technique (Ground Water, March/April 1985) by C.J. Hemker
8. Speeding it Up in BASIC (Ground Water, May/June 1986) by John Logan
9. An Automated Numerical Evaluation of Slug Test Data (Ground Water, July/August 1988) by M.W. Kemblowski and C.L. Klein
10. A Method to Determine the Formation Constants of Leaky Aquifers, and Its Application to Pumping Test Data (Ground Water, May/June 1991) by F.
Kohlbeck and A. Alvarez

Chemistry

11. A Computer Program for a Trilinear Diagram Plot and Analysis of Water Mixing Systems (Ground Water, January/February 1983) by Michael D. Morris, Jeffrey A. Berk, Joseph W. Krulik, and Yoram Eckstein
12. Trilinear Diagram Revisited: Application, Limitation, and an Electronic Spreadsheet Program (Ground Water, July/August 1988) by Songlin Cheng

Contaminant Transport

13. An Idealized Ground-Water Flow and Chemical Transport Model (S-PATHS) (Ground Water, July/August 1984) by Phil L. Oberlander and R.W. Nelson
14. MOC Solutions of Convective-Dispersion Problems (Ground Water, November/December 1986) by Raz Khaleel and Donald L. Reddell
15. Applying the USGS Mass-Transport Model (MOC) to Remedial Actions by Recovery Wells (Ground Water, May/June 1988) by Aly I. El-Kadi
16. Modifying the USGS Solute Transport Computer Model to Predict HighDensity Hydrocarbon Migration (Ground Water, November/December 1988) by M. Akhter Hossain and M. Yavuz Corapcioglu
17. Approximate and Analytical Solutions for Solute Transport from an Injection Well into a Single Fracture (Ground Water, January/February 1989) by ChiaShyun Chen and S.R. Yates

Regional Hydrology

18. Ground-Water Modeling: Applications (Ground Water, September/October 1980) by James W. Mercer and Charles R. Faust
19. Microcomputer Model of Artificial Recharge Using Glover's Solution (Ground Water, January/February 1984) by D. Molden, D.K. Sunada, and J.W. Warner
20. Mapping Recharge Areas Using a Ground-Water Flow Model - A Case Study (Ground Water, March / April 1989) by Mary W. Stoertz and Kenneth R. Bradbury

Statistics

21. Three-Dimensional Cross-Semivariogram Calculations for Hydrogeological Data (Ground Water, September/October 1988) by Jonathan D. Istok, Richard M. Cooper, and Alan L. Flint

Unsaturated Zone

22. A Galerkin Finite-Element Program for Simulating Unsaturated Flow in Porous Media (Ground Water, January/February 1985) by R. Khaleel and T.C. Yeh
23. A Three-Dimensional Analytical Model to Aid in Selecting Monitoring Locations in the Vadose Zone (Ground Water Monitoring Review, Spring 1988) by C.R. McKee and A.C. Bumb
24. Simulation of Vapor Transport Through the Unsaturated Zone Interpretation of Soil-Gas Surveys (Ground Water Monitoring Review, Spring 1988) by Lyle R. Silka

A Simple Computer Program for the Determination of Aquifer Characteristics from Pump Test Data

by Joseph C. Holzschuh $1 I^{\text {a }}$

Abstract

A computer program, based on the Hantush inflection merhod and designed for "desk top" computers is presented. The method assumes a leaky, isotropic, homogeneous aquifer of infinite areal excent. The language employed is BASIC, an interactive language used on the Wang Model 2200 programmable calculacor. The program can be easily adapted to FORTRAN IV for use on larger machines.

INTRODUCTION

The staff at our Water Management District required a fast, approximate, and simple method for checking the analyses of pump test data submitted by various consultants in support of permit applications. Such a method would be used, not to replace type curve solutions but rather to provide initial estimates of aquifer characteristics, cross check other types of analyses and lend further support to them. Machine analysis was desirable, to eliminate human errors.

The equipment available was a Wang Model 2200 desk type calculator with 8 K of memory and a cassette tape data storage system. A large IBM system was also available, but could not be directly used by our hydrologists in a "hands on" mode as could the Wang. Also, "rurnaround" time for the larger system was typically 1 day or longer. Turnaround time for the desk top system was usually on the order of minutes. Many organizations have like or similar mini-computers available. Adapting the program to such machines would prove no problem.

[^0]
METHODOLOGY

The method finally selecred and adapred for machine use was the Hantush inflection point method (DeWiest, 1965). This method is based on determining the slope of a semi-log, drawdown versus time curve, at the inflection point (Figure 1). The inflection point (shown on Figure 1 at S feet of drawdown and occurring at time T) is assumed to be at one-half the maximum or equilibrium drawdown ($\mathrm{S} \phi$). The computation of the slope of the line should be done over a full-time log cycle centered about the inflection point. The program first determines the time (T) at which (S) occurs. Since the data points fed into the machine will probably not include point (T, S), T must be determined by interpolation from points ($\mathrm{T} 1, \mathrm{~S} 1$) and (T2,S2). This is done by computing the slope (M1) between points (T1, S1) and (T2, S2) and

Fig. 1. Semi-log drawdown curve.
utilizing that slope to compute (T). When point (T, S) has been determined, the value of T 3 and T 4 (+ and -0.5 log cycle respectively) can be found. Since ($\mathrm{T} 3, \mathrm{~S} 3$) and ($\mathrm{T} 4, \mathrm{~S} 4$) are again probably not in the input data, they too must be interpolated from the closest input data points available, i.e. (T8, S8), (T6, S6), (T7, S7), and (T5, S5), utilizing slopes (M3) and (M2) respectively. The program determines the slope of the drawdown curve (M) over $1 / 2-\log$ cycle and full-log cycle intervals. This was done because in rare instances equilibrium is reached so quickly that using a full-log cycle would include points outside the straight-line portion of the curve. Both slopes are printed out although only the full-log cycle slope is used. The investigator should check to see that both slopes agree closely. Any significant difference should be investigated.

Once the slope has been determined the only remaining difficulty is solving for ${ }^{r} / B$. Hantush provides the following equation:

$$
\begin{equation*}
K=e^{r / B} K_{0}(r / B) \tag{1}
\end{equation*}
$$

where:

$$
\begin{equation*}
K=2.3 \mathrm{~S} / \mathrm{M} \tag{2}
\end{equation*}
$$

Equation 1 is an implicit equation and cannot be soived directly. A solution is provided, however, by plotting values of ${ }^{r} / B$ vs. K on semi-log paper, and approximating the curve so derived with a series of straight lines. Depending then on the value of K , the program selects the proper straight-line equation and solves for ${ }^{5} / \mathrm{B}$. Accuracy is usually sufficient for most purposes but the values of both K and ${ }^{T} / B$ are printed out by the program so the investigator may consult a set of tables if so desired.

With ${ }^{r} / \mathrm{B}$ now known, transmissivity, storage and leakance can be solved for directly using the equations given by Hantush and shown in lines $950-970$ in the program. The complete program is shown in Figure 2.

The inflection point method requires that equilibrium be reached during the pump test, and accordingly one of the assumptions made in the program is that the final data point entered is on the flat or equilibrium part of the curve. Experimenting with the program using data derived from local pump tests has indicated that if the test is terminated at a time when an appreciable portion of the equilibrium drawdown has already occurred, the transmissivity and storage coefficients reported by the program will differ only negligibly from their actual values. The leakance reported will tend to reflect a limiting value which will always be greater

Fig. 2. Program listing.
than the actual value. Such a limiting value for leakance can be useful when field conditions have prevented running the pump test to equilibrium.

INFLECTION POINT METIOD
HOW MANY YEASUREMENIS? 12
GIVE PUMPED WELL Q (CPM)? 1OOO
GIVE RADIUS TO OBS WELL (FT.)? $10 n$
DO YOU NISH TO ENTER DATA OR READ OFF TAPE
ENTER AND RECORD DATA = $\frac{1}{2}$,
PLEASE ROAD BLANK DATA TAPE
GIVE TINE (MIN.), DRAWDOWN (FI)? .2.1.76
GIVE TIIE (MIN.), DRAWDOWN (FT)? $2, \frac{1}{2}, 76$
GIVE TIME (MIN.), DRAWDOWN (FT)? $5,2,75$
GIVE TIME (YIN.), DRAWDOWN (FT)? $1,3.59$
GIVE IIME (YIN.), DRAWDOWN (FT)? $2,4.26$

$\begin{array}{ll}\text { GIVE TIUE (MIN.), DRAWDOWH (FT) ? } & 10,5.90 \\ \text { GIVE TIXE (MIN.), DRAWDOWN (FT) ? } 20,6.47\end{array}$
GIVE TI:CE (MIN.), DRAWDOWN (FT)? $20,6.47$
GIVE TIME (HIN.), DRAWDOWN (FT)? $50,6.92$
CIVE ILME (IIIN,), DRAWDOWN (FT)? $100,7.12$
GIVE TIME (MIN.), DRAWDOWN (FT) ? $200,7.20$
GIVE TIME (MIN.), DRAWDOWN (FT) ? $500,7.21$
GIVE TIME (MIN.), DRAWDOWN (FT)? 1000,7.21
$\begin{array}{ll}\mathrm{R} / \mathrm{B}= & 5.07672123 \mathrm{E}-02 \\ \mathrm{~K}= & 3.296151200416\end{array}$
HALF LOG CYCLE SLOPE $=\quad 2.500443771359$
FULL LOG CYCLE SLOPE -2.515308077402
SLOPES SHOULD AGREE CLOSELY
IF THEY DO NOT PLOT ON SEML-LOG PAPER TO SEE LF FULL LOG CYCLE SLOPE INCLUDES POINTS OUTSIDE STRAIGHT LINE PART OF CURVE
STOP
:CONTINUE

AQUIFER CHARACTERISTICS ARE AS FOLLOWS

TRAISSIISSIVITY	$=$	99753	CPD/FT.
STORAGE COEFFLCIENT	=	0.000095	
LEAKANCE (P^{*} / M^{\prime})	$\underline{=}$	0.725799	GPD/FT.13

END PROGRAM
FREE SPACE=10258
Fig. 3. Typical printout.

UNITS AND DATA ENTRY

All variables used in the program are in the gallon/foot/day system. The specific units used for input and output data are specified in the program and shown in the example.

Since much of the drawdown data that we work with are already stored on tape cassettes, provisions are made in the program to read the time-drawdown data directly from a tape and to write that data on a tape when they are initially entered. If only direct entry of data is desired

Table 1.

	Type Curve	Inflection Point
Transmissivity	$100,000 \mathrm{gpd} / \mathrm{ft}$.	$99753 \mathrm{gPd} / \mathrm{ft}$.
Leakance $\left(\mathbf{P}^{\prime} / \mathrm{m}^{\prime}\right)$	$.025 \mathrm{gpd} / \mathrm{ft}.{ }^{3}$	$.0257 \mathrm{gpd} / \mathrm{ft} .^{3}$
Storage	.0001	.000095

with no provisions for tape storage, lines 100-120 and $160-210$ of the program can be eliminated.

EXAMPLE

An example (employing generated data) used by Cooper (Bentall, 1963) to illustrate the use of type curves is used here to compare the two methods. Figure 3 is a print-out yielded by the program, when the data presented in Cooper's Table 6 (${ }^{r}=100 \mathrm{ft}$.) are inputed. The values obtained using the type curve method are shown here in Table 1 in comparison with those obrained by the program. The values in this case agreed closely, well within the limits of most field data.

CONCLUSION

Much has been said recently about the dangers of computerizing pump tests, with most of that fear probably well founded. The author wishes to emphasize that the program presented herein should not be used indiscriminantly, i.e. as a black box which grinds out answers of unquestionable reliability. The applicability of the inflection point method to the problem at hand must be considered, as well as other factors such as anisotropy and boundary conditions.

REFERENCES

Bentall, R. 1963. Shortcuts and special problems in aquifer tests. U.S. Geological Survey, Water-Supply Paper 1545-C.
DeWiest, J. M. 1965. Geohydrology. John Wiley and Sons.

Pumping Tests in Patchy Aquifers

by J. A. Barker and R. Herbert ${ }^{\text {a }}$

Abstract

A numerical simulation and analytical study of a constant-rate pumping rest, for a well situated at the centre of a disc of anomalous transmissivity and storage coefficient, have been used to aid in the interpretation of tests performed in a "parchy" aquifer in india. Equations describing the long-time behaviour of drawdown show that Jacob's merhod can be employed to estimate the regional transmissivity from drawdowns measured ar any point in the aquifer or in the pumping well. However, these equations also show that an average storage coefficient should be calculated from drawdowns measured outside the aquifer discontinuity.

The results of this study suppore the hyporhesis that the average transmissivity of a heterogeneous aquifer can be calculated from rates of drawdown observed after long periods of pumping.

INTRODUCTION

All aquifers are to some extent heterogeneous and this fact brings into question the validity of normal methods of pumping-test analysis which assume homogeneity. While it is perhaps obvious that pumping tests tend to "average out" the

[^1]properties of aquifers, it is natural to be suspicious of results obtained when the pumping well is situated in a region of the aquifer which is considered to be atypical-especially if the only drawdown measured is that in the pumping well.

This paper describes (i) a field investigation that led to a consideration of the general problem of pumping tests in patchy aquifers, (ii) our attempts to gain insight into the problem by computer simulation and mathematical analysis of a simple form of heterogeneity, and (iii) a general hypothesis suggested by this study and previous work. Some particularly unusual pumping-test data, which appear to have a simple interpretation in the light of the analysis, are also presented.

BACKGROUND

The Overseas Section of the Hydrogeology Unit of the Institute of Geological Sciences is carrying out a study in the Deccan Traps of India which involves the drilling and pump-testing of many wells. Well yield has been found to be unpredictable. Typically, a test site would be centred on an established well yielding about 5 to $10 \mathrm{l} / \mathrm{s}\left(0.18\right.$ to $\left.0.35 \mathrm{ft}^{3} / \mathrm{s}\right)$. It is quite common for an observation well subsequently drilled 20 metres away to yield less than $1 \mathrm{l} / \mathrm{s}\left(0.035 \mathrm{ft}^{3} / \mathrm{s}\right)$. This variability in yield has led to the conclusion that the aquifer is generally of low transmissivity but has within ir pockets of relatively high transmissivity.

Fig. 1. Idealised heterogeneous aquifer studied.

The theoretical study described here was carried out to assist interpretation of the results of pumping tests performed in such an aquifer. In particular, the case of a pumping well situated in a high transmissivity pocket with observation wells both inside and outside the pocket, has been studied.

IDEALIZATION OF THE SYSTEM

In order to make the problem amenable to analytical as well as numerical methods, the system was chosen to have radial symmetry about the pumping well (see Figure 1). The aquifer is confined and consists of two regions with transmissivities T_{1} for $\mathrm{r}<\mathrm{R}$ and T_{2} for $\mathrm{r}>\mathrm{R}$, and corresponding storage coefficients S_{1} and S_{2}. It is assumed that a constant pumping rate, Q , is maintained throughout the test in a fully penetrating well.

NUMERICAL STUDY

This idealized pumping test was simulated using a simple one-dimensional (radial) finitedifference model. Parameter values were chosen to approximate typical conditions encountered in the field tests in India. The values chosen were $\mathrm{T}_{1}=80$ $\mathrm{m}^{2} / \mathrm{d}\left(0.01 \mathrm{ft}^{2} / \mathrm{s}\right), \mathrm{T}_{2}=5 \mathrm{~m}^{2} / \mathrm{d}\left(0.0006 \mathrm{ft}^{2} / \mathrm{s}\right)$, $\mathrm{S}_{1}=\mathrm{S}_{2}=0.001, \mathrm{R}=60 \mathrm{~m}(197 \mathrm{ft}), \mathrm{Q}=5 \mathrm{l} / \mathrm{s}(0.18$ $\mathrm{ft}^{3} / \mathrm{s}$). The pumping well was assumed to have a small finite diameter $2 \mathrm{r}_{\mathrm{w}}=0.2 \mathrm{~m}$ (0.66 ft).

Figure 2 shows a semilog plot of simulated drawdown data, s, against time of pumping, τ, for the rest well ($r=r_{w}$) and for observation wells in both aquifer regions, $\mathrm{r}=2 \mathrm{~m}(6.6 \mathrm{ft})$ and $\mathrm{r}=62$ m(203 fr).

For a fully-penetrating well pumping from a homogencous, confined aquifer of transmissivity, T , well storage may have a significant effect on drawdowns if $\mathrm{Tt} / \mathrm{r}_{\mathrm{w}}{ }^{2}<25$ (Papadopulos and Cooper, 1967). This corresponds to times less than 4.5 minutes ($25 r_{w}{ }^{2} / T_{1}$) in the simulated test. Following this initial period there is a phase of the test when drawdowns in the outer aquifer region are negligible and the test results are consequently similar to those expected for a line sink in a homogeneous aquifer of transmissivity T_{1}. Further, since the quantity $u=r^{2} S_{1} / 4 T_{t} t$ is less than 0.01 for $\tau>4.5$ minutes and $\mathrm{r}<10 \mathrm{~m}$ (33 ft), drawdowns in both the production well and the inner observation well should follow the Jacob equation (Cooper and Jacob, 1946; Todd, 1959):

$$
\begin{equation*}
S_{1}=\frac{Q}{4 \pi T_{1}} \ln \frac{4 T_{1} t}{\mathrm{Cr}^{2} S_{1}} \tag{1}
\end{equation*}
$$

where $\mathrm{C}=1.78 \ldots$
The simulated data are approximated by equation (1) during the period 4.5 min . to 30 min .

As the radius of influence of the test moves into the outer aquifer region, drawdowns increase more rapidly until most of the water results from the lowering of heads in the outer region. It then seems reasonable to expect that rates of drawdown would become dominated by the transmissivity T_{2}. Figure 2 shows that all three curves tend to straight lines with roughly the same slope which, applying Jacob's equation, gives a transmissivity value close to the simulated values, T_{2}.

Fig. 2. Simulated drawdown data.

ANALYTICAL STUDY

The above numerical study suggests that Jacob's method can be used to obtain the transmissivity, T_{2}, from the rate of drawdown, measured in any part of the aquifer, after a sufficiently long time of pumping. In order to investigate this hypothesis, analytical expressions for the drawdown valid after long times were obtained by the method outlined in the Appendix. If s_{1} and s_{7} are the drawdowns in the inner and outer aquifer regions respectively, then for large t :

$$
\begin{equation*}
\frac{4 \pi T_{2}}{Q} s_{1}=\ln \frac{4 T_{2} t}{C_{2} R^{2}}+\frac{2 T_{2}}{T_{1}} \ln \frac{R}{\tau} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4 \pi T_{2}}{Q} s_{2}=\ln \frac{4 T_{2} t}{C_{2} \mathrm{~S}_{2}{ }^{2}} \tag{3}
\end{equation*}
$$

A simple interpretation of these equations suggests that the inner aquifer region is in a quasi-steady-state with the drawdown described by the Thiem equation, while the drawdown in the outer region is described by the Theis equation for a homogeneous aquifer.

These equations confirm that a semilog plot of drawdown against time will tend to a straight line with slope $\mathrm{Q} / 4 \pi \mathrm{~T}_{2}$. They further show that the intercept of this line on the t-axis can be used to estimate the storage coefficient S_{2}, but only if the drawdown is measured in the outer aquifer region (assuming R to be unknown). A plot of s against $\ln r$ should consist of two straight lines with slopes $\mathrm{Q} / 2 \pi \mathrm{~T}_{1}$ for $\mathrm{r}<\mathrm{R}$ and $\mathrm{Q} / 2 \pi T_{2}$ for $\mathrm{r}>\mathrm{R}$.

AN UNUSUAL FIELD RESULT

Figure 3 shows the results of a pumping test carried out in India in an aquifer known to have "patchy" properties. The results are unlike those usually obtained from a pumping test in that observed drawdowns are almost independent of the distance of the observation well from the pumping well.

All the wells drilled at this site had exceptionally high specific capacities which indicates that the wells lie within a zone of abnormally high transmissivity. If, as a first approximation, the pumping well is assumed to lie at the centre of a disc of high transmissivity, then equation (2) can be used to predict the drawdown after long times. If T_{1} is much greater than T_{2}, the final term in equation (2) can be ignored, so the drawdown, s_{1}, will be independent of the radial distance (r) of the observation-on reflection, a fairly obvious result. The apparently

Fig. 3. Field data from a pumping tast performed in India.
anomalous data presented in Figure 3 thus can be explained, and the application of Jacob's method reveals a relatively low regional transmissivity of abour $50 \mathrm{~m}^{2} / \mathrm{d}\left(0.006 \mathrm{ft}^{2} / \mathrm{s}\right)$. The transmissivity of the inner region must, by contrast, be very highpossibly greater than $3,000 \mathrm{~m}^{2} / \mathrm{d}\left(0.4 \mathrm{ft}^{2} / \mathrm{s}\right)$.

A GENERAL HYPOTHESIS

The results of these investigations lead to the following hypothesis concerning the interpretation of pumping-test data for heterogeneous aquifers: The average transmissivity of an aquifer can be determined, using Jacob's method, from rates of drawdown measured at any point in the aquifer, or in the pumping well, after long times of pumping.

We have only confirmed this hypothesis for a very special case of heterogeneity; Tóth (1967) argues the general case as follows: "Generally, pump tests indicate the presence of some kind of boundary. If, however, the pump test is long enough to permit a 'sampling' by the cone of influence of rock volumes which are large even on a regional scale, time-drawdown curves will behave again as if water was withdrawn from an infinite, homogeneous aquifer."

Vandenberg (1977) used a two-dimensional computer model to simulate a constant-rate pumping test in an aquifer with randomly distributed transmissivity but constant diffusivity. He concluded that the Theis curve-fitting method could be used to obrain average values of the transmissivity and storage coefficient, the fit to the simulated data being best for large values of $\mathrm{t} / \mathrm{r}^{2}$. Other work on the effects of statistical variations of properties on flow in porous media is reviewed by Freeze (1975).

From his own study of a one-dimensional model, Freeze concludes that a heterogeneous formation in general cannot be replaced by an equivalent homogeneous formation when considering transient flow. However, the "average transmissivity" referred to above is that which would be appropriate for use in a regional aquifer model with long time-scales; more precisely, for use when the characteristic time for changes of interest is much greater than x^{2} / κ, where x is the characteristic scale of spatial variation of transmissivity (e.g., R in Figure 1) and κ is the characteristic diffusivity. Here the implicit assumption is that the aquifer is essentially homogeneous when viewed on a sufficiently large scale.

DISCUSSION

In Figure 2 the transition between the two straight-line sections of the drawdown curves is characterized by a continuous increase in slope. Figure 4 a shows an alternative form of the curve that may be observed when $T_{2}<T_{1}$. Similarly, for the case $T_{2}>T_{1}$, numerical simulations revealed the two forms of behaviour shown in Figures 4 b and 4 c . The form obrained depends on S_{1} / S_{2} and r / R for a given value of T_{1} / T_{2}.

Fig. 4. Alternative forms of the drawdown variation for the idealised system. The form depends on $T_{1} / T_{2}, S_{1} / S_{2}$ and r / R.

In deriving equations (2) and (3), no assumption was made concerning the size of R, so these equations could be applied to a well where a cylindrically symmetrical region of formation damage is expected, or even to a well with a thick gravel pack. In both cases the equations show that the aquifer transmissivity can be calculated from rates of drawdown measured either in the pumping well or in observation wells, although the storage coefficient should be deduced from drawdowns measured some distance from the pumping well.

CONCLUSIONS

A pumping test performed in an aquifer with a radial discontinuity in its properties will result in time-drawdown curves of one of the forms shown in Figures 2 and 4 ; after long times of pumping the drawdown behaviour is described by equations (2) and (3).

When considered in conjunction with the results of previous studies of pumping tests in heterogeneous aquifers, the results of this study demonstrate that Jacob's method can be used with confidence to obtain a regional average for the aquifer transmissivity. An average storage coefficient should, however, be calculated from drawdowns measured at large distances from the pumping well.

NOMENCLATURE
$\mathrm{C}=\exp \gamma(=1.78 \ldots)$.
I_{0}
I_{1}
K_{0} !
K_{1}
\bar{s}_{2}
p Laplace transform variable.
$q=\left(\mathrm{p} \mathrm{S}_{1} \mathrm{R}^{2} / \mathrm{T}_{1}\right)^{1 / 2}$.
Q well discharge rate.
r radial distance from the pumping well.
R radius of the boundary of the two aquifer regions (Figure 1).
s_{1} drawdown for $r<R$.
$\vec{s}_{1} \quad$ Laplace transform of s_{1}.
$s_{2} \quad$ drawdown for $r>R$.
modified Bessel functions of the first kind. modified Bessel functions of the second kind.

Laplace transform of s_{2}.
storage coefficient for $r<R$.
storage coefficient for $r>R$.
time after the start of pumping.

$$
\begin{array}{ll}
\mathrm{T}_{1} & \text { transmissivity for } \mathrm{r}<\mathrm{R} . \\
\mathrm{T}_{2} & \text { transmissivity for } \mathrm{r}>\mathrm{R} . \\
\mathrm{u} & =\mathrm{r}^{2} \mathrm{~S} / 4 \mathrm{Tt} . \\
\alpha & =\left(\mathrm{S}_{2} \mathrm{~T}_{1} / \mathrm{S}_{1} \mathrm{~T}_{2}\right)^{1 / 2} . \\
\beta & =2 \pi \mathrm{~T}_{1} / \mathrm{Q} . \\
\gamma & =\text { Euler's constant }(=0.5772 \ldots) . \\
\theta & =\mathrm{T}_{2} / \mathrm{T}_{1} . \\
\phi & =\mathrm{pq}\left[\theta \alpha \mathrm{~K}_{1}(\alpha \mathrm{q}) \mathrm{I}_{0}(\mathrm{q})-\mathrm{K}_{0}(\alpha \mathrm{q}) \mathrm{I}_{1}(\mathrm{q})\right] .
\end{array}
$$

ACKNOWLEDGMENTS

The authors would like to thank the staff of the Indo-British Betwa ground-water project, in particular H. R. Versey and B. K. Singh, for identifying the "patchy" aquifer problem and for providing the pumping-rest data (Figure 3). This paper is published by permission of the Director of the Institute of Geological Sciences, (N.E.R.C.).

REFERENCES

Cooper, H. H., and C. E. Jacob. 1946. A generalised geophysical method for evaluating formations constants and summarising well-field history. Trans. Amer, Geophys. Union. 27, 526-534.
Freeze, R. A. 1975. A stochastic conceprual analysis of onedimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 11, 725-741. Papadopulos, I. S., and H. H. Cooper. 1967. Drawdown in a large-diameter well. Water Resour. Res. 3, 241-244.
Todd, D. K. 1959. Ground Water Hydrology. John Wiley, New York. 336 pp.
Tóth, J. 1967. Groundwater in sedimentary (clastic) rocks. Proc. Symp. on Groundwater Hydrology, Am. Water Res. Assoc., San Francisco, Calif. 91-102.
Vandenberg, A. 1977. Pump cesting in heterogeneous aquifers. J. Hydrol. 34, 45-62.

Jobn Barker received a B.Sc. in Physics in 1969 from Sussex University, and a Ph.D. in Physics in 1974 from University College, London University. Since 1977, be bas been Senior Scientific Officer, Hydrogeology Unit, Institute of Geological Sciences.

Robin Herbert received a B.Sc. in 1962, Ph.D. in 1966, and F.G.S. in 1973. He was awarded the Telford Premium by Institution of Civil Engineers in 1971. Since 1977, he bas been Principle Scientific Officer to Institute of Geological Science, and adviser to Overseas Development Administration of UK. He is the author of over 20 technical papers in international journals and several project reports.

APPENDIX
 Derivation of the Asymptotic Drawdown Equations

Referring to Figure 1 , let s_{1} and s_{2} be the drawdowns in the inner and outer aquifer regions, respectively. Applying Darcy's law and the equation of continuity:

$$
\begin{equation*}
S_{1} \frac{\partial s_{1}}{\partial t}=\frac{T_{1}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial s_{1}}{\partial r}\right) \text { for } r<R \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2} \frac{\partial s_{2}}{\partial t}=\frac{T_{2}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial s_{2}}{\partial r}\right) \quad \text { for } r>R \tag{A2}
\end{equation*}
$$

Assuming the well to be a line source with no storage:

$$
\begin{equation*}
\lim _{r \rightarrow 0} 2 \pi r T_{1} \frac{\partial s_{1}}{\partial r}=-Q \tag{A3}
\end{equation*}
$$

The drawdowns and radial fluxes in the two regions must be equal at $r=R$, so:

$$
\begin{equation*}
s_{1}(R, t)=s_{2}(R, r) \tag{A4}
\end{equation*}
$$

and:

$$
\begin{equation*}
T_{1} \frac{\partial s_{1}}{\partial r}(R, t)=T_{2} \frac{\partial s_{2}}{\partial r}(R, t) \tag{A5}
\end{equation*}
$$

The drawdown at a sufficiently large distance from the well will be zero:

$$
\begin{equation*}
s_{2}(\infty, \tau)=0 \tag{A6}
\end{equation*}
$$

Initially, at the start of pumping, the drawdown will be zero everywhere:

$$
\begin{equation*}
s_{1}(r, o)=s_{2}(r, o)=0 \tag{A7}
\end{equation*}
$$

The solution of equations (A1) to (A7) can be tackled by taking Laplace transforms and solving the resulting ordinary differential equations. in terms of modified Bessel functions to give:

$$
\begin{array}{r}
\beta \bar{s}_{1}(r, p)=\frac{K_{0}(q r / R)}{p}+\left[\frac{K_{0}(\alpha q)}{\phi}-\frac{K_{0}(q)}{p}\right] \frac{I_{0}(q r / R)}{I_{0}(q)} \tag{A8}\\
\ldots \ldots(A 8) \\
\beta \bar{s}_{2}(r, p)=\frac{K_{0}(\alpha q r / R)}{\phi} \quad \text { (A9) }
\end{array}
$$

where
p is the Laplace transform variable,

$$
q^{2}=p S_{1} R^{2} / T_{1}
$$

$$
\phi=p q\left[\theta \alpha \mathrm{~K}_{1}(\alpha q) \mathrm{I}_{0}(\mathrm{q})-\mathrm{K}_{0}(\alpha \mathrm{q}) \mathrm{I}_{1}(\mathrm{q})\right],
$$

$$
\alpha^{2}=S_{2} T_{1} / S_{1} T_{2},
$$

$$
\begin{aligned}
\beta & =2 \pi T_{1} / Q \\
\theta & =T_{2} / T_{1}
\end{aligned}
$$

The transforms given by equations (A8) and (A9) are exact and could be inverted to give explicit expressions for the drawdown at all times; the inversion procedure would, however, be very complicated. Since only the long-time behaviour of the drawdown is of interest, equations (A8) and (A9) can be replaced by expressions that are valid for small values of p (and hence q). Now, for small x :
and

$$
\begin{gathered}
K_{0}(x) \approx \ln (2 / x)-\gamma \\
K_{1}(x) \simeq 1 / x \\
I_{0}(x)=1 \\
I_{1}(x)=x / 2
\end{gathered}
$$

So, for small values of p, equations (A8) and (A9) become:

$$
\begin{equation*}
\beta \vec{s}_{\mathrm{L}}=\frac{1}{\mathrm{p}}\left(\ln \frac{\mathrm{R}}{\mathrm{r}}+\frac{1}{\theta} \ln \frac{2}{\alpha \mathrm{q}}-\frac{\gamma}{\theta}\right) \tag{A10}
\end{equation*}
$$

and:

$$
\begin{equation*}
\beta \bar{s}_{2}=\frac{1}{\theta \mathrm{p}}\left(\ln \frac{2 \mathrm{R}}{\alpha \mathrm{qr}}-\gamma\right) \tag{A11}
\end{equation*}
$$

Equations (A10) and (A11) are easily inverted to give:

$$
\begin{equation*}
\frac{4 \pi T_{2} s_{1}}{Q}=\ln \frac{4 T_{2} t}{C S_{2} R^{2}}+\frac{2 T_{2}}{T_{1}} \ln \frac{R}{r} \tag{A12}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{4 \pi T_{2} s_{2}}{Q}=\ln \frac{4 T_{2} t}{C_{2} \mathrm{~S}_{2}} \tag{A13}
\end{equation*}
$$

where $\ln C=\gamma$.
Equations (A12) and (A13) are the required expressions for the drawdown after long times.

Program HVRLV1 - Interactive Determination of Horizontal Permeabilities within Uniform Soils from Field Tests Using Hvorslev's Formulae

by K. U. Weyer and W. C. Horwood-Brown ${ }^{2}$

Abstract

A computer program is presented for interactive, user-oriented calculation of permeabilities from slug tests using Hvorslev's formulae for filters in uniform soil. The analysis scheme is cost-efficient and allows for simple sensitivity analyses.

INTRODUCTION

In 1951 the U.S. Corps of Engineers (Hvorslev, 1951) presented a synopsis of methods and equations for the determination of permeabilities in granular material from laboratory and field tests. Although many different methods have been published since then, Hvorslev's methods still are used widely in practice for a calculation of permeabilities from "slug tests" in piezometers. In a slug test a rise of water level is caused in a well or piezometer by an instantaneous addition of material, be it water or solid material. The recession of the water level over time is used to calculate the permeability of the surrounding rock. In general, Hvorslev's methods are considered to be an adequate

[^2]tool for an estimation of the magnitude of permeabilities in aquifers. For this reason the computer program HVRLV1 has been developed by the National Hydrology Research Institute (Calgary). The program has been written such that the calculations can be carried out interactively. This facilitates efficient evaluation and permits sensitivity analyses of field data obtained.

The terms permeability and hydraulic conductivity are used interchangeably in this paper.

METHODS OF PERMEABILITY DETERMINATION

The theory of Hvorslev's permeability determination has been summarized in Hvorslev's (1951) original figure 18 which also presents the field methods and equations used.

The program HVRLV1 applies to field conditions where the well point filter is installed in uniform soil (see Figure 1). Three basic methods for permeability determination are considered: the constant head method, the variable head method and the basic time lag method. Assumptions are as follows:

- Soil at filter intake.
- Infinite depth and directional isotropy (k_{h} and k_{v} constant).
- No disturbance, segregation, swelling or consolidation of the soil.

Fig. 1. Fiald arrangement for Hoorslev slug tests calculated by program HVRLV1. See Table 1 for explanation of variables.

- No air or gas entrapped in soil, well point or pipe.
- Hydraulic losses in pipes, well point or filter negligible.
- No sedimentation or leakage.

Constant Head Method
The calculation makes use of the equation

$$
=\frac{\mathrm{q} \cdot \ln \left[\frac{\mathrm{~mL}}{\mathrm{D}}+\sqrt{\left.1+\left(\frac{\mathrm{mL}}{\mathrm{D}}\right)^{2}\right]}\right.}{2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{H}_{\mathrm{c}}}
$$

Before commencement of calculation the following parameters need to be known: q, H_{c}, L, D, and the ratio $\mathrm{k}_{\mathrm{h}} / \mathrm{k}_{\mathrm{v}}$. The notations, dimensions and names of input variables are listed and explained in Table 1.

Variable Head Method

The calculation makes use of two equations

$$
\begin{array}{r}
k_{h}=\frac{d^{2} \cdot \ln \left[\frac{m L}{D}+\sqrt{\left.1+\left(\frac{m L}{D}\right)^{2}\right]}\right.}{8 \cdot L \cdot\left(t_{2}-t_{1}\right)} \ln \frac{H_{1}}{H_{2}} \text { for } \frac{m L}{D} \leqslant 4 \\
k_{h}=\frac{d^{2} \cdot \ln \left(\frac{2 m L}{D}\right)}{8 \cdot L \cdot\left(t_{2}-t_{1}\right)} \ln \frac{H_{1}}{H_{2}} \quad \text { for } \frac{m L}{D}>4
\end{array}
$$

Before cormmencement of calculation the following parameters need to be known: $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{~d}, \mathrm{~L}$, D , and the ratio $\mathrm{k}_{\mathrm{h}} / \mathrm{k}_{\mathrm{v}}$.

Basic Time Lag Method

The calculation makes use of the equations

$$
\begin{array}{r}
k_{h}=\frac{d^{2} \cdot \ln \left[\frac{m L}{D}+\sqrt{\left.1+\left(\frac{m L}{D}\right)^{2}\right]}\right.}{8 \cdot L \cdot T} \\
k_{h}=\frac{d^{2} \cdot \ln \left(\frac{2 m L}{D}\right)}{8 \cdot L \cdot T}
\end{array} \quad \text { for } \frac{m L}{D} \leqslant 4, ~ f o r ~ \frac{m L}{D}>44
$$

Before commencement of calculation the following parameters need to be known: d, L, D, the ratio $\mathrm{k}_{\mathrm{h}} / \mathrm{k}_{\mathrm{v}}$, and T . The determination of the basic time lag is outlined in Figure 2. The basic time lag T is the time t at which H is equivalent to $0.37 \mathrm{H}_{0}$.

PROGRAM STRUCTURE AND OPERATION
 The program HVRLV1 has been listed in

 Appendix 1. It has been written in Multics FORTRAN which is an extension to ANSI Standard FORTRAN, 1966. The program has been tested at the University of Calgary Honeywell computer. The computer operates on a DPS Level 2 running Multics Release 8.2. The program can be operated| Notation | Name of Input Variable ${ }^{1}$ | Dimensions of Input |
| :---: | :---: | :---: |
| D | DSCREEN | Diameter of intake area, [cm] |
| d | DPIPE | Inside diameter of piezometer pipe, [cm) |
| L | LSCREEN | Length of intake, [m] |
| H_{c} | HC | Constant piezometer head, [m] |
| H_{1} | H1 | Piezometric head for $t=t_{1},[\mathrm{~m}]$ |
| H_{2} | H2 | Piezometric head for $t=t_{2},(\mathrm{~m})$ |
| q | Q | Flow of water, [$\mathrm{cm}^{3} / \mathrm{s}$] |
| t | T1, T2 | Time, [s] |
| T | Tlag | Basic cime lag, [s] |
| k_{v} | | Vertical permeability of soil |
| k_{h} | | Horizontal permeability of soil |
| m | | Transformation ratio: $m=\sqrt{\mathrm{k}_{\mathrm{h}} / \mathrm{k}_{\mathrm{v}}}$ |
| $\mathrm{k}_{\mathrm{h}} / \mathrm{k}_{\mathrm{v}}$ | RATIO | |
| | IDENT | Name of piezometer (up to 8 characters) |

${ }^{1}$ Input is format free. Variables are separated by a semicolon, data values by blanks or commas.
in interactive and in batch mode. Table 2 shows the hierarchy of subroutines used.

After program and data files have been set up in the mass storage area of the computer system, the program can be operated simply

Fig. 2. Determination of basic time lag T from semilog plot of time vs. head. H_{0} is the piezometric head H at the time $t=0$.
following the logic and steps outlined in Figures 3 and 4 . The control commands used are listed and explained in Table 3. Within the execution of the program they are submitted as outlined in Figures 3 and 4. Necessary data variables are listed and

Table 2. Hierarchy of Subroutines in Program HVRLV1

Table 3. List of Control Commands for Program HVRLV1

tMPUTEXI	- X1-5 interactive mode - X1中5 baten mode, data on tile specified
OUTPUT=K2	- X2=6 output to terainal - X2*6 ourpue to tile X2, X2*6
TITEE\{....\}	- generel heading cor output Eable, 72 char aceefs maximun.
cmead	- use gonstant head wethod of cateulation
veiead	- use vaciable head method of calculation
btcas	* use basic time lag method of cilculation
PROC OE PROCCEED	- proceed with ealculation
5T0P	- no further ealculation

Fig. 3. Operation of program HVRLV1 in interactive mode. Program messages are in solid boxes, user responses in boxes with broken lines. Use of TITLE (. . . .) is facultative. STOP can be submitted at any response time.
explained in Table 1. Error messages generated by the program are listed in Table 4. Figures 5 and 6 are examples of interactive and batch executions, respectively.

Fig. 4. Operation of program HVRLV1 in batch mode. Program messages are in solid boxes; user responses are in the broken-line box. An example of a batch input file for two different calculations is in the dotted box.

To terminate the program the command STOP can be submitted at any time when response is required. The use of $\operatorname{TITLE}(. .$.) is facultarive. The sequence of data variables is not restricted. Data variables are format free; commas and blanks serve as dividers for data, semicolons as dividers for variables.

AUTOMATIC LOOPING FACILITY

Up to 10 values can be assigned to a data variable, (e.g. $\operatorname{DSCREEN}=\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 10$). Where more than one value is assigned, the program will automatically loop through all possible combinations of data, within one input set. The looping sequence is outlined in Table 5. Within the table the looping sequence follows the rows before progressing vertically.

PROGRAM OUTPUT

Output can be routed to a terminal, a separate output file or both as outlined in Figures 3 and 4. Separate output files are automatically structured by pages and paginated, with column headings and titles printed on each page (see Figure 6). The tables contain the input data, the ratio (mL)/D and the calculated permeabilities in cm / s and m / s.

Tables can be built up interactively from a terminal or by using batch files. If use is made of the automatic looping facility, interactive output at the terminal is in the form of a table (see Figure 5). Otherwise the output at the terminal is interspersed with the record of interactive communication. Using the output parameter OUTPUT $=6, \mathrm{X} 2$ will build up a table in file X 2 which does not contain the record of the inter-

Table 4. List of Error Messages
MESSAGES DURING FILE CONTROL SPECIFICATION:

* ERROR * UNEXPECTED END OF DATA INPUT INPUT AND OUTPUT FILE MUST EE SPECIFIED, OR "STOP"
- ERROR * UNABLE TO READ FILE CONTROL CARD RE-ENTER INPUT AND OUTPUT STATENENTS
* ERROR UNIT NUMDER MUST BE'FROM 1 TO 99
* ERROR CONFLICTING INPUT/OUTPUT SPECIFICATION RE-ENTER IAPUT AND OUTPUT STATEMENTS

MESSAGES FROM GUBROUTINE DRIVER:

- ERROR * CALCUTATION METHOD MUST 自E SPECTFIED
* ERROR * UNEXPEGTED END OF DATA INPUT
- ERROR PRRMMEER NAME NOT RECOGNI\&ED
- ERROR MISSING EQUAL SIGN
* ERPOR * UHABLE TO READ DATA VALUE AT COLUMN
* ERROR * MISSING VALUF FOR PARAMETER

ASSIEN INPUT-OUPTPT FACtiletes:

EMOOSE CALCHLATION METHOD AND supply onta:

nesule or calcticateons

EXAMPLE : : :NTERACTVE SESSION JSING PRDGRAM HURLVI hor:zontal hyomallic ejnouettyity \|hyorslevisi baste time lag methoos								
$\begin{aligned} & \text { Plete } \\ & 40 . \end{aligned}$	opref	$\begin{gathered} \text { aschess } \\ \text { sw } \end{gathered}$	$\operatorname{Zscaten}_{M_{1}}$	$\begin{gathered} \text { RATIO } \\ \mathbf{Y} \cdot \mathrm{Y} \end{gathered}$		+ $4 / 2$	$14 / 5$	
peszo	4.91	4.91	9.10	. 80	1.20	:68. 16	2.11e-04	2.138-02
pereo	4.31	4.93	3.30	1.30	10.30	[68. 36	2.135-05	2.138-a3
picso	4.73 4.9	9.9.16	9.30	-1.30	1.30 10.30	9 1. 59 $\$ 1.54$	2. 37509 $1.975-05$	$\begin{aligned} & 1.97 x-a z \\ & 1.878-01 \end{aligned}$

stop exceytion:

Fig. 5. Example of interactive communication at a terminal using the automatic looping facility for basic time lag calculations. The figure shows data input and the results of calculations.
active communication. All tables printed are suitable for direct inclusion in reports without further typing. An example of the procedure and results is given in Figure 5.

Table 5. Looping Sequence for the Three Types of Data Input. Looping Sequence is in Order of Listing. Data Pairs Are Treated as One Variable. Horizontal Progress Precedes Vertical Progress.

1. Constant head method

	$\left\{Q_{1}, Q_{2}, \ldots, \ldots \ldots, Q_{10}\right\}$
HC pair	$\left\{H_{1}, H_{2}, \ldots \ldots \ldots . . H_{10}\right\}$
Ratto	$\mathrm{R}_{1}, \mathrm{R}_{2} \ldots \ldots \ldots \ldots \ldots, \mathrm{R}_{10}$
lscreen	$L_{1}, L_{2}, \ldots \ldots \ldots \ldots, L_{10}$
dscreen	DS ${ }_{1}, D S_{2} \ldots \ldots \ldots .$. , DS ${ }_{10}$

2. Variable head method

3. Basic time lag method

TLAG	$: T_{1}, T_{2}, \ldots \ldots \ldots \ldots \ldots, T_{10}$
RATHO	$: R_{1}, R_{2}, \ldots, \ldots \ldots \ldots, R_{10}$
LSCREEN	$: L S_{1}, L S_{2}, \ldots \ldots \ldots \ldots, L S_{10}$
DSCREEN	$: D S_{1}, D S_{2}, \ldots \ldots \ldots \ldots, D S_{10}$
DPTPE	$: D P_{1}, D P_{2}, \ldots \ldots \ldots \ldots, D P_{10}$

atidg titie (Example z. atch gission using pmocram hvilvi) 5 TDP								
FNTER HODE ANO TILE GONTNOL (:NPUT*XL; OUTPUT:X2): ? Inputel: outputa -- reading input data from fite ! --								
 tortzontal hyoraulic comouctivity (hvongley's gagic time iag methool								
$\begin{aligned} & \text { PIEzO } \\ & 40 . \end{aligned}$	aptex $\text { (} \mathrm{c}^{4}$	$\begin{aligned} & \text { ogcreen } \\ & \text { (CM) } \end{aligned}$	$\begin{gathered} \operatorname{ssc} \pi E E N \\ 41 \end{gathered}$	$\begin{aligned} & \text { RATIO } \\ & W_{1} / Y_{1} \end{aligned}$	PLAG (5)	45/0	(4/5)	$\text { 宜 } \alpha / 5$
FIE202	1.39	1. 19	3. 30	- 30	$\cdots 3.10$	15.26	2 5e-39	2, 75E-03
-18202	1,34	6. 39	0.30	0.50	20.00	15.15	[. 3985	-. 78 ¢03
${ }_{218202}^{21502}$	1,39	: 1.39	3. 10	1.00	${ }^{10.00}$	24.54	$3.234-95$ 98505	3. 3 3E-73
215702	1.39	1. 39	3.30	1.80	20.50	21.58	1.525-05	1.525-83
PtEtoz	1.19 199	1. 1.38	0.30 3.30	10.09	10.90	58. 58.24		$3.965-93$

Fig. 6. Example of batch execution using the automatic looping facility for oasic time lag calculations. The figure shows data input and the results of calculations.

ACKNOWLEDGMENTS

Preparation of this report was in part supported by Cominco Ltd. through a Joint Research Project dealing with the hydrogeology south of Great Slave Lake. Our appreciation is extended to the management of Pine Point Mines, Ltd. The manuscript was proofread by Dr. H. Ryckborst; Dr. A. Vonhof, Calgary; and G. Grove, Ottawa. Their comments were greatly appreciated.

DISCLAIMER

The program has been tested repeatedly against hand-calculated data and results of calculations published elsewhere. Nevertheless, the authors and NHRI do not accept responsibility for applications of this program.

REFERENCE

Hvorslev, M. J. 1951. Time lag and soil permeability in groundwater observations. U.S. Corps of Engineers, Waterways Experimental Stn. Bull. No. 36 .
K. U. Weyer received the equivalents of a B.SC. (Geology), M.Sc. (Engineering Geology), and Ph.D. (Hydrogeology) from the Universities of Munich and Bonn in West Germany. He bas worked on various research and consultant assignments in several countries of Europe and A sia. Since 1975 be bas been a Researcb Scientist with the National Hydrology Research Institute (NHRI) in Calgary, focusing on research in hydrodynamics and mining bydrology.
W. C. Horwood-Brown received a B.Sc. in Ecology from the University of Toronto in 1974. Since 1975 she has worked with Environment Canada in Ottawa and Calgary (NHRI). Currently she is responsible for computer applications and program development within a Joint Research Project with a major Canadian mining company.

APPENDIX 1. HVRLV1 PROGRAM

وROGRAM HVRLVL EALCULATES, TN INTERACTIVE AND DATCH MODE,
MORI $2 O H T A L$
KORIZONTAL HYDRAULIC CONDUCTIVITIES FOR CASE GO I

AUTHORS = W.C.honmoo - K.U.WEYER APRIL, 19A1

- /C2000/ GARD (80), ICOL

OATA FILPAR/ IHT. LHO, SCOLAN

IAINA5
IAOUTE6
E.....OPEN STATEMENTS IN MULTICS FORTRAN CONNECT A FTLE OR DEVICE TO A UNIT AND ASSIGN CONTROL ATHRIBUTES FOR A EONHECTEO CEN

90 IC1=0

$\mathrm{I} \mathrm{NOT}=0$
$\mathrm{NTMP}=0$
IOUTMP=0
INTER=5
C..... READ MODE ANO FILE CONTHOL PARAMETERS

OO WRITEIIAOUT, LLO
10 FQRMAT (/' ENTER MOOE AND FILE CONTROL (INPUT=XL; OUTPUT=X2): ')
20 READ (fal, iJO, END*BOD) EARD
rcole
THE SIGN "S" INOLCATES A MULTIPLE RETURN OPTION
CALL SKIP(1,0,5800)
c.reas parameters

40 CALL TNTERP (FILPRR, 3,6,TC)

$\stackrel{C}{C}$ C....SKIP TO EOUAC SIGN
c.skip to numsea
c.....read number

CALL RDVAL (REALE, TERR)
tF(IERR.EQ.1) 60 TO 460
IUNTVIFIXIREALE)
C C.....Assign numbek accondinely
tF(IC.s0.2) co To 160
c.tinput:
$\pm C_{1}+1 C_{1}+1$
F1,+NT.NE.51 IN $=$ IUNT
GF (twiNT, 50.5) INTMP=5
c -0utpure
160 tc $2=562+$

$\stackrel{c}{\mathrm{C}} . \mathrm{CHECH}$ FOR ADOITIONAL UNTT NUMBER
70 continue

c. ...5Ktp to next parameter

CALL SKIP(1, $\mathrm{L}, 5180)$
GO TO 140
GO TO 140
C. . Gheck assigmment of unit numazhs

210 Continut

IAIN T TNTMF
IAOUT $=$ IOUTMP

c.....pile control pamaneters and modt have bzeat stecitifd CALL ORIVER

C. ...ERROR mEstacts
 INPUT ANO OUTFUT FILE MUST BE SPECIPIED, DR *STOP* '] 6070100

TO T0 AO RE-ENTER INPUT AMD OUTPUT STATEMENTS')
WRITE CIAOUR , A 701

800 WRITEITAOUT, 490)
 RE-ENTER IN\#UT AND OUTPUT STATEMENTS')

DATA PARA

OATA NVCH/ $2,3,4,10,41 / 1$
NVVH/ $1,2,3,4,6,7,9,91$,
NLINE $=0$
NLENEX=19
IAOPLG=0
ITFLE $=0$
IFISAOUT,GT.D) IAOFLGE1
TFITOUT.GT.0) SOFLG*1
TMETH=0

1) 20 2 $1=1,11$

NTITLEO
5 SOENT(7) POLANK
TFITAIN.GT. OI GMITEIENTER, LOI
10 formati// ENTER GALGULATION METHOD "GHEAD"."MEAD"."BTLAG"."ST

IP(IN.GT.O) READ (IN, 20, END= 3000) GARD
20 Format (gonb)
LMETHO IMETH
CALL SKIP(1,0,52900)
CALL INTERE(AMETHD, 4.3, FMETH)
IF (IMETH, सO.0) GO TO
IF
IMETH, 2900
25
IF (IMETH, EO. IMETMO) GO TO
IF(IOUT.GT. 0) totegel
25 GONTINUT

Fliarn 0 0) 60 00

30. FORMAT (! ENTER: TITLE,IDENT',OSCREEN, LSCREEN, RATIO.0.HE*)

TF (IMETH: EQ. 2) WRITE (INTER + 40)

(ato thag*

$1 \mathrm{COL}=1$
70 GALL INTERP(PARA; 15.7.7P)

c. . . . SkT TO EOUAE STGN

CALL SEEP(4.1. $\$ 30401$
90 CEDTINUE 11) to to 200
ç.,...read paraneter vacues
00 EALL 5 KIP

GALL ROVAC (REAL), IERR)
5 Gp to io values for each pahaneter are peryitted, skif rest
IT (NVAL (5F), EO. 10160 TO 100

$00 \% 100$
c 200 comrimus
5070(300,400,306,600), 11
¢,$\ldots .$. - toent*
CONTINUE
NID=0

CALL Skip(l.1.560)
310 NID $-\mathrm{NSD}+\mathrm{I}$
IDENT (NIDI ECARD (ICOL)
TCOLAICOL
IF (ICOL.GT. 90) to To 50
[F(GARD (LCOL), EO, SCOLAN) GO TO 70
EF(NID.CT. B) 50 T0 310

+od conttive
CALL SKIP!3, h, 510001
CALL RODTLL
GALL $3 K$ ² (3. 1.5601
c...."PRoc.

300 contivut
CF(SOUT,GT, A, AND. NWTITL, EQ, L) IORLS=1

$51000520 \mathrm{~F}=1.7$

EEILAOUT,GT. O.AND, NYAL (N) , GT , W) IAOFLG=?
520 CONTIRUE
CALL GHEAD
$33000 \quad 540$ t:1.3
TF(NVAL (N), LEE.O) to to 3000
IF(EAOUT.OT. A.AND.NVAL(S).GT.L) CAOFLGE
540 CONTINUE
gall MEAD
60 TO 1
350 OO 560 I:1.5
IF (NVALIN . EE.O) GO TO 3080
IF (IAOUT.J゙T, O.AND, NVAL (N),GT.1) LAOFLC=1
560 continue
GACL to 1
c...."stop"

500 STOP

E.....ERROR mesgages

2900 WRITE(ENTER, $29 I O$ * CALCULATIJN METHOD MUST ge sPECIPIEO*
IMETHFIMETRO
IF(IAIN.GT.G) GO TO
60 To 4000
3000 WRTTEIINTER, 3010)

GO 10

Go To 4000
3040 WATt世 (INTER,j0S0)
50 PORMATC: ERRGR - missing Equal sign')
GO TO 4000
3060 WRITE (INTER, 3070) tCOL

309O FORMATt" * ERROR * MISSING VALUE FOR PARAMETEA *.7AL) TH(IALN.GT.0) $50 \% 060$
CONTINUE
4000 continue
TPITAIN.GTAO) 60 TO 50
4010 FOmat! (
end
end. exEcution terminatedi;

 COMHNON /C2000/ CARD(80), tCOL

* /C3000/ 8LAHK, SCOLAN
- /C1200. qgrack, garack

DTA EOUALS:/H=1
TSKFP DETERMINES THE CHECKING PROCEDURE FOR SUBROUTINE SKIP ISKIP=1 SKIP SCANKS TO FIRST NON-SLANK
ISKIP:Z SKIP SLANKS AND COMMAS TO FIAST NON-SLAMK
 GSKIF-4 SKIP ANY GHARACTER TO AN EOGAL STGN
[ADDL (O OR I] MOVES POINTER TCOL fadDl COLUMNS TO A STARTING POINT
COL-ICOL-TADOI
cotol $100,200,300,400,300$, 15 KIP
100 continue
[F(ICOL. ©T. 30) 60 TO 1000
tricaroltcol ., we. blank) 60 To 900

c 200 CONTTNUE

$\operatorname{ICOL}=1 \mathrm{COL}+1$
GO TO 200
C
300 continue
IF(ICOL,GT.90) 00 :00:00
tF (CARDIICOL). EO. LARACK) 00 T0 900

100 continue
tf(1 COL Gt. 80 O 60 to 1000
ir (CARD (ICOL). EO.EQUALS) to to 900

300 CONTINUE
TF(tCOL.GT. הO) 60 to 1000

c 900 RETURN
900 RETURN
c
iogo Rend of duta
RETURN 1
END

```
G SuBmoutine rotitl reads mitle of data tables
    SUPROHTINE********
    GHARAGTER*! EARD, TITLE, BBRACK, LBRACK, 3LANK
    GONWON C!DOOO/ TN, TOUT. TATN. TAOUT, TNTER
            /E2000/ CARD(901, ROOL
            G3200/ blank, sBrack
            /E4300/ TITLE(72), NTITL, NWTITL
C.....SLEAR TITLE VECTOR
    10 %TTLE([)EECAN%
    NTITG=0
G.,...SKIP TO FIAST EHARACTER OF TITLE
    Ealt $x:P(1, 1.$200)
C....REAO TITLE
    20 IF(tCOL.GT.30.OR.CARDIECOLI.EQ.RBRACKI Go TO 100
        tf(NTITL.GT.i2) Go ro 50
        ITLE(NTITL) =CARD(ICOL)
        tcol-tcol-1
G.....NARNING mESSAGE
    60 fomhat!* * WArning * title has geen truncatED T0 T2 gharacterg*
        MTITE=72
G 100 RETURA
        END
```



```
40 REAC*REAL* 10.0+RP-1.0
    CO to 90
-50 REAC*MEAL+(RP-L.S)/10.0**IP
    l
```



```
C 73 1f(!sw,g%.1) go T0 1:0
    l}\begin{array}{l}{15%=2}\\{iP=1}
        60%% 90
    90 [F([5N, EQ, 3) co To 1t0
        [3W+]
```



```
        l(GARD(IEOL, ME,MINUS) 30 T0 10
G go tcol=ICOL+]
        GOTIO:0
```



```
    105*:ANO.GARD(:COL),NE.RERACK,AND.CARD(TGOLI.NE.SGOLAN) GO TO :10
    5 :F(RSIGN.EQ-1) REAL.-AEAL
        TF(ESIGN.EQ.- \) EXP=*EX
        [EXP=EXP
        10.j-*IExF
        GEALFFREAC
        SETHRN
G.....grror messages
    igrrel
    END
c
    USING THE CONSTANT HEAD METHOD
        sugnouTtNE THEAD
        EHAAACTER*1 TOENT, TITC
        GOMMON C1000% IN, IOUT, IAIN, TAOUT, tNTER
    * C&000/ IOENT(8), DATDAR(ll,i0}, NVAL(Ll)
    * CG4j00/ TITLE(TZ).NTITL,NWTITL
G PE=3.1415
    if(TAOFLG.EQ.L.OM.ioflg.eg.L) Gall prtith(79)
G. . . . permeabitity calculation
    30 200 t2=1,NVAE(2)
    IF(12.EO.L,AND.NVAL(2),GT.:1 ISKIP-ISKIP+1
    SO 200 I}=1,NUALI3)
    2O 200 [i=1 NNAOM
    IF(I4.EQ.\.ANQ,NUAL(4),GT, H ISKIPGISKIP+1
```



```
        :F(fOUT.GT,F) NRITE(IOUT,{55)
    155 FTPMAT:ix
        MLINE=NLTNE + !
        IFKIP*0
        IF(NLINE.AT.NLINEX.OK.IOUT, 80.0) 的TO 175
        ICFEG*1
G....avoid otvtsion gy zemo
    i7S SONTINUE
```



```
        60 TO 250
    2=0ATPAR(L!, 1:01*.000002
    g=DATPAR(2,[2)*:Ji
    MM=OATPAR(4,i&),5
```



```
    gATpAR(10,t!0)
G.....pRINT RESULTS
    IF(fOUT.GT,0) WRITE(IOUT,300) (TDENT(I),{=1,A),DATPAR(2,[2),
    - JATPAR(3,in), DATPAR(4,i4),DATPAR(II,IIO),DATPAR(10,Ito),
        - PERMM, PERMEM
        MLINEWNGINE+1, wRITE(tAOUT, 300) (TDENT(I),I-L,9),OATPAR(z,Iz).
```



```
    60 to 200.
c....OENONTNANOR EOUALS ZEWO. CALCULATYON DISCONTTMUEO
    250 CONTINUE
        IF(IOUT,GT,0) WRITE(IOUT, 3501 (IOENT(I),I=L,8), DATPAK(2.12),
```



```
        [F(IAOUT.GT.O) NRIFE(IAOUT, 350) (IDENT(I),I*1,H), DATPAR(2,I21,
```



```
        200 CONT'*
        RETURN
C"*********************** V F EA D **************************C
        SuAROMTINE MEAS
        Charagter*1 torat, title
        GOMHON/ClOOO/ TN, LOUT, IAIN, SMOUT, INTER
        COMHON /C1000/ TN, LOUR, IAIN, {AOUT, INTER 
```

Sugnoutine viead eaceutates penmeabrifty ustng the variable ***************
CHARAGTEN"I IDRNT, TITLE

* G4000/ TDENT(B) DATFAR(I1, LO). NVAL(LI)
tSA1P=1

c...., germeagitity malculation

$0200 \$ \pm=1$ NVAL (2)

200

200 : $6=1$, NVAL (6)

65 FOMMAT ix)
NLINE NNLINE + 1
! $5 \mathrm{~K} \ddagger \mathrm{P}=0$

CALLG PRTtTE(9T)
c. if. AvoID orvision ay zero

5 CONTINUE

OPTPEDDATPAR(1:11).06
O=OATPAR (2,12):01.

C.....RLC Less than or equal To 4

C.... RL/D gagater than a
 OATPAR(6, [6) i)*ALOG(DATPAR(A, [5)/DATPAR(9.:5)
E. PRINT RESULTS

90 PRRMCMEPERMM 100 .

NLINEANCIME+1

* OATPAR (2,12) , DATPAR(3,53), DATPAR(4, 54), JATPAB(5,55),

c.oenominator equals zero, calculation dtsiontinued

- DATPAR(2, I2), DATPAR (3, [3), JATPAR (4, 54), DATPAR(5, 16).

CONTINL
RETURN
SNO

SUPROUT: NE STLAG
-OMMON 'CLDOO/ IN, TOUT, TAIN, TAOUT, INTER

c 15kre:

20200 i3al, Nval (131

tr (IAQGT.at.O) WRITE (LAOUFT, L65)
165 romarizix
NLINE-NLINE+1
ISKIP-O
IP(NLINE.ET. WLINEX.OR.IOUT.EQ. 01 60 60175
IOFLG:
EALC PRTITL (83)
C.....Avoio division ay teno
is continue

DPIPEGOATPAM(1, $t \downarrow$)*,01

C.....ad/D cegs twan or rqual to 4
 - $\mathrm{GATPM}(5,1511$
C.rlof GREATEA than


```
G....PRINT RESULTS
    190 7ERMCM=PERMM*
        iF(IOUT.ET.0) dRITE(IDUT, 100) (IDENT(I),INL,Q),OATPAR(1,tl)
```



```
        * PERMM, PERHCM
```



```
        dATPAR(2,I2), DATPAR(3,[3), DATPA&(4, 14), DATPAR(5,55),RLD,
    - PERMM,PERMC
```



```
        go ro 200,1PES+2,4x,lPES,2)
G.,..oenominator equals zero, chlmulation discontinueo
            00 T0 200
    50 EONTINUE
        IF(tDUT.GT.9) WRITE(IOUT,350) (IOENT(T),I*L,M), DATPAR(I,IL)
        LLINENNLINE+1
```



```
    g DATPAR(2,I2), DATPAR(3,131,0ATPAR(4,141,0ATPAR(5,53)
    350 FOMMAT(1X,GAL,JX,F5,2,3X,FS.2,4X,F5,2,2X,F6,2,1X,F7.2,LIX
    200 contraug
        gETURN
C********************* PRTITL ****************************
        SUBROUTINE PRTITL(NLTUT)
        CHARAGTERIGTITLE, ATITLE(LI2), GLANK intea
```



```
        G4300/ TITLE(72),NTtTL, NWTITL
        [fltOFLO.go.2) Go mo 20
        CiNE=O
        RITE(IOUT.40
    50 FORMAT(!H:
%o qRINT MAIN tItLE
    CONTINUE
    IP(EAOFLG.EQ. L) WRTTE(TAOUT.10)
10 Eormati/)
    IFINTITC.EO.0) GO To 95
    IFINTITC.EO.O)
    70 ATtTEE(E)=BLANK
        NX!(NLTOT-NTITL)/2
        TFINXI.LE.O) NXI=0
    NT=0
    <2-NX1+NTTTL
    NXI-NXI+1
```

DO 80 [anX1, NX2
30 ATETLE(I)-TITLE(NI)

IF (IADFLE.EQ.1) WRTTE(IAOUT, 90) (ATITLE(i).f(1.NX2) NLINE =NLINE+4
-FRINT CALGULATION METHOD AND APPROPRIATE COLUMN HEADING:
CONTINUR
COTO (100, 200, 300), IMETK
.: OO "CONSTANT HEAD METHOD* CONTINUE
IF IOFLG

60 to 500
 TANT KEAD METHODI //

$\stackrel{c}{c}$
Ho VARIA息
200 continut

GO (IAOFLG. EQ. 1) WRITE([AOUT, 210)
210 FORMAT $1 / 15$
*ABLE HEAD METHOO!

$77^{3 \times 2}=(\mathrm{CM} /$
$\stackrel{c}{G}$
joiocontinct

TF(IAOFLG, EQ. 1) WRITE (IAOUT. 1 LO)
310 FORMAT ${ }^{500} / 7 \mathrm{x}$
7X, 69HMCRIZO

$\stackrel{G}{C}$.
…靬ETETEAGS
500 GONTINCE
IAOFESES

RETURN

Analysis of Leaky Aquifer Pumping Test Data: An Automated Numerical Solution Using Sensitivity Analysis

by P. M. Cobb, C. D. McElwee, and M. A. Butt ${ }^{\text {a }}$

Abstract

The Kansas Geological \$urvey is pursuing an effort to automate some of the more common methods of aquifer pumping-test analysis. This paper discusses the results of work done on the leaky artesian aquifer as defined by Hantush and Jacob (1955). The paper covers the basic theory of the aquifer type, the numerical solution of the leaky artesian-well function, and the methodology of achieving the "best fit" parameters in the least squares' sense. Several data sets are used to demonstrate the applicability of the proposed technique. These examples indicate the generally satisfactory results produced by the automated analysis documented here.

The algorithm has good convergence properties. Initial estimates for the aquifer parameters may vary by about three orders of magnirude above or below the correct values. For rypical data sers the ums fitting error should be less than a few tenths of a foot. If this is not the case, one is probably not dealing with a simple leaky aquifer. This method of pumping-test analysis does not eliminate the role of an experienced hydrologist to define the local hydrogeology and aquifer type. However, once the decision is made as to which aquifer configuration is being observed, this program will, in a quick and unbiased fashion, give an accurate assessment of the leaky-aquifer parameters within the limits of the theoretical approximations and the data quality.

INTRODUCTION

The Kansas Geological Survey is in the process of fabricating a series of computer programs designed to analyze pumping-test data. The program discussed in this paper solves the inverse problem for a leakyartesian aquifer system proposed by Hantush and Jacob (1955). The leaky-artesian aquifer problem considered here is not the most general configuration (see Hantush, 1960; Neuman and Witherspoon, 1969a); however, the limited number of data sets available for analysis tend to be for this simple case. The limits of the theory used in this paper are outlined by Neuman and Witherspoon (1969b). The automated analysis of the simple confinedaquifer pumping test has been published previously by the Survey (McElwee, 1980a). The methodology used in the present study involves sensitivity analysis and a least-squares' fitting technique to analyze the time-drawdown data while satisfying the equations developed by Hantush and Jacob (1955). These techniques will be outlined in the text. More information may be found in McElwee (1980a, 1980b), McElwee and Yukler (1978), and Cobb, McElwee and Butt (1978).

Because of the limited number of available data sets for this aquifer configuration, this technique is being published after extensive but not exhaustive testing. However, we have tested it for several hypothetical data sets and for seven real data sets readily available to us. At this point, we feel quite confident in the algorithm's capabilities.

It is hoped that, by setting this algorithm out for public scrutiny, new data sets will be tested and the program more thoroughly verified. A more detailed report with program listings is available from the authors. Using the available data sets, we have been able to establish that, for fairly smooth data sets (those that conform generally to the shape of the leaky rype curves), the model has excellent convergence properties. Initial estimates of the storage coefficient, transmissivity, and leakage coefficient may be in the range of plus or minus three orders of magnitude of the correct value and still obtain successful convergence.

This method of pumping-test analysis does not remove the requirement of having an experienced hydrologist evaluate the local hydrogeology and pumping-test data to identify the aquifer type. However, once the decision is made as to which aquifer configuration is being observed, this program will, in a quick and unbiased fashion, give an accurate assessment of the leaky-aquifer parameters within the limits of the theoretical approximations. After using this model for the pumping-test analysis, the hydrologist should always look at the root-mean-square (rms) deviation in drawdown and the "best fit" drawdowns calculated by the program. The experimental and theoretical drawdowns should not differ greatly anywhere and the rms deviation should be less than a few tenths of a foot in order to have confidence in the analysis. If this is not the case, one is probably not dealing with a simple leaky aquifer.

THEORY AND ANALYTICAL SOLUTION FOR THE LEAKY CONFINED AQUIFER PROBLEM

The aquifer system defined by Hantush and Jacob (1955), as depicted in Figure 1, is composed of a level, isotropic, homogeneous, porous medium of infinite areal extent. The lower aquifer boundary is assumed to be impervious, while the upper boundary is assumed to be a leaky confining bed. A source bed overlies the leaky confining bed. Water is derived from the aquifer by elastic expansion of the water and compression of the aquifer matrix as pumping occurs. Leakage through the semiconfining bed is assumed to be proportional to the drawdown in the semiconfined aquifer. It is assumed that no water is removed from storage in the semiconfining unit and that no drawdown occurs in the source bed.

These assumptions lead to the following differential equation (Jacob, 1946)

$$
\begin{equation*}
\frac{\partial^{2} s}{\partial r^{2}}+\frac{1}{r} \frac{\partial s}{\partial r}-\frac{s}{B^{2}}=\left(\frac{S}{T}\right) \frac{\partial s}{\partial t}, \tag{1}
\end{equation*}
$$

where
$s(r, \tau)$ is the drawdown at any distance from the well at any time,
r is the radial distance measured from the well, S is the storage coefficient of the artesian aquifer, $\mathrm{T}=\mathrm{Km}$ is the transmissivity of the artesian aquifer, $B^{2}=T /\left(K^{\prime} / m^{\prime}\right) ;$ and
K and K^{\prime} are the respective permeabilities of the artesian aquifer and the semiconfining bed,
m and m^{\prime} are the respective thicknesses of the artesian aquifer and the semiconfining bed,
$\mathrm{K}^{\prime} / \mathrm{m}^{\prime}$ is the leakance or specific leakage of the semiconfining bed (Hantush, 1949); and
Q is the well discharge.
With appropriate boundary conditions, an analytical solution is obtainable.

$$
\begin{gather*}
s=(Q / 4 \pi T) \cdot \int_{u}^{\infty} \exp (-\dot{y}-z) / y d y \tag{2}\\
u=r^{2} S / 4 T t, \quad z=r^{2} / 4 B^{2} y
\end{gather*}
$$

NUMERICAL SOLUTION PROCEDURE
Our first attempt at evaluating equation (2) involved the Laguerre Quadrature formula. Integral functions of the form

$$
\int_{0}^{\infty} f(x) e^{-x} d x
$$

may be approximated by the method of Laguerre integration:

Fig. 1. Diagram of ideal leaky aquifer.

$$
\begin{equation*}
\int_{0}^{\infty} f(x) e^{-x} d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \tag{3}
\end{equation*}
$$

where the w_{i} 's are weighting factors, and the X_{i} 's correspond to zeros of the $n^{\text {ch }}$ order Laguerre polynomials. The values of w_{i} and x_{i} are catalogued in Abramowitz and Stegun (1968).

To perform the integration in equation (2), a transformation of variables must occur in order to make the limits of integration compatible with the Laguerre Quadrature formula, equation (3). This transformation is a straightforward substitution of the form $y=x+u$. The integral takes the form

$$
\begin{aligned}
G(r / B, u)= & \int_{0}^{\infty} \exp \left\{-u-r^{2} /\left[4 B^{2}(x+u)\right]\right\} /(x+u)
\end{aligned}
$$

and is solved numerically by the appropriate substitutions in the Laguerre integration formula. The function $G(r / B, u)$ was evaluated by Laguerre integration of order 15 . We found that evaluating equation (2) with Laguerre integration did not give the desired accuracy for small values of u. Therefore, an alternate evaluation scheme had to be developed.

Hantush and Jacob (1955) give several forms of the solution to equation (1) for different ranges of u and r / B. The alternate evaluation scheme we use involves three equations, which are solved numerically in order to cover the complete range of u and r / B. The equations are listed here, along with the appropriate ranges of u and r / B.

$$
\begin{gather*}
s=Q /(4 \pi T) \cdot G(r / B, u) \\
u=r^{2} S / 4 T t, \quad u \geqslant 1.0, \quad \text { any value of } r / B \tag{4}\\
s=Q /(4 \pi T) \cdot\left[2 K_{o}(r / B)-G(r / B, p)\right] \\
p=T t / S B^{2}>1, \quad(r / B)^{2} \geqslant u \leqslant 1.0 \tag{5}\\
s=Q / 4 \pi T \cdot\left\{2 K_{o}(r / B)+I_{o}(r / B) \cdot E i\left(-r^{2} / 4 B^{2} u\right)\right. \\
+\exp \left(-r^{2} / 4 B^{2} u\right) \cdot\{0.5772+\ln (u)-E i(-u) \\
-u+u \cdot\left\{I_{0}(r / B)-1\right) /\left(r^{2} / 4 B^{2}\right) \\
\left.\left.-u^{2} \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n+m}(n-m+1)!}{((n+2)!)^{2}}\left(r^{2} / 4 B^{2}\right)^{m} u^{n}-m\right]\right\}
\end{gather*}
$$

$$
\begin{equation*}
(\mathrm{r} / \mathrm{B})^{2} \leq \mathrm{u}<1 \tag{6}
\end{equation*}
$$

$\mathrm{Ei}(\mathrm{x})$ is the exponential integral; I_{o} and K_{o} are the zero order modified Bessel functions of the first and second kind.

The numerical solution of the exponential integral, Ei(x), is described in detail by McElwee
(1980b, p. 3). Solutions for the zero-order modified Bessel functions of the first and second kinds, $\mathrm{I}_{0}(\mathrm{x})$ and $\mathrm{K}_{0}(\mathrm{x})$, were obrained by polynomial approximations. Abramowitz and Stegun (1968) catalog several forms for each function. Each form is suitable for a particular range of x . The double summation in equation (6) is solved numerically by a truncated summation, since only a finite number of terms is required to approximate a convergent series. $G(r / B, u)$ and $G(r / B, p)$ were evaluated using the Laguerre integration procedure described earlier. The numerical computational routines involving these functions were checked by generating the table published in Walton (1970), page 146. This table could be produced accurately to the fourth decimal place.

SENSITIVITY ANALYSIS

Parametric sensitivity analysis is a method of examining the stability of a mathematical representation of a dynamic system with respect to variations in the values of the system's physical parameters. The theoretical basis of this technique is outlined by Tomovic (1962), while the application to hydrologic problems has been examined by Vemuri, et al. (1969), McCuen (1973), Yukler (1976), and McElwee and Yukler (1978).

In formulating the sensitivity analysis of the leaky confined aquifer problem, the following mathematical model was used:

$$
\begin{equation*}
F\left(h_{x x}, h_{y y}, h_{r}, h ; S, T, L, Q\right)=0 \tag{7}
\end{equation*}
$$

where $h_{x x}=\frac{\partial^{2} h}{\partial x^{2}}, h_{y y}=\frac{\partial^{2} h}{\partial y^{2}}, h_{t}=\frac{\partial h}{\partial t}$
$h=$ hydraulic head,
$\mathrm{S}=$ storage coefficient,
$T=$ transmissivity,
$L=$ inverse leakage coefficient ($L=1 / B$), and
$\mathrm{Q}=$ pumpage.
The solution may be written as

$$
h=h(x, y, t ; S, T, L, Q)
$$

Variation of any single parameter such as T produces a new solution

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{~h}_{\mathrm{xx}}^{*}, \mathrm{~h}_{\mathrm{yy}}^{*}, \mathrm{~h}_{\mathrm{t}}^{*}, \mathrm{~h}^{*} ; \mathrm{S}, \mathrm{~T}+\Delta \mathrm{T}, \mathrm{~L}, \mathrm{Q}\right)=0 \tag{8}
\end{equation*}
$$

where ΔT is the incremental change in T and h^{*} is the perturbed head. The solution to this expression is of the form $h^{*}=h^{*}(x, y, t ; S, T+\Delta T, L, Q)$. The stability of the system to small changes in the
paramerer T may be expressed by

$$
\frac{\Delta h}{\Delta T}=\frac{h^{*}-h}{\Delta T}
$$

If the limit to this expression exists as ΔT approaches zero, it may be written as

$$
\begin{equation*}
\mathrm{U}_{\mathrm{T}}(\mathrm{x}, \mathrm{y}, \mathrm{t} ; \mathrm{S}, \mathrm{~T}, \mathrm{~L}, \mathrm{Q})=\frac{\partial \mathrm{h}}{\partial \mathrm{~T}}=\lim _{\Delta \mathrm{T} \rightarrow 0} \frac{\Delta \mathrm{~h}}{\Delta \mathrm{~T}} \tag{9}
\end{equation*}
$$

Also

$$
\begin{equation*}
U_{S}(x, y, t ; S, T, L, Q)=\frac{\partial h}{\partial S}=\lim _{\Delta S \rightarrow 0} \frac{\Delta h}{\Delta S} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{U}_{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{t} ; \mathrm{S}, \mathrm{~T}, \mathrm{~L}, \mathrm{Q})=\frac{\partial \mathrm{h}}{\partial \mathrm{~L}}=\lim _{\Delta \mathrm{L} \rightarrow 0} \frac{\Delta \mathrm{~h}}{\Delta \mathrm{~L}} \tag{11}
\end{equation*}
$$

which are, respectively, the sensitivity coefficients with respect to changes in S and the sensitivity coefficient with respect to changes in L .

The solution to the flow equation is assumed to depend analytically upon the independent parameters, $\mathrm{S}, \mathrm{T}, \mathrm{L}$, and Q . The function $h^{*}(x, y, t ; S, T+\Delta T, L, Q)$, which is perturbed in the parameter T, may be expanded in a Taylor's series (Tomovic, 1962). If $\Delta \mathrm{T}$ is small, all nonlinear terms can be neglected as follows:
$h^{*}(x, y, t ; S, T+\Delta T, L, Q)=h(x, y, t ; S, T, L, Q)+U_{T} \Delta T$
where $U_{T}=(\partial h) /(\partial T)$. Thus, new hydraulic heads, resulting from incremental changes in T, can be computed directly if the unperturbed head is known and U_{T} can be computed. Similar expressions may be derived for perturbation with respect to S and L :
$h^{*}(x, y, t ; S+\Delta S, T, L, Q)=h(x, y, t ; S, T, L, Q)+U_{S} \Delta S$
$h^{*}(x, y, t ; S, T, L+\Delta L, Q)=h(x, y, t ; S, T, L, Q)+U_{L} \Delta L$

These are correct to first order in ΔS and ΔL, respectively.

For this technique to be useful, it is only necessary to be able to compute $\mathrm{U}_{\mathrm{S}}, \mathrm{U}_{\mathrm{T}}$, and U_{L}, since $h(x, y, t ; S, T, L, Q)$ may be computed by previously discussed techniques. This computation may be done by analytical or numerical techniques. In this work, it was found to be convenient to obtain U_{S} and U_{T} by direct analytical means and U_{L} by a numerical method.

Recall that the basic equation describing the solution to the leaky confined aquifer is

$$
\begin{gather*}
s=\frac{Q}{4 \pi T} \int_{u}^{\infty} \frac{1}{y} \exp \left(-y-\frac{L^{2} r^{2}}{4 y}\right) d y \\
u=\frac{r^{2} S}{4 T t}, \quad L=B^{-1} \tag{2}
\end{gather*}
$$

By applying Leibnitz's rule for differentiating an integral (Hildebrand, 1962), it is easy to obtain the sensitivity coefficients with respect to S and T :

$$
\begin{equation*}
U_{S}=\frac{\partial \mathrm{S}}{\partial \mathrm{~S}}=-\frac{\mathrm{Qr}^{2}}{16 \pi \mathrm{~T}^{2} \mathrm{t}}\left[\frac{1}{\mathrm{u}} \exp \left(-\mathrm{u}-\frac{\mathrm{L}^{2} \mathrm{r}^{2}}{4 \mathrm{u}}\right)\right] \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
U_{T}=\frac{\partial S}{\partial T}=-\frac{Q}{4 \pi T^{2}} \int_{u}^{\infty} \frac{1}{y} \exp \left(-y-\frac{L^{2} r^{2}}{4 y}\right) d y+ \\
\frac{Q^{2} S}{16 \pi T^{3} t}\left[\frac{1}{u} \exp \left(-u-\frac{L^{2} r^{2}}{4 u}\right)\right]=-\frac{s}{T}-\frac{S}{T} U_{S} \tag{16}
\end{gather*}
$$

These equations may be evaluated easily by standard numerical functions on a high-speed computer once s is known.
U_{L} was computed by a direct numerical technique, rather than by formulating an analytical solution, to conserve program simplicity while retaining computational accuracy. Note that the argument of the exponential within the integral of equation (2) contains the parameter L. Hence, differentiation will transform the entire function within the integral and will define

$$
\begin{align*}
U_{L} & =\int_{u}^{\infty} \frac{\partial}{\partial L}\left\{\exp \left(-y-L^{2} r^{2} / 4 y\right) / y\right\} d y \\
& =\int_{u}^{\infty}\left\{-L r^{2} / 2 y^{2}\right\} \exp \left(-y-L^{2} r^{2} / 4 y\right) d y \tag{17}
\end{align*}
$$

Note that both U_{S} and U_{T} in equations (15) and (16) can be expressed in such a manner that, after the drawdown s is computed, no further numerical integration is required. The sensitivity with respect to leakage, U_{L} in equation (17), can be computed only by additional numerical integration that would involve the formulation of a more complex subroutine. Therefore, the decision was made to generate U_{L} by a finite difference approximation. The approximation

$$
\begin{equation*}
\partial s / \partial \mathrm{L} \approx\{s(\mathrm{~L}+\Delta \mathrm{L})-\mathrm{s}(\mathrm{~L}-\Delta \mathrm{L})\} / 2 \Delta \mathrm{~L} \tag{18}
\end{equation*}
$$

where
$s(L \mp \Delta L)=Q / 4 \pi T \int_{u}^{\infty} \exp \left\{-y-r^{2}(L \mp \Delta L)^{2} / 4 y\right\} / y \cdot d y$

Fig. 2. Radial dependence of U_{T}.
becomes increasingly accurate as $\Delta \mathrm{L}$ approaches zero. Satisfactory evaluation of U_{L} occurred for $\Delta \mathrm{L}$ set equal to .01 L . The methodology for computing the sensitivity coefficients is now complete.

DISCUSSION OF THE LEAKY AQUIFER SENSITIVITY COEFFICIENTS

The radial dependence of U_{T} is shown in Figure 2. The function diverges logarithmically near the well. U_{T} changes sign at some finite value of radius. This demonstrates the fact that when T is changed, the cone of depression deepens in some areas and shallows in others. (Note that radial distances in the figures are measured in thousands of feet. The radius r has been multiplied by 10^{-3} to give small integers.)

Figure 3 depicts the time dependence of positive values of U_{T} for variations in r and T. Note that U_{T} is inversely proportional to T. The curves represent a transmissivity of $24,331 \mathrm{ft}^{2} /$ day and $\pm 20 \%$ of that value at a radius of 100 feet and a T of $24,331 \mathrm{ft}^{2} /$ day at a radius of 1,000 feet. Note that all curves flatten after three to four days. This describes the steady condition caused by deriving the discharge Q totally from leakage.

Fig. 3. Effect of radius and transmissivity on the time dependence of U_{T}.

The radial dependence of U_{S} is shown in Figure 4. This coefficient does not diverge at the well, nor does its sign change. It is inversely proportional to S. The constancy of algebraic sign indicates that as S changes there is a general raising or lowering of the cone of depression.

The time dependence of U_{S} is presented in Figure 5. Radial variation is indicated by the presence of three curves. Each curve reaches its maximum value for U_{S} at a time directly proportional to its radial value. At some finite value of time each curve approaches zero in value, indicating that a steady state is achieved. Until steady

Fig. 4. Effect of changes in S on the radial dependence of Us.

Fig. 5. Effect of radius on the time dependence of U_{S}.
state is attained, there is a dual source supplying the pumpage, namely water released from storage and leakage. The curves roll over as leakage starts to dominate the source mechanism. U_{S} is zero outside the cone of depression and at any time after steady state is attained.

Figure 6 shows the radial dependence of U_{L}. The sensitivity coefficient U_{L} does not diverge at the well and approaches zero for large values of r. These are similar to the curves for Us.

The time dependence of U_{L} is shown in Figure 7 for two values of r. All curves grow with time until a steady state is achieved where leakage is supplying the entire discharge Q . The set of curves labeled $\mathrm{L}=.0004 \mathrm{ft}^{-1}$ and $\pm 20 \%$ of that value are of interest. Observe that at t less than .6 days, U_{L} is directly proportional to L ; while for t greater than 6 days, U_{t} is inversely proportional to L. As indicated before, Q is supplied by a dual source in the leaky artesian aquifer-water taken

Fig. 6. Effect of changes in L on the radial dependence of U_{L}.

Fig. 7. Effect of changes in L and radius on the time dependence of U_{L}.
from storage in the aquifer and water supplied by leakage through the aquitard. This dual source mechanism results in the changing dependence on L .

THE FITTING PROCEDURE

The objective of any curve-fitting technique, whether performed manually or by computer, is to fit a theoretical type curve to an experimental data set as accurately as possible, evaluating in the process a corresponding set of physical parameters. To perform this task successfully, a mechanism is required for judging the error in the fit. Classical manual curve-fitting relies basically on the best "eye ball" fit. The computer method described here allows the fitting error to be accurately and meaningfully determined as the rms error.

In order to apply the parametric sensitivity method to the fitting problem, it is necessary to define an error function

$$
E=\sum_{i}\left[s_{e}\left(t_{i}\right)-s^{*}\left(t_{i}\right)\right]^{2}
$$

where E is the summation over i discrete samples of the squared difference berween the experimental drawdown (s_{e}) and the updated drawdown (s^{*}), which is computed from the truncated Taylor's Series

$$
s^{*}=s+U_{T} \Delta T+U_{S} \Delta S+U_{L} \Delta L
$$

The argument t_{i} represents the $i^{\text {th }}$ value of time. Expansion of the squared error function, taking partial derivatives with respect to the perturbed paramerers, and setting the partial derivatives equal to zero, yields a set of three simultaneous linear equations that must be satisfied to obtain the best fir.

More specifically, for minimizing E , it is required that

$$
\begin{equation*}
\frac{\partial E}{\partial \Delta T}=\frac{\partial E}{\partial \Delta S}=\frac{\partial E}{\partial \Delta L}=0 \tag{20}
\end{equation*}
$$

The linear system of equations that results is

$$
\left[\begin{array}{llll}
\Sigma_{i} U_{L}^{2} & \sum_{i} U_{L} U_{S} & \sum_{i} U_{L} U_{T} \tag{21}\\
\sum_{i} U_{S} U_{L} & \sum_{i} U_{S}^{2} & \sum_{i} U_{S} U_{T} \\
\sum_{i} U_{T} U_{L} & \sum_{i} U_{T} U_{S} & \sum_{i} U_{T}^{2}
\end{array}\right]\left[\begin{array}{l}
\Delta L \\
\Delta S \\
\Delta T
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} U_{L}\left(s-s_{e}\right) \\
\sum_{i} U_{S}\left(s-s_{e}\right) \\
\sum_{i} U_{T}\left(s-s_{e}\right)
\end{array}\right]
$$

and can be solved explicitly for $\Delta \mathrm{L}, \Delta \mathrm{S}$, and $\Delta \mathrm{Y}$. The quantity s is the theoretical drawdown at time t calculated from the previous values of L, S, and T. The new values of the parameters are simply

$$
\begin{align*}
& \mathrm{L}_{\mathrm{i}+1}=\mathrm{L}_{\mathrm{i}}+\Delta \mathrm{L}_{\mathrm{i}} \\
& \mathrm{~S}_{\mathrm{i}+1}=\mathrm{S}_{\mathrm{i}}+\Delta \mathrm{S}_{\mathrm{i}} \tag{22}\\
& \mathrm{~T}_{\mathrm{i}+1}=\mathrm{T}_{\mathrm{i}}+\Delta \mathrm{T}_{\mathrm{i}}
\end{align*}
$$

This process continues until the values of $\Delta \mathrm{L}_{\mathrm{i}}, \Delta \mathrm{S}_{\mathrm{i}}$, and ΔT_{i} simultaneously satisfy a specified convergence criteria. The goodness of fit obtained at the termination of the last iteration is indicated by the value of the rms error

where n is the number of discrete samples of s.
The success of this methodology is dependent to a degree upon the initial estimates of the parameters S, T, and L. However, numerical experiments conducted with the most recent version of the computer program indicate that the initial estimates may be as much as three orders of magnitude above or below the final solution values and convergence will still be obrained.

In order to maintain physical reality and improve numerical stability, the algorithm requires that the parameters S, T, and L must always be positive. Furthermore, the relative increments $\Delta T / T, \Delta S / S$, and $\Delta L / L$ are never allowed to exceed 0.5 or be less than -0.2 in any one iteration. This subterfuge insures that the algorithm proceeds in an orderly fashion to the minimum error. In the tests we have run the algorithm converges to the global minimum; however, it is possible that only a

Table 1. Comparison of Aquifer Parameters for Typical Data Sets Obtained by Graphical Analysis and by Automated Analysis

$\mathrm{T}=$ Transmissivity
$S=$ Storage coefficient
$B=$ Leakage coefficient

* The values obtained by graphical analysis represent an average of three sets of data taken for different values of radius. Each data set was independencly analyzed and tabulated for the automated analysis.
local minimum will be found. By trying several initial guesses, it should be possible to find the global minimum, if there is any doubr.

APPLICATION TO TYPICAL DATA

Table 1 lists the best-fit aquifer parameter values for several data sets analyzed by fitting leaky artesian type curves, both graphically and using the technique discussed here. The data sources are listed by number in the Appendix. The lower case letters indicate that data was taken for different observation wells at the same pumping test, or that several independent pumping tests were listed in the same source. The principal feature of this table is the quite good agreement between the automared-analysis values and the graphicalanalysis values. All values are well within the same order of magnitude; in fact the differences are not over 35% and most of them are in the $10-20 \%$ range. The largest rms error is about .4 feet
for set 4 a . The smallest rms error is .007 feet for data set 1 . Note that data sets with the lowest rms error do not necessarily have the closest agreement between sets of parameters. This fact is related to the sensitivities of the various parameters and the subjectivity of a graphical fit.

Table 2 is a comparison of parameter values derived from data sets analyzed by a confined aquifer model and by a leaky artesian model. Although the rms errors are satisfactory, there is a discrepancy of several orders of magnitude in the storage value for example 6 . These examples demonstrate the fact that imperfect data can still lead to convergence in this algorithm. This points out that in addition to analyzing the drawdown curve from an aquifer test one must carefully examine the hydrogeology of a site because of the ambiguity of analyzing real data by theoretical curves. A compilation of the data sources referenced in Tables 1 and 2 is contained in the Appendix.

DISCUSSION AND SUMMARY

This paper has set forth a methodology for analyzing the leaky artesian-aquifer pumping test by using a numerical regression algorithm built on sensitivity analysis. A by-product is the solution to the drawdown equation.

The algorithm presented in this paper has proven consistently its ability to converge to the "correct" set of aquifer parameters for a typical data set. In this case "correct" means the values obtained by manual curve matching methods for real data, or the values used in generating the hypothetical data. These best-fit values are achieved over a range of initial estimates ranging from three orders of magnitude above to three orders of magnitude below the converged values. The number of iterations is reduced as the estimated parameter values approach the true values. For typical data sets the rms error tends to be only a few tenths of a foot, while for fairly idealized sets of data, the

Table 2. Comparison of Data Analyzed Two Ways (Nonleaky and Leaky)

Data Source Code	Confined Aquifer Values	Leaky Aquifer Values	Leaky ms Error
	$\mathrm{T}=44000 \mathrm{gpd} / \mathrm{ft}$	$\mathrm{T}=42000 \mathrm{gpd} / \mathrm{ft}$	
5	$\mathrm{~S}=.00046$	$\mathrm{~S}=.00044$	0.240 ft
	$\mathrm{B}=0 \mathrm{ft}$	$\mathrm{B}=8600 \mathrm{ft}$	
	$\mathrm{T}=42000$	$\mathrm{~T}=9800$	
6	$\mathrm{~S}=.00004$	$\mathrm{~S}=.0045$.036
	$\mathrm{~B}=0$	$\mathrm{~B}=65$	

rms error is a few hundredths of a foot. Iterations can be reduced by increasing the size of the acceptable error criteria, but only at the cost of increased rms error. Memory size and computing time are relatively small for this algorithm. The typical analysis costs only a few dollars or less.

If the data diverges too much from ideal data, convergence may not occur. In this case, if convergence does occur, the rms error may be unacceptable. Although this algorithm gives a unique solution to any data set for which it can achieve a converged set of values, it cannot distinguish absolutely between different types of aquifers. Since the three degrees of freedom (three aquifer parameters) give the algorithm considerable latitude in achieving convergence, an imperfect data set may be run successfully and a set of values for transmissivity, storage, and leakage produced. This fact points to several cautions. First, only the best data available should be analyzed. Second, the geohy. drology should be examined carefully by experienced personnel to aid in classifying the aquifer type. Third, if doubt exists about the validity of the converged values, the rms error value should be noted and individual best-fit drawdowns should be compared to the field data for gross deviations. While this type of automated analysis can ease the burden of the hydrologist, it does not appear that it will reduce his role.

REFERENCES

Abramowitz, M., and I. A. Stegun. 1968. Handbook of Mathematical Functions. Dover Publications, New York. p. 231.
Cobb, P. M., C. D. McElwee, and M. A. Butt. 1978. Leaky aquifer paramerer idencification by sensitivity analysis. Transactions of the American Geophysical Union. v. 60 , no. 6, p. 67.

Hanrush, M. S. 1949. Plain pocential flow of ground water with linear leakage. Doctoral dissertation, University of Utah.
Hantush, M. S. 1960. Modification of the theory of leaky aquifers. Journal of Geophysical Research. v. 65 , no. 11, pp. 3713.3725.
Hantush, M. S., and C. E. Jacob. 1955. Non-steady radial flow in an infinite leaky aquifer. Transactions of the American Geophysical Union. v. 36, pp. 95-100.
Hildebrand, F. B. 1962. Advanced Calculus for Applications. Prentice-Hall, Englewood Cliffs, New Jersey, p. 360.
Jacob, C. E. 1946. Radial flow in a leaky artesian aquifer. Transactions of the American Geophysical Union. v. 27. pp. 198-208.

Kreysig, E. 1972. Advanced Engineering Mathematics. John Wiley and Sons, Inc., New York. pp. 329-331.
McCuen, R. H. 1973. Component sensitivity: a tool for the analysis of complex water resources systems. Water Resources Research. v. 9, no. 1, pp. 243-246.
McElwec, C. D. 1980a. Theis parameter evaluation from
pumping tests by sensitivity analysis. Ground Water. v. 18, no. 1, pp. 56-60.

MeElwee, C. D. 1980b. The Theis equation: evaluation, sensitivity to storage and transmissivity, and automated fit of pump test dara. Kansas Geologicat Survey, Groundwater Series No. 3. 39 pp.
McElwee, C. D., and M. A. Yukler. 1978. Sensitivity of groundwater models with respect to variations in transmissivity and storage, Water Resources Research. v. 14, no, 3, p. 451.

Neuman, S. P., and P. A. Witherspoon. 1969a. Theory of flow in a confined two aquifer system. Water Resources Research. v. 5, no. 4, pp. 803-816.
Neuman, S. P., and P. A. Witherspoon. 1969b. Applicability of current theories of flow in leaky aquifers. Water Resources Research. v. 5, no. 4, pp. 817-829.
Tomovic, R. 1962. Sensitivity analysis of dynamic systems. McGraw-Hill, New York. 141 pp.
Vemuri, V., J. A. Dracup, R. C. Erdmann, and N. Vemuri. 1969. Sensitivity analysis method of system identification and its potential in hydrologic research. Water Resources Research. v. 5, no. 2, pp. 341-349.
Walton, W. C. 1970. Groundwater Resource Evaluation. McGraw-Hill, New York. 664 Pp.
Yukler, M. A. 1976. Analysis of error in groundwater modeling. Ph.D. dissertation, The University of Kansas. 182 pp.

Patrick M. Cobb received B.S. degree in Geophysics in 1976 and M.S. degree in Water Resources Science in 1980. both from the University of Kansas. The thesis topic was natural salt-water intrusion in the Great Bend Prairie in south-central Kansas. Since 1979 be bas been employed by the Kansas Geological Survey in the Geohydrology Section. The bydrology of the Great Bend Prairie and applied numerical modeling are continuing topics of interest. Carl D. KcElwee graduated in 1965 from William

Jewell College with a B.A. in Physics. He received M.A. and Ph.D. degrees from the University of Kansas in 1967 and 1971, respectively. His research area was solid-state physics. From 1971 to 1974 be worked for Texaco, Inc. in Houston. Texas as a research geophysicist. Since 1974 be bas worked for the Kansas Geological Survey in the Geobydrology Section. His area of special interest is ground-water models. Munir A. Butt graduated in 1969 from Regional Enginesring College, Kashmir, with B.E. (Civil). He received M.E. degree from Roorkee University, India in 1973 and M.S. degree in Water Resources Engineering from the University of Kansas in 1977. From 1969 to 1975 be worked as Assistant Engineer, Kashmir Irrigation and Flood Control Department. Presently, be is at the University of Kansas and works as research assistant for the Kansas Geological Survey in the Geobydrology Section.

APPENDIX. TEST DATA SOURCES

1. Groundwater Resource Evaluation. Walton, W. C. McGraw-Hill. 1970. (page 286, Problem 4.j.)
2. Cooper, H. H. 1963. In Ground Water Hydraulics. Lohman, S. W. 1972. USGS Prof. Paper 708. (page 31, Table II.)
3. Illinois State Water Supply, Builetin 49. Walcon, W. C. 1962. Department of Registration and Education, Urbana, Ill. (page 32, Table 5.)
4. Aquifer test in the Ogallala Formation (26-37-21ddd). Gutentag, E. D. 1965. USGS, Garden City, Kansas. (USGS data file.)
5. Results of aquifer tests in the Wellington Aquifer near Salina, Kansas. Gillespie, J. B. 1979. USGS, Lawrence, Kansas. (unpublished data.)
6. Pump test data at Test Well \#1. (In Groundwater Resources Investigation of the Spratt Site for Sunflower Electric Cooperative.) 1977. Burns and McDonnel Consultants, Kansas City, Missouri.

FIELD REPORTS

NUMERICAL METHOD OF PUMPING TEST ANALYSIS USING MICROCOMPUTERS

by K. S. Rathod and K. R. Rushton ${ }^{\text {a }}$

Abstract. This paper describes how a numerical method of pumping test analysis, which has proved to be useful in many practical situations, can be run on microcomputers. Full details of a program in BASIC and a test problem are provided. The need to perform all the calculations to a sufficient accuracy is stressed, and the choice of suitable mesh spacings and time sreps is discussed.

Introduction

A numerical technique of representing the radial flow towards a pumped well (Rushton and Redshaw, 1979) has proved to be valuable in analysing and interpreting pumping test data. Features that can be included in this approach include well storage, boundary effects, variable saturated depth, leakage, delayed yield, variations in hydraulic conductivity and storage coefficient with depth or radius, and variable abstraction rates. Examples of particular studies include gravel aquifers (Rushton and Booth, 1976), sandstone aquifers with delayed yield (Rushton and Chan, 1977), artesian overflowing boreholes (Rushton and Rathod, 1980), test in which data are only available in the pumped well (Rushton, 1978), long-term tests lasting up to 70 days (Gonzalez and Rushton, 1981), and pumping tests in largediameter wells (Rushton and Holt, 1981).

The basis of the numerical approach is to solve the time-variant differential equation using a finite difference approach in which the radial dimension is divided into discrete intervals which increase logarithmically from small values near the

[^3]well to large values towards the boundary. The time dimension is also divided into discrete steps which increase logarichmically. This leads to a set of simultaneous equations for each time step; these equations can be solved using an elimination routine. Details of the technique including a program in FORTRAN can be found in Rushton and Redshaw (1979).

With the increasing availability of inexpensive microcomputer systems, it is advantageous to transfer this program to run on these computers. There are, however, certain limitations of these microcomputers when they are used for complex scientific calculations. The authors have been in correspondence with a number of workers who have attempted to prepare microcomputer programs for this numerical model, and several have encountered major difficuities.

This paper presents a version of the numerical model program written in BASIC. It has been tested thoroughly on a Radio Shack TRS 80 system but, because there are crucial differences between the accuracy of working and operation of the various systems, sufficient information about a typical problem is presented to enable independent checks to be made. Possible difficulties in computation are highlighted, and the importance of small radial mesh spacings and time increments is discussed.

Numerical Model

In this section a brief summary of the formulation of the numerical model is given; full details including a derivation from the differential equation are given by Rushton and Redshaw (1979). The symbols used in this section are chosen to coincide with those used in the BASIC program (Figure 1).

0010	REM: ****************************
0015	REY: NUMERICNL MODEL FOR RADIAL ROH TO A hell
0020	REM: K,R. RUSHTON.
0025	rem; for given trial parameters for an aquiftr,the model
0030	rem:calculates drampolns in tie mpuifer.jith these
0035	rem:drahdowns and field onservailons successively better*
0040	remetstimates of the aquifer paraneteas can be made and
0045	REM: SEMSITIVITY andysis earrieo out. vartous features
0050	reat such as hell loosse, well storace, lencage etc. can be
0055	REM:EASILY INCLUDED [N THE MODEL.
0060	REM: ***
0065	rem: ** this version ts Conficured to suite
0070	rem: ** radto shace irs-80 microconputer system
0075	
0080	REM!!!! tnput tnitial gonoitions
0085	REx!!!!!!****!!!!!!*****!!!!!!*****!!!!!!*****!!!!
0090	REM:P-PERY, Sl-CONFINED STORAGE AND S7-LiNCONFLNED STORAEE
0095	REm:RI-WELL RNDIUS,R9-RADIUS to outer givipary
0099	DEFINT I,J,K, M, N ; DEFORL A-H,L,0-2
0200	
0105	
0110	
0115	
0120	
0125	REM:TESFOLD Incricase in radial distaice.
0130	C-1.5848932000
0135	R3-RL
140	$\mathrm{N} 1-2$
45	$\mathrm{Nl} \mathrm{Nl}_{1}+1$
50	R3-R3* ${ }^{\text {c }}$
0155	IF RU<R9 THEN COTO 0145
0160	rem: dectare dimensions for the variables.
0165	DIM R(NL), R2(NL), D(NL), OL (NL), S(N1), $\mathrm{H}(\mathrm{NL}), \mathrm{Q}(\mathrm{NL})$
0170	OIM U(N1), V(NL), 01(4), 02(4)
0175	REM: R-RADIAL DISTANCE, R2-R*R, D-DRaWDOL
0180	REM: Di*DRAWDOLN FROM PREVIOUS TILE STEP.
0185	REY: S-Itre/storage coeff. heEquiv. hyd. resistance.
0190	rem:ql-richarce. U and V cottr. used in caussin
0195	rem: elimination routine, ol and oz location of four
0200	rem:obh's and dramdons at these boreholes.
0205	rem:chlculate radial distances for thi resh points
0210	R(1)=RL/C
0215	22(1)=n(1)**(1)
0220	FOR N=2 to NL
0225	$\mathrm{R}(\mathrm{N})=\mathrm{C} * \mathrm{R}(\mathrm{H}-\mathrm{l})$
0230	
0235	NEXT N
24	R(NL) $=$ R9
0245	
0250	N 2 - $\mathrm{NL}-1$
0235	N3-N2-1
0260	rem: a is maturn log of the ratio of
0265	REM: THO SUCCESSIVE RADIL. A2-A*A
0270	1*4,605170-01
0275	A2-A*A
80	REM:UL-TOP AND LI-BASE OF AQUIFER; WWhater liveliolnrech
0285	INPUT "TOP, BASE,RM, RECH"; UL,LI,H,QI
0290	remilnitialize arrays
0295	ron wel To nl
0300	$Q(N)=$ Qt
0305	$D(N)=\mathbb{L}$
0310	D1(N) W
0315	next y
0320	
0325	lprint using base of aquifer- -ftioti;lt
0330	
0335	lprint uslyg recharces \#of.uficiol
0340	REM: Read I for recharge boundany or 2 for imperfeable.
0345	input "recharce boundary=1, IMPERIEABLE=2"; 11
03s0	if Ji*l thên Lprint ***** recliarle boundaky ******
0355	IF Jlく> then lprint ***** thprreable goundary n****-
0360	REM: INPUT iode nos. of fouk obseryatiun mells.
0365	thput "rour oaservation nodes ${ }^{-}$; O1(1),01(2),01(3),01(4)
0370	Reg:pl-punpinc rate, t9-operation tire for the phase
0375	rem; data for next puiping phase cas be provided here
0380	input "ctue pumping kate and dukation'ipl,tg
0385	cosus 7000
0390	tr Pl<0.0000 then stop
0395	REM: CONVERT PL TO PZ For use in calculations
0400	REM: $\mathrm{P} 2 \times \mathrm{Pl} /\left(2 * \mathrm{PI}{ }^{*} \mathrm{~A}\right)$
0405	
0410	cosus 8000
0415	rem:t-gurrent tie,t9-time fot milit phase operates
0470	REM:II-LOO FOR THE LASt tide 5tep, othenulse zeko.
0425	11-0
0430	T=0.0000
0635	remiset initlal time step such that u<1,o at well face.
0440	T0*2.5D-01*R2(2)*51/(P*(LL-U1))
0445	tr TO>1.00-06 THEN TO=1.00-06
1000	REM:
l00s	REm!!!!!!*****!!!!!!*****!!!!!!*****!!!!!!******!!!!
1010	Rem!!!!!! calcilations for each tine step n*****!!!!!
1015	REM!!!!!!*****!!!!!*****!!!!!!*****!!!!!******!!!!
1020	Rem:
1025	T-T + 50
1030	[F T<T9 Tilin coto 2000
1035	remitine ster just before tue end of the phase is teached.
1040	rem:last that step for the curami phase.
1045	T0-T9-(T-T0)
1050	T-79
1035	11-100

1060 REM: LOOP K, K2 TIRES FOR CONVERGENCX
1065 REM: FOR UNCONFINED CONDITION K2 SHOULD EQUAL FOUR BUT
1070 REM: TO ECONOMISE, $K 2$ IS SET TO ONE.
1075 REM: Z - AVERAGE SATURATED THICXHESS FOR a NODE.
$2000 \mathrm{kz}=1$
2005 FOR K*1 to K2
2010 FOR Nal TO N2
2015 RCM:SELECT APPROPRLATE STORAGE COEFF. DEPENDING
2020 REH:ON WHETHER THE CONDITIOH IS CONF. OR UNCONF
$2025 \mathrm{z}+\mathrm{Lt}-0.50000 *(\mathrm{D}(\mathrm{N})+\mathrm{D}(\mathrm{N}+\mathrm{l}) \mathrm{O})$
S3- $\$ 2$
$\$ 3+\$ 2$
$t Y Z<(L L-U L)$ THEN COTO 2050
$2=12-01$
\$3-\$1
$H(N)=A 2 /\left(Z^{*} P\right)$
$\mathrm{S}(\mathrm{N})=\mathrm{TO} /(\mathrm{S} 3 * \mathrm{R} 2(\mathrm{~N}))$
NEXT N
REM:MOOTFY GOEFILCIENTS TO TAXE INTO ACCOUNT
REM:WELL STORAGE AND CONDITION SEAR WELL FACE.
H(1)-1.00-04 H(1)
S(1)-2.0DOO*TO*A/R2(2)
5(2) $-2.0000=5(2)$
KEM: MODIFY COEFF.S FOR CONDITION ON OUTER SOUNDARY
$H\left(N_{2}\right)=(\operatorname{LOG}(R(N 1) / R(N 2))) *(\operatorname{LOC}(K(N 1) / R(N 2))) /\left(Z^{*} \#\right)$
$H(N L)=1.0 D+10$
$S(N 2)=2.0 D 0=T 0 * A /(R(N 1)-R(N 2-1)) * S 3 * R(N 2))$

REM:LARGE STORACE ON LAST NODE IF IT IS RECH. BOUNDARY
IF JIF1 THEN S(N1)-1, OD-10
REM:
REM: GAUSSTAN ELIMTNATION
U(2)=2.0000/H(1)+1.0000/s(1)
$v(1)=01(1) / S(1)+P 2$
FOR Ne2 to Nz
$\mathrm{U}(\mathrm{N})+1.0 \mathrm{DO} / \mathrm{H}(\mathrm{N}-1)+1.000 / \mathrm{H}(\mathrm{N})+1.000 / \mathrm{S}(\mathrm{N})$
$U(N)=U(N)-(1.000 / H(N-1)) *(1.0 D 0 / H(N-1)) / U(N-1)$
$V(N)=D(N) / S(N)-R 2(N) * Q(: i)+(1 . O D O / H(N-1) * V(N-1)) / U(N-1)$
NEXI S
$V(N 2)=D L(N 2) / S(N 2)-0.5 D 00 * R(N 2) *(R(N 1)-R(N 3)) \neq Q(N 2) / A$
$V(N 2)=V(N 2)+(V(N 3) / H(N 3)) / U(N 3)$
$U(N L)=1.0000 / 11(\mathrm{~N} 2)-1.0000 / 5(\mathrm{Ni})$
$U(N L)=U(N 1)-(1.0 D 00 / H(N 2)\rangle=(1.0 D 00 / H(N 2)) / U(N 2)$

$V(N 1)=V(N 1)+(V(N 2) / H(N 2)) / U(N 2)$
REM:
REM:
O(NL) $=V(N L) / U(N L)$
FOR J=1 TO N2
$\mathrm{N}=\mathrm{N} 2+\mathrm{J}+1$
$O(N)=(V(N)+1.000 / H(N) * D(N+1)) / U(N)$
NEXT J
REM:IF DRAUDOLN IN THE WELL BELOW THE TOP OF AQUIFER
REM: REACHES MORE THAN 907 OF AQUIFER THICXNESS THEN
REM:TRE VELL RUNS DRY AND TEE PROGRAM 5 TOPS.
IF D(l) < (9.00-01*t $+1.0 \mathrm{D}=01 * \mathrm{UL})$ tHEN COto 1135
LPRINT "*** EXCESSIVE DRAWDOWN ****
cosus 9000
STOP
NEXI X
REM: DRAWDOWNS AI FOUR OBSERVATION BOREHOLES
FOR M=1 T0 4
$\mathrm{KL}=\mathrm{Ot}(\mathrm{H})$
$02(M)=0(K 1)$

3530 RER: FRNSSFER VALUES OF DRAWROHNS TO OLD DRANDOUNS.
3535 FOR :- -1 IO $W 1$
$3540 \quad 01(N)=U(N)$
3545 NEXT N
3550 REM:
3555 REM1!!!! ! *****!!!!!!*****!!!!!!*****!!!!!!*****!!!!
3560 REM!!!!!!** END OF GALCULATION FOR ONE TIME STEP :!!!

3579 REM*
3575 RER:
4000 REM: CNLCULATE NEH TIHE STEP
4005 TOT T ${ }^{0} 0.5848932000$
4010 IF If $=0$ THEN COTD 1025
4015 costil 9000
4020 coto 0380
4020 coto

7020 LPRINT USING FOR N.194--* DAYS - : T9
1030 RETLK
$\$ 000$ FOR Yel to 4
$8010 \mathrm{Ki}=01(\mathrm{M})$
$8020 \quad 02(4)=R(X 1)$
8030 NसT :
8040 LPRL: TT TIME(DAYS) ":

8060 RETCRS
9000 LPRINT
9010 LPRL:IT "NODE RADIUS RAOIUS HORLZ.HYD";
9030 LPRLST - 10

9040 LeRLST coEffict
9090 FOR :iel to NL

9070 LPKINT USISG" $\quad ; R(N), R 2(N), H(K), 5(N), 01(N)$
9090 NEXI :
9090 RETHEN

Fig. 1. Program in BASIC.

Discrete Space Mesh

As water is pumped from a well, the water level in the well falls and the influence within the aquifer is reflected by reductions in the groundwater heads. Consequently, in a pumping test, ground-water heads change with radial distance from the pumped well and with time.

It is convenient to define ground-water heads at a series of radial distances from the pumped well axis. Since rapid changes occur close to the pumped well with slower changes ar larger radii, the spacing between the mesh (or nodal) points, where the heads are defined, increases logarithmically.

If the radius of the well is 0.15 m , it is possible to have five mesh intervals berween the well face and 1.5 m . Thus the nodal positions are $0.15 \mathrm{~m}, 0.2377 \mathrm{~m}, 0.3768 \mathrm{~m}, 0.5972 \mathrm{~m}, 0.9464 \mathrm{~m}$, and 1.5 m . Between 1.5 m and 15 m there are a further five intervals, and the same pattern is repeated berween 15 m and 150 m , and between 150 m and 1500 m . If the outer boundary is at 2000 m , this is taken as the last nodal point.

In the mesh, each radius is $10^{0.2}$ times the preceding one. This mesh can be generated by statement number 225 of the program

$$
R(N)=C^{*} R(N-1)
$$

where $C=10^{0.2}$. In the example to be described in detail later, the final nodal point is $\mathrm{N}=23$, $R=2000 \mathrm{~m}$. Node $\mathrm{N}=1$ represents the water within the well and can be used to simulate the well storage.

Discrete Time Steps

Just as drawdowns are calculated at a series of increasing radii from the well, the times at which the drawdowns are calculated also increase logarithmically. A very small time increment, T 0 , is used initially so that at the well face the standard parameter $u=r^{2} S / 4 T t=1.0$. In several of the examples quoted in this paper, five time intervals for a tenfold increase in time are used.

Lumping Model

It is helpful to introduce a lumping model which summarizes the numerical technique. Figure 2 (a) indicates how the area is divided into a discrete mesh, and three typical nodes $\mathrm{N}-1, \mathrm{~N}$ and $\mathrm{N}+1$ are drawn schematically in Figure 2(b). The radial distances from the pumped well to these nodes are $R(N-1), R(N)$, and $R(N+1)$, respecrively.

The resistance to flow caused by the transmissivity of the aquifer is represented by equiva-
lent hydraulic resistances $\mathrm{H}(\mathrm{N}-1)$ and $\mathrm{H}(\mathrm{N})$. These hydraulic resistances can represent both changes in the saturated depth and variations in hydraulic conductivities with saturated depth.

In addition to the horizontal flow of water, another component of the flow balance is the recharge. This can be simulated as a lumped inflow with the quantity at node N depending on the square of the radius.

A further inflow, similar to the recharge. is the water released from storage. During a time step from time T to time $\mathrm{T}+\mathrm{T} 0$ where T 0 is the time increment (usually written as Δt), the drawdown at node N increases from $D 1(N)$ to $D(N)$. The quantity of water released from storage depends on the change in head, the area represented by the node, the time increment, and the storage coefficient. Consequently, a time/storage coefficient can be introduced with $\mathrm{S}(\mathrm{N})=\mathrm{TO} /(\mathrm{S} 3 * \mathrm{R} 2(\mathrm{~N})$) where $\mathrm{R} 2(\mathrm{~N})$ signifies the square of the radius. S 3 is the appropriate storage coefficient, either confined or unconfined. Since the radii can vary from 0.15 to 2000 m in a typical problem, the factor $\mathrm{S}(\mathrm{N})$ varies

Fig. 2. Derivation of numerical model (a) section showing hydraulic problem with mesh subdivisions and (b) equivalent hydraulic parameters for the discrete model.

Table 1. Main Sections of the Program

Statement numbers	Section of program
10-200	Description of program; input of aquifer dimensions and parameters.
205. 365	Set up radial mesh; specify initial drawdowns and condition on outer boundary. Select observation well positions.
370. +45	Input pumping rate and duration of phase; calculate initial time step.
1000-2125	Calculation for time increment; determine sarurated depth and equivalent hydraulic parameters.
3000-3575	Gaussian elimination; stop if drawdown is excessive; output heads at observation wells.
+000-4020	Either perform calculation for another time step or at the end of the phase print full output. Read in data for next phase.
7000-9090	Printing subroutines.

by about eight orders of magnitude. This can lead to computational difficulties.

Further Features

There are many other features that can be represented in the model including well storage, well losses, varying abstraction rates, changes between the confined and unconfined states, leaky aquifer behaviour, delayed yield, and different conditions on the outer boundaries. The inclusion of these features in the numerical model is described by Rushton and Redshaw (1979).

Solution of Equations

Referring to Figure $2(\mathrm{~b})$, the drawdowns $D(N-1), D(N)$, and $D(N+1)$ are unknowns, but the drawdowns $\mathrm{D} 1(\mathrm{~N})$ were calculated at the previous time step. Consequently, when a flow balance is written for node N , there are three unknowns. This is repeated at each nodal point; therefore, a set of simultaneous equations result. These equations can be solved using a simple elimination routine.

The only drawback of this elimination routine is that errors can occur if the arithmetic is not carried out to a sufficient accuracy. Consequently, double precision arithmetic is used which, for this particular computer, means that variables are handled in the computer to accuracy of 16 significant figures, whereas single precision only uses 6 significant figures.

Computer Program

Detailed comments and explanations are made within the program listing (Figure 1). However, Table 1 has been prepared to identify the main sections of the program. The accuracy of the program will be discussed later.

Particular Example

When ascertaining whether a program is correct, it is helpful to have an example against which checks can be made. This section describes an example which tests most aspects of the program. Figure 3 sketches the problem.

An aquifer, which is initially confined, has a well of 0.15 m radius and extends to an outer recharge boundary at 2000 m . The initial position of the ground-water head is chosen as datum, and all depths and drawdowns are measured vertically downwards. Thus, the confining layer is at 2 m below the initial ground-water head, and the base of the aquifer is at 12 m . The hydraulic conductivity is $65 \mathrm{~m} / \mathrm{d}$ giving an initial transmissivity of $650 \mathrm{~m}^{2} / \mathrm{d}$. Due to an abstraction rate of $2500 \mathrm{~m}^{3} / \mathrm{d}$, the ground-water heads fall, and the region in the vicinity of the well becomes unconfined with the storage coefficients changing from confined values of 0.0001 to the specific yield of 0.01 .

Fig. 3. Typical problem (a) with change from confined to unconfined conditions and (b) drawdown results for 1 min and 7.2 hours plotted against logarithm of radius.

Table 2. Input Data for Computer Program

6.50D01,0.10D-03,0.10D-01,1.5D-01,2.0004
2.0D00,1.2DO1,0.0D0O,0.0D00
1
7,12,17,22
2.50D03,3.0D-01
0.00D00,1.0000
-1.0D00,2.0D00

Input data to the program is listed in Table 2, and this is repeated as the first seven lines of the outpur in Table 3. Referring to Table 2, the third and fourth numbers of line two indicate that the initial drawdown is zero and that there is no recharge. The third line records that there is a constant head on the outer boundary which will provide a varying recharge depending on conditions within the aquifer. An impermeable boundary is indicated by $\mathrm{J}=2$. The abstraction tate of 2500 $\mathrm{m}^{3} / \mathrm{d}$ for 0.3 days is followed by a recovery phase of 1.0 day; this is indicated by lines five and six. The last line with negative abstraction rate signifies the end of the calculations. Full details of the drawdown variation with time are provided at nodes $7,12,17$, and 22 which correspond to the radial distances of $1.5 \mathrm{~m}, 15 \mathrm{~m}, 150 \mathrm{~m}$, and 1500 m from the pumped well.

A complete output of the first phase is presented as Table 3. The first part of the printout records the input data; the main section records time-drawdown data at the well, four observation wells, and the outer boundary. At the end of the printout is a detailed record of the coefficients used in the calculation for the final time step. Certain important features should be noted.
a. As the drawdown in the well exceeds 2.0 m after a time of 0.865×10^{-4} day, the storage coefficient at that node changes from 10^{-4} to 10^{-2}.
b. After a time of 0.3 day, the unconfined region spreads beyond 37.68 m (see the section at the bottom of Figure 3). This is reflected by a discontinuity in the values of the time/storage coefficient.
c. A consequence of the aquifer becoming unconfined is that the saturated depth decreases. This results in increases in the horizontal hydraulic resistances for nodes 2 to 14 . The nonstandard values at nodes 22 and 23 occur because of the modification of the mesh intervals at the boundary.
d. At the outer boundary the condition is zero drawdown. The drawdown according to the computer program is 0.146×10^{-9} which, com-
pared to a drawdown of 0.0967 m at the next node into the aquifer, is effectively zero.
e. As indicated in the sketch of Figure 3, the well-water level coincides with the level within the aquifer; therefore, the seepage face is ignored. However, the effect of the seepage face could be included by increasing the horizontal hydraulic resistance between nodes 2 and 3 by a factor of abour five. This can be achieved by including an extra statement in the program

$$
2077 \mathrm{H}(2)=5.0 \mathrm{D} 00^{*} \mathrm{H}(2)
$$

Table 3. Part of Output from the Program Using Data of Table 2

Accuracy

As with all numerical solutions, errors do arise and it is not always clear whether the errors are acceptable. Errors can arise because the numerical method is unreliable, because the size of the mesh intervals or time steps is too large, or because of limitations due to the computer.

Microcomputer Errors

Microcomputers do not usually have the same arithmetic accuracy as large computer systems. For instance, the accuracy of the TRS 80 on single and double precision is illustrated by the numbers 1.123456 and 1.123456789012345 . However, the accuracy to which arithmetic is performed can vary from one computer to another. In most microcomputers the arithmetic is performed by software, and information is not usually available about the accuracy of the software arithmetic. In particular, it is advisable to avoid the routine which raises a variable to a power.

Certain problems were solved using single and double precision. For some of the problems there was little difference between single and double precision but for other problems, single precision produced drawdowns which were only one-third of those for double precision. Such errors could be anticipated when note is taken of the wide range of magnitudes of the time/storage coefficients of Table 3.

Theis Solution

The exact Theis solution is a good check on the accuracy of the computer simulation. By taking a small well radius of, say 0.0001 m , and a large outer radius of 100 km and ensuring that confined conditions apply, the assumptions of the Theis solution can be met in the numerical model. Comparisons can then be made with the analytical results. Particular attention should be paid to the earlier times when the Jacob approximation is not valid. Errors in $W(u)$ should all be less than 0.1 when there are five mesh intervals for a tenfold increase in radius and five time steps for a tenfold increase in time. In practical problems the number of mesh and time intervals can be crucial.

Mesh and Time Interva/s

Certain workers using this numerical model for pumping test analysis have obtained inadequate results because they have used radial increments or time increments that are too large. The increments used in the program presented here are the maximum acceptable. For certain problems such as

Table 4. Selected Results for a Leaky Aquifer, Transmissivity $650 \mathrm{~m}^{2} / \mathrm{d}$, Storage Coefficient 10^{-4}, Well Radius 0.15 m , Leakage Coefficient 60 m , Abstraction Rata $2500 \mathrm{~m}^{3} / \mathrm{d}$

No of mesh intervals per decade	20	5	2.5
No. of time steps per decade	20	5	2.5
Time (days)	Drawdown (m) at 15 m from pumped well		
8.65×10^{-5}	0.2317	0.2296	0.2275
5.46×10^{-4}	0.8231	0.8166	0.8188
1.37×10^{-3}	0.9326	0.9407	0.9609**
3.44×10^{-3}	0.9438	0.9457*	0.9307^{*}
8.65×10^{-3}	0.9438	0.9435*	0.9436*
5.46×10^{-2}	0.9444*	0.7256^{*}	1.664*
1.37×10^{-1}	1.698*	0.5255*	0.5211**

* Values exhibiting instabilities.
large-diameter weils, significant decreases in saturated depth, leaky aquifers, and delayed yield, particular care needs to be taken.

Table 4 contains results for a leaky aquifer solution with a variety of mesh and time intervals. Before the steady drawdown of 0.9438 is reached adequate results were obtained, but when there are only 2.5 intervals per decade in time and space, instabilities occur quickly. Even with 20 intervals per decade in time and space, instabilities eventually arise. These instabilities occur because of the sensitive balance between the water leaking through the overlying strata and the abstraction.

For delayed yield problems a response similar to that of a leaky aquifer occurs with the drawdown increasing only slightly with time. Using the approach suggested by Rushton and Redshaw (1979) for the inclusion of delayed yield, adequate results can be obtained provided that five mesh intervals and five time increments are used for each tenfold increase in radius and time.

To summarize the requirements for adequate accuracy, the computer program should use double precision throughout, even for constants such as 1.0. The minimum number of intervals for a tenfold increase in both space and time should be five. Only three statements need to be changed to modify the size of intervals.

1. If n is the number of mesh intervals per tenfold increase in radius

$$
\begin{array}{ll}
\text { Statement } 130 & C=10^{(1 / n)} \\
\text { Starement } 270 & A=\ln (10) / \mathrm{n}
\end{array}
$$

2. If there are t time intervals per tenfold
increase in time, the factor in statement +005 is modified to $10^{(1 / t)}-1.0$.

Conclusions

Provided that sufficient care is taken, it is possible to carry out a pumping test analysis using numerical methods on microcomputers. It is essential, however, to check the program thoroughly since the accuracy of computation varies for different microcomputer systems. A typical problem which is designed to test the accuracy of the computation is presented.

Details are presented in the references listed at the end of this paper. The use of this numerical model is both for the analysis of pumping tests which are difficult to interpret using conventional methods, and for the prediction of the likely response due to extensive pumping from an aquifer.

References

Gonzalez, Maria del Mar and K. R. Rushton. 1981. Deviacions from classical behaviour in pumping rest analysis. Ground Warer. v. 19, no. 5. pp. 510.516.
Rushton, K. R. 1978. Estimating transmissivity and storage
coefficient from abstraction well data. Ground Water. v. 16, pp. 81-85.

Rushton, K. R. and S. J. Booth. 1976. Pumping test analysis using a discrete time-discrete space numerical method. Journal of Hydrology. v. 28, pp. 13-27.
Rushton, K. R. and Y. K. Chan, 1977. Numerical pumping test analysis in unconfined aquifers. ASCE, no. IR1, pp. 1-12.
Rushton, K. R. and S. M. Holt. 1981. Estimating aquifer parameters for large-diamerer wells. Ground Warer. v. 19, pp. 505-509.

Rushton, K. R. and K. S. Rathod. 1980. Overflow tests analysed by theoretical and numerical methods. Ground Water. v. 18, pp. 61-69.
Rushton, K. R. and S. C. Redshaw. 1979. Seepage and Groundwater Flow. Wiley, Chichester. 332 pp .
K. S. Rathod received bis B.E. (Civil) degree from the M.S. University, Baroda, India, and bis W.Sc. degree from the Strathclyde University, Glasgow. He is currently involved in ground-water modeling work th the University of Birmingham, England.
K. R. Rusbton is Professor of Civil Engineering at the University of Birmingham. He bas been involved in developing both analogue und digital modeling techniques in ground-water flow.

FIELD REPORTS

COMPUTING DRAWDOWN DISTRIBUTIONS USING MICROCOMPUTERS

by James M. King ${ }^{\mathbf{a}}$

Abstract

Using known or estimated values of transmissivity and storativity, the distribution of drawdowns at any time within a discretized flow field can be generated by applying simple trigonometry and numerical approximations of the exponential integral to the Theis equation. Single- and multiple-well systems, as well as image boundaries, are readily simulated with this mechod. A program employing this technique is presented in BASIC for use with microcomputers. The availability, low cost, and computational power of many small computers makes them ideal for this type of application. Their user-oriented features allow many possible combinations of wells, boundaries, and hydraulic properties to be analyzed in a short time.

Introduction

Microcomputers are rapidly filling the void between programmable hand-held calculators and main-frame systems for many hydrologic applications. Attractive features of these small computers are their remarkable computational power, their use of the BASIC language which facilitates interactive programming, and instant screen graphics. In terms of hydrologic studies, these features cooperate to allow a large number of analyses to be made in a short time.

This paper describes an interactive BASIC program with a great deal of utility for examining pumping and boundary effects in studies which do not warrant a more complex numerical model. The program uses known or estimated aquifer parameters to compute the drawdown at every point in a grid representing the area of influence in a confined aquifer. It determines the drawdown

[^4]distribution resulting from a single well or the combined effects of several interfering wells and is capable of simulating moderately complex combinations of recharge and discharge boundaries using image-well theory. The version of the code listed in the Appendix is efficient, has minimal memory requirements, and is fully compatible with TRS-80 Model III and Model 4 microcomputers. It is useable with many other small computers in its present form or can be made so with only slight modifications.

Computational Scheme

The model algorithm is based on the non* equilibrium equation of Theis (1935) for radial flow to and from wells that fully penetrate homogeneous and isotropic confined aquifers:

$$
\begin{equation*}
\mathrm{s}=\frac{114.59 \mathrm{Q}}{\mathrm{~T}} \mathrm{~W}(\mathrm{u}) \tag{1}
\end{equation*}
$$

where s is the drawdown in the potentiometric surface (ft), Q is the constant rate of well discharge (gpm), and T is the aquifer transmissivity (gpd/ft). A negative Q may be used in (1) for recharging wells. $W(u)$ is the exponential integral, the argument of which is given by

$$
\begin{equation*}
u=\frac{1.87 \mathrm{r}^{2} \mathrm{~S}}{\mathrm{Tt}} \tag{2}
\end{equation*}
$$

where r is the radial distance from the pumping well to a point at which drawdown is measured $(\mathrm{ft}), \mathrm{S}$ is the aquifer storativity, and t is the pumping time (days). There are other forms of (1) and (2) for use with different units of length, volume, and time (see, for example, Freeze and Cherry, 1979, p. 344). The above forms were chosen because of their compatibility with practical field units, but the program can be easily modified to accommodate any set of units.

Examples of applications using (1) and (2) are abundant in the literature and are found in most ground-water hydrology texts.

The solution method requires discretizing the area of influence into a mesh-centered grid with either a uniform or variable node spacing. All wells and observation points are located at the grid nodes, and the ability to use nonuniform node spacings permits more flexibility in locating wells and boundaries. This feature also allows the nodal density to be increased or decreased in parts of the discrecized area where differing degrees of resolution are desired.

The algorithm first determines the argument u for a given node using (2) in line 350 (see Appendix). To do this, the radius from the pumping well to the node is computed using the Pythagorean theorem (line 330). When the computational process reaches the node at which the pumping well is located, the well radius is used. $W(u)$ is then calculated numerically (lines 1800 to 1870) using polynomial approximations which are given in Gautschi and Cahill (1964) in algebraic form. These approximations are also presented in Huntoon (1980). The determination of $W(u)$ is expedited for long pumping times and/or small radii by invoking the approximation of Cooper and Jacob (1946), plus an additional term of the infinite series for $u \leqslant 0.01$ (lines 1820 and 1830). The computed $W(u)$ value is then used in (1) to compute the drawdown at the node (line 370). The algorithm is applied successively until the drawdown is computed at each node in the grid.

For multiple wells, including image wells, a separate solution is compured for each well and superposed at every node to simulate additive interference effects. The total drawdown at each node is thus given by

$$
\begin{equation*}
s_{i, j, n}=\frac{114.59}{T} \sum_{m=1}^{n} Q_{m} W(u)_{i, j, m} \tag{3}
\end{equation*}
$$

where $\mathrm{s}_{\mathrm{i}, \mathrm{j}, \mathrm{n}}$ is the drawdown at the node in row i and column j of the grid due to n wells, and m is the well index. The pumping rate Q is well-specific, and the value of $W(u)$ is dependent on the location of each node with respect to each well.

The polynomial approximations of $W(u)$ used in the program are efficient and accumulate less roundoff error than methods which compute successive terms of the infinite series within the exponential integral. The series mechods (see, for example, Picking, 1979; Dumble and Cullen, 1983) are theoretically capable of unlimited precision but

Table 1. Comparison of Published and Computed Values of $W(u)$

u	Publ.W(u)*	Computed W(u)
6.13757×10^{-10}	20.6342	20.63421
3.12209×10^{-7}	14.4025	14.40238
8.83810×10^{-4}	6.4549	6.454937
5.79278×10^{-2}	2.3285	2.328442
3.59957×10^{-1}	7.746×10^{-1}	7.745455×10^{-1}
2.87965	1.524×10^{-2}	1.521546×10^{-2}

* Interpolated from Ferris and others (1962).
are burdened with a large number of multiplications and divisions which are the slowest arithmetic operations in most computers. The approximations used here owe their efficiency to their nestedmultiplication form which requires fewer multiplications and divisions. Even so, the calculation of $W(u)$ is the slowest part of the algorithm.

The approximating routine for $\mathrm{W}(\mathrm{u})$ was tested over a wide range of function arguments by comparing computed values with corresponding interpolated values from Ferris and others (1962, p. 96). Table 1 shows that the model approximations compare quite favorably and fall well within the range of accuracy needed for most hydrologic applications.

Example Application of the Program

The input and units required by the program are listed in Table 2 in order of entry. The grid dimensions, node spacings, hydraulic parameters, and well information are specified by the user in response to prompts by the program. Row and column spacings are entered beginning at the upper left corner of the grid. As written, the code permits up to 20 wells and a primary matrix of up to 25 rows and columns (line 40). The dimensions of the main matrix may be increased or reduced according to the problem size and amount of available memory. The output is a matrix composed of drawdowns at all nodes within the discretized region and may be used to generate contour maps.

Table 2. Required Program Inputs in Order of Their Entry

Data, units

1. Title	6. Duration of pumping, days
2. Grid dimensions	7. Number of weils
3. Node spacings, ft	8. Well coordinates
4. Storativity	9. Pumping rates, gpm
5. Transmissivity, gpd/ft	10. Well radii, ft

Fig. 1. Test scheme for the program. Solid circles are image wells; $R=$ recharge walls, $D=$ pumping wells.

Fig. 2. Variable grid representing Figure 1. Numbers at the top and left are the grid specings. OW = observ. well.

To demonstrate simultaneously the simula: tion of multiple-well systerns and the treatment of boundaries, a hypothetical test situation is presented in Figure 1. The test scheme consists of a 12 -inch diameter well discharging for 0.5 days at 250 gpm from a confined aquifer with a storativity of 2.5×10^{-4} and a transmissivity of 7.8×10^{4} $\mathrm{gpd} / \mathrm{ft}$. Two mutually perpendicular boundaries are located within the area of influence-a flow barrier $2,000 \mathrm{ft}$ north of the test well and a fully penetrating stream 750 ft to the west.

The problem area is represented by the variable 5×5 grid in Figure 2 with the grid spacings as shown. Each boundary is represented by a grid line so that drawdowns at the boundaries are computed. Three image wells at nodes (1,1), $(1,3)$, and $(4,1)$ are used to simulate the effects of the boundaries. The discharge well is at node $(4,3)$. Note that the number of nodes outside the problem domain is minimized by extending the grid only to the image wells and by using a single large tow spacing north of the flow barrier.

The test scheme yields a manually computed Theis drawdown of 0.56 ft at the observation well $1,600 \mathrm{ft}$ northeast of the pumping site. Simulating the same scheme using the grid in Figure 2 and the program results in an identical drawdown at the observation point (OW) and also provides the drawdowns at all other nodes south and east of the boundary intersection. The determination of the areal distribution of drawdown allowed the map in Figure 3 to be constructed. Map preparation may be facilitated by coupling the program to a plotting routine.

Figure 4 is the model output for the above example problem from which Figure 3 was constructed. Drawdowns at nodes corresponding to wells and boundaries may be noted by comparing Figures 4 and 2 . Note that the drawdown along the recharge boundary in column 2 is zero. The output statements in the program may be modified to route the results to a printer for more flexibility in formatting. Some tab statements (e.g., line 210) may also require modification for monitor screens with 80 columns (the code is based on a monitor width of 64 columns).

Closing Remarks

If appropriate aquifer conditions exist and boundaries are adequately representable with image wells, the program presented here permits the entire drawdown distribution due to pumping to be reproduced or predicted. Many possible combinations of conditions can be examined in a

Fig. 3. Contour map of the drawdown distribution for the example problem. Contours are in feet.

```
FROJECT: EXAMFLE FROBLEM
DATE: 11 JUNE 84
```

 STORATIVITY \(=2.5 E-04\)
 TRANSMISSIVITY \(=78000\)
 NO. OF WELLS \(=4\)
 TOTAL DRAWDOWN AFTER . 5 DAYS

1	-5.91	0.00	5.91	0.64	0.43
2	-0.31	0.00	0.31	0.49	0.43
Z	-0.50	0.00	0.50	0.56	0.44
4	-5.91	0.00	5.91	0.64	0.43
5	-0.45	0.00	0.45	0.47	0.36

$5 \quad-0.45$
0.00
0.45
0.47
0.36

Fig. 4. Output from the example problem.
short time since the code allows the number and locations of wells and boundaries and the hydraulic properties of the aquifer to be varied easily. The availability, low cost, and computational capabilities of microcomputers makes them well suited for this type of application and the rapid performance of multiple simulations is enhanced by interactive BASIC programming.

Regarding practical applications, the program has been used to define optimal well spacings for multiple-well dewatering schemes and to delineate the drawdown distributions of pumping centers under varying boundary conditions. Using other simple numerical techniques and function approximations, the program can be modified to generate drawdown distributions in leaky and unconfined aquifers.

References Cited

Cooper, H. H., and C. E. Jacob. 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. Amer. Geophys. Union Trans. v. 27, pp. 526-534.
Dumble, J. P., and K. T. Cullen. 1983. The application of a microcomputer in the analysis of pumping test data in confined aquifers. Ground Water. v. 21, pp. 79-83.
Ferris, J. G., D. B. Knowles, R. H. Brown, and R, W. Stallman. 1962. Theory of Aquifer Tests. U.S.G.S. Water-Supply Paper 1536-E.
Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.
Gaurschi, W., and W. F. Cahill. 1964. Exponential integral and related functions. In Abramowitz, M., and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathemarical Tables. U.S. Dept. of Commerce, National Bureau of Standards Applied Math. Series 55. pp. 227-251.
Huntoon, P. W. 1980. Compurationally efficient polynomial approximations used to program the Theis equation. Ground Water. v. 18, pp. 134-136.
Picking, L. W. 1979. Programming a pocker calculator for solving multiple well, variable pumping rate problems. Ground Water. v. 17, pp. 205-208.
Theis, C. V. 1935. The relationship berween lowering of the piezomerric surface and the rate and duration of discharge of a well using ground-water storage. Amer. Geophys. Union Trans. v. 16, pp. 519-524.

James M. King earned an M.S. degree in Hydrogeology from the University of Toledo in 1977, and completed a Ph.D. in Hydrogeology at Indiana University in 1983. He bas been employed with a State agency regulating waste disposal, and is now a Hydrogeologist with GAI Consultants specializing in waste disposal problems, mine bydrology, the numerical modeling of ground-water systems, and computer applications.

```
20 REM DRAWDOWN DISTRIEUTION FROGRAM
20 FEM Ey James M. King
30 REM
40 DIM A(25,25),Z(4,20),RO(24),C口(24): DE
FINT I,J,L,N
SO CLS: INFUT "ENTER THE TITLE OF THE SIM
ULATION";At: PRINT
GO INFUT "ENTER THE CURFENT DATE (NO COMM
AS)";DAT*: FRINT
70 INFUT "ENTER THE NUMEER OF ROWS IN THE
    GFID":R: FFINT
BO INFULT "ENTER THE NUMEER OF COLUMNS";CL
: FRINT
90 FFINT "ENTER EACH FOW SFACING (FT):"
100 FOR I=1 TQ fi-1: INFUT RQ(I): NEXT I:
FRINT
110 FRINT "ENTER EACH COLUMN SFACING (FT)
:"
120 FOR I=1 TO CL-1: INFUT CQ(I): NEXT I:
    FRINT
1%O INFUT "ENTER THE STORATIVITY & TRANSM
ISSIVITY (GFD/FT) (S,T)";S,T: FRINT
140 FRINT "ENTER THE LENGTH OF THE FUMFIN
G FERIOD (DAYS) AND THE NUMEEF OF"
150 INFUT "WELLSS (TIME,NO.)":TM,NW: FRINT
1G0 FRINT "ENTER THE GRID CDORDINATES, FU
MFING RATES (GFM), AND FADIUS": FRINT "(F
T) OF EACH WELL (R,C,Q,FAD):"
170 FOR C=1 TO NW
1日0 INFUT Z(1,C),Z(Z,C),Z(3,C),Z(4,C): NE
XT C
190 ST=1.87*S/(TM*T): TQ=114.59/T
200 CLS: FRINT: FRINT: FRINT: FRINT
210 FRINT TAB(16) "*-*-* COMFUTATIONS IN
FROGRESS *-*-*"
220 FOK C=1 TO NW
230 FOR I=1 TO R: DR=0
240 IF I=Z(1,C) THEN 280
250 IF I < Z(1,C) THEN Q1=Z(1,C)-1: MI=I:
    GOTO 270
260 MI=Z(1,C): Q1=I-1
270 FOR L=MI TO Q1: DR=DR+FQ(L): NEXT L
280 FOR J=1 TO CL: DC=0
290 IF J=z(2,C) THEN SJO
300 if J < Z(2,C) THEN Q2=Z(2,C)-1: NI=J:
    GOTO J20
Z10 NI=Z(2,0): Q2=J-1
10 REM DRAWDOWN DISTRIEUTION FROGRAM 20 KEM Ey James M．King
30 REM
40 DIM A（25，25），Z（4，20），RO（24），CO（24）：DE FINT I，J，L，N
SO）CLS：INFUT＂ENTER THE TITLE OF THE SIM ULATION＂：At：PRINT
GO INFUT＂ENTER THE CURRENT DATE（NO COMM 70 INFUT＂ENTER THE NUMEER OF ROWS IN THE GRID＂：R：FRINT
BO INFUT＂ENTER THE NUMBER OF COLUMNS＂；CL ：FRINT
90 FRINT＂ENTER EACH ROW GFACING（FT）：＂ OO FOR I＝1 TO fi－1：INFUT \(\mathrm{RQ}(\mathrm{I}):\) NEXT I： 110 FRINT＂ENTER EACH COLUMN SFACING（FT） ：＂
120 FOR I＝1 TO CL－1：INFUT CQ（I）：NEXT I： FRINT
180 INFUT＂ENTER THE STORATIVITY \＆TRANSM 140 FRINT＂ENTER THE LENGTH OF THE FUMFIN G FERIOD（DAYS）AND THE NUMEEF OF＂
150 INFUT＂WELLS（TIME，NO．）＂：TM，NW：FRINT
THE GRI
MFING RATES（GFM），AND FADIUS＂：FRINT＂（F
T）DF EACH WELL（ \(\mathrm{R}, \mathrm{C}, \mathrm{Q}, \mathrm{FAD}\) ）：＂
170 FOR C＝1 TO NW
180 INFUT \(Z(1, C), Z(Z, C), Z(3, C), Z(4, C): N E\) XT C
190 ST＝1．87＊S／（TM＊T）：TQ＝114．59／T
210 FRINT TAB（16）＂＊－＊－＊＊COMFUTATIONS IN
FROGRESS＊－＊－＊＂
220 FOR \(\mathrm{C}=1\) TO NW
30 FOR I＝1 TO R：DR＝0
240 IF \(\mathrm{I}=\mathrm{Z}(1, \mathrm{C})\) THEN 280
250 IF ！\(\&(1, C)\) THEN \(Q 1=Z(1, C)-1: M I x I ;\)
－70
280 FOR Ja1 TO CL：DC＝0
290 IF \(\mathrm{J}=\mathrm{Z}(2, \mathrm{C})\) THEN \(33^{\circ}\)
300 IF \(J\)（ \(\mathrm{Z}(2, \mathrm{C})\) THEN Q2＝Z（2，C）－1：NI＝J：
```



```
32O FOR L=NI TO Q2: DC=DC+CQ(L): NEXT L
30 RD=S@R(DFt2+DC[2)
30 IF FDD=0 THEN F:D=Z (4,C)
350 U=ST*RDC2
80 GOSUE 1810
S7O DD=TQ*Z(E,C)*WL
30}A(I,J)=A(I,J)+DD: NEXT J: NEXT I: NE
T C
590 REM --- FFINT ROUTINE ---
400 CLS: FRINT "FRQJECT: ";A*; FRINT "
DATE: ":DAT韦: FFINT
410 FRINT TAB(10) "STORATIUITY =";S
420 FRINT TAB(7) "TRANSMISSIVITY =":T
43O FRINT TAB(9) "NO. OF WELLS =";NW: FRI
NT: FRINT
440 FRINT "FRESS ANY kEY TO CONTINUE . .
*"
450 D:=INKEY多: IF D*=""" GOTO 450 ELSE CLS
460 FRINT "TOTAL DRAWDOWN AFTER ":TM;"DAY
5"
470 FOR I=1 TO F
480 FRINT: FRINT USING "##":I;
490 FOR J=1 TO CL
SOU FFINT TAB(J*&-8) USING "####.##";A(I,
J);
S10 NEXT J: FRINT: NEXT I
S2O FRINT: FRINT "ANOTHEF SIMULATION WITH
THE SAME T & S? (Y/N):"
525 FOR: I=1 TO F: FOR J=1 TO CL: A(I,J)=0
: NEXT J: NEXT I
5SO D*=INKEY:*; IF D:="" GOTO 5SO
540 CLS: IF DS="Y" THEN 140
SEO FRINT "RUN TERMINATED."
S60 END
1800 REM --- COMFUTE EXFONENTIAL INTEGRAL
---
1810 IF U % 10 OR U O THEN WU=0: FETUFN
1920 TY=-.5772156649-LOG(U)+U*.9999919.3
19SO IF U <= .01 THEN WU=TY: RETURN
1850 IF U < 1.0 THEN 1870
1855 E=2.718281828
1860 WLJ= (.267773734J+U*(8.6.347608925+U*(1
8.059016973+L*(日.573%287401+L))))/(U*E[U*
(3.9584969228+U*(21.0996530827+U) (25.6.329
561486+U*(9.575S223454+U))))): FETURN
1970 WU=TY+U[2*(-.2499105S+U* (.05519968*U
*(-.00976004+U*.00107857))): RETURN
```

NOTE：＂ 1 ＂indicates exponentiation．

COMPUTER NOTES

A COMPUTERIZED TECHNIQUE FOR ESTIMATING THE HYDRAULIC CONDUCTIVITY OF AQUIFERS FROM SPECIFIC CAPACITY DATA

by Kenneth R. Bradbury ${ }^{\text {a }}$ and Edward R. Rothschild ${ }^{\text {b }}$

Abstract

Specific capacity data obtained from well construction reports can provide useful estimates of hydraulic conducrivity (K). A simple compurer program has been developed which can correct specific capacity dara for partial penetration and well loss and, using an iterative rechnique. provide rapid estimares of K ar hundreds of dara points. The program allows easy data handing and is easily linked with existing statistical programs or contour mapping routines. The method was tested at two field sites in Wisconsin, one underlain by a sandy outwash aquifer, the orher by fractured dolomite. In both areas, estimates of K from correcred specific capacity data agree reasonably weil with data from pumping rests.

Introduction

Hydrogeologists continually seek and test simple, quick, and inexpensive methods for determining aquifer characteristics. The use of specific capacity tests to determine transmissivity (T), and ultimately hydraulic conductivity (K), is one such tool. Although the use of specific capacity data in estimating aquifer parameters is certainly nor new (Theis et al., 1963; Lohman, 1972), commonly used estimation techniques (described below) are somewhat slow and cumbersome. In this paper we describe a computer program which rapidly and accurately provides estimates of aquifer transmissivity at hundreds of points where specific capacity data are available, and we demonstrate that the technique gives excellent results at two field sites in Wisconsin. Because the solution is performed with the use of a computer, data can be manipulated easily and linked with available graphical and statistical packages.

[^5]A specific capacity test involves pumping a well (of known construction) at a known rate and period of time, and measuring the drawdown within the well at the end of the test period. The - length of the test is determined by how long it takes for the water level in the well to reach a state of apparent equilibrium, that is, when the change in drawdown is minimal with rime. Specific capacity is defined as the discharge divided by the drawdown in the well, and the units generally used are gallons per minute per foot of drawdown (GPM/FT).

Theis et al. (1963) present a method of estimating transmissivity from specific capacity. They treat a specific capacity test as a short nonequilibrium pumping test, and utilize a graphical solution to estimate transmissivity. Several other workers, including Walton (1970), Lohman (1972), and Gabrysch (1968) have applied Theis' method to field problems. In this study, we replace the graphical approach with a short computer program utilizing an iterative procedure.

Estimating T from specific capacity involves a series of assumptions. These assumptions include a known storage coefficient (S), minimal well loss, full penetration, and a nonleaky, homogeneous and isotropic, artesian aquifer of infinite areal extent. (These assumptions are essential to use of the Theis equation, and are described in many basic texts.) Fortunately, because specific capacity varies with the logarithm of l / S. the solution is not very sensitive to variations in S , which can be estimated with sufficient accuracy from previous studies in an area, or by using representative values for a given aquifer type. If appropriate data are available, well loss corrections can be made. Corrections for partial penerration may be very important because few wells fully penetrate an aquifer. A method adopred from Brons and Marting (1961) is used in this study to correct for partial penerration.

To demonstrate the method, specific capacity data were used to estimate hydraulic conductivities for aquifers in two large field areas in Wisconsin (see Figure 1). One aquifer is a confined, fracrured dolomite (area A), and the orher consists of unconfined, unconsolidated sands and gravels (area B). In Wisconsin, specific capacity tests are generally performed by drillers at the time of well installation. Reports of the tests, as well as geologic logs and well construction reports for most wells are available at the Wisconsin Geological and Natural History Survey. In this study, we use available information to determine aquifer transmissivity, corrected for partial penecration of the wells, and

Fig. 1. Map of Wisconsin showing locations of field areas A (fractured dolomite) and B (sand and gravel).
then produce maps of hydraulic conductivity. The maps agree well with the more limited data available from pumping tests.

There are many advantages of using specific capacity information to compute hydraulic conductivity. The data are generally readily available and abundant: for area A, 224 specific capacity tests were available versus 5 pumping tests; for area B, 268 specific capacity tests were available versus 11 pumping tests. Estimates of hydraulic conductivity, based on specific capacity data, are quick, easy, and inexpensive, and when used in conjunction with limited pumping test data, may be the best method for mapping aquifer characteristics over large areas.

Computer Program Development

Theis et al. (1963) describe a merhod for estimating the transmissivity of an aquifer from the specific capacity of wells. Their analysis is based on the Jacob equation, given in consistent units as:

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{Q}}{4 \pi \mathrm{~S}} \ln \left(\frac{2.25 \mathrm{Tr}}{\mathrm{r}_{\mathrm{w}}{ }^{2} \mathrm{~S}}\right) \tag{1}
\end{equation*}
$$

where
$\mathrm{T}=$ transmissivity ($\mathrm{L}^{2} / \mathrm{t}$),
$Q=$ discharge $\left(L^{3} / \tau\right)$,
$s=$ drawdown in the well (L),
$\mathrm{t}=$ pumping time (t),
$\mathrm{S}=$ storage coefficient (dimensionless), and
$r_{w}=$ radius of the well (L).
Because T appears twice, this formula cannor be solved directly, and Theis et al. (1963) and Walton (1970) (among others) propose graphical solutions involving matching the specific capacity data to a family of curves. The graphical methods have the disadvantage of requiring a different set of curves for every possible combination of well radius, pumping period, and storage coefficient. In addition, any corrections for partial penetration or well loss require additional calculations.

Well loss is an increase in drawdown in the well bore over drawdown in the aquifer adjacent to the well. It is due to turbulent flow as water enters the well bore and pump, and depends on the pumping rate, construction of the well, and hydraulic properties of the tested aquifer. It is possible to correct specific capacity data for well loss using the equation (Csallany and Walton, 1963):

$$
\begin{equation*}
\mathrm{S}_{\mathrm{w}}=\mathrm{CQ}^{2} \tag{2}
\end{equation*}
$$

where
$\mathrm{S}_{\mathrm{w}}=$ well loss (L),
$C=$ well loss constant $\left(t^{2} / L^{5}\right)$, and
$Q=$ discharge ($\left.L^{3} / \tau\right)$.
Csallany and Walton present an equation with which to evaluate C from step-drawdown data.

Most private wells penetrate less than the full thickness of aquifers. During a specific capacity test, partially penetrating wells may yield anomalously low values of specific capacity, depending on the ratio of penetration (L) to aquifer thickness (b). In Wisconsin, the L/b ratio is sometimes as low as 0.1 . Thus, a correction for partial penetration is necessary before estimating transmissivity from specific capacity. For unsteady drawdown in a partially penetrating well, Sternberg (1973) shows that

$$
\begin{equation*}
\mathrm{s}=\frac{\mathrm{Q}}{4 \pi \mathrm{~T}}\left[\ln \left(\frac{2.25 \mathrm{Tt}}{\tau_{\mathrm{w}}^{2} \mathrm{~S}}\right)+2 \mathrm{~s}_{\mathrm{p}}\right] \tag{3}
\end{equation*}
$$

where s_{p} is a "partial penetration factor" given by Brons and Marting (1961) as

$$
\begin{equation*}
s_{p}=\frac{1-L / b}{L / b}\left(\ln \frac{b}{r_{w}}-G(L / B\}\right) \tag{t}
\end{equation*}
$$

where
b = aquifer thickness (L),
$\mathrm{L}=$ length of open interval (L), and
$G=a$ function of the L / b ratio.
Brons and Marting evaluate $G(L / b)$ for various values of ($\mathrm{b} / \mathrm{r}_{\mathrm{w}}$). In the present study the polynomial equation

$$
\begin{align*}
\mathrm{G}\{\mathrm{~L} / \mathrm{b}\}= & 2.948-(7.363 \mathrm{~L} / \mathrm{b})+ \\
& 11.447(\mathrm{~L} / \mathrm{b}\}^{2}-4.675\{\mathrm{~L} / \mathrm{b}\}^{3} \tag{5}
\end{align*}
$$

was fitted to the data of Brons and Marting by multiple regression, with a correlation coefficient of 0.992 . Rewriting equation (3) to incorporate equation (2), we have

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{Q}}{4 \pi\left(s-s_{\mathrm{w}}\right)}\left[\ln \left(\frac{2.25 \mathrm{Tt}}{r_{\mathrm{w}}{ }^{2} \mathrm{~S}}\right)+2 \mathrm{~s}_{\mathrm{p}}\right] \tag{6}
\end{equation*}
$$

The solution of equation (6) yields an estimate of T which is corrected for well loss and partial penetration, and incorporates t, S, and r_{w}.

Figure 2 shows a flow chart for a computer program which solves equation (6). The program first reads the data in the inconsistent units (gallons per minute, inches, feet, etc.) which are customarily used on driller's logs. After converting

Fig. 2. Computer program flow chart.
to consistent units (feet, seconds), the program solves equations (2), (4), and (5) directly. It then solves equation (6) iteratively, using an initial estimate of T (TGUESS) to calculate an updated estimate (TCALC). The program then substitutes the updated estimate for the original guess, and repeats the process until TGUESS and TCALC agree within a small error criterion (ERR). Finally the program prints the results.

Appendix A is a simple BASIC computer code written for an Apple lle computer illustrating the estimation technique for a single well. A sample output is included in Appendix B. In practice, we expand this program to do several hundred estimations. The program is easily modified to change the types and methods of input and output. Currently it is designed to accept input either interactively or via a data file that has been merged with the program file. By including well coordinates in the input data, the output can be used directly in graphics plotting packages, as well as in statistical routines. The variables ERR and TGUESS have been assigned values of 0.1E-5 and 0.1 , respectively. These can be altered by changing lines 300 and 320 of the program. The program also has been written in FORTRAN and is available from the authors.

Description of Field Sites

The aquifer analysis method described above was utilized for the two study areas in Wisconsin shown in Figure 1. The first (area A), called the Peninsula site, is in Door County, northeastern Wisconsin, and encompasses $17.8 \mathrm{mi}^{2}\left(46.1 \mathrm{~km}^{2}\right)$. The aquifer at the Peninsula site is a highly fractured Silurian dolomite. Studies of the interactions of ground water at the site with surface water in adjacent Green Bay used computer modeling (Bradbury, 1982). The computer models required extensive data on transmissivity and hydraulic conductivity of the dolomite aquifer. Because the results of five available pumping tests in the area (Sherrill, 1978) might not adequately describe spatial variability of the fractured dolomite aquifer, the transmissivity estimation technique was applied to specific capacity data from 224 local wells. The use of specific capacity tests increased the average density of hydraulic conductivity data from 0.3 to 12.6 points $/ \mathrm{mi}^{2}$ (0.78 to 32.6 points $/ \mathrm{km}^{2}$).

The second site (area B) encompasses a large portion of the Central Sand Plain of Wisconsin, which is underlain by an aquifer of sandy glacial outwash, and has an area of approximately 612 $\mathrm{mi}^{2}\left(1585 \mathrm{~km}^{2}\right)$. The sand and gravel aquifer in the

Table 1. Statistical Results of Estimates of Hydraulic Conductivity (K) from Specific Capacity for Two Areas in Wisconsin. Geometric Means, Standard Deviations (σ), and 95 Percent Confidence Limits Are Given
$K(f t / s e c)$
AREA A: Fractured dolomite ($\mathrm{N}=223$)

Geometric mean	7.8×10^{-5}
σ	$0.61 \times 10^{-5}-9.3 \times 10^{-5}$
95% C.I.	6.5×1.
AREA B: Sandy outwash $(\mathrm{N}=266)$	
Geomerric mean	2.1×10^{-3}
σ	0.25
95% C.I.	$1.6 \times 10^{-3}-2.2 \times 10^{-3}$

area is widely utilized for spray irrigation of crops, especially potatoes. Recent indications of groundwater contamination by pesticides in the area (Rothschild et al., 1982) prompred further study of the aquifer, including computer modeling (Rothschild, 1982). Specific capacity data for the area are abundant (268 points) in comparison to the number of pumping tests (11), and the transmissivity estimation technique was used to help describe the hydraulic characteristics of the aquifer. By utilizing specific capacity data the density of data points for transmissivity was increased from 0.018 points $/ \mathrm{mi}^{2}$ (pumping tests) to 0.44 points per mi^{2} (0.045 to 1.14 points $/ \mathrm{km}^{2}$).

Results

Reliability of Estimates

Results of the computer estimation of hydraulic conductivities from specific capacity data agree well with values calculated using fullscale pumping rests. Table 1 gives a statistical summary of hydraulic conductivity estimates for 223 wells in fractured dolomite (area A) and 266 wells in sandy outwash (area B). Because hydraulic conductivity data are generally log-normally distributed (Freeze, 1975), the geometric mean gives a good measure of the central tendency of the data, and sigma (σ) represents the standard deviation of the log-transformed data. Table 1 shows that, using many data points, the specific capacity estimates give a lower mean hydraulic conductivity for fractured dolomite ($7.8 \times 10^{-5} \mathrm{ft} / \mathrm{sec}$) than for sandy outwash ($2.1 \times 10^{-3} \mathrm{ft} / \mathrm{sec}$). Standard deviation values show that the fractured dolomite has statistically more variation in hydraulic conductivity than does the sandy outwash, and that the range of variation in boch materials is small enough to make the results useful. Freeze (1975) reports that computer models can give meaningful estimates of hydraulic head when hydraulic conductiv-
ity " σ of K " values are less than 0.5 , bur that meaningful head predictions are impossible when σ is greater than 2.0. Thus the σ values of 0.61 and 0.25 reported here give confidence of reasonable results when using the data in computer simulations to predict hydraulic heads.

In spite of the well-known difficulties in estimating hydraulic conductivities from specific capacity data, the range of values predicted by our method is relatively small. Figure 3 presents average hydraulic conductivities for various materials, and shows the range of values obtained from our computer estimates. As noted by Winter (1981) the standard error in estimating values of hydraulic conductivity is often close to 100 percent or even higher. Thus the ranges of values shown on Figure 3 are quite narrow when compared to the possible ranges of hydraulic conductivity values, and the variation in K is less than one order of magnitude for the sandy outwash and just over an order of magnitude for the fractured dolomite.

Comparing estimates from individual wells, the results of the computer program are surprisingly close to data determined by pumping tests (Table 2). In the fractured dolomite of area A (wells $1-5$), specific capacity data give hydraulic conducrivity estimates which are slightly smaller than but of the

Fig. 3. Ranges of hydraulic conductivity (K) for various geologic materials, showing ranges determined from specific capacity estimates in this study (after Freeze and Cherry, 1979).

Table 2. Comparison of Values of Hydraulic Conductivity (K) Obtained from Pumping Tests with Values Estimated from Specific Capacities for Walls in
Two Different Areas in Wisconsin

Well	Pumping test K(ft/sec)	Specific capacity estimate K(ft/sec)
AREA A: Fracrured dolomite		

same order of magnitude as values derived from full-scale pumping tests using identical wells. In the sandy outwash of area B (wells $6 \cdot 16$), slight variations in K were also detected by specific capacity tests. Wells $9-12$ in area B are radial collector wells. These wells are larger in diameter and are more efficient than the high capacity wells used for other specific capacity tests (Karnauskas, 1977). This efficiency difference is evident in consistently lower K values as determined by specific capacity tests, and highlights the importance of knowledge of well construction when interpreting such data. One of the poorer comparisons is for well 16. Due to the nature of outwash in this area the observation wells for the pumping test may not have been in full hydraulic connection with the pumping well. Much of the variation in values for the Central Sand Plain (area B) is explained by poor depth-to-bedrock control. Due to the high transraissivity of the overlying sands and gravels, few area wells are drilled to bedrock. In general, comparisons are poorer for the fractured dolomite of area A than for the sandy outwash of area B. The fractured dolomite is less homogeneous than the
outwash, and the fracture system there may not truly approximate a porous media.

Contour Mapping

Contour maps of hydraulic conductivity for the two study areas are a valuable product of the computer program (Figures 4 and 5). The maps are produced by estimating T from specific capacity, then calculating K from aquifer thickness. Because all data are computerized, it is relatively simple to plot and contour the data using standard software packages. Interpolation, graphing, and smoothing packages were used to produce the maps in Figures 4 and 5 for the two study areas.

Distinct trends and differences are discernible in both areas. Figure 4 shows the hydraulic conductivity distribution in the fractured dolomite of the Peninsula area (area A). Because of the logarithmic distribution of K in the fractured dolomite the data are contoured by base 10 logs. As would be expected for a fractured dolomite aquifer, the areal distribution of K appears almost random with the exception of an area of higher K near the center of the area. The likelihood of this area having a higher K was confirmed by additional modeling efforts using a parameter estimation model (Bradbury, 1982).

In the sandy outwash of area B (Figure 5) the areal variation in K is less, and arithmetic contours are plotred. Variations in K shown on the map may be relared to known depositional outwash facies in the area (Rothschild, 1982). The statistical inter-

Fig. 4. Contour plot of hydraulic copductivity in study area A based on specific capacity and aquifer thickness data. Base 10 logs are plotted; contour interval is 0.5 log unit. Locations and log hydraulic conductivity values are shown for three wells where pumping tests were conducted.

Fig. 5. Map of hydraulic conductivity based on specific capacity data for area B.
pretations of Figures 4 and 5 might be aided by advanced statistical techniques such as kriging which are beyond the scope of the present study.

Conclusions

Although the use of specific capacity data for estimating aquifer characteristics is not new, compurer techniques can produce reliable estimates at more points and with less effort than in the past. Computers allow the rapid evaluation and manipulation of specific capacity data from large numbers of data points. The ability to use such data to describe the transmissivity and hydraulic conductivity of aquifers statistically or graphically is an important tool. The method described here has been successfully tested for sandy ourwash and fractured dolomite aquifers at two field areas in Wisconsin.

Acknowledgments

This research has been supported by the University of Wisconsin Water Resources Center, the University of Wisconsin Sea Grant Program, the Wisconsin Geological and Natural History Survey, and Martin Marietta Energy Systems, Inc. under contract DE-AC05-84OR21400 with the U.S. Department of Energy.

References

Bradbury, K. R. 1982. Hydrogeologic relationships between Green Bay of Lake Michigan and onshore aquifers in Door County, Wisconsin. Ph.D. thesis, Depr. of Geol. and Geophys., Univ. of Wisconsin-Madison. 274 pp .
Brons, F., and V. E. Marting. 1961. The effect of restricted fluid entry on well productivity. J. Petrol. Technol. v. 13, no. 2, pp. 172-174.

Csallany, S. and W. C. Walton. 1963. Yields of shallow dolomite wells in northern Illinois. Rept. of Inv, 46 . Ill. State Water Survey, Champaign, IL. p. 14.
Freeze, R. A. 1975. A stochastic-conceprual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. v. 11, no. 5 . pp. 725-741.
Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. 604 pp.
Gabrysch, R. K. 1968. The relationship between specific capacity and aquifer transmissibility in the Houston area, Texas. Ground Water. v. 6, no. 4, pp. 9-14.
Karnauskas, R. J. 1977. The hydrogeology of the Nepco Lake watershed in central Wisconsin with a discussion of management implications. M.S. thesis, Dept, of Geol. and Geophys., Univ. of Wisconsin-Madison.
Lohman, S. W. 1972. Ground-water hydraulics. U.S. Geol. Surv. Prof. Paper 708. pp. 45-46.
Rothschild, E. R. 1982, Hydrogeology and contaminant transport modeling of the Central Sand Plain, Wisconsin. M.S. thesis, Depe. of Geol. and Geophys., Univ, of Wisconsin-Madison. 135 pp .
Rothschild, E. R., R. J. Manser, and M. P. Anderson. 1982. Investigation of aldicarb in ground water in selected areas of the Cencral Sand Plain of Wisconsin. Ground Water. v. 20, no. 4, pp. 437-445.
Sherrill, M. G. 1978. Geology and ground water in Door County, Wisconsin with emphasis on contamination potential in the Silurian dolomite. U.S. Geol. Surv. Water Supply Paper 2047. 38 pp .
Sternberg, Y. M. 1973. Efficiency of partially penetrating wells. Ground Water. v. 11, no. 3, pp. 5-7.
Theis, C. V., R. H. Brown, and R. R. Meyer. 1963. Estimating the transmissivity of aquifers from the specific capacity of wells. pp. 331-340. In: R. Bental (ed.), Merhods of determining permeability, cransmissivity, and drawdown. U.S. Geol. Surv, Water Supply Paper 1536-1.
Walton, W. C. 1970. Groundwater Resource Evaluation. McGraw-Hill, New York. 664 pp .
Winter, T. C. 1981 . Uncertainties in estimating the water balance of lakes. Water Res. Bull. v. 17, no. 1, Pp. 82-115.

Kenneth Bradbury received his B.A. in Geology from Ohio Wesleyan University, his AM. in Geology from Indiana University, and bis Pb.D. in Geology from the University of Wisconsin Madison. He bas worked as a Hydrologist for the Southwest Florida Water Management District and is currently a Research Hydrogeologist with the Wisconsin Geological and Natural History Survey. His current interests include ground water parameter estimation and field techniques in ground-water studies. Edward Rothschild received a Bachelor's Degree in Geology from the University of Vermont, and a Master's Degree in Geology at the University of Wisconsin-Madison.

He bas worked for the IEC Corp as an Environmental Engineer at an in situ uranium mining operation，and as a Research Scientist in the Environmental Sciences Division of Oak Ridge National Laboratory．He is currently a Hydrogeologist with CH2M Hill．Current interests include modeling and investigation of organics and radionuclides in ground water．

Appendix A

```
FEINT : FRINT, FRINT F
EEINT -aNO HYDFAULIC EONDUCTIVITY-
GRINT "FROM gFEEIFIE EAPAEITY FEOTS"
FFRINT "HFITTEN SYM, GRADELFY AND E. SOTHSCHILO. SEPTEMEER IqBI"
```



```
fFINT
GRIMT "NUM - IDENTIFICAIIDN NLIMEER OF WELL
FRINT DDIAM = OIAMETER OF WELL (INCMES)"
ERINT "LGTH - LENGTM OF OFEN INTGPVAL DR WELL SGNEEN (FEET)."
MNG COEPTM
G&{MT -
TEST (FEET,
FRINT "LNO. ENETH DF TEST (HOURG)
FRINT "GFA, PUMPING RATE OURING TEGT (GALLONG/MINUTE)"
FRINT "GOTHIC ESTIMATED OR REAEURED STONAGE COEFFICIENT (UNITLESSS)
FRINT "S = ESTIMATED OR REASURED STOAAGG COEFFIGIEMT (UNITLESS'" 
```



```
E/POOTI"* TAANGHISSIUITV (FEET (FEETSEECOND,*
FM1NT -T = TFANSHISGIUITY (FEET * FEET/SECOND).",
FRINT "K - HYORALLIE CONDUCTIVITY (FEET/SECOND)", (FEET : FEET:SECOND
```



```
##INT "MOW MANY LELLS WILL EE ANALVZEDO".
INFUT xX
```



```
ERFNOM,IE = 5
TGuESS - N, 1
```



```
GEM READ NN GAU DATA IN UNITSS GIVEN ON DRILLERS LOES
&ERNMTM
&FINT DO VUU WANT TO ENTEF DATA INTERACTIVELY GR FROM A FILE*"
INFUT A
        I THEN GOTO S.2O
    FOR:2 = TO MX GOTO S
    FRINT MELLL NHHBERE": INFUT NUN:Z,
    FFINT "WELL DIAMETER,INHUT NUNIZ, NSINPUT DIANIZ
```



```
    EFINT DEFTM TO #\triangleTEF DUFING TEST, \FT\INTNNUT FUMF(t)
    FKINT TMEE LENGTH OF THE TESt 'HW:= ": INEIUT LNI2,
```



```
    FR:NT "STOGAGE COEFEICIENTO": INFUTSIZ)
    ERINT WELL LOSS GOEFFIGIEMT= : INEUPG(G
    NEXT I
    GOTO Sob
```



```
    \1.5(2)
    MEXT ?
```



```
        SO ANALYS1S SOR EECH UELL
```



```
    FURY =1 TOXX 
    LEE(r) * O:1TER(r) - %
```



```
    L=DIAM(Y) -4.0
    OD=- (L,NLM'= FUMEMY),
    IF,DO (tNLM, = #UMF\Y!,
    OUNT =, OUNT:',
```



```
        C IS ESTIMATED FHLN STEF DMÄWDOMN TESTE.
```



```
    %w civ):0%山
```



```
        USING A COFWECTION FOR FAKTIAL PENEFTROTIONA 2S GIVEN OY
        $TENNEMEGS (197%:
```



```
        NEM NOW SQLVE FOM T USING ITEAATIONQ
```



```
    FON wA i To zE 
    #
O TGufgs AES (TCALE - TGWEBE)
t000 IF (TEST ADS (TGALE) THEN GOTG t1040
10:O IFF (KOLMNT(V) = EJ) ANO (TEST EMF) THEN GOTO IOSO
```

1010
1020


```
M(v)= rcale GOTO (1%%
l(y) = rcale, agrulc(y)
    MLUSM(y)
        *:##8##MA##
        FFIMT OUTPGT
        FRIMT OUTPUT
```



```
        \mathrm{ FEN IT}
```



```
    FKINT ", SFEC:FIC CAFACITY FESTS"
```



```
    FRINT - ", ro x
    IF FLUB(v)=1 GOTO :TS:
    TF ITEFM
    PFINT HWELL NUMBER ":MUT(v)
```



```
    ERTMT "hYORAULIE NOMEEF OF ITEEAFIDNS # :! DUNT
    FG:TNT "HYORAULIE CONDUCTIVITY (FT/SEC) = *:। (V)
```



```
    3aTo 14%%
    *EINT ":
    MEINT "WELL NUMEER "INUHIV,
```



```
    ERINT " =. THE SCRGEN LENGTM IS lONGE: TMAM THE MOUIFGR THICHME
    FRINT "
    GgTO IBN
    FAINT ""#
    FGINT "WELL NUMEEE ":NUHIVI
    GRINT "S0
    #NO
```

Appendix B

As an example of computer program input and output，the following data from area A were input inco the interactive compurer program（Appendix A ）．

Number of wells to be analyzed $=2$
Interacrive data entry
Well number 1
Well diamerer $=6 \mathrm{in}$ ．
Static water level $=42 \mathrm{ft}$
Depth to water during rest $=57 \mathrm{ft}$
Length of rest $=8 \mathrm{hr}$
Pumping rate $=10 \mathrm{gpm}$
Aquifer thickness $=205 \mathrm{ft}$
Open interval $=47 \mathrm{ft}$
Storage coetficient $=0.0002$
Well loss coefficient $=32.7$
Well number？
Well diamerer＝ 6 in ．
Static water level $=132 \mathrm{ft}$
Depth to water during test $=141 \mathrm{ft}$
Length of test $=8 \mathrm{hr}$
Pumping rate $=10 \mathrm{gpm}$
Aquifer chickness $=115 \mathrm{ft}$
Open interval $=68 \mathrm{ft}$
Storage coefficient $=0.0002$
Well loss coefficient $=32.7$
Figure A 1 is the computer output generated by these data．


```
AGUIFER FROPERTIES AS OETERMINED EY ANALYSIS OF
    SFECIFIC EAPACITV TESTS
WELL NUHAER !
SFEEIFIC CAFACITY (GFH/FT) = . bebb日B7IT
SFELIFIC CAFAGITY (GFA/FT) = 06&6Eg7LF
    USING A STORAGE COEFFICIENT = SE-O4
    NUMDER OF ITERATIONS :
HYDRAULIC CONDUETIUITY (FT/SEC\ = E.gO4Zm%77E-GS
WELL NUHBER 2
SFECIFIC CAFACITY (GPM/FT) = 1.111177ESE
TRANSMISSIVITY (FTHFT/GEC) = 4,54944%91E-0%
                                    USING A STOAAGE COEFFICIENT = こE-O4
                                    NUMREA OF ITERATIONS = S
```



```
HHE NUMPER OF WELLS IN THIS FEGORD IS 2
```

Fig．A－1．Example of computer printout．

A GENERAL PURPOSE MICROCOMPUTER AQUIFER TEST EVALUATION TECHNIQUE

by C. J. Hemker ${ }^{\text {a }}$

Abstract

Although determination of aquifer characteristics from pumping test data is generally carried out using type curves or other graphical techniques, a number of computer methods have been developed recently for this purpose. Based on the principle of least squares, these methods of nonlinear regression analysis can be applied to any flow system for which analytical expressions of the drawdown discribution are known. In view of the growing general interest in the application of microcomputers in groundwarer hydrology, a BASIC routine has been developed for estimating any number of aquifer paramerers. The least squares solution is calculared by Marquardt's algorithm, using the singular-value decomposition of the Jacobian matrix. The robusr computing method obtained can be applied to all kinds of pumping rests. Aquifer characteristics as well as their standard deviations are computed with optimal speed and accuracy. The rechnique is demonstrated by a simple application to steady flow in a leaky aquifer and an example is provided. Other applications are easily implemented and programs for unsteady-state aquifer rests, recovery tests and multiple aquifer cests are available.

Introduction

Conventional methods of aquifer test analysis cannot cope with complicating circumstances, as often encountered in field situations. More sophisticated techniques have to be used in these cases to obrain reliable results. Since computer methods for aquifer evaluation, based on the principle of least squares, can be applied to any flow system for which analytical expressions for the drawdown distribution are known (Saleem, 1970), this type of solution has a large potential.

Superposition of any number of pumping (injection) wells and pumping schemes, less

[^6]common drawdown formulae, e.g. solutions for systems with storage in semipervious layers (Hantush, 1964) and multiple aquifer solutions (Hemker, 1984), all come within reach of practical aquifer test analysis. Not only the wide range of possible applications, but also the speed and accuracy and the possibility to calculate the reliability of the resulting values are advantages that contribute to the increasing use of computer rechniques for the identification of aquifer characteristics.

Positive experiences with parameter estimation from aquifer tests using a main-frame computer, together with the increasing availability of a spectrum of microcomputer types, raised the question whether some well-tested algorithms could be implemented in BASIC to obtain similar results with relatively inexpensive equipment. In the Autumn of 1983 the Acorn-BBC microcomputer was chosen for this purpose.

In this paper the resulting computing rechnique is described and the related complete BASIC code is presented. The method is demonstrated by a simple application to steady flow in a leaky aquifer.

Estimation of Aquifer Parameters

The procedure for computer determination of numerical values of aquifer characteristics from pumping test data is in many ways comparable with the well-known type curve technique. Five steps may be distinguished:

1. An appropriate drawdown formula (model) must be selecred which considers the type of aquifer, the kind of flow and other simplifying assumptions.
2. Starting from some arbitrary position, an iterative procedure is used to improve the fit berween observed drawdown and theoretical (type curve) values by adjusting, directly or indirectly, the values for the unknown aquifer parameters.
3. When adjustments have become sufficiently small to not influence the corresponding parameters in a sensible way, the iterative process is stopped. It is possible, however, that many combinations of parameter values can be found which result in an equally good fit.
+. Depending on the goodness of fit an impression of the accuracy of calculated parameter values is obtained.
4. A decision needs to be made with respect to how far the calculated values may be regarded as realistic representations of actual aquifer characteristics; this depends on a comparison between results obtained by the fitting procedure and the
physical reality of model assumptions.
Only steps 2,3 , and 4 can be carried out by computer, leaving both model selection and interpretation of results to the experience of the hydrologist.

An important difference between the two techniques is that in contrast with the judgement by eye in craditional curve fitting, the computer method needs a well-defined criterion for goodness of fit. In similar problems on nonlinear regression analysis, the sum of squares of differences between observed and calculated values is generally used. If a hydrogeologic situation can be represented by an appropriate drawdown formula and the errors in measured drawdown values are not influenced by systematic disturbances, the parameter values obtained by minimizing this sum of squares may be regarded as the best estimates.

Several compurer methods have been developed to estimate aquifer characteristics from pumping test data, based on essentially the same least squares technique (Saleem, 1970; Labadie and Helweg, 1975 a; Leijnse, 1980, 1982; McElwee, 1980; Chander et al., 1981). The problem of how the best estimates are determined is very important in relation to the efficiency and robustness of the computing method, but the principle of minimizing least squares should always yield the same results when the same data are processed.

Another difference between graphical curve fitting and the least squares technique is the transformation to logarithmic drawdowns, which makes the type curve method less sensitive to the deeper measurements (Labadie and Helweg, 1975b).

Minimization Method

The theory of methods available for finding a least squares fit of experimental data to a nonlinear function of several variables has been discussed extensively in the literature (e.g. Luenberger, 1973 ; Bard, 1974; Gill et al., 1981). The algorithm used for the Microcomputer Aquifer Test Evaluation (MATE) programs is a derivative of the ALGOL 60 procedure MARQUARDT from the numerical program library NUMAL (Hemker, 1981). As the name of this procedure indicates, it is based on the method proposed by Marquardr (1963).

By starting with some initial estimate for all the unknown parameter values $x_{j}(j=1, \ldots, n)$, the sum of $m(m \geqslant n)$ squares $F(x)$ is minimized in an iterative way. During the k-th iteration step, a vector d_{k} is defined as the solution of the equations

$$
\begin{equation*}
\left(J_{k}^{T} J_{k}+\lambda_{k} I\right) d_{k}=-J_{k}^{T} f_{k} \tag{1}
\end{equation*}
$$

where
$\mathrm{d}=$ step vector by which the new vector of parameters is calculated: $\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}+\mathrm{d}_{\mathrm{k}}$;
$\mathrm{f}=\mathrm{m}$ vector of differences between calculated and observed drawdowns, termed the residual vector;
I = unit matrix;
$J=$ Jacobian matrix, an $m \times n$ matrix, whose (i, j)-th element is the partial derivative of f_{i} with respect to $\mathrm{x}_{\mathrm{j}}(\mathrm{i}=1, \ldots, \mathrm{~m}) ; \mathrm{J}^{\mathrm{T}}$ is che transpose of J;
$\lambda=$ non-negative scalar for which an appropri* ate value must be chosen during iteration;
$\mathrm{m}=$ number of observations;
$n \quad=$ number of parameters.
The starting value for λ is fixed at 1% of the sum of eigenvalues of $\mathrm{J}^{\mathrm{T}} \mathrm{J}$ and this is halved in each iteration if

$$
\begin{equation*}
F_{k}-F_{k+1} \geqslant-10^{-2} d_{k}^{T} J_{k}^{T} f_{k} \tag{2}
\end{equation*}
$$

If this condition is not satisfied, λ is multiplied by a factor of 10 , more than once if necessary.

Using this strategy, it is possible that equation (1) has to be solved for more than one value of λ.

To do this in an easy way, the singular-value decomposition of the Jacobian is calculated:

$$
\begin{equation*}
J_{k}=U_{k} \Sigma_{k} V_{k}^{T} \tag{3}
\end{equation*}
$$

where
$\mathrm{U}=\mathrm{m}$-th order orthonormal matrix;
$\Sigma=$ the $m \times n$ diagonal matrix of singular values;
$V=n$-th order orthonormal matrix.
Substituting equation (3) into (1) and rearranging leads to

$$
\begin{equation*}
d_{k}=-V_{k}\left(\Sigma_{k}^{2}+\lambda_{k} 1\right)^{-1} \Sigma_{k} U_{k}^{T} f_{k} \tag{4}
\end{equation*}
$$

which shows that once the singular-value decomposition has been performed, d is easily calculated for different values of λ. The decomposition can be further used to derive information about the statistics of the problem.

The iterative procedure is terminated when the absolute and relative improvement in sum of squares is less than a given tolerance.

A detailed description of the ALGOL 60 procedure MARQUARDT is given by Bus et al.
(1975).

Application

In this paper only a single application of the described parameter estimation method for aquifer test evaluation is presented. The relatively simple De Glee-Hantush formula has been selected. This drawdown equation for steady-state well flow in a semiconfined aquifer can be expressed as

$$
\begin{equation*}
s=\frac{Q}{2 \pi K D} K_{0}(r / L) \tag{5}
\end{equation*}
$$

where the steady-state drawdown s is a function of two independent variables: Q (discharge) and r (distance from the pumped well), and two aquifer characteristics: KD (transmissivity) and L (leakage factor). According to the definition of the leakage factor, $\mathrm{L}=\sqrt{\mathrm{KDC}}$, the hydraulic resistance of the semipervious layer (c) and the transmissivity of the aquifer (KD) can be chosen as unknown parameters.

Implementation

The microcomputer program presented (MATE-DEGLEE) has been written in extended BASIC and can be run on an Acorn-BBC computer with 32 K memory. As the complete listing (see Appendix) contains only few REMark statements, to keep its length within bounds, additional information about the program structure and the algorithms used will be helpful to explain its operation and allow any required adaptations. No explanation will be given for specific statements and other commands available with the BBCBASIC language. The user is referred to the BBC User Guide (Coll, 1982) or other books on this subject.

The program has been split into a main body and several separately defined functions and procedures. The purpose of the main part (lines $100-280$) is the interactive input of data and the dimensioning of arrays, while all computation and output of results are left to the procedure PROCCAL. A subroutine is added ($300-330$) to enable the user to go back to the start by pressing the Escape-key, retaining the present values of all variables. By means of a flexible interactive data input (500-640) and three successive pages of information concerning the values requested, all necessary aquifer test data can be supplied to the computer with ample possibilities to correct typing errors. The contents of these pages are shown in Figures 1 to 3 . To find values for the required starting estimate (page 3), default values are calculated from the first and last given values of distance

PUMPING TEST ANALYSIS DATA INPUT 1

For a leaky aquifer and steady-state drawdown data, using De Glee's formula

Two parameters (aquifer characteristics) will be calculated

- KD : aquifer transmissivity (m2/day)
- c : hydraulic fesistance of semipervious layer (day)

Pumping rate $(\mathrm{m} 3 /$ day $)=761$
Number of piezometers $=8$

Type C (Change data) or SPACE (continue)

Fig. 1. Screen display. Data pumping test "Dalem," page 1.

```
PUMPING TEST ANALYSIS DATA INPUT 2
Type for each piezometer
- distance to pumping well (m)
- steady state drawdown (cm)
1 distance = 10 drawdown = 31
2 distance = 10 drawdown = 25.2
3 distance = 30 drawdown = 23.5
4 distance = =30 drawdown =21.3
5 distance =60 drawdown = 17
6 distance = 90 drawdown = 14.7
7 distance = 120 drawdown = 13.2
8 distance = 400 drawdown = 5.9
Type C (Change data) or SPACE (continue)
```

Fig. 2. Screen display. Data pumping test "Dalem," page 2.

```
PUMPING TEST ANALYSIS DATA INPUT 3
Give an estimate for both unknown
parameters
        KD-value = 1758
        c-value= = 367
    Type C (Change data) or SPACE (continue)
```

Fig. 3. Screen display. Calculated initial estimate for both parameters.
and drawdown using approximations based on the well-known equations given by Thiem and Cooper-Jacob.

Procedure PROCCAL (2000-2170) prints the input data, calculates the least squares solution (PROCMARQ) and the standard deviation of the parameters (PROCS) and finally prints the results by calling PROCRES and PROCOUT. Five elements of array " I " are to control the iterative curve fitting process. I(1) is a starting value, used for the relation between the gradient and the Gauss-Newton direction and I(2) is the maximum number of calls of PROCFUN by PROCMARQ. The iterative process is stopped if the improvement in the sum of squares is sufficiently small [i.e. less than $I(3) \times$ (sum of squares) $+I(4) \times I(4)]$. A fifth control parameter is the machine precision, set at 510^{-9} at the start of PROCMARQ.

The De Glee-Hantush formula is implemented in PROCFUN ($3000-3080$). To prevent either parameter from becoming negative in any iteration, minimum values are chosen: $K D \geqslant 1 \mathrm{~m}^{2} /$ day and $c \geqslant 1$ day. The Bessel function K_{0} is evaluated in function FNK (9000-9160) by means of either a Taylor series approximation (argument <4) or a finite Chebyshev series expansion.

The procedure PROCJAC (7000-7100) yields the Jacobian matrix obtained using current estimates of the unknown paramerers. Although all derivatives can be computed analytically in this case, a forward finite-difference approximation is applied using intervals of 10^{-3} of the parameter value. In this way the procedure is applicable to all kinds of aquifer tests, provided that the drawdowns can be computed with sufficient accuracy.

To calculate the singular-value decomposition of the Jacobian, the matrix is first reduced to bidiagonal form by Householder's transformation in PROCHSH (6000-6430). The corresponding postmultiplying and premultiplying matrices are subsequently computed in the same procedure. From these intermediate results the complere decomposition is calculated by PROCQR (65006880). The algorithms used are derived from the NUMAL procedure QRISNGVALDEC (Hemker, 1981).

When, according to the given stopping criterion, iterations are completed by PROCMARQ, the resulting estimated parameters, together with their standard deviations as determined by PROCS (8000-8050), are displayed on the screen by procedure PROCRES (2200-2300). The same procedure also presents a table with all calculated, observed and residual drawdowns. A separate procedure, called PROCOUT (2400-
2500), is used to give additional information on the iterative process: viz., the sum of squares and its improvement from the last iteration, the number of iterations performed and the running time. The condition number, also shown at this time, is defined as the ratio of the largest to the smallest eigenvalue of the matrix $\mathrm{J}^{\mathrm{T}} \mathrm{J}$. This number gives an impression of how well-defined the least squares solution is. Very large values ($>10^{7}$) indicate useless results, such as may be obtained when the data provided do not contain sufficient information to determine the parameters required.

The resulting observed and calculated drawdowns can easily be presented graphically on the monitor screen, but since several plotting techniques can be selected, this is left to the user's preference and no such procedure is included in the program listing.

Example

Data from the pumping test "Dalem," presented by Kruseman and de Ridder (1970) to illustrate the method of type curves, are used here as an example of the MATE-program. Figures 1 to 3 show the data input pages as they appear on the screen and all computer results are given in Figure 4 . A comparison of the computed parameters with those obtained by the graphical method ($\mathrm{KD}=2114 \mathrm{~m}^{2} /$ day and $\mathrm{c}=572$ days), shows a moderate difference, within the calculated standard deviations. The reason for the rather high calculated standard deviations can be found in the heterogeneity of the aquifer, demonstrated by the difference in drawdown berween both piezometers at 10 -meter distance. Apparently only three iterations are required, while the running time is less than half a minute. Starting with much worse initial estimates the calculation is almost as quick, while the results are the same.

Conclusions

Marquardt's algorithm has been successfully implemented on a microcomputer. The resulting least squares method can be applied to find aquifer characteristics and their individual standard deviations from pumping test data. The microcomputer appears to be well suited for this purpose: accurate results may be obtained within a few minutes depending on the drawdown equation used and the number of data. The BASIC routine presented in this paper is applicable to a large number of aquifer test problems, all of which may be solved in the same way as long as the appropriate drawdown formula can be evaluated with sufficient accuracy.

Fig. 4. Results pumping test "Dalem," as obtained by the computer program MATE-DEGLEE.

Acknowledgments

Appreciation is expressed to Dr. P. W. Hemker, who provided valuable support on the application of NUMAL procedures and to Professor N. A. de Ridder and Professor I. Simmers for reading and amending the manuscript.

Note

Considerable effort has been expended in an attempt to provide an error-free program, but the author, being a ground-water hydrologist rather than a programmer, does not accept responsibility for the consequences of any errors that may have been overlooked.

A floppy disk for the BBC-computer ($40 / 80$ tracks), containing programs for the analysis of steady and unsteady-state aquifer tests, recovery tests, and multiple aquifer tests is available from the author at duplication and mailing costs.

References

Bard, Y. 1974. Nonlinear Parameter Estimation. Academic Press, London and New York. 341 pp.
Bus, J.C.P., B. van Domselaar, and J. Kok. 1975. Nonlinear Least Squares Estimation. Stichting Marhemarisch Centrum, NW 17/75, Amsterdam. 42 pp.
Chander, S., P. N. Kapoor, and S. K. Goyal. 1981. Analysis of pumping test data using Marquardr algorithm. Ground Water. v. 19, no. 3, pp. 275-278.
Coll, J. 1982. The BBC Microcomputer User Guide. British Broadcasting Corporation, London, 518 pp .
Gill, P. E., W. Murray, and M. H. Wright. 1981. Pracrical Optimization. Academic Press, London and New York. 401 pp.
Hantush, M. S. 1964. Hydraulics of wells. Advances in Hydroscience. v. 1, pp. 281-432. Academic Press, New York.
Hemker, C. J. 1984. Steady groundwater flow in leaky multiple-aquifer systems. J. Hydrol. v. 72, Pp. $355 \cdot 374$.
Hemker, P. W. 1981. NUMAL numerical procedures in ALGOL 60. Machematisch Centrum. MCS 4.1.47.7, Amsterdam.
Kruseman, G. P. and N. A. de Ridder. 1970. Analysis and evaluation of pumping test data. Bulletin 11, Institure for Land Reclamation and Improvement, Wageningen. pp. 69-73.
Labadie, J. W. and O. J. Helweg. 1975 a. Step-drawdown test analysis by computer. Ground Water. v. 13. no. 5, pp. 438-444.
Labadie, J. W. and O. J. Helweg. 1975b. Reply to the Discussion by N. T. Sheahan. Ground Water. v. 13, no. 5, pp. 449-450.
Leijnse, A. 1980. Berekening van bodemconstanten uit pompproefgegevens met behulp van niet-lineaire regressieanalyse. RID (Nat. Inst. for Water Supply) -Meded. no. 80.3, Voorburg, 22 pp.
Leijnse, A. 1982. Evaluation of pumping tests; identification of paramerer values and their reliability. Proceedings of the Exeter Symposium, July 1982, IAHS Publ. no. 136, pp. 195-203.
Luenberger, D. G. 1973. Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass. 356 pp .
Marquardr, D. W. 1963. An algorithm for least-squares estimation of nonlinear paramerers. J. Soc. Indust. Appl. Math. v. 11, no. 2, pp. 431-441.
McElwee, C. D. 1980. Theis parameter evaluation from pumping rests by sensitivity analysis. Ground Water. v. 18, no. 1. pp. 56-60.

Saleem, Z. A. 1970. A compurer method for pumping-test analysis. Ground Water. v. 8, no. 5, pp. 21-24.

Christiaan J. Hemker received bis B.SC. degree in Pbysical Geography from the Municipal University of

Amsterdam in 1975 and a W.SC. degree in Hydrology from the Free University of A msterdam in 1980. In 1979 be joined the Water Supply Company " $A \& V$ " as a Geobydrologist, and since 1982 bas been temporarily employed
at the Free University to teach courses in ground-water bydraulics. His fields of special interest are ground-water modeling and (micro)computer applications to groundwater bydrology.

Appendix. Program Listing MATE-DEGLEE

10	REM Microcomputer Aquifer Test Evaluation ** MATE **	1620	PS(1) ='KD-value' $:$ PDS (1) $=$ " $(\mathrm{m} 2 / \mathrm{d})^{\prime \prime}$
20	RFM for steady-state semi-confined flow * Dextre *	1630	P\$(2) =" c-value": PD\$(2)="(day)"
30	REM by Christiaan J.Hemker 1983	1640	
40	ficm last update 6-5-1984	1650	
50		1660	$\mathrm{P}(1)=\operatorname{INT}(T): P(2)=1+\operatorname{INT}\left(L^{* L} / \mathrm{T}\right)$
100	MODE7:O4=0:N8**2:ON ERROR OOTO 250	1670	PRINT" "'"Give an estimate for both unknown"
110	Mz=15:MX\% 20 : $0=800$:SEM Default values	1680	ERINT"'parameterg"
120		1690	$P(1)=F N P(K \%, 2,11, P \$(1), P(1))$
130	IF Mrs ${ }^{\text {che }}$ THEN PRINT'Insufficient data Try again':END	1700	$\mathrm{P}(2)=\mathrm{FNP}(\mathrm{K}, 2,13, \mathrm{PS}(2), \mathrm{P}(2))$
140		1710	ENDPRCOC
150	OIM P(2), PS (2), PDS (2),R(MX\%), S(MX\%)	1720	
160	H\% = (M\% - 1) DIV10:FOR Lt $=0$ TO H\%	2000	DEF PROCCAL:REM write input, calculate and write output
170		2010	LOCAL I\%,A5:CLS:0\%\% ${ }^{\text {d }}$ 2010B
180	NEXT:K\%=0:REPEAT PROXH(H*+3):PROCPAGE3:K\%=1:(NTIL ENENO	2020	PRINT" Distance Drawdown"
190	IF D\% 33 THEN GOIO 220 EISE D\% $=4$	2030	FRINT" (m) (cm$)^{\prime \prime}$
200		2040	FOR I\% $=1$ T0 M : PRINT R(I\%), S(It)
210		2050	
220	PROCCAL:REM Calculation ard output	2060	NEXT: PR=TRUE;TIME=0
230		2070	PRINT"' Discharge rate ";Q;" mb/day"'"
250	If ERR=17 OR ERR=0 THIEN GOTO 300 EmSE REPORT	2080	PRINT" Results of successive iterations"'
260	END	2090	PRINTTAB(3)P\$(1)TAB(14)P\$(2)'TAB(5)PDS(1)SEC(6)PD\$(2)'
290		2100	$I(1)=0.01: \mathrm{fem}$ value used for the calculation of labda
300	REM Subroutine to re-start by pressing EsCAPE	2110	$I(2)=50$: REM max number of iterations
310	PRINT" Stop or Repeat? (S/R)"	2120	$I(3)=1 \mathrm{E}-4: \mathrm{REM}$ relative stopping criterion
320	ASmGETS:IF AS="S' THEN PRINT: END	2130	I(4) $=1 \mathrm{E}-4: \mathrm{sjM}$ absolute stopping criterion
330	IF AS="R" THEN GOTO 120 E]SE GOTO 320	2140	PRCGMARQ: PROCS
350		2150	TM=TIME:SONND 1,-14,200,10
500	Rem Function for interactive data input	2160	IF O(1)=0 THEN PROCRES:PRCOOUT ELSE PROODUT:PRCCRES
510	DEF FNE (M3, LLt, Lh, P\$,V):LOCAL, P4, Vh, V\$	2170	ENDPROC
520	FRINITAB(LLi,L\%);P\$;" = ";V;	2180	
530		2200	DEF PROCRES:REM write solution
540	PRINT SFC(40) : : IE Mom ThEN = $=0$	2210	PRINT' "'THE CALCLLATED LEAST' SQUARES SOLUTION"
550	INPUT TAB(P \%, V8) V \$	2220	PRINT'"Parameter value Standard deviation"'
560		2230	
570	G010 520	2240	
590		2250	PRINT INT(Z̈(I\%)*100/ABS(P(I\%)))"\%)":NEXT
600	REM Function end page	2260	*FX 15,1
610	DEF PNEND:LOCAL AS	2270	AS=GETS:PRINT'"'Calculated Observed Cal-Obs"'
620	PRINTTAB $(0,23)$ "TYpe C (Change data) or SPACE (continue)";	2280	@\%=42020A:FOR 18×1 T0 M\%
630	AS=GETS: IF AS工" "THEN =TRUE	229	PRINT(S (I\%) +G(I\%) , S(I\%), G(I\%) : NEXT:AS=GET\$
640	IF AS*"C" THEN =FALSE ELSE COTO 630	230	ENDPROC
560		2310	
700	DEF $\operatorname{FNMAX}(\mathrm{A}, \mathrm{B}): \mathrm{IF}$ B>A THEN $=\mathrm{B}$ ELSE $=A$	240	DeF EPOCOOT:REM write aditional information
720		241	
900	DEF PROCH(I\%): REM heading	242	FRINT"'"Nonlinear regression calculation"
910	CLS:PRINT"'PUMPING TEST ANALYSISS DATA INPUT ";I\%	243	FRINL'has been Broken OFF"
920	ENDPROC	244	PRINT'''The sum of squares is ";O(2)*O(2)
930		245	PRINT"Improvement last iteration ";0(6)*O(6)
00	DEF PROCPAGE1:R2M Read cata page 1	246	PRINI'Number of iterations ";0(5)
010	PRINT"' '"For a leaky aquifer and stendy-state"	247	FRINT"Condition number ";O(7)
020	PRINT"drawdown data, using De Glee's formula'	248	PRINT'Running time ";TM/6000;" minutes"
030	PRINT" "Two parameters (aquifer characteristics)";	249	AS $=$ GETS
040	PRINT'w1ll be calculaced'	250	ENDPRCC
050	PRINT" - $\mathrm{S}^{\text {D }}$: aquifer transmissivity (m2/day)"	251	
060	PRINT" - e : hydraulic resistance of semi-"	300	OEF PROCFUN:REM DeGlee's formula
70	PRINT" pervious layer (day)"	301	LOCAL Is, ${ }^{\text {S }}$
080	Q $=$ PNP($\mathrm{Kz}, 0,15$,"Pumping rate (m3/day)", 0)	302	IF $\mathrm{E}(1)<1$ THEN $\mathrm{P}(1)=1: \mathrm{REM}$ transmissivity
090	$\mathrm{Mz}=\mathrm{FNP}(\mathrm{Kz}, 0,18$, "Number of piezometers", M $)$	303	IF $P(2)$ (1 THEN $P(2)=1: R E M$ hydralic resistance
100		304	IF ER THEN FOR Iq=1 TO N\%:PRINT P(I\%);
110	IF MB<=MX\% THEN ENDPROC	305	FOR T\%\#1 TO M
120	ERINTTAB $(0,17)$ "If number>";MX\%;" stop and start again"	306	S=R(It)/SCR(P(2)*P(1)
130	GOIO 1090	307	
140		306	ETPFROC
300	DEF PROCPAGE2(L) ${ }^{\text {a }}$; REM Read data page $2+$	309	
310	IF Kt+Li+C\%) 1 THEN 60101330	500	Der ProcmaroirgM Marquardt's algority
320		501	
330	PRINT""'"Type for each piezometer"	501	LOCAL A, S, E,F,L,M,R,S,V,N,X,Y,Z
340	PRINI''- distance to pumping wall (m)"	502	$V=10: W=0.5: M=0.01$
350	PRINT"- steady state drawdown (cm)"	502	$I(0)=5 \mathrm{E}-9: \mathrm{REM}$ machine precision
360		5030	IF $I(1)<1 E-7$ THEN $Y=1 E-8$ ELSE $Y=I(1) / 10$
370	PRINITAB ($0,9+58$) ; I\%	504	$E(0)=I(0): E(2)=\Gamma(0): E(6)=\Gamma(0): E(4)=10^{*} \mathrm{~N} *$
380		505	$\mathrm{B}=I(3): A=I(4) * I(4)$
390	S(I\%) \times FNP(K\%, 27, 9+W\%, "drewdown", S(I\%))	5060	$G=1(2): E 4=0: F 4=1: S \%=0: P 4=0$
400		5070	$\mathrm{Q}=-\operatorname{TNT}\left(\underline{L C O}\left(\mathrm{Y}^{*} \mathrm{I}(0)\right) \mathrm{l}\right.$
410	ENDPRCC	508	FOR I\%=1 10 N: O (I\%) $=\mathrm{P}(\mathrm{I} \%$) : NEXT
600	DEF PROCPMEE3:LOCAL T,L:REM Read starting guess	5090	PROCPIN
610		5100	GOSUB 5500:F=2:0(3) $=50 \mathrm{SR}(F)$

5120
5125 PROCHSH：PROCQR：REM singular－value decomposition
5130 IF 5\％्क
5135 IF $\mathrm{P} \%=0$ THEN $L=亡 * W$ ELSE $\mathrm{P} \%=0$
5140 FOR I\％$=1$ TO N\％： $\mathrm{Z}=0: \mathrm{POR}$ K\％$=1$ TO M\％
5150 Z干A（K\％，I多）＊G（K\％）＋Z：NEXT
5160 C（I音）$=0\left(I I^{\prime}\right) * Z: N E X T$

5180 FOR IS＝1 TO N荲：$Z=0: F O R \quad K \%=1$ TO No
5190 Z二V（II，K\％）＊Z（K\％）＋Z：NEXT
$5200 \quad \mathrm{P}(\mathrm{I}$ 名 $)=Q($ I号 $)-Z:$ NEXT

5220 PROCTUN
5230 GOSUB 5500：SmZ：R＝F－Z
5240 GOSUB 5520：IF R＞M＊Z THEN GOTO 5280

5260 IF $P \&=1$ THEN OOSUE 5510：E＝Y＊ 2 ：IF L＜E THEN L＝E
5270 IF Pq ¢Q\％THEN COTO $5170 \mathrm{EL} 5 \mathrm{E} E \mathrm{E}=4: \mathrm{COTO} 5300$

5290 IF F＞A AND R＞B＊F＋A THEN GOIO 5110

5320 FOR I\％＝1 TO NB：FOR $5 \%=1$ TO I $5: Z=0$

5360 FOR I名＝2 TO N\％

5375 NENT
$5380 \mathrm{Z}=\mathrm{L} /(\mathrm{E}+\mathrm{I}(0)): O(7)=\mathrm{Z}^{*} 2$
$5390 O(2)=50 R(F): Z \pm R+F: I F \quad Z) O$ THEN $O(6)=S Q R(Z)-O(2)$
$5400 \mathrm{O}(4)=F \%: O(5)=S \%: O(1)=E \%$
5420 ENDPROC

5530
6000 DEF PROCHSH
6010 LOCAL I\％，J\％，H\％，T＂\％，C，E，G，H，R，S，V，W
$6020 \mathrm{R}=0: \mathrm{POR}$ I名気 1 TO M ： $\mathrm{W}=0$

6040 IF W＞R THEN R＝W
6050 NEXT：C＝E（0）＊R：E（1）＝R

6070 IF HR MM THEN GOIO 6090

6110 IF $F<0$ THEN $G=3 G R(S) E S E G=-S Q R(S)$

6130 IF $\mathrm{H}_{3} \times \mathrm{N} \%$ IHEN OOTO 6170
$6140 \quad$ FCR J\％$=\mathrm{H} \%$ TO N ：$: \mathrm{S}=0$
6140
6150
6165
6170
618
6180

6200 IF S＜C THEN B（I\％） A （I\％，Ho ）： 60106270
$6210 \quad F=A\left(I \frac{2}{3}, H \%\right): S=F^{+} F+S$
6220 IF E＜O THEN G＝SCR（S）ETSE G＝－SCR（S）
$6230 \quad \mathrm{~B}(\mathrm{I} \%)=\mathrm{G}: \mathrm{H}=\mathrm{F}^{*} \mathrm{G}-5: \mathrm{A}(\mathrm{I} \%, \mathrm{H} \%$ ）$=\mathrm{F}-\mathrm{G}$

 NEXT
NEXT
$\mathrm{H}=\mathrm{N}=\mathrm{N}: \mathrm{V}(\mathrm{Nm}, \mathrm{N} \%)=1$
EOR I驾二N⿱⿱⿰㇒一日夊心㇒－1 TO 1 STEP－1

$S=S+A\left(I \frac{1}{4}, T \%\right) * V(T \%, J \%): N E X L$
 NEXT

FOR I\％$=\mathrm{N}$ 右 101 SIEP -1

 IF $\mathrm{H}>=0$ THEN GOIO 6460
IF H\％ N \％THEN GOTO 6450

6445
6450
6460
6470
6480
6500 DEF PR

6515 LOCAL B，C，F，G，H，M，S，T，V，W，X，Y，Z

$5540 \mathrm{~K} \%=K \%-1: I F K \%$ THEN OOTO 6650
6550 IF ABS（B（K응））T THEN GOTO 6580
6560 IF $\operatorname{ABS}(B(K \%))>B$ THEN $B=A B S(B(K \%))$
6570 GOIO 6650
6580 IF ABS（D（K\％））$)$ THEN COTO 6540
6590 C＝0：S핀

$6620 \mathrm{G}=\mathrm{D}(\mathrm{J} \%) ; \mathrm{H}=\operatorname{SOR}\left(\mathrm{F}^{*} \mathrm{~F}_{\mathrm{F}}+\mathrm{G}^{\ddagger} \mathrm{G}\right): \mathrm{D}(\mathrm{J} \%)=\mathrm{H}: \mathrm{C}=\mathrm{G} / \mathrm{H}: \mathrm{S}=-\mathrm{F} / \mathrm{H}$
 $A(T \%, K \%)=V^{*} C+W^{*} S: A\left(T T^{*}, J^{\prime}\right)=W^{*} C-V^{*} S: N E X I$ NEXT
5650 IF KRくゝV8 THEN GOTO 6690
6660 IF $D(U \%)<0$ THIRN $D(U \%) *-D(U \%)$ ELSE GOTO 6670

6670 IF $\mathrm{D}(\mathrm{U} \%)<\mathrm{M}$ THEN R\％＝R\％－1
6680 U\％＝V害： 60106860

6710 IF V多 $=1$ THEN $G=0$ EISE $G=B(V Z-1)$
$5720 \mathrm{H}=\mathrm{B}(\mathrm{V}$
$6730 \mathrm{G}=\operatorname{SCR}(\mathrm{F} * \mathrm{~F}+1)$
6740 IF $F<0$ THEN $C=F-G \quad E J S E \quad C=F+G$
$6750 \mathrm{E}=\left((\mathrm{X}-\mathrm{Z}) *(\mathrm{X}+\mathrm{Z})+\mathrm{H}^{*}(\mathrm{Y} / \mathrm{C}+\mathrm{H})\right) / \mathrm{X}: \mathrm{C}=1: \mathrm{S}=1$

$6770 \quad \mathrm{Y}$＊D（I\％）： $\mathrm{H}=\mathrm{S}^{*} \mathrm{G}: \mathrm{G}=\mathrm{C}^{*} \mathrm{G}$
$6780 \quad Z=\operatorname{SOR}\left(F * F+H^{*} H\right): C x F / Z: S=\hbar / Z$

6800 F＝X＊C＋G＊S：G＝G＊C＊X＊S：H＝Y＊S：Y＊Y＊C

$Z=S O R\left(F^{*} F+H^{*} H\right): D(J$ 右 $)=Z: C=E / Z: S=H / Z$
$F=C^{*} G+S^{*} Y: X=C^{*} Y-S^{*} G$

6845
6850 日 $\left(V V_{3}\right) \times F: D\left(U \frac{1}{3}\right)=X$
6860 IF U\％$) 0$ THEN GOTO 6530
$6870 \mathrm{E}(3)=\mathrm{B}: \mathrm{E}(5)=\mathrm{C}=\mathrm{z}: \mathrm{E}(7)=\mathrm{R} \%$
6880 ENDPRCC
6890
7000 DEF PROCJAC：RDM calculate jacoblan
7010 LOCAL I咅，Ji，D，P：PR＝FALSE

$7040 \quad P(J$ 年 $)=D: P R O C H N: P(J$ 务 $)=P$
7050 FOR I昌＝1 TO M\％

7070 NEXT

7090 ERETRUE
7100 ENDPROC
7110
8000 DFF PROCS：REM statistics
8010 LOCAL Z：IF M8NN THEN ZxO：GOTO 8030
$8020 \mathrm{Z}=\mathrm{SQR}\left((\mathrm{O}(2)+\mathrm{O}(2)) /\left(\mathrm{Mz}-\mathrm{N} \mathrm{F}_{2}\right)\right)$

8040
8050
8060
9000 DEF FNK（B）：REM Begsel function K0
9010 LOCAL KB，U，V，W，X，Y，Z
9020 TF B＞4 THEN GOIO 9100
9030 IF $\mathrm{B}<1 \mathrm{E}-37$ THEN $\mathrm{B}=1 \mathrm{E}-37$
9040 XLN（2／B）－． $577215665: U=X$
$9050 \mathrm{~V}=1: W=1: Y=8 \div B / 4: K$ \％$=0$

$9070 \mathrm{~V}=1 /(\mathrm{K} \%+1): \mathrm{Z}=\mathrm{W}=\mathrm{J}: \mathrm{X}=\mathrm{X}+\mathrm{Z}$
9080 IF ABS $(2 / X)>5 E-8$ THEN GOIO 9060
$9090=X$
$9100 \mathrm{Y}=10 / \mathrm{B}=1: \mathrm{Z}=\mathrm{Y}+\mathrm{Y}: \mathrm{UF}-4.5 \mathrm{E}-\mathrm{B}$
$9110 \mathrm{~W}=2 * \mathrm{U}+\boldsymbol{5} .32575 \mathrm{E}-7: \mathrm{V}=\mathrm{U}: \mathrm{U}=\mathrm{W}$
$9120 \mathrm{~W}=\mathrm{Z}+\mathrm{U}-\mathrm{V}-1.1106685 \mathrm{E}-\mathrm{S}: V=\mathrm{U}: \mathrm{U}=\mathrm{W}$

$9140 \mathrm{~W}=\mathrm{Z}+\mathrm{U}-\mathrm{V}-1.1310504 \mathrm{E}-2: \mathrm{V}=\mathrm{U}: \mathrm{U}=\mathrm{W}$
$9150 \mathrm{X}=50 R(\mathrm{PI} /(2 * \mathrm{~B})){ }^{\text {＊}} \mathrm{EXP}(-\mathrm{B})$
$91.60=X^{*}(Y=U-V+988408174)$

COMPUTER NOTES

SPEEDING IT UP IN BASIC
by John Logan ${ }^{2}$

Abstract. Execution time of many programs can be markedly shortened by (a) defining frequently used constants in assignment statements or placing them in arrays and by (b) avoiding or minimizing the use of exponentials.

Microcomputers work so rapidly that it is often of little concern whether a problem is solved in two seconds or in one. However, there may be hundreds of calls to lengthy algorithms in certain programs, and shortening of execution time can become important. Examples include the development of drawdown distributions around a well field, sensitivity analyses, regional flow models and investigations of optimization. In such problems, a well function-particularly our old friends W (u) and $W(u, r / B)$-may be solved by polynomial approximation, and attention to a few simple programing procedures can have a material effect upon execution time.

Consider the following example of a polynomial contrived to represent the type we often use:

$$
x=.0011 u+.0022 u^{2}+.0033 u^{3}+.0044 u^{4}
$$

Let us do this 1000 times with different values of u and accumulate the total:
$10 \mathrm{SX}=0$
20 FOR U= 1 TO 1000
$30 \mathrm{X}=.0011^{*} \mathrm{U}+.0022^{*} \mathrm{U} \uparrow 2+.0033^{*} \mathrm{U} \uparrow 3+.0044^{*} \mathrm{U} \uparrow 4$
40 SX=SX+X
50 NEXT U
60 PRINT SX
70 END
Line 30 directly tracks the equation, and this style appears in many published programs. My micro requires 244 seconds to run chis example.

Exponentiation is rather slow. By eliminating that operation and rewriting line 30 to

[^7]\[

$$
\begin{align*}
30 \mathrm{X}= & .0011^{*} \mathrm{U}+.0022^{*} \mathrm{U} * \mathrm{U}+.0033^{*} \mathrm{U}^{*} \mathrm{U}^{*} \mathrm{U} \\
& +.0044^{*} \mathrm{U}^{*} \mathrm{U}^{*} \mathrm{U}^{*} \mathrm{U} \tag{2}
\end{align*}
$$
\]

execution lowers to 92 seconds.
As the program cycles through the FOR/NEXT loop, each of the four constants must be "translated" to machine language 1000 times. It is much faster that this be done only once through the use of assignment statement. We may add line 15 and modify line 30 as follows:

```
15 C1 =.0011:C2=.0022:C3=.0033:C4=.0044
30 X=C1*U+C2*U*U+C3*U*U*U+C4*U*U*U*U
```

Execution time reduces to 39 seconds, a dramatic improvement over the original 244.

Sample program (1) above is simplified almost to the point of absurdity: our usual problems are much more complex. My program for determining W ($u, r / B$) uses 38 constants and exponentiations to the power of 12 . In such conditions, the methods of example (3)-although rapid-require tortuous programing. The constants should be placed in an array that is loaded with READ/DATA statements and the repetitive multiplications can best be handled by assignments as in line 25 below. With those modifications, the program of the example becomes:

```
10 DIM C(4): SX=0
15 FOR J=1 TO 4: READ C(J): NEXT
20 FOR U=1 TO 1000
25 U1=U:U2=U*U:U3=U2*U:U4=U3*U
30 X=C(1)*U1+C(2)*U2+C(3)* U3+C(4)*U4
40 SX=SX+X
50 NEXT
6 0 ~ P R I N T ~ S X ~
70 END
80 DATA .0011,.0022,.0033,.0044
```

This version runs in 54 seconds and is an acceptable compromise between minimum execution time and practical programing.

These suggestions may not work on all micros nor will the stated running times be the same. However, persons interested in shortening the execution of complex programs might try placing frequently used constants in arrays (or in assignment statements) and eliminating (or at least minimizing) exponentiations.

John Logan began working in the ground-water specialty in the Upper Neolithic. Following employment with the Bureau of Reclamation, the Agency for International Development, the United Nations, UNESCO, and county government, be decided to make an bonest living and has been a consulting geologist for the last ten years.

An Automated Numerical Evaluation of Slug Test Data

by M. W. Kemblowski and C. L. Klein ${ }^{\text {a }}$

Abstract

Development of a numerical algorithm to analyze slug test data is described. This type of test is very popular for aquifer testing, primarily because of its simplicity. Many such tests are performed to estimate the hydraulic conductivity values of ground-water-bearing formations. Those values in rurn are used to calculare pore-water velocities. The algorithm was coded and successfully tested for a hypothetical data set. It has also been applied at a number of field locations. One such application is presented.

INTRODUCTION

This paper is a summary of the development and testing of a numerical algorithm designed to analyze slug test data. This type of test is very popular for aquifer testing, primarily because of its simplicity. Many such tests are performed as part of hydrogeologic assessments. The algorithm utilizes the slug test analysis presented by Bouwer and Rice (1976) and uses a sensitivity analysis for parameter estimation (McElwee, 1985).

THEORY AND ANALYTICAL SOLUTION OF THE SLUG TEST PROBLEM

The theory of the slug test problem is based on the Thiem equation which describes the relationship between the inflow into the borehole and the drawdown.

[^8]\[

$$
\begin{equation*}
\mathrm{Q}=\frac{2 \pi K L_{e}\left(\mathrm{~h}-\mathrm{h}_{\mathrm{w}}\right)}{\ln \left(\mathrm{r} / \mathrm{r}_{\mathrm{w}}\right)} \tag{1}
\end{equation*}
$$

\]

where $h_{w}=$ piezometric head in the well (ft); $\mathrm{h}=$ piezometric head at distance r (ft); $r_{w}=$ effective radius of the well, including the gravel pack (ft); $r=$ distance from the well center (ft); $\mathrm{K}=$ hydraulic conductivity (ft/day); $\mathrm{Q}=$ inflow into the borehole ($\mathrm{ft}^{3} /$ day); and $L_{e}=$ effective aquifer thickness, in this case, height of open section of well (ft).

The rate at which the well-water level will rise depends on the inflow into the well and may be expressed as:

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dt}}=-\frac{\mathrm{Q}}{\pi \mathrm{r}_{\mathrm{c}}^{2}} \tag{2}
\end{equation*}
$$

where $r_{c}=$ internal radius of the well; and $y=$ drawdown at the well. Assuming that at some distance R (radius of influence), the drawdown is dissipated ($h=0$), one can substitute equation (1) into equation (2) and solve the resulting equation for y to obtain:

$$
\begin{gather*}
y_{t}=y_{0} \exp \left[-\frac{2 K L_{e} t}{r_{c}^{2} \ln \left(R / r_{w}\right)}\right] \tag{3}\\
K=\frac{r_{c}^{2} \ln \left(R / r_{w}\right)}{2 L_{e} t} \ln \frac{y_{0}}{y_{t}} \tag{3a}
\end{gather*}
$$

where $\mathrm{R}=$ effective radial distance at which the drawdown is dissipated; $y_{0}=$ drawdown in well at time zero; $y_{t}=$ drawdown in well at time t; and $t=$ time since y_{0}.

Impermeable

Fig. 1. Geometry and symbols of slug test.

Values of R were experimentally determined (Bouwer and Rice, 1976) for different values of r_{w}, L_{e}, L_{w}, and H (see Figure 1). For a partially penetrating well, the following empirical equation was developed:
$\ln \frac{R}{r_{w}}=1 /\left[\frac{1.1}{\ln \left(L_{w} / r_{w}\right)}+\frac{A+B \ln \left(\left(H-L_{w}\right) / r_{w}\right)}{\left(L_{e} / r_{w}\right)}\right]$
where A and B are dimensionless parameters shown in Figure 2 as functions of $\mathrm{L}_{\mathrm{e}} / \mathrm{r}_{\mathrm{w}}$. The experiments indicated the effective upper limit of $\ln \left(\left(H-L_{w}\right) / r_{w}\right)$ is 6 . This upper limit is included in the program.

For a fully penetrating well ($H=L_{w}$), R is calculated using the following relation:

$$
\begin{equation*}
\ln \frac{R}{r_{w}}=1 /\left[\frac{1.1}{\ln \left(L_{w} / r_{w}\right)}+\frac{C}{\left(L_{e} / r_{w}\right)}\right] \tag{5}
\end{equation*}
$$

where C is a dimensionless coefficient shown in Figure 2 as a function of L_{e} / r_{w}.

PARAMETER ESTIMATION BY SENSITIVITY ANALYSIS
For simplicity, equation (3) is rewritten as follows:

$$
\begin{equation*}
K=\frac{D}{\tau} \ln \frac{y_{0}}{y_{\tau}} \tag{6a}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\frac{r_{c}^{2} \ln \left(R / r_{w}\right)}{2 L_{e}} \tag{6b}
\end{equation*}
$$

D is a known constant for a given test. Using equation (6a), we can express drawdown y_{t} as a function of time and hydraulic conductivity.

$$
\begin{equation*}
y_{\tau}(K)=y_{0} e^{-K \tau / D} \tag{7}
\end{equation*}
$$

The basic idea of parameter estimation technique is to calculate a value of K that would minimize the difference berween observed and calculated values of drawdown. This is done by iterations. After each iteration, the "old" value of K is updated.

$$
\begin{equation*}
K^{*}=K+\Delta K \tag{8}
\end{equation*}
$$

The sensitivity analysis provides a tool to calculate ΔK.

Using the Taylor expansion and neglecting the terms of the order higher than one, we can estimate the value of drawdown $y_{t}(K+\Delta K)$ as a function of $y_{\tau}(K)$.
$y_{t}(K+\Delta K)=y_{t}(K)+\frac{\partial y}{\partial K} \Delta K=$
$y_{0} e^{-K t / D}-y_{0}\left(\frac{t}{D}\right) e^{-K t / D} \Delta K=y_{t}(K)\left(1-\frac{t}{D} \Delta K\right)$
Using equation (9), we may now develop an expression for the total square error between the observed drawdown y_{i}^{0} and the drawdown calculated by equation, $y_{i}^{*}=y_{t}(K+\Delta K)$ (subscript i refers to time).
$E=\sum_{i=1}^{N}\left(y_{i}^{0}-y_{i}^{*}\right)^{2}=\sum_{i=1}^{N}\left(y_{i}^{0}-y_{i}+y_{i} \frac{t_{i}}{D} \Delta K\right)^{2}=$
$\sum_{i=1}^{N}\left[\left(y_{i}^{0}-y_{i}\right)^{2}+2\left(y_{i}^{0}-y_{i}\right) y_{i} \frac{t_{i}}{D} \Delta K+\left(y_{i} \frac{\tau_{i}}{D} \Delta K\right)^{2}\right](10)$

Fig. 2. Curves relating coetficients A, B, and C to L_{e} / r_{w} (after Bouwer and Rice, 1976).
where N is the number of observations.
This total square error may be minimized with respect to ΔK.

$$
\begin{equation*}
\frac{\partial E}{\partial \Delta K}=2 \sum_{i=1}^{N}\left[\left(y_{i}^{0}-y_{i}\right) y_{i} \frac{t_{i}}{D}+y_{i}^{2} \frac{t_{i}^{2}}{D^{2}} \Delta K\right] \equiv 0 \tag{11}
\end{equation*}
$$

Equation (11) is used to estimate the conductivity correction.

$$
\begin{equation*}
\Delta K=-D \sum_{i=1}^{N}\left[\left(y_{i}^{0}-y_{i}\right) y_{i} t_{i}\right] / \sum_{i=1}^{N} y_{i}^{2} t_{i}^{2} \tag{12}
\end{equation*}
$$

The numerical algorithm consists of the following steps:

1. Read the input data.
2. Calculate the effective radius using equation (4) (partially penetrating well) or (5) (fully penetrating well).
3. Calculate D [equation (6b)].
4. Calculate simulated drawdown $\left\{y_{i}\right\}$ [equation (7)].
5. Calculate the conductivity correction [equation (12)].
6. Calculate "new" conductivity [equation (8)].
7. Calculate total square error [equation (10)].
8. Estimate the standard deviation σ using the following expression:

$$
\begin{equation*}
\sigma=\left[\frac{1}{\mathrm{~N}-1}(\mathrm{E})\right]^{1 / 2} \tag{13}
\end{equation*}
$$

9. If the number of iterations < NITER, go back to step 4 (NITER $=$ maximum number of iterations).
10. Print out the results.
11. Stop.

This algorithm was coded in FORTRAN for IBM PC. In order to use it, the user has to provide the test geometry and drawdown data, and estimate parameters A and B or parameter C using Figure 2. The program does not have a weighing system that would consider early data more important than the late ones (Bouwer, 1978). However, the user can limit the number of data points.

MODEL TESTING

The numerical solution was tested using a computer-generated data set. This set of drawdown data was calculated for a fully penetrating, partially screened well of the internal radius $r_{c}=0.05 \mathrm{~m}$, and the external radius $\mathrm{r}_{\mathrm{w}}=.1 \mathrm{~m}$. The initial saturated thickness of the aquifer was $\mathrm{L}_{\mathrm{w}}=15 \mathrm{~m}$, and the screen height was $L_{e}=10 \mathrm{~m}$. For these

Fig. 3. Model testing.
conditions, dimensionless parameter C was estimated from Figure 2 to be $\mathrm{C}=1.5$. To generate the drawdown data using equation (7), the value of the hydraulic conductivity was assumed to be $\mathrm{K}=.288$ $\mathrm{m} /$ day ($.0002 \mathrm{~m} / \mathrm{min}$). The initial drawdown was $y_{0}=1 \mathrm{~m}$. The drawdown values were calculated for 10 minutes, with a one-minute interval (Figure 3). This data set was then used to calculate the hydraulic conductivity of the system using the developed numerical procedure. The initial estimated value of hydraulic conductivity was $.0144 \mathrm{~m} /$ day ($0.00001 \mathrm{~m} / \mathrm{min}$). It took the program five iterations to calculate the correct value of hydraulic conductivity (Figure 3). Table 1 shows the results for the five iterations.

MODEL APPLICATION

The automated evaluation procedure has been used successfully at a number of locations to interpret slug test data. One recent application was done to estimate the hydraulic conductivity at a

Tabla 1. Model Application and Results

Iteration	K $(\mathrm{m} / \mathrm{min})$	$\sigma(\mathrm{m})$
0	$0.100 \mathrm{E}-04$	0.79
1	$0.779 \mathrm{E}-04$	0.031
2	$0.144 \mathrm{E}-03$	0.01
3	$0.188 \mathrm{E}-03$	0.0018
4	$0.199 \mathrm{E}-03$	0.0007
5	$0.200 \mathrm{E}-03$	0.00003
6	$0.200 \mathrm{E}-03$	0.00003

site in Kalkaska, Michigan. The field test was performed using a partially penetrating well with inner radius $r_{c}=0.104 \mathrm{ft}$ and external radius $r_{w}=0.281$ ft . The well penetration depth L_{w} was equal to 3.115 ft . The length of the screen under the water table L_{e} was equal to L_{w}. The total saturated thickness was estimated to be 100 ft . The dimensionless parameters A and B, estimated from Figure 2 , were 1.8 and 0.25 , respectively. The test was performed by submerging a closed bailer into the well, thus creating a negative drawdown. The initial value of the negative drawdown was 0.68 ft . Figure 4 shows the field data and the simulated drawdown for the estimated hydraulic conductivity $K=0.000611 \mathrm{ft} / \mathrm{sec}$ which was obtained after five iterations. It can be seen that the simulated results fit the field data quite well.

SUMMARY

An automated numerical procedure was developed to analyze slug test data. The procedure is based on the sensitivity analysis for parameter estimation. The solution was validated using computer-generated data. It also has been used successfully at a number of locations. One such application at a Kalkaska, Michigan site is described.

ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful discussions with J. D. Colthart of Shell Development Company. We thank the management of Shell Oil Company for permission to publish this paper.

REFERENCES

Bouwer, H. 1978. Groundwater Hydrology. McGraw-Hill, New York.

Fig. 4. Model application.

Bouwer, H. and R. C. Rice. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with complecely or partially penerrating wells. Water Res. Research.v. 12, pp. 423-428.
McElwee, C. 1985. Sensitivity analysis. In NATO Advanced Study Institute on Fundamentals of Transport Phenomena in Groundwater. Newark, Delaware (ed., Jacob Bear).

Marian W. Kemblowski is a Research Engineer with Shell Development Company, Houston, Texas. He received his M.S. in Civil Engineering from the Tecbnical University of Warsaw, Poland, and his Ph.D. in Hydrology from the Institute of Land Reclamation, Warsav, Poland. His current research interests are in the area of quantitative analysis of miscible and immiscible hydrocarbon transport in the subsurface.

Catherine L. Klein is a Research Technician with Shell Development Company. She is a B.S. student at the University of Houston, University Park, Texas, with double majors in Chemical Engineering and Computer Science. She bas extensive experience in applying computer models to characterizing pollutant transport in ground water.

A Method to Determine the Formation Constants of Leaky Aquifers, and Its Application to Pumping Test Data

by F. Kohlbeck ${ }^{\text {a }}$ and A. Alvarez ${ }^{\text {b }}$

Abstract

A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given. Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River Valley, Colombia.

Introduction

A great number of computer programs exist for the calculation of aquifer parameters from pumping test data. The parameters are found by fitting theoretical drawdowns as a function of time to measured values. Most of the programs use the Theis (1935) equation for confined aquifers. An overview can be taken from Yeh (1987). Only a few methods use the more general equation of Hantush and Jacob (1955) for leaky aquifers.

The first program for this purpose was published by Saleem (1970). He used standard routines of a FORTRAN library on an IBM mainframe to perform a nonlinear leastsquares approach. These routines are not available for personal computers. The methods used within these subroutines are not described in the publication. The program does not contain special features for treating the specific shape of Hantush equation. Cobb et al. (1982) used the gradient

[^9](Newtonian) method for the optimization. This method fails if the normal equations are ill-conditioned. Chander et al. (1981a) fit an approximation of the well function for leaky aquifers to experimental data. The approximation was first published by Hantush (1956) and does not match well at early time values to the exact solution. The optimization is performed by a quasi-Newtonian method (Marquardt algorithm) for solving with nonlinear least squares. This method is superior to the simple Newtonian approach. The same authors (1981b) also used Kalman filtering with success. Another method has been given by Sen (1986) who used the slopes of successive data points to calculate the parameters directly from Hantush approximation.

The result of a nonlinear least-squares procedure frequently is not the optimum solution of the problem. It may happen that the calculation terminates at a local minimum. In this case, another starting point can lead to another solution. However, a good program should always resuit in the best solution one can obtain from the data. Therefore, one has to test extensively with real and with perturbed data to determine whether the final solution depends on the starting point or not.

The method presented in this paper is based on the Hantush and Jacob (1955) equation for leaky aquifers. This equation does not account for storage in the leaking unit as was treated later by Hantush (1960) and Neuman and Witherspoon (1969a). The method uses special techniques of

Table 1. Comparison of Results from Examples of Yeh (1988), Walton (1962), and Saleem (1970) with the Presented Method

	Transmiss.	Stor. coeff.		
Author	T	S	Vert. perm.	K^{\prime}

nonlinear least-squares fitting to obtain the best fit independent of the starting point. The case of a nonleaky aquifer is considered a special case of a leaky aquifer with leakage trending towards zero.

Computer Program

The program is written in FORTRAN 77 and contains more than 3600 lines of source code. The majority of the subroutines are taken from CERNLIB and are described in detail by James and Roos (1971). The tests were performed on an AT-compatible personal computer with math coprocessor. The computation time increases approximately linearly with the number of data pairs and takes less than two minutes on AT-compatible computer with 8 MHz clock and 60 data pairs. The input data consist of a text line, a line with the code for the units, and a line that contains the distance r, the pumping rate Q , and the thickness of the semiconfining bed b^{\prime}. Further lines contain the observation times and drawdowns. No starting values for the parameters are needed. A further option calculates the theoretical drawdowns for given values of storage coefficient S , transmissivity T , and permeability K^{\prime} at given times.

The output contains the input data, the calculated values for S, T, and K^{\prime}, with their standard errors and a table of calculated and observed drawdowns.

The errors of the parameters S, T, and K^{\prime} are calculated with the assumption that the differences between calculated and observed drawdowns are random errors with normal distribution. In practical cases the assumptions for the validity of the well function for leaky aquifers [see equation (1) later in this context] are not fulfilled exactly, and the errors consist of a systematic and a random part. Therefore, the calculated standard errors of the parameters can be seen as a lower limit. The real errors will be much higher in most of the cases.

Examples
 Published Data

The program was tested with already published data for the purpose of comparison with known methods and with unpublished data to demonstrate the practical application.

The published data of well 19 from Walton (1962) and from Yeh (1987) who used Todd (1980) values were used to
test the program. The results are compared in Table 1. The calculations of Yeh are based on nonleaky aquifers.

For reasons of compatibility, the thickness of the semiconfining bed b^{\prime} has been set to 10 m , so vertical permeability K^{\prime} could be calculated. The standard deviation σ in Table 1 is defined by:

$$
\sigma=\sqrt{\overline{\mathrm{G} /(\mathrm{N}-\mathrm{n})}}
$$

with G the sum of squares of the differences between calculated and measured values of drawdown (s), the number of observations (N), and the number of parameters (n). For the leaky aquifer $\mathrm{n}=3$, while for the nonleaky case $\mathrm{n}=2$. Therefore, σ is less for the calculation of Yeh than with the present calculation because n is smaller for Yeh's method.

Data from Cauca River Valley

Practical examples were taken from measurements at the Cauca River Valley, Colombia, which covers an area of $4,600 \mathrm{~km}^{2}$. The tests were performed in the southern part of the valley and are reported by Alvarez and Tenjo (1971). Data are presented here (Table 2) to provide published data from a leaky system that other researchers can use when comparing computer programs.

The Cauca River Valley has a tectonic origin and is underlain with alluvial sediments that have become the richest aquifers of the Colombian Andean zone. The total thickness of the alluvium is unknown. However, it has been classified in three hydrogeological units with the following characteristics:

Unit A is from the surface to 110 m depth. Its upper 70 m are largely clay and silt, individual lenses of which can reach 36 m of thickness. The lower 40 m are composed of sand and gravel with some lenses of clay. This lower part contains several types of aquifers, i.e., free, confined, and leaky aquifers. The yields range from 10 to $264 \mathrm{l} / \mathrm{s}$, with a median yield of $1301 / \mathrm{s}$. The measured specific capacities range from 4 to $131 /(\mathrm{sm})$, with a median value of $81 /(\mathrm{sm})$. The transmissivities range from 300 to $2800 \mathrm{~m}^{2}$ per day, while the storage coefficients range from 7×10^{-4} to $1.05 \times$ 10^{-2}. For the leaky aquifers, the leaky coefficients range from 5.03×10^{-4} to 3.9×10^{-2} per day.

Unit B underlies unit A. It is mainly composed of clay with a thickness of about 80 m , and is considered as the confining bed.

Table 2a. Computer Evaluation of Colombian Pumping Test Data: Pumping Teat No. 1

Input parameters:

	$r(m)$	$Q(l / s)$	$b^{\prime}(m)$
Value	105.0	145.0	1.000

Calculated parameters:

	$T\left(m^{2} / d\right)$	S	$K^{\prime}(m / d)$
Value	1994.	$0.1379 \mathrm{E}-02$	$0.2913 \mathrm{E}-02$
Error	2.538	$0.1073 \mathrm{E}-04$	$0.3134 \mathrm{E}-04$

Observed (s_{o}) and calculated (s_{c}) drawdowns:

Time min.	$\begin{aligned} & \text { so } \\ & m \end{aligned}$	$\begin{aligned} & s_{c} \\ & m \end{aligned}$	$s_{o}-s_{c}$
1.000	$0.1000 \mathrm{E}-01$	$0.9013 \mathrm{E}-02$	$0.9870 \mathrm{E}-03$
2.000	$0.5000 \mathrm{E}-01$	$0.6041 \mathrm{E}-01$	-0.1041E-01
3.000	0.1100	0.1263	-0.1631E-01
4.000	0.1800	0.1910	-0.1104E-01
5.000	0.2400	0.2510	$-0.1099 \mathrm{E}-01$
6.000	0.2900	0.3057	-0.1575E-01
7.000	0.3500	0.3557	$-0.5708 \mathrm{E}-02$
8.000	0.3900	0.4014	-0.1145E-01
9.000	0.4400	0.4435	$-0.3522 \mathrm{E}-02$
10.00	0.4800	. 0.4824	-0.2410E-02
16.00	0.6500	0.6677	-0.1772E-01
20.00	0.7700	0.7609	0.9101E-02
25.00	0.8600	0.8564	0.3646E-02
30.00	0.9500	0.9355	$0.1445 \mathrm{E}-01$
35.00	1.020	1.003	$0.1694 \mathrm{E}-01$
40.00	1.060	1.062	-0.1774E-02
43.00	1.100	1.094	$0.6384 \mathrm{E}-02$
45.00	1,140	1.114	$0.2637 \mathrm{E}-01$
50.00	1.170	1.160	0.9997E-02
55.00	1.220	1.202	$0.1813 \mathrm{E}-01$
60.00	1.260	1.240	$0.2001 \mathrm{E}-01$
70.00	1.320	1.307	$0.1285 \mathrm{E}-01$
80.00	1.380	1.365	$0.1519 \mathrm{E}-01$
90.00	1.420	1.415	0.4855E-02
100.0	1.470	1.460	$0.1033 \mathrm{E}-01$
110.0	1.510	1.499	$0.1054 \mathrm{E}-01$
120.0	1.520	1.535	-0.1535E-01
150.0	1.620	1.625	-0.5092E-02
180.0	1.690	1.696	-0.5515E-02
210.0	1.740	1.753	-0.1264E-01
240.0	1.780	1.800	-0.2008E-01
270.0	1.820	1.840	-0.2017E-01
300.0	1.860	1.875	$-0.1454 \mathrm{E}-01$
330.0	1.890	1.904	-0.1431E-01
347.0	1.880	1.919	$-0.3947 \mathrm{E}-01$
360.0	1.920	1.930	-0.1034E-01
420.0	1.970	1.974	-0.3594E-02
454.0	1.970	1.994	$-0.2398 E-01$
480.0	2.000	2.008	-0.7933E-02
510.0	2.010	2.023	-0.1252E-01
540.0	2.030	2.036	$-0.5689 \mathrm{E}=02$
560.0	2.040	2.044	-0.3765E-02
600.0	2.070	2.058	$0.1156 \mathrm{E}-01$
615.0	2.060	2.063	-0.3479E-02
660.0	2.090	2.077	$0.1271 \mathrm{E}-01$
720.0	2.110	2.093	$0.1695 E-01$
780.0	2.130	2.106	$0.2366 E-01$
840.0	2.150	2.118	$0.3239 \mathrm{E}=01$
900.0	2.140	2.127	$0.1279 \mathrm{E}-01$
910.0	2.150	2.129	$0.2133 \mathrm{E}-01$
960.0	2.160	2.135	$0.2456 \mathrm{E}-01$
1020.	2.160	2.143	$0.1747 \mathrm{E}-01$
1080.	2.160	2.149	$0.1136 \mathrm{E}-01$
1140.	2.150	2.154	-0.3941E-02
1260.	2.150	2.163	-0.1255E-01
1320.	2.150	2.166	-0.1606E-01
1380.	2.150	2.169	-0.1912E-01
1410.	2.150	2.171	-0.2051E-01

Table 2b. Computer Evaluation of Colombian Pumping Test Data: Pumping Tost No. 2
Input parameters:

	$r(m)$	$Q(l / s)$	$b^{\prime}(m)$
Value	109.0	123.0	1.000

Calculated parameters:

	$T\left(m^{2} / d\right)$	S	$K(m / d)$
Value	1086.	$0.3571 \mathrm{E}-02$	$0.7116 \mathrm{E}-02$
Error	3.257	$0.4137 \mathrm{E}-04$	$0.1166 \mathrm{E}-03$

Observed (s_{o}) and calculated (s_{c}) drawdowns:

Time min.	$\begin{aligned} & \text { So } \\ & m \end{aligned}$	$\begin{aligned} & S_{c} \\ & m \end{aligned}$	$s_{m}-s_{c}$
1.000	$0.1000 \mathrm{E}-01$	0.0000	$0.1000 \mathrm{E}-01$
1.500	$0.1500 \mathrm{E}-01$	0.0000	$0.1500 \mathrm{E}-01$
2.000	$0.2000 \mathrm{E}-01$	$0.6206 \mathrm{E}-04$	$0.1994 \mathrm{E}-01$
2.500	$0.3000 \mathrm{E}-01$	$0.4054 \mathrm{E}-03$	$0.2959 \mathrm{E}-01$
3.000	$0.4000 \mathrm{E}-01$	0.1261 E-02	$0.3874 \mathrm{E}-01$
3.500	0.5000E-01	$0.2840 \mathrm{E}-02$	$0.4716 \mathrm{E}-01$
4.000	$0.6000 \mathrm{E}-01$	0.5269E-02	$0.5473 \mathrm{E}-01$
4.500	$0.7000 \mathrm{E}-01$	0.8596E-02	$0.6140 \mathrm{E}-01$
5.000	0.8000E-01	$0.1281 \mathrm{E}-01$	$0.6719 \mathrm{E}-01$
6.000	0.1000	$0.2367 \mathrm{E}-01$	$0.7633 \mathrm{E}-01$
7.000	0.1150	0.3729E-01	0.7771 E-01
8.000	0.1300	0.5302E-01	$0.7698 \mathrm{E}-01$
9.000	0.1500	$0.7031 \mathrm{E}-01$	$0.7969 \mathrm{E}-01$
10.00	0.1500	0.8870E-01	$0.6130 \mathrm{E}-01$
15.00	0.2500	0.1872	$0.6275 \mathrm{E}-01$
20.00	0.3200	0.2843	$0.3570 \mathrm{E}-01$
25.00	0.3900	0.3741	0.1592E-01
30.00	0.4500	0.4559	-0.5857E-02
35.00	0.5200	0.5302	-0.1021E-01
40.00	0.5800	0.5980	-0.1802E-01
45.00	0.6350	0.6601	-0.2511E-01
50.00	0.6900	0.7172	-0.2723E-01
55.00	0.7400	0.7700	-0.3003E-01
60.00	0.7900	0.8190	-0.2903E-01
70.00	0.8750	0.9074	$-0.3236 \mathrm{E}-01$
80.00	0.9500	0.9851	-0.3506E-01
90.00	1.025	1.054	-0.2917E-01
100.0	1.090	1.116	-0.2622E-01
110.0	1.150	1.172	-0.2236E-01
120.0	1.210	1.224	-0.1351E-01
150.0	1.350	1.353	-0.3431E-02
180.0	1.460	1.457	0.2757E-02
210.0	1.545	1.543	$0.2438 \mathrm{E}-02$
240.0	1.620	1.614	$0.5848 \mathrm{E}-02$
270.0	1.680	1.675	$0.4822 \mathrm{E}-02$
300.0	1.740	1.728	$0.1215 \mathrm{E}-01$
330.0	1.785	1.774	$0.1122 \mathrm{E}-01$
360.0	1.820	1.814	$0.5843 \mathrm{E}-02$
420.0	1.890	1.882	0.8252E-02
480.0	1.950	1.936	$0.1411 \mathrm{E}-01$
540.0	1.995	1.980	$0.1501 E-01$
600.0	2.040	2.016	$0.2359 \mathrm{E}-01$
660.0	2.070	2.047	$0.2321 \mathrm{E}-01$
720.0	2.100	2.072	$0.2763 \mathrm{E}-01$
780.0	2.130	2.094	$0.3594 \mathrm{E}-01$
840.0	2.145	2.113	$0.3244 \mathrm{E}-01$
900.0	2.160	2.128	$0.3156 \mathrm{E}-01$
960.0	2.170	2.142	$0.2788 \mathrm{E}-01$
1020.	2.175	2.154	$0.2105 \mathrm{E}-01$
1080.	2.175	2.164	$0.1077 \mathrm{E}-01$
1140.	2.175	2.173	$0.1817 \mathrm{E}-02$
1200.	2.180	2.181	-0.1006E-02
1260.	2.185	2.188	-0.2857E-02
1320.	2.185	2.194	-0.8872E-02
1380.	2.190	2.199	-0.9165E-02
1440.	2.190	2.204	-0.1382E-01
1500.	2.190	2.208	-0.1795E-01
1560.	2.185	2.212	-0.2659E-01
1620.	2.180	2.215	-0.3482E-01
1680.	2.180	2.218	$-0.3769 \mathrm{E}-01$
1681.	2.180	2.218	$-0.3773 \mathrm{E}-01$

Unit Cunderlies unit B. It is composed of sand, gravel, and some clay of unknown thickness. It is a confined aquifer tapped by several flowing artesian wells. Below unit C follow sedimentary, metamorphic, and igneous rocks.

In the pumping tests presented in this paper, leakage was obtained from unit A.

The constants of five different pumping tests are presented in Table 3. The calculation of hydraulic parameters was carried out with the type curve method, with the inflection point method after Hantush (1956) and with the computer program. The results are listed in Table 3.

It can be seen that the computer method compares well with the conventional methods and that the standard deviation is always lowest with the computer's least-squares approximation. Furthermore, the computer method has incorporated an error estimation for the parameters. As already mentioned, these error estimates have little practical relevance because they assume that the data are distributed normally around the well function. However, the assumptions for a leaky aquifer made by Hantush and Jacob (1955) are not fulfilled completely in any one of the examples. This can be gathered from the Tables 2 a and 2 b which show a partial output of the computer program for two pumping tests of the Cauca Valley. One recognizes that the differences between measured and calculated drawdowns (last column) are not randomly distributed over the time scale: one can divide the series of measurements into sections that contain exclusively positive or negative differences. The series of pumping test No. 1 (Table 2a) consists of five and that of No. 2 (Table 2b) consists of four such sections. This bias cannot be removed by selecting other aquifer parameters but only by applying another, more realistic well function as discussed by Neuman and Witherspoon (1969b).

Method

The drawdown, s, in an observation well caused by a constant pumping rate Q in a production well can be written as (Hantush and Jacob, 1955):

$$
\begin{equation*}
s_{c}(t)=z_{1} \cdot F\left(t ; z_{2}, z_{3}\right) \tag{la}
\end{equation*}
$$

with
$F\left(t ; z_{2}, z_{3}\right)=\int_{z_{2} / t}^{\infty}(1 / x) \cdot \exp \left[-x-0.25\left(z_{3}\right)^{2} / x\right] d x$
The constants $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are related to the transmissivity T, the aquifer storage coefficient S , and the vertical permeability of the semiconfined bed K^{\prime} by:

$$
\begin{gather*}
\mathrm{z}_{1}=\alpha \cdot \mathrm{Q} / \mathrm{T} \\
\mathrm{z}_{2}=\mathrm{S} \cdot \beta \cdot \mathrm{r}^{2} / \mathrm{T} \tag{2}\\
\left(\mathrm{z}_{3}\right)^{2}=\mathrm{K}^{\prime} \cdot \mathrm{r}^{2} /\left(\mathrm{b}^{\prime} \cdot \mathrm{T}\right)
\end{gather*}
$$

in which $r=$ distance between the observation well and the pumping well; $\mathrm{b}^{\prime}=$ saturated thickness of the semiconfining bed; and α and β are constants whose values are dependent on the units used. For metric units, $\alpha=1 . /(4 \pi)$, and $\beta=0.25$. This formula holds only for certain restrictions on the parameters (see Walton, 1979).

Table 3. Comparison of Results from Type Curve Interpretation (T), Hantush (1956)
Inflection Point Evaluation (I), and Least-Squares Calculation (C) with Examples of Field Measurements

Pumping test no.	$\begin{gathered} \text { Transmiss. } \\ T \\ m^{2} / d \end{gathered}$	$\begin{gathered} \text { Stor coeff. } \\ S \\ E-03 \end{gathered}$	$\begin{gathered} \text { Leakance } \\ K^{\prime} / b^{\prime} \\ E-03 / d \end{gathered}$	$\begin{gathered} \text { Stand. dev. } \\ \sigma^{2} \\ E-03 \mathrm{~m} \end{gathered}$
1	1847	1.54	3.77	26
	1900	1.44	3.88	28
	1994 ± 3	1.38 ± 0.01	2.91 ± 0.03	16
2	1302	3.62	7.82	38
	1037	3.76	5.78	111
	1086 ± 3	3.57 ± 0.04	7.12 ± 0.12	35
3	1408	2.35	3.17	24
	1400	2.27	1.69	50
	1321 ± 4	2.36 ± 0.04	4.00 ± 0.13	20
4	2807	1.47	0.169	56
	3088 ± 8	1.27 ± 0.01	0.00 ± 0.00	35
5	893	2.53	1.03	39
	907 ± 2	2.37 ± 0.02	1.04 ± 0.03	28

If one has a series of observed drawdowns $\mathrm{s}_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{i}}\right)$ at observation times t_{i}, optimal estimates $\hat{z}_{1}, \hat{z}_{2}, z_{3}$ for the parameters z_{1} to Z_{3} can be determined by minimizing the sum of squares

$$
\begin{equation*}
G=\sum_{i} \epsilon_{i}^{2} \tag{3a}
\end{equation*}
$$

of the differences

$$
\begin{equation*}
\epsilon_{i}=s_{o}\left(t_{i}\right)-s_{c}\left(t_{i}\right) \tag{3b}
\end{equation*}
$$

between calculated and measured values of s. From equation (2), T and S can be calculated from z_{1} and z_{3}. With a known value for b^{\prime} also, K^{\prime} can be calculated from z_{3}. Because equation (I) obviously is not a linear combination of z_{1} to z_{3}, a simple linear least-squares technique cannot be used for obtaining the optimum values. The program uses a nonlinear optimization procedure as follows:

Starting with arbitrary estimates for z_{2} and z_{3} and substituting equations (1) into equation (3b) one obtains:

$$
\begin{equation*}
y_{i}=z_{i} a_{i}+\epsilon_{i} \tag{4}
\end{equation*}
$$

with known values of $a_{i}=F\left(t_{i} ; z_{2}, z_{3}\right)$; and $y_{i}=s_{0}\left(t_{i}\right)$.
From equation (4), one obtains the normal equation

$$
\sum_{i}\left(y_{i}-z_{i} a_{i}\right) a_{i}=0
$$

and the optimal estimate $\hat{z}_{1}\left(z_{2}, z_{3}\right)$ for z_{1} :

$$
\begin{equation*}
\hat{z}_{1}\left(z_{2}, z_{3}\right)=\frac{\sum y_{i} a_{i}}{\sum_{i} a_{i} a_{i}} \tag{5}
\end{equation*}
$$

Equation (5) reduces the three-dimensional nonlinear optimization problem to a two-dimensional one, whereby computation effort is considerably shortened.

The nonlinear optimization searches for the minimum of G from equation (3 a) with respect to z_{2} and z_{3}, and uses
$z_{1}=\hat{z}_{1}$ from equation(5). It is first carried out with a Monte Carlo method to give rough estimates of z_{2} and z_{3} and then continues with the simplex method of Nelder and Mead (1965). Both methods are described by James (1972). They offer some advantages compared with the conventional Newtonian and variable metric methods that are most frequently used for function minimization. The matrix of normal equations that is used with the Newtonian methods frequently is ill-conditioned, and the algorithm will diverge in this case (Marquardt, 1963). The presented method will find the best solution also when the Newtonian ends at a local minimum.

The integral of equation (1b) is solved numerically by a modified Romberg algorithm. The direct application of numerical integration to the integral is not favorable, because the intermediate values which are necessary for integration are not selected properly by usual methods. With the substitution of $x=\exp (y)$, equation (1b) can be written:

$$
\begin{align*}
& F\left(t ; z_{2}, z_{3}\right)=\int_{\ln \left(z_{2} / t\right)}^{\infty} \\
& \quad \cdot \exp \left[-\exp (y)-0.25 \cdot\left(z_{3}\right)^{2} \cdot \exp (-y)\right] d y \tag{6}
\end{align*}
$$

which is integrated much faster and with higher accuracy than expression (1 b). The upper bound for x in equation (1b) can be taken from Hantush (1956) to be 8 instead of infinite with sufficient accuracy. The lower bound is taken to be $u=0.5 \cdot\left(z_{3}\right)^{2} /\left[b+\left|\ln \left(z_{2} / t\right)\right|\right]$ where b denotes a constant (a proper value is 4) which depends on the accuracy of the calculations. The lower boundary u is selected only when $u<z_{2} / \mathrm{t}$.

The speed of calculation of the whole number of integrations for different time values t_{i} can be increased further if the areas beyond the integral overlap each other for different time values. It follows that equation (6) can also be written:

$$
\begin{aligned}
F\left(t_{i+1}\right) & =F\left(t_{i}\right)+\int_{\ln \left(z_{2} / t_{i+1}\right)}^{\ln \left(z_{2} / t_{i}\right)} \\
& \cdot \exp \left[-\exp (y)-0.25 \cdot\left(z_{3}\right)^{2} \cdot \exp (-y)\right] d y
\end{aligned}
$$

The second part of the right side is computed much faster than the whole integral equation (6). The first part, $F\left(t_{i}\right)$, is already known from the previous calculation.

Errors

The basic statistical formula for calculating the random errors of the parameters z_{i} can be taken from Linnik (196I).

$$
\delta \mathbf{z}_{\mathrm{i}}=\mathrm{v}_{\mathrm{ii}} \sqrt{\mathbf{G} /(\mathbf{N}-\mathrm{n})}
$$

where $\delta \mathrm{z}_{\mathrm{i}}=$ standard error of $\mathrm{z}_{\mathrm{i}} ; \mathrm{N}=$ number of observations; $\mathrm{n}=$ number of parameters ($\mathrm{n}=3$); $\mathrm{G}=$ sum of squared differences between calculated and measured drawdowns [from equation (3a)]; $\mathrm{v}_{\mathrm{ii}}=$ diagonal element of variance matrix $\mathrm{V} ; \mathrm{V}=\mathrm{W}^{-1}$; and $\mathrm{w}_{\mathrm{ik}}=\left(\partial^{2} \mathrm{G}\right) /\left(\partial \mathrm{z}_{\mathrm{i}} \partial \mathrm{z}_{\mathrm{K}}\right)$, element of matrix W. The derivatives are calculated by finite differences of function values.

Availability

Authorized users of CERNLIB may obtain a copy of the program by request to one of the authors. Permission for using CERNLIB can be obtained by writing to Program Libraty Division DD, CERN, CH-1211, Geneve 23, Switzerland with reference to program package D506 Minuit.

References

Alvarez, A. and S. Tenjo. 1971. Hydrogeology of the Cauca River Valley southern part. Unpublished field data. IngeominasCVC, Colombia
Chander, S., P. N. Kapoor, and S. K. Goyal. 1981a. Analysis of pumping test data using Marquardt algorithm. Ground Water. v. 19, no. 3, pp. 275-278.
Chander, S., P. N. Kapoor, and S. K. Goyal. 1981b. Aquifer parameter estimation using Kalman filters. Journal of Irrigation and Drainage Division, ASCE. Proc. Paper 16101. v. 107, no. IR1, pp. 25-33.

Cobb, P. M., C. D. McElwee, and M. A. Butt. 1982. Analysis of leaky aquifer pumping test data: An automated numerical solution using sensitivity analysis. Ground Water. v. 20, no. 3, pp. 325-333.
Hantush, M. S. and C. E. Jacob. 1955. Non-steady radial flow in an infinite leaky aquifer. Trans. Amer. Geophys. Union. v. 36, no. 1, pp. 95-100.

Hantush, M. S. 1956. Analysis of data from pumping tests in leaky aquifers. Trans. Amer. Geophys. Union. v. 37, no. 6, pp. 702-714.
Hantush, M. S. 1960. Modification of the theory of leaky aquifers. J. Geophys. Res. v. 65, no. 11, pp. 3713-3725.

James, F. 1972. Function minimization. Proceedings of the 1972 CERN Computing and Data Processing School, Pertisau, Austria, September 10-24, 1972. CERN 72-21. 50 pp.
James, F. and M. Roos. 1971. Minuit. Long write-up. CERN Program Library. CERN CH1211 Genf 23, Switzerland.
Linnik, J. W. 1961. Methode der kleinsten Quadrate in moderner Darstellung. VEB, Berlin. 315 pp .
Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. v. 11, pp. 431-441.

Neider, J. A. and R. Mead. 1965. A simplex method for function minimisation. Comput. J. v. 7, p. 308.
Neuman, S. P. and P. A. Witherspoon. 1969a. Theory of flow in a two aquifer system. Water Resour. Res. v. 5, no. 4, pp. 803-817.
Neuman, S. P. and P. A. Witherspoon. 1969b. Applicability of current theories of flow in leaky aquifers. Water Resour. Res. v. 3, no. 4, pp. 817-829.
Saleem, Z. A. 1970. A computer method for pumping-test analysis. Ground Water. v. 8, no. 5, pp. 21-24.
Şen, Z. 1986. Determination of aquifer parameters by slopematching method. Ground Water. v. 24, no. 2, pp. 217-223.
Theis, C. V. 1935. The relation between the lowering of piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union. v. 16, pp. 519-524.

Todd, D. K. 1980. Groundwater Hydrology. 2nd ed. John Wiley \& Sons, New York. 535 pp.
Walton, W. C. 1962. Selected analytical methods for well and aquifer evaluation. State of Illinois, State Water Survey Division. Bull. 49.81 pp.
Walton, W. C. 1979. Review of leaky artesian aquifer test evaluation methods. Ground Water. v. 17, no. 3, pp. 270-283.
Yeh, Hund-Der. 1987. Theis solution by nonlinear least-squares and finite-difference Newton's method. Ground Water. v. 25, no. 6, pp. 710-715.

A Computer Program for a Trilinear Diagram Plot and Analysis of Water Mixing Systems ${ }^{2}$

by Michael D. Morris, Jeffrey A. Berk, Joseph W. Krulik, and Yoram Eckstein ${ }^{\text {b }}$

Abstract

The Piper (1953) trilinear diagram has been widely used to graphically represent the dissolved constituents of natural waters and to test for apparent mixtures of waters from different sources. Because of the time required to plot points and calculate the proportional values of mixing, this treatment of data was often quite tedious, particularly in studies involving large numbers of chemical analyses. The PIPER program was written in BASIC to be run on a Hewlett-Packard desktop computer with an $\mathrm{X} \cdot \mathrm{Y}$ plotter. Data input is in ppm units. The program plots points in all three fields of the trilinear diagram. draws at each point within the central diamond field a circle with a radius correspondent to the concentrations expressed in meq/l, checks for points that fall on a straight line (or within a predetermined tolerance of a straight line) representing postulated mixtures with two end members, and/or within a triangle representing mixtures of three end members. Finally, the program does a numerical analysis of the mixing ratios of the constituents for postulated mixing systems according to the merhodology as presented by Piper (1953).

[^10]
INTRODUCTION

In a graphical treatment of chemical analyses of ground water developed by Piper (1953), the character of a ground water can be expressed by three points located in three different fields. The points represent: (1) percentage-reacting equivalents of three major cation constituents $\left(\mathrm{Mg}^{+*}, \mathrm{Na}{ }^{*}\right.$ and $\mathrm{Ca}^{* *}$) in a cation triangular field; (2) percent-age-reacting equivalents of three major anion constituents ($\mathrm{Cl}^{-}, \mathrm{SO}_{4}^{--}$and HCO_{3}^{-}) in an anion triangular field; and (3) the point in the diamondshaped field representing the overall chemical character of the solution. The last point is plotted at the intersection of rays projected from the points in the anion and cation triangular fields into the diamond field (Figure 1).

Piper's graphical treatment of the chemical analysis allows for an easy discrimination of distinct water types by their plottings in various subarcas of the diamond field (Figure 2). Piper (1953) also suggested that water analysis represented by points aligning along a straight line in all three fields should be tested for the possibility that they represent a part of a mixing system. A solution produced by a mixture of two end members is represented in each of the three fields as a point which is located on a straight line in between the points representing the two end members. Moreover, the individual ionic constituents in the mixture will all have been mixed in the same proportions. Similarly, in the case of a mixture from three sources, the solution will be

Fig. 1. Pipar's (1953) trilinear diagram.
represented in each of the three fields by a point located inside a triangle defined by the three end members. Again, all the ionic constituents will have been mixed in the same proportions.

When only a few points are plotted on a trilinear diagram, it is rather easy to discern and confirm a binary mixing by "eyeballing" of three points aligned on a straight line in all three fields and to make the appropriate computations (Piper, 1953). To discern and confirm a ternary mixing system is more complex. When the number of chemical analyses involved is large, the task of

Fig. 2. Water types on a trilinear dimgram:
area $1-\left(\mathrm{Ca}^{+2}+\mathrm{Mg}^{+2}\right)>\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)$;
area $2-\left(\mathrm{Ca}^{+2}+\mathrm{Mg}^{+2}\right)<\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)$;
area $3-\left(\mathrm{HCO}_{3}^{-}+\mathrm{CO}_{3}^{-2}\right)>\left(\mathrm{Cl}^{-}+\mathrm{SO}_{4}^{-2}\right)$;
area $4-\left(\mathrm{HCO}_{3}^{-}+\mathrm{CO}_{3}^{-2}\right)<\left(\mathrm{Cl}^{-}+\mathrm{SO}_{4}^{-2}\right)$;
aras 5 - carbonate hardness (secondary alkalinity) $>50 \%$;
area 6 - noncarbonate hardness (secondary salinity) $>50 \%$;
area 7 - noncarbonate alkali (primary salinity) $>50 \%$;
area 8 - carbonate alkali (primary alkalinity) > 50\%;
area 9 - no dominant cation-anion pair.
singling out all possible mixing systems and testing each for validity is extremely tedious, as well as is the mere task of production of a trilinear diagram for a large number of analyses. The following computer program is designed to plot up to 100 chemical analyses on a trilinear diagram and then scan simultaneously all the analyses, testing for all the possible combinations in binary and ternary mixing systems.

The program was designed to place points in all three fields and to calculate and test the proportions needed to postulate possible mixing relationships. Although this program produces reliable calculations for a wide variety of chemical compositions, the user is cautioned that the results can be significantly affected by the selection of input values and certain user-specified options. The user is further cautioned that interpretations must reflect the specific field conditions and locations from which the water samples were collected.

Our computer program is based on Piper's (1953) original assumptions:

1. All of the major constituents have been included in the calculations.
2. All ions are assumed to remain in solution.
3. All the Fe, Al, and Si are present in the water in a colloidal state as oxides and are not in chemical equilibrium with the ionized constituents. Therefore, these elements are not included in calculations of total concentration.
4. Minor constituents of ground water are summed with the six major constituents to which they are respectively related in chemical properties.
5. Water consisting of substantial quantities of free acid cannot be fully represented on the diagram.

The program was written in Hewlert-Packard enhanced BASIC for use on a HP 9845A desktop computer with an optional 9872B X-Y plotter. Options within the program allow graphics to be produced on the cathode-ray-tube (CRT) display, the thermal printer, or the $\mathrm{X}-\mathrm{Y}$ plotter. Minor variations should allow this program to be adapred to other computers using BASIC. Due to memory limitations on the HP 9845A, the program is actually subdivided into two smaller routines linked together. "PIPER," the first portion of the program, is used to input and store data, compute unit conversions and to plot the resulting percentage values on the trilinear diagram. The mixing
calculations may then be performed by the second portion of the program named "MIXING." The transfer of control to the second routine is accomplished in line 3680 of "PIPER" utilizing the LINK command in order to conserve all variables defined earlier. Depending on the computer capabilities that the program is going to be adapted to, it may be stored as one long program or several smaller routines. A flow diagram of the program is shown in Figure 3.

Fig. 3. Flow chart of "PIPER" and "MIXING."

INPUT OF RAW DATA

Input concentrations of various constituents must be in units of parts per million (ppm). The program will convert these units to meq/l, and further to percentage of total dissolved solids.

The program asks for the six major constituents: $\left(\mathrm{Ca}^{++}, \mathrm{Mg}^{++}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}^{--}\right.$and $\left.\mathrm{HCO}_{3}^{-}\right)$and only $\mathrm{K}^{+}, \mathrm{CO}_{3}^{--}$and NO_{2}^{-}as second-rank constituents. Other second-tank constituents can be added with only minor changes in the program. In a single run of the program, data from a maximum of 100 sources may be entered, stored, plotted and tested for mixing trends.

Data input can come from keyboard or data previously stored on a data file. Creation of a data file after input from the keyboard is a user's option.

PLOTTING AND COMPUTATIONAL PROCEDURES

The plotting of points and the drawing of the outline of the triangles and diamond both are done in cartesian coordinates on the H-P graphics system. All trilinear coordinates must be converted to $\mathrm{X} \cdot \mathrm{Y}$ coordinates. The units used are millimeters for the CRT and will vary on the $X \cdot Y$ plotter depending on the size of the plot. The plotting field is 184.47 by 149.82 units. The primary trilinear diagram is an equilateral triangle with sides divided into 100 units. For ease in reading, cation and anion subtriangles are offset from the upper diamond. The subtriangles are equilateral with sides of 50 units representing a range of 0 to 100% of a specified constituent.

The height of a triangle (Figure 4) is calculated in the following manner:

Fig. 4. Dimensional relationship in a triangular fiald of a trilinear diagram.
$\tan 60^{\circ}=\Delta \mathrm{Y} /(50 / 2)$

$$
\begin{aligned}
& \Delta Y=25\left(\tan 60^{\circ}\right) \\
& \Delta Y \cong 43.30 \text { units }
\end{aligned}
$$

In similar fashion, the dimensions of the diamond field are found to be 50 units wide and 86.60 units in height.

Points within the cation triangle, if plotred by hand, are based on the percentage-reacting values of $\mathrm{Ca}^{+2}, \mathrm{Mg}^{+2}, \mathrm{Na}^{*}$ and K^{*}; if plotted by this program, the points (Figure 5) are based on the percentage of Ca^{+2} and $\mathrm{Mg}^{* 2}$ compared to the total cations. Points within the anion triangle are calculated and plotted in a similar fashion based on the percentages of SO_{4}^{-2} and HCO_{3}^{-}. The relevant equations are as follows:

$$
\begin{gathered}
\frac{\mathrm{Y}^{\prime}}{25\left(\tan 60^{\circ}\right)}=\frac{\mathrm{Mg}^{+2}(\%)}{100} \\
100 \mathrm{Y}^{\prime}=25 \tan 60^{\circ} \mathrm{Mg}^{+2}(\%) \\
\mathrm{Y}^{\prime}=\tan 60^{\circ} \frac{\mathrm{Mg}^{+2}(\%)}{4} \\
\tan 60^{\circ}=\mathrm{Y}^{\prime} / \mathrm{X}^{\prime} \\
\mathrm{X}^{\prime}=\mathrm{Y}^{\prime} / \tan 60^{\circ}
\end{gathered}
$$

Fig. 5. Coordinate system in the triangular fields of a trilinear diagram.

Recalling the conversion: 2% ion concentration $=1$ unit on the plotting field

$$
\begin{aligned}
& X_{K}=X_{Q^{\prime}}-\mathrm{Ca}^{* 2}(\%) \frac{1 \text { unit }}{2 \%}-X^{\prime} \\
& \mathrm{X}_{\mathrm{K}}=\mathrm{X}_{\mathrm{Q}^{\prime}}-\frac{\mathrm{Ca}^{* 2}(\%)}{2}-\frac{\mathrm{Y}^{\prime}}{\tan 60^{\circ}} \\
& \mathrm{X}_{\mathrm{K}}=\mathrm{X}_{\mathrm{Q}^{\prime}}-\frac{\mathrm{Ca}^{* 2}(\%)}{2}-\frac{\tan 60^{\circ} \mathrm{Mg}^{* 2}(\%) / 4}{\tan 60^{\circ}} \\
& X_{K}=X_{Q^{\prime}}-\frac{\mathrm{Ca}^{+2}(\%)}{2}-\frac{\mathrm{Mg}^{+2}(\%)}{4} \\
& Y_{K}=Y_{Q^{\prime}}+Y^{\prime} \\
& Y_{K}=Y_{Q^{\prime}}+\tan 60^{\circ} \frac{\mathrm{Mg}^{* 2}(\%)}{4} \\
& \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{R}}-\mathrm{HCO}_{3}^{-}(\%) \frac{1 \text { unit }}{2 \%}-\mathrm{X}^{\prime \prime} \\
& X_{L}=X_{R}-\frac{\mathrm{HCO}_{3}^{-}(\%)}{2}-\frac{\mathrm{Y}^{\prime \prime}}{\tan 60^{\circ}} \\
& X_{L}=X_{R}-\frac{\mathrm{HCO}_{3}(\%)}{2}-\frac{\tan 60^{\circ} \mathrm{SO}_{4}^{-2}(\%) / 4}{\tan 60^{\circ}} \\
& \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{R}}-\frac{\mathrm{HCO}_{3}^{-}(\%)}{2}-\frac{\mathrm{SO}_{4}^{-2}(\%)}{4} \\
& \mathrm{Y}_{\mathrm{L}}=\mathrm{Y}_{\mathrm{R}}+\mathrm{Y}^{\prime \prime} \\
& Y_{L}=Y_{R}+\tan 60^{\circ} \frac{\mathrm{SO}_{4}^{-2}(\%)}{4}
\end{aligned}
$$

The location of points in the diamond is at the intersection of rays projected from points in the anion and cation triangles. In the computer program it is calculated and plotted based on the reacting percentages of HCO_{3}^{-}and $\left(\mathrm{Na}^{+}\right)+\left(\mathrm{K}^{+}\right)$(Figure 6).

To plot the point in the diamond field as shown in Figure 6, the following equations were derived:

$$
\begin{gathered}
\mathrm{X}_{\mathrm{R}^{\prime}}-\mathrm{X}_{\mathrm{P}^{\prime}}=100 \text { units } \\
\mathrm{X}_{\mathrm{S}}-\mathrm{X}_{\mathrm{P}^{\prime}}=\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)(\%) \frac{1 \text { unit }}{2 \%}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{R}^{\prime}}-\mathrm{X}_{\mathrm{U}}=\mathrm{HCO}_{3}^{-}(\%) \frac{1 \text { unit }}{2 \%} \\
& \left(X_{U}-X_{T}\right)=\left(X_{T}-X_{S}\right)=1 / 2\left[\left(X_{R^{\prime}}-X_{P^{\prime}}\right)-\left(X_{R^{\prime}}-X_{U}\right)-\left(X_{S}-X_{P^{\prime}}\right)\right] \\
& \left(\mathrm{X}_{\mathrm{T}}-\mathrm{X}_{\mathrm{S}}\right)=50-\frac{\mathrm{HCO}_{3}^{*}(\%)}{4}-\frac{\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)(\%)}{4} \\
& \mathrm{X}_{\mathrm{J}}=\mathrm{X}_{\mathrm{T}}=\mathrm{X}_{\mathrm{P}^{\prime}}+\left(\mathrm{X}_{\mathrm{R}^{\prime}}-\mathrm{X}_{\mathrm{P}^{\prime}}\right)-\left(\mathrm{X}_{\mathrm{R}^{\prime}}-\mathrm{X}_{\mathrm{U}}\right)-\left(\mathrm{X}_{\mathrm{T}}-\mathrm{X}_{\mathrm{S}}\right) \\
& X_{J}=X_{P^{\prime}}+100-\frac{\mathrm{HCO}_{3}^{-}(\%)}{2}-\left[50-\frac{\mathrm{HCO}_{3}^{-}(\%)}{4}-\frac{\left(\mathrm{Na}^{*}+\mathrm{K}^{+}\right)(\%)}{4}\right] \\
& X_{J}=X_{P^{\prime}}+50-\frac{\mathrm{HCO}_{3}^{-}(\%)}{4}+\frac{\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)(\%)}{4} \\
& \star \mathrm{TSJ}=60^{\circ} \\
& \tan 60^{\circ}=\frac{\mathrm{Y}_{\mathrm{J}}-\mathrm{Y}_{\mathrm{T}}}{\mathrm{X}_{\mathrm{T}}-\mathrm{X}_{\mathrm{S}}} \\
& Y_{J}-Y_{T}=\tan 60^{\circ}\left(X_{T}-X_{S}\right) \\
& =\tan 60^{\circ}\left[50-\frac{\mathrm{HCO}_{3}^{-}(\%)}{4}-\frac{\left(\mathrm{Na}^{+}+\mathrm{K}^{*}\right)(\%)}{4}\right] \\
& =\frac{\tan 60^{\circ}}{4}\left[200-\mathrm{HCO}_{3}^{-}(\%)-\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)(\%)\right] \\
& =86.60-.4330\left[\mathrm{HCO}_{3}^{-}(\%)+\left(\mathrm{Na}^{*}+\mathrm{K}^{*}\right)(\%)\right] \\
& Y_{J}=Y_{Q^{\prime \prime \prime}}+86.60-.4330\left[\mathrm{HCO}_{3}^{-}(\%)+\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)(\%)\right]
\end{aligned}
$$

Analyses may be plotted with a point, an identification number, or by choice of five other

Fig. 6. Coordinate system in the diamond field of a trilinear diagram.
symbols. There has not been a provision for overprints.

Piper proposed using circles, whose areas are proportional to the absolute concentrations of the sources, plotted around points in the central diamond field. Our program plots circles whose radii are based on the sum of meq/l and are proportionally represented with either an arithmetic scale at a user-defined proportion or a logarithmic scale.

determination of mixing between TWO END MEMBERS

Primary criterion for ground-water mixing is that the flow directions must physically bring waters from two sources together. This criterion cannot be judged by the computer program and must not be overlooked by the operator. The second criterion for determination of a binary mixing system is based on the assumption that when two waters mix in any proportion and all products remain in solution, the mixture will plot somewhere on a straight line between the two end members in ail three fields of the trilinear diagram. The total concentration for the mixture in the
diamond field must be intermediate between the total concentration of the two end members, whereas the concentration of the mixture (the absolute concentration and the concentration of the specific constituents) must all be in equal proportionate volumes (Figure 7; Piper, 1953). Our computer program analyzes all the elements of this criterion and either confirms or disproves apparent mixtures.

One of the most important decisions required from the user of this program is to determine the acceptable tolerance away from a straight line for a group of any three points being considered as a possible mixing combination. A user-specified

Fig. 7. Binary mixing system in the diamond field of the trilinear diagram.

$$
\begin{gathered}
a / b=\left(V_{b} \times E_{b}\right) /\left(V_{a} \times E_{a}\right) \\
V_{a} / V_{b}=\left(b \times E_{b}\right) /\left(a \times E_{a}\right) \\
E_{m}=\left[E_{a} \times E_{b} \times(a+b)\right] /\left[\left(a \times E_{a}\right)+\left(b \times E_{b}\right)\right] \\
V_{a}=\left(b \times E_{b}\right) /\left[\left(a \times E_{a}\right)+\left(b \times E_{b}\right)\right] \\
V_{b}=\left(a \times E_{a}\right) /\left(\left(a \times E_{a}\right)+\left(b \times E_{b}\right)\right] \\
C_{m}=\left(c_{a} \times V_{a}\right)+\left(c_{b} \times V_{b}\right)
\end{gathered}
$$

where:
a;b $\quad-$ distancess measured on the diagram;
$E_{a}, E_{b}, E_{m}-$ concentrations of respective waters having
compositions A, B and M;
$V_{a} \quad$ - proportionate volume in mixture M of water having composition A ;
$V_{b} \quad$ - proportionate volume in mixture M of water having composition B ;
$C_{m} \quad$ - calculatod concentration of the mixture M.
rolerance away from a true straight line is incorporated. Based on an acceptable analytical error, a five percent tolerance is normally used. Deviation allowed away from a straight line is a function of the length of that line and the user-specified tolerance. Possible mixing points must fit inside a tolerance window. If a point falls more than the preset percentage away from the straight line, the tested combination of three points is rejected as not a mixing system. For example, when a five percent tolerance has been specified, a mixing point on a line seven units long would be considered if the point was within .35 units off the line. In clusters of points (i.e., very short lines) even very small analytical errors would cause mixtures to be disqualified. All points representing a postulated mixing system may deviate from their plotted positions. The maximum amount they may deviate is assumed to be the same as the user-defined percent tolerance. If both end points in a binary mixing system have maximum variance in opposing directions, the line is either lengthened or shortened. The length of the line is compared to the maximum possible variation. If that amount of possible variance is greater than the length of the line, the program considers these points a cluster. The allowed tolerance away from the cluster of points, representing similar percentage of reacting concentrations, is equal to the user-specified percentage.

To test for possible mixtures, all points are considered in all combinations of pairs as end members, and the remaining points are tested to see if they fit within a "tolerance window" around the line. The limits of the window are the maximum plus the tolerance, and the minimum minus the tolerance for both the X and Y values of the end points (Figure 8). The window is further limited within two parallel lines on either side of, and at the specified tolerance away from the line under consideration.

The user should be cautioned that the mixing systems identified by the computer program conform with the mathematical criteria only (Piper, 1953).

THREE-WAY MIXING

Piper also suggested a method to check for a ternary mixture resulting from three end members. This technique treats the three end-member compositions, when plotted, as apexes of a hypothetical triangle in each plotting field. The first criterion for a hypothetical mixture point for the program to consider is that it must plot within the

Fig. 8. Coordinate system for the experimental error tolerance in a binary mixing system. $\cos \phi=v / v_{\mathbf{y}} \quad \cos \phi=v / v_{\mathbf{x}}$
triangles in all three fields. The second criterion is that its total concentration must be less than the total concentration of the most saline end member and more than the least saline end member. Any source that meets the above criteria has its individual ions compared then to a theoretical mixture based on the correct proportions for its location.

The theoretical perfect mixture is calculated in the following manner. A line is drawn from one of the end members (Point A, Figure 9) through the point of the hypothetical mixture (point M). The point (M^{\prime}) where this line intersects the opposite side of the triangle on the line $C B$ is considered an intermediate mixing point between end

Fig. 9. Ternary mixing system.
members C and B . The program calculates the theoretical concentrations for this intermediate point M^{\prime} based on its proportional distance from points B and C in the same manner as used in the two-end-member mixing. The calculated concentrations for M^{\prime} and the concentrations for point A are used as end points for the calculations of values for a theoretical mixture located at point M. These calculated values of a theoretical mixing point for the three end members are then compared to the actual values of M. If the calculations demonstrate that mixing between the three end members may produce the mixing point examined, the results are included in the output. If this point fails to meet the graphical or analytical criteria, the program proceeds to another set of end points.

OUTPUT

The Piper trilinear diagram can be produced on the CRT, thermal printer, or the $\mathrm{X}-\mathrm{Y}$ plotter. Plotting on the CRT is the fastest and can be used in preliminary work where no hard copy is required. If a hard copy is required, a thermal printer copy may be produced after using the CRT. The thermal printer copy is limited in size, clarity and accuracy of point locations. These are merely limits on the display of the diagram and do not affect the accuracy of the mixing tests. Plotting on the X-Y plotter may produce diagrams in a wide variety of sizes and colors with high accuracy of point locations. Overhead projection transparencies may also be produced with an optional pen set. Overprints of several different sets of data may be run with different symbols or colors. Concentration circles are optional and may be left off some copies for simplification and clarity.

Hard copies of the input data along with percentage-reacting values, absolute concentrations and analytical error may be obtained as an output. Binary mixing systems are represented in an output as a series of tables listing the points lying on straight lines in all three fields, the preset percentage tolerance and a percentage error computed from the difference between the concentrations (total and of individual constituents) in the water plotted as the intermediate point and a theoretical perfect mixture for that point.

The output of a ternary mixing system is also given as a table, listing all the points representing all the mixing systems. The tables display the comparisons for absolute and individual constituent concentrations. A complete listing of the program is given in Appendix I, and an example of input and output is shown in Appendix II.

[^11]

恄乐合号
 mas n

```
        max-2x=1
            Hape osym mrtwo
```



```
        31n*3 A.B कnd % suke-y
                            is being fegtod.
```



```
        avd_ysvev
```



```
    7ast= -HEN:A*O
```



```
        Tewrt_x=Nev_x
```



```
    gALL :nversem:
```



```
    f0
```



```
        M, (%)
```



```
        qqat xppotvo(Eq4q(A)*Yal f-zqmg(B)*VbI* -2,
```



```
        Mtated=ram
    Maclod-Ea
```



```
        a*(1b/(V*-vb))
```



```
        Vbrtefart*Mgu(D)/(Lart*Rqug(D)+Lbr***M )
```



```
    *)
    *)
        *)
```



```
                            AN OF!O!* c
```

``` 2 1450
```


NET
NEXT $_{\text {NEXT }}$
MEX A^{3}
GOtD 510
sions

580 MpUe Pry
Q prtyí paqp; vhat ourput tevice shoula be used for printed ou*put. (AGILE

Q世TMRE
SROP

Pon int no tant

gearthtit eonpleted on polnts;":A, 9.D

(17)

Pivos x =ngrancy
CHECKE GHRTEP
-47, *0

APPENDIX II. INPUT AND OUTPUT

The data analyzed by Piper (1953) was chosen as a test problem to evaluate the validity of the computer program. Both graphical and computational results were compared. Table 1 lists the water chemistry of the eight water samples as presented by Piper (1953). The sample notation used in Piper (1953) and the computer program sample numbers are both listed.

We could not discern any difference in locations of points on the manually produced graph by Piper (1953) and the computer plotted graph (Figure 10). Comparison of percent-reacting values tabulated by Piper (Table 2) with the values obtained as an output of the computer program (Table 3) shows very minor discrepancies, caused by difference between the values of atomic weight used by Piper in 1953 and more accurate values

Fig. 10. Graphic output. Numbers correspond with "Sourca" in Table 3.

Table 1. Chemical Constituents Analyzed by Piper (1953) - Input

Constituent (ppm)								
Piper identifier:	A1	B1	b1	A2	12	B2	b2	C
Program identifier:	1	2	3	4	5	6	7	8
Calcium (Ca)	39	40	39	102	42	466	65	393
Magnesium (Mg)	10	10	11	19	22	77	98	1228
Sodium (Na)	47	52	56	54	152	255	808	10220
Potassium (K)	47	52	56	3.6	152	255	808	353
Bicarbonate (HCO_{3})	204	207	204	203	203	166	199	139
Sulfate (SO_{4})	24	21	26	6.7	49	0	207	2560
Chloride (Cl)	16	32	32	199	199	1346	1346	18360

Table 2. Percent-Reacting Values Computed by Piper (1953)

Constituent	A1	B1	bl	A2	12	B2	b2	C
Calcium	40.4	39.3	36.8	56.0	19.9	57.2	7.0	3.4
Magnesium	17.1	16.2	17.1	17.2	17.2	15.6	17.3	17.6
Sodium + Potassium	42.5	44.5	46.1	26.8	62.9	27.2	75.7	79.0
TOTALS	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Bicarbonate	77.9	71.7	69.9	36.7	33.4	6.7	7.1	0.4
Sulfate	11.6	9.2	11.3	1.5	10.2	0	9.5	9.3
Chloride	10.5	19.1	18.8	61.8	56.4	93.3	83.4	90.3
TOTALS	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3. Percent-Reacting Values Computed by the PIPER Program

Source	$\% \mathrm{Ca}^{++}$	$\% \mathrm{Mg}^{+}$	$\%\left(\mathrm{Na}^{*}+\mathrm{K}^{+}\right)$	$\% \mathrm{Cl}^{-}$	$\% \mathrm{SO}_{4}^{--}$	$\% \mathrm{HCO}_{3}^{-}$	Absolute Conc. (TDS. mg/l)	\% Error
1	40.54	17.05	42.41	10.49	11.66	77.86	9.10	5.71
2	39.37	16.14	44.49	19.03	9.30	71.67	9.81	3.57
3	36.86	17.01	46.12	18.83	11.30	69.87	10.07	5.06
4	56.00	17.16	26.84	61.78	1.54	36.67	18.17	.06
5	19.96	17.21	62.83	56.33	10.24	33.43	20.48	2.73
6	57.17	15.56	27.27	93.32	0.00	6.68	81.36	.02
7	6.98	17.35	75.67	83.38	9.46	7.16	91.99	.99
8	3.42	17.59	78.99	90.31	9.29	.40	1147.75	.06

Table 4. A Portion of the Computer Output of the Test for Mixing Systems
CHECK FOR MIXTURES FROM 2 SOURCES
THESE SOURCES FORM STRAIGHT LINES IN ALL THREE FIELDS WITHIN $\pm \mathbf{2 \%}$

Ion	Point \#1	Point ${ }^{1} 8$	Point \#1	Calculated mix	Point \# ${ }^{\text {\% }}$	\% Error
CONC.	9.10	1147.75	N/A	10.14	10.07	. 70
Mg	. 82	101.02	N/A	. 91	. 90	1.11
Ca	1.95	19.61	N/A	1.97	1.95	1.03
$\mathrm{Na}+\mathrm{K}$	2.04	453.60	N/A	2.44	2.44	0.00
$\mathrm{HCO}_{3}+\mathrm{CO} 3$	3.34	2.28	N/A	3.34	3.34	0.00
SO4	. 50	53.30	N/A	. 55	. 54	1.85
Cl	. 45	517.94	N/A	. 92	. 90	2.22
Mixing Factors	99.91\%	.09\%				
Ion	Point \#1	Point \#8	Point ${ }^{*} 1$	Calculated mix	Point \#5	\% Error
CONC.	9.10	1147.75	N/A	21.12	20.48	3.13
Mg	. 82	101.02	N/A	1.81	1.81	0.00
Ca	1.95	19.61	N/A	2.12	2.10	. 95
$\mathrm{Na}+\mathrm{K}$	2.04	453.60	N/A	6.48	6.61	-1.97
$\mathrm{HCO} 3+\mathrm{CO} 3$	3.34	2.28	N/A	3.33	3.33	0.00
SO4	. 50	53.30	N/A	1.06	1.02	3.92
Cl	. 45	517.94	N/A	5.92	5.61	5.53
Mixing Factors	98.94\%	1.06\%				
Ion	Point \#1	Point 48	Point \#1	Calculated mix	Paint \#7	\% Error
CONC.	9.10	1147.75	N/A	96.32	91.99	4.71
Mg	. 82	101.02	N/A	7.97	8.06	-1.12
Ca	1.95	19.61	N/A	3.21	3.24	-. 93
$\mathrm{Na}+\mathrm{K}$	2.04	453.60	N/A	34.27	35.15	-2.50
$\mathrm{HCO}_{3}+\mathrm{CO} 3$	3.34	2.28	N/A	3.26	3.26	0.00
SO4	. 50	53.30	N/A	4.55	4.31	5.57
Cl	. 45	517.94	N/A	40.18	37.97	5.82
Mixing Factors	92.34\%	7.66\%				

$\mathrm{N} / \mathrm{A}=$ Not applicable to two component mixing
SEARCH IS COMPLETED
used in present computations. These discrepancies are also due to differences in precision of calculations of the percentage-reaction values. Table 4 shows an output example of evaluation of a mixing system.

REFERENCES

Hem, J. D. 1964. Study and interpretarion of the chemical characteristics of natural water, 2nd ed. U.S. Geological Survey Water-Supply Paper 1473.363 pp .
Piper, A. M. 1953. A graphic procedure in the geochemical interprecation of water analyses. U.S. Geological Survey, Water Res. Div. Ground Water Notes, Geochemistry. no. 12, 14 pp.

Michael D. Morris, Jeffrey A. Berk, and Joseph W. Krulik are currently completing their graduate studies at
the Department of Geology, Kent State University, Michael D. Morris works on a part-time basis for Snell Environmental Group of Akron, Ohio, evaluating the bydrogeological conditions of a waste disposal site in old strip mine pits in Stark County, Obio, as bis M.S. degree thesis. Jeffrey . 1. Berk is developing a finite-difference model of the aquifer, serving the City of Kent water-supply system, as bis M.S. degree thesis. Joseph W. Krulik is working on completion of bis M.S. thesis on the ground-water resources of Franklin Township, Portage County, Obio. Yoram Eckstein is Professor of Geology at Kent State University. He is a Hydrogeologist who bas been active in teacbing, researcb and consulting for the past 20 years. He graduated in 1959 with a B.S. in Geology, and also received M.S. and Pb.D. degrees from Hebrew University of Jerusalem, Israel. Professional experience ranges from consulting activities in ground-water and geothermal exploration, evaluation and development in the U.S., Israel, Iran, South Korea, Honduras and Nicaragua, to research appointments with the Department of Hydrogeology, Geological Survey of Israel and Department of Earth and Planetary Sciences, Massachusetts Institute of Technology.

TRILINEAR DIAGRAM REVISITED: APPLICATION, LIMITATION, AND AN ELECTRONIC SPREADSHEET PROGRAM
by Songlin Cheng ${ }^{\text {a }}$

Abstract. The trilinear diagram has been used extensively in hydrochemical studies. The concepr of hydrochemical facies based on the crilinear diagram can effectively characterize the chemical composition of water in a qualitative manner. However, its application is rather limited for quantitative and precise study, because it is difficuit, if not impossible, to distinguish various mechanisms that may cause similar change in water chemistry by this diagram alone. This limitation is illustrated with various hypothetical water-rock interactions and mixing trends plorted on the trilinear diagram.

Introduction

The trilinear diagram (Hill, 1940; Piper, 1944) has been used extensively in hydrochemical studies. It effectively delineates the change of water types as the water migrates from one region of an aquifer to the other. In case of mixing between waters, the data distribution on the diagram may reveal the end members of the intermediate mixtures. Simple mixing between two end members should result in a straight line in all three fields of the trilinear diagram, provided all ions remain in the solution. However, the assumption that all ions remain in the solution may not be valid in most ground-water systems. For example, dissolution and precipitation of minerals are rather common in ground-

[^12]water systems. Any post-mixing reaction may cause deviation from a straight mixing line. Besides, a straight line may be caused by reaction, rather than mixing. Therefore, identifying a mixing situation from straight alignment on a trilinear diagram is not an accurate approach. In this paper, the data distribution on the trilinear diagram as a result of water-rock interactions and mixing will be illustrated.

The speed and accuracy of computer plotting can relieve the tedium and remove the chance of error of hand plotting. Morris et al. (1983) published a BASIC program for plotting data on the trilinear diagram. This program also checks for the possibility of mixing. They applied the tangent function to convert a tertiary system to $\mathrm{X}-\mathrm{Y}$ coordinates. In this paper, a sine and cosine function set for coordinate conversion are presented. This approach has the advantage of assigning 100 units to the side length of triangles of the trilinear diagram and easily scaling the diagram on the $\mathrm{X}-\mathrm{Y}$ coordinate system.

As it is becoming increasingly common to maintain chemical databases on electronic spreadsheets, it is desirable to be able to use the same database for various applications and manipulations. Based on these considerations and available programs on our computer the LOTUS 1-2-3 (TM) is ideal for trilinear application, as it has the spreadsheet, plotting routines, and capability for programming. The macros on a floppy diskette and users' instructions are available from the author upon request.

Fig. 1. The trilinear diagram. The cation and anion ratios of each sample are plotted in the cation (lower left) and anion (lower right) triangles (points a and b, respectively). The data point in the center diamond field is the intersection of the lines extended from the ion ratios and parallel to the sides of the triangles.

The Geometry of Trilinear Diagram

Hill and Piper's trilinear diagram (Figure 1) consists of a cation triangle on the lower left, an anion triangle on the lower right, and a diamond field in the center. The equivalent percentage of cations and anions are plotted first on the correspondent triangles (points a and b, respectively). Lines parallel to the sides of the triangles are drawn through these percentage points and extended into the diamond field. The intersection (point c) represents the sample in the diamond field.

Fig. 2. The tertiary plot of trilinear diagram can be converted to $X-Y$ plot by trigonometric function (see text for detail).

Referring to Figure 2, if the triangles of the trilinear diagram are drawn as equilateral, the mathematics of computation will be simple. If a, b, and c on Figure 2 are sample points on the trilinear diagram, then the triangle cde is equilateral. The tertiary system can be converted easily to twodimensional $X-Y$ coordination. The data points in cation and anion triangles, and in the diamond field are then located by correspondent (Xi, Yi) pairs. If the lower left apex of the cation triangle, f , is located on $(20,20)$, the X -axis runs parallel to the base of the triangle, and the Y -axis is perpendicular to the X -axis; then, ion ratios and (Xi, Yi)'s on the new $X-Y$ coordination system have the following mathematical relationship (assuming side length equals 100 units and spacing between triangles is 10 units):

Cation triangle:

$$
\begin{aligned}
\mathrm{X} 1 & =20+\mathrm{fg}=20+\mathrm{fd}+\mathrm{dg}=20+\mathrm{fd}+\mathrm{ad} \times \sin 30^{\circ} \\
& =20+\mathrm{fd}+\mathrm{fh} \times \sin 30^{\circ} \\
& =20+(\mathrm{Na}+\mathrm{K} \%)+(\mathrm{Mg} \%) \times \sin 30^{\circ} \\
\mathrm{Y} 1 & =20+\mathrm{ag}=20+\mathrm{ad} \times \cos 30^{\circ}=20+\mathrm{fh} \times \cos 30^{\circ} \\
& =20+(\mathrm{Mg} \%) \times \cos 30^{\circ}
\end{aligned}
$$

Anion triangle:
$\mathrm{X} 2=20+($ side length $)+($ spacing $)+\mathrm{ij}+\mathrm{bj} \times \sin 30^{\circ}$
$=20+($ side length $)+($ spacing $)+\mathrm{ij}+\mathrm{ik} \times \sin 30^{\circ}$
$=20+100+10+(\mathrm{Cl} \%)+\left(\mathrm{SO}_{4} \%\right) \times \sin 30^{\circ}$
$\mathrm{Y} 2=20+\mathrm{bj} \times \cos 30^{\circ}$
$=20+\mathrm{ki} \times \cos 30^{\circ}$
$=20+\left(\mathrm{SO}_{4} \%\right) \times \cos 30^{\circ}$
Diamond field:

$$
\begin{aligned}
c d & =\text { de (equilateral triangle) } \\
& =[(\text { side length) }-\mathrm{fd}]+\text { (spacing) }+ \text { ie } \\
& =[100-(\mathrm{Na}+\mathrm{K} \%)]+10 \\
& \quad+\left[100-\left(\mathrm{HCO}_{3}+\mathrm{CO}_{3} \%\right)\right] \\
& =[100-(\mathrm{Na}+\mathrm{K} \%)]+10+\left[\mathrm{SO}_{4} \%+\mathrm{Cl} \%\right] \\
\mathrm{X} 3 & =20+\mathrm{fd}+\mathrm{cd} \times \sin 30^{\circ} \\
& =20+(\mathrm{Na}+\mathrm{K} \%)+\mathrm{cd} \times \sin 30^{\circ} \\
\mathrm{Y} 3 & =20+\mathrm{cd} \times \cos 30^{\circ}
\end{aligned}
$$

The apex, f, can be any convenient location on the $\mathrm{X}-\mathrm{Y}$ coordinate system. The trilinear diagram macro locates this apex on (20,20), and therefore, 20 units is included in each of the above equations for calculating (Xi, Yi). The spacing between triangles can be other than the 10 units selected here.

Application of Trilinear Diagram

Many graphic methods are commonly used for representing hydrochemical data, such as the Schoeller diagram, Stiff diagram, and Hill and Piper's trilinear diagram. The trilinear diagram has the advantage of representing multiple parameters

Table 1. Chemical Compositions of Water Generated from Computer Simulation with the Program PHREEQE [Ses text section "Application of Trilinear Diagram: I. Gypsum Dissolution" for detail. Ion concentrations are in meq/l. This table also includes the column designation (alphabatic) and row number (numeric) of the worksheet.]

	A		B	c	D	E	F	G	H	1	J	K	L	M
$\begin{aligned} & 1: \\ & 2: \end{aligned}$	SAMPLE			TEMP($\left.{ }^{\circ} \mathrm{C}\right)$	pH	ALKAL.	S 102	Ca	Mg	Na	K	C1	SO4	NO3
$\begin{aligned} & 3: \\ & 4: \end{aligned}$														
5:	end member	A		22.50	7.40	2.82	0.55	2.54	0.34	1.16	0.04	0.23	0.66	0.11
$6:$	A CGYP!			22.50	7.46	2.88	0.55	3.10	0.34	1.16	0.04	0.23	1.16	0.11
7 :	$A+G Y P 2$			22.50	7.42	2.85	0.55	3.57	0.34	1.16	0.04	0.23	1.66	0.11
8 :	A+GYP3			22.50	7.39	2.82	0.55	4.04	0.34	1.16	0.04	0.23	2.16	0.11
9 :	END MEMBER	B		22.50	7.36	2.79	0.55	4.51	0.34	1.16	0.04	0.23	2.66	0.11
10:														
11:	END MEMBER	A		22.50	7.40	2.82	0.55	2.54	0.34	1.16	0.04	0.23	0.66	0.11
12:	MIXI			22.50	7.39	2.81	0.55	2.94	0.34	1.16	0.04	0.23	1.06	0.11
13:	MIX2			22.50	7.38	2.81	0.55	3.33	0.34	1.16	0.04	0.23	1.46	0.11
14:	MIX3			22.50	7.38	2.80	0.55	3.53	0.34	1.16	0.04	0.23	1.66	0.11
15:	MIX4			22.50	7.37	2.80	0.55	3.73	0.34	1.16	0.04	0.23	1.86	0.11
16:	MIX 5			22.50	7.37	2.80	0.55	4.12	0.34	1.16	0.04	0.23	2.26	0.11
17:	END MEMBER	B		22.50	7.36	2.79	0.55	4.51	0.34	1.16	0.04	0.23	2.66	0.11

of a quantity of data on the same graph without losing clarity of data points; therefore, it is the most frequently used graphic method for hydrochemical study.

Because the locations of the data points in the trilinear diagram reflect the chemical characteristics of the water, the concept of hydrochemical facies is frequently used to describe the chemical property of water. This concept has been discussed in many hydrogeology textbooks. The concept of hydrochemical facies is very useful to illustrate the change in chemical characteristics as water migrates down the hydraulic gradient. The trend observed on the trilinear diagram would give an indication of the type of reactions that are responsible for the change in a qualitative way. For example, dissolution of gypsum ($\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) may change a $\mathrm{Ca}-\mathrm{HCO}_{3}$ type water to a $\mathrm{Ca}-\mathrm{SO}_{4}$ water. However, it is dangerous to define the mechanism responsible for the change of water type solely by the trend observed on the trilinear diagram. Alternative mechanisms should be considered and tested by other means.

In addition to the concept of hydrochemical facies, a straight line on the trilinear diagram may indicate a mixing system. Recently, Morris et al. (1983) published a program in BASIC which plors a trilinear diagram and tests for the possibility of mixing. The two end-members mixing line bears the assumption that all the ions remain in the solution after mixing. Therefore, a mixing line conclusion hinges on the validity of this assumption. Precipitation, dissolution of minerals, and ion exchange reaction are very common in natural
water, and they may cause deviation from a straight line. Therefore, it is risky to base a mixing conclusion on a straight line on the trilinear diagram. Besides, pure mineral dissolution can also result in a straight line on the trilinear diagram, i.e. a straight line on the trilinear diagram may not definitely indicate mixing. Therefore, this approach should be used with great care when searching for mixing in a ground-water system.

In order to illustrate the above generalized statements, we used the computer program PHREEQE (Parkhurst, Thorstenson, and Plummer, 1980) to generate a series of water compositions along mixing and/or reaction trends. Two mixing/ reaction paths will be examined in the next two sections.

1. Gypsum Dissolution

Gypsum ($\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) is a common mineral in most ground-water systems and dissolution of gypsum may cause calcite to precipitate. For example, Back et al. (1983) found that dolomite dissolution and concurrent precipitation of calcite in the Mississippian Pahasapa Limestone aquifer is driven by gypsum dissolution. Table 1 lists the results of computer simulation with PHREEQE. One mmole/liter of gypsum is added to end member A in four equal steps to generate end member B. Calcite equilibrium is maintained at each step. Intermediate waters are designated A+GYP1, A+GYP2, and A+GYP3. Table 1 also lists intermediate mixtures (MIX1 through MIX5) between end members \mathbf{A} and B. Both products of gypsum dissolution (\square) and mixtures (+) between

Fig. 3. (A): Trilinear diagram of water A with prograssive gypsum dissolution to B (symbol \square). Intermediate mixtures between A and B are also plotted (symbol +1 .
(B) : Same as Figure $3(A)$. Mixing trend is shown as a line by redefining the plotting format. The $X \cdot Y$ coordination was eliminated by specifying different colors for grid and by not loading the pen during plotting. However, this trick cannot be used if a dot matrix printer is used rather than a pen plotter.
end members A and B as listed in Table 1 are plotted on Figure 3. Figure 3(A) is the trilinear diagram generated from LOTUS $1 \cdot 2-3$ macros. Figure $3(\mathrm{~B})$ is generated by redefining the plotting format of Figure 3 (A). The mixing trend between end members A and B is plotted as a line on Figure $3(B)$. It is clear from this figure that a straight line on the trilinear diagram does not prove "mixing." The mixing line is indistinguishable from the gypsum-dissolution-calcite equilibrium trend.

II. Ca-Na Ion Exchange Reaction

$\mathrm{Ca}-\mathrm{Na}$ ion exchange reaction is a common and important reaction in many aquifers. In the central San Juan Basin, New Mexico, dissolution of calcite driven by $\mathrm{Ca}-\mathrm{Na}$ ion exchange explain the high Na , low Ca , high alkalinity, and high pH of the water (Phillips et al., 1987). Similar reaction has been observed in Maryland (Chapelle and Knobel, 1983).

Table 2 lists a computer-simulated chemical

Table 2. Chemical Compositions of Water Generated from Computer Simulation with the Program PHREEOE [See text section "Application of Trilinear Diagram: II. Ca-Na Ion Exchange Reaction" for detail. Ion concentrations are in meq/l. This table also includes column designation (alphabetic) and row number (numeric) of the worksheet.]

Fig. 4. (A): Trilinear diagram of water A with progressive $\mathrm{Ca} \cdot \mathrm{Na}$ ion exchange reaction (symbol \square). Various mixtures between A and B are represented by symbol \diamond. Post-mixing equilibration with calcite (symbol +) would deviate the mixing trend from the original straight line and become indistinguishable from the $\mathrm{Ca}-\mathrm{Na}$ ion exchange reaction. Calcite equilibrium is maintained during the $\mathrm{Ca}-\mathrm{Na}$ ion exchange reaction.
(B): Same as Figure 4 (A). The $\mathrm{Ca}-\mathrm{Na}$ ion exchange trend is represented as a line by redefining the graph format.
composition of water. End member B is generated by progressive $\mathrm{Ca}-\mathrm{Na}$ ion exchange while maintaining calcite-equilibrium (rows 5 through 10, Table 2). Also listed in Table 2 are chemical composition of mixtures between end members A and B. Calcite-equilibrium is maintained for the waters on rows 13 through 17.

Figure 4 is a trilinear diagram of the three groups of water listed in Table 2. Although simple mixing (symbol \diamond) is distinguishable from a $\mathrm{Ca}-\mathrm{Na}$ ion exchange trend (symbol \square), post-mixing equilibration with calcite deviates from a simple mixing
line (symbol +). Therefore, mixing may also take place in a series of waters plotted on a curved line on the trilinear diagram.

In this example, the similarity in chemical composition between a $\mathrm{Ca}-\mathrm{Na}$ ion exchange trend (first group, Table 2) and post-mixing calciteequilibration trend (second group, Table 2) does not mean that it is impossible to identify the correct mechanism. Other parameters, such as stable isotopes of hydrogen, oxygen, carbon, and sulfur, should help solve the puzzle.

Summary and Conclusions

Hill and Piper's trilinear diagram is a valuable graphic tool for representing hydrochemical data. It effectively illustrates the chemical characteristics of a ground-water system from recharge to the deeper portion of the aquifer. The tedious plotting task can be greatly reduced if one takes advantage of the speed and accuracy of a computer. A set of simple equations is presented to transfer the tertiary system of the trilinear diagram to $\mathrm{X}-\mathrm{Y}$ coordination and electronic spreadsheet macros for plotting a trilinear diagram.

The concept of hydrochemical facies is useful in characterization of the chemical nature of water. However, it can be misleading to define hydrogeochemical reactions based on changes in hydrochemical facies.

Although mixing may be a common phenomenon, post-mixing reactions may obscure the mixing trend on a trilinear diagram. Reactions such as dissolution, precipitation, ion exchange reaction, and even CO_{2} outgassing, are common in natural waters. The assumption that all ions remain in solution after mixing for a linear mixing line on a trilinear diagram cannot be adopted unconditionally. On the other hand, simple mineral dissolution may result in a straight line on a trilinear diagram, and therefore, a straight line on the diagram does not necessarily indicate mixing. In reality, due to the heterogeneity of most ground-water systems, the chemical composition of the end member may not be well defined. Analytical errors may introduce additional uncertainty. All of these would make it difficult to recognize a mixing line on a trilinear diagram.

Based on the above considerations, the trilinear diagram is a useful tool to characterize the chemical composition of a ground-water system, that is, hydrochemical study. However, for detailed hydrogeochemical investigations, such as water-rock interaction, quantitative hydrogeochemical study, one should include efforts such as consideration of the isotopic composition, mineralogy, and reaction
path simulation for screening hypotheses. The real mechanism (s) that is (are) operating in a groundwater system may elude the researcher if these hydrogeochemical approaches are ignored.

Acknowledgments

The author wishes to thank Dr. Austin Long and the Laboratory of Isotope Geochemistry, Department of Geosciences, University of Arizona, for supporting this study.

References

Back, W., B. B. Hanshaw, L. N. Plummer, P. H. Rahn, C. T. Rightmire, and M. Rubin. 1983. Process and rate of dedolomitization: Mass transfer and ${ }^{14} \mathrm{C}$ dating in a regional carbonate aquifer. Geol. Soc. Am. Bull. v. 94, pp. 1415-1429.

Chapelle, F. H. and L. L. Knobel. 1983. Aqueous geochemistry and the exchangeable cation composition of glauconite in the Aquia aquifer, Maryland. Ground Water, v. 21, no. 3, pp. 343-352.
Hill, R. A. 1940. Geochemical patterns in Coachella Valley, Calif. Trans. Amer. Geophys. Union, v. 21.
Morris, M. D., J. A. Berk, J. W. Krulik, and Y. Eckstein. 1983. A computer program for a trilinear diagram plot and analysis of water mixing systems. Ground Water. v. 21, no. 1, pp. 67-78.

Parkhurst, D. L., D. C. Thorstenson, and L. N. Plummer. 1980. PHREEQE-A computer program for geochemical calculations. U.S. Geol. Surv. Warer* Resources Invest. 80-96. 210 PF .
Phillips, F. M., M. K. Tansey, L. A. Peeters, S. Cheng, and A. Long. 1987. An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: 1. ${ }^{14} \mathrm{C}$ dating as a basis for a numerical flow model. (Submitred to Water Resour. Res.)
Piper, A. M. 1944. A graphic procedure in the geochemical interpretation of water analyses. Trans. Amer. Geophys. Union. v. 25, pp. 914-923.
Plummer, L. N., B. F. Jones, and A. H. Truesdell. 1976. WATEQF-A FORTRAN IV version of WATEQ a compurer program for calculating chemical equilibrium of natural water. U.S. Geol. Surv. Water-Resources Invest. 76-13.61 pp.

Songlin Cheng received bis B.S. (1972) in Geology from Cbeng Kung University, Taivan, M.S. (1979) in Geology from Wright State University, and Ph.D. (1984) in Geosciences from the University of Arisona. He is currently Research Associate at the Laboratory of Isotope Geochemistry, Department of Geosciences, University of Arizona. His professional interests include isotope geochemistry, bydrogeochemical modeling, and carbon-14 ground-water dating.

STOCHASTIC AND GEOSTATISTICAL ANALYSIS IN GROUNDWATER MODELING

August 22-26, 1988

INSTRUCTORS
Dr. Robert Hoeksema, Dr. Leslie Smith, and Dr. Aly El-Kadi

- Theory and computer application of geostatistics - Review of stochastic models - Application of stochastic models to flow and transport problems - Discussion of data acquisition and data analysis procedures

An Idealized Ground-Water Flow and Chemical Transport Model (S-PATHS)

by Phil L. Oberlander and R. W. Nelson ${ }^{\text {a }}$

Abstract

The number of studies on the actual and potential environmental consequences of contaminated ground water is growing. One means of studying these consequences is through an idealized flow and transport model, S-PATHS, which allows the hydrologist to determine the salient features of contaminant migration with a minimum of data.

The cransport of contaminanes by ground warer from many waste disposal sites can be geometrically idealized as flow berween a line and a circle. The flow system adjacent to the disposal site can be represented as a contaminant line source, and a downgradient pumping well as a circular sink. To study waste disposal sites on a larger scale the model geometry is reversed and the disposal site is represented as a circular source, and a river or other convenient line of evaluation is represented as a line sink. This idealization allows S-PATHS to describe the flow and transport process directly by a single partial differential expression. S-PATHS considers transmissivity, effective porosity, sorption, source strength, source concentration, decay, porentiomerric gradient, circle size, and discance to the line. Coding for the model is not lengthy and can be run on a large-capacity, hand-held calculator.

INTRODUCTION

The environmental consequences of groundwater contamination are being studied more often today as actual and potential waste sites are identified. To assess the environmental consequences at a disposal site, we must identify the time- and location-dependent flow rate of the contaminant into the biosphere. We can determine these values approximately, without using a complex digital model, by considering an idealized flow system and by using analytical expressions.

[^13]An evaluation of contaminant transport by ground water can often be geometrically simplified by considering the transport as migration between a circle and a line. For example, the regional movement of contaminant from a leaking tank or landfill to a nearby river can be conceptualized as flow from a circular source to a line sink. Likewise, the local movement of contaminant from a linear disposal pit to a pumping well can be considered as flow from a line source to a circular sink. This idealization of the ground-water flow system allows the hydrologist to perform preliminary calculations that describe the location of the contaminant plume and to determine quantities of contaminant reaching the biosphere. This approach is also useful for parameter sensitivity studies and when a lack of field data does not justify a more complex model.

We idealize the transport process by assuming that a uniform potentiometric gradient normal to the line (source-sink) exists before pumping or injection, as well as steady-state, two-dimensional flow. The hydrologic zone receiving the contaminant is characterized as a medium of a constant thickness that is isotropic and homogeneous. Contaminant retardation along the flow path by sorption is assumed to take place under chemical equilibrium conditions. The contaminant is assumed to be vertically mixed in the hydrologic unit receiving the waste material. We also use the diameter of the circle, distance between the line and the circle, head at the circle, initial concentration, and decay to describe the contaminant migration. The hydrologic unit is assumed to be infinite in the direction normal to the gradient. The given boundary conditions result in a simple mathematical description of the flow system. The flow description also provides a maximum contaminant arrival flux because contaminant spreading by inhomogeneous, anisotropic media and
dispersion is not considered. In unfractured and nonkarstic aquifers, this level of analysis can often be used to determine the environmental severity of a liquid release and the need for further modeling.

In this article we present the analytical expressions for flow and transport, but do not necessarily detail the numerous intermediate steps. These expressions define the contaminant plume and answer the three essential questions concerning contaminants entering the biosphere: where, when, and how much. Model results are plotted as location-, time-, and quantity-dependent graphs that characterize the contaminant arrival at the discharge location (Nelson, 1978). S-PATHS performs the necessary calculations on a hand-held calculator which allows simple use and rapid access to the model.

TWO-DIMENSIONAL FLOW EQUATIONS

The beginning point for this development is a reduced form of equation (A-1) found in Nelson and Schur (1980). The dimensional potential, ϕ^{\prime}, is given as:
$\phi^{\prime}=H_{0}-U_{0} x^{\prime}-\frac{H_{0}}{\ln \left(\mathrm{R} / \mathrm{r}_{0}^{\prime}\right)} \ln \left[\frac{\sqrt{\left(\mathrm{x}^{\prime}\right)^{2}+\left(\mathrm{y}^{\prime}\right)^{2}}}{\mathrm{r}_{0}^{\prime}}\right]$
where
$\phi^{\prime}=\phi^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is the potential energy head function that satisfies Laplace's equation,
$H_{0}=$ the head in the circular source-sink of approximate radius r_{0}^{\prime} with center at the origin,
$U_{0}=$ the uniform lateral flow gradient in the positive x direction,
$\mathrm{R}=$ the distance from the center of the circle to the line boundary,
$r_{0}^{\prime}=$ the dimensional approximate radius of the circular source-sink located at the origin, and
$x^{\prime}, y^{\prime}=$ the dimensional Cartesian coordinates of an arbitrary point with the origin at the center of the circular source-sink.

Equation (1) is based on the boundary conditions presented in the introduction. Conceptually, equation (1) describes a two-dimensional potential surface by combining the potential formed by the regional gradient and the potential formed by injection or withdrawal at the circle. The geometry of the flow system is illustrated in Figure 1 as flow from a circular source to a line sink.

A convenient set of dimensionless variables for this flow system is:
$x=\frac{x^{\prime}}{R}, \quad y=\frac{y^{\prime}}{R}, \quad r_{0}=\frac{r_{0}^{\prime}}{R}, \quad \phi=\frac{\phi^{\prime}}{H_{0}}, \quad t=\frac{K_{0} H_{0}}{R^{2}} t^{\prime}$
where
$\mathrm{x}, \mathrm{y}=$ the dimensionless Cartesian coordinates,
$t^{\prime}=$ the dimensional time,
r = the dimensionless time, and
$K_{0}=$ the hydraulic conductivity of the confined porous stratum.
Use of the expressions from equations (1) and (2) gives the dimensionless potential, ϕ, as:

$$
\begin{equation*}
\phi=1-\frac{\mathrm{U}_{0} \mathrm{R}}{\mathrm{H}_{0}} \mathrm{x}-\frac{1}{\ln \left(1 / \mathrm{r}_{0}\right)} \ln \left[\frac{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}{\mathrm{r}_{0}}\right] \tag{3}
\end{equation*}
$$

The expression for potential given in equation (3) was derived by making two approximations. The circle and the line are used as equiporentials, which under some circumstances require that limits be imposed on model use. In most field studies, however, the limits do not preclude the use of the model.

The first approximation for which a limit is needed involves the circular equipotential at the origin. Equation (3) introduces some distortion to the potentiometric surface in that the equipotential at approximate radius, r_{0}, is not always a circle. We describe the amount of distortion at the circle by considering the shape of the actual equipotential as compared to a circle with radius.

Fig. 1. Illustration of model geometry and example streamlines. Shown as flow from a circular source to a line sink.

EQUIVALENT EQUIPOTENTIAL SHAPE

Fig. 2. Distortion of circle as a function of parameter scale factors. The shape is considered essentially circular when alpha is $\leqslant 0.2$.
r_{0}. If we let $\phi=1$ and allow $x_{00}^{\prime}, y_{00}^{\prime}$ to denote the coordinates defining the approximate equipotential representing the circle, then:

$$
\begin{equation*}
y_{00}^{\prime} / r_{0}^{\prime}= \pm \sqrt{\exp \left[-\alpha\left(x_{00}^{\prime} / r_{0}^{\prime}\right)\right]-\left(x_{00}^{\prime} / r_{0}^{\prime}\right)^{2}} \tag{4}
\end{equation*}
$$

where $\quad \alpha=\frac{2 \mathrm{U}_{0} \mathrm{r}_{0}^{\prime} \ln \left(\mathrm{R} / \mathrm{r}_{0}^{\prime}\right)}{\mathrm{H}_{0}}$
which expresses the shape of the equipotential boundary only as a function of α.

Figure 2 shows the shape of the equipotential boundary for different values of α. The results in the figure show that when $\alpha \leqslant 0.2$ the boundary is essentially circular, but the center is displaced upgradient or to the left from the $\alpha=0$ or exact boundary. The displacement upgradient effectively provides slightiy longer flow paths to a discharge location and hence slightly longer calculated travel times than pathlines originating at $\alpha=0$. For this reason, equation (3) is a good approximation of ϕ for all $\alpha \leqslant 0.2$. The distortion at the circle increases with large values of U_{0} (gradient) and r_{0}^{\prime} (circle size) and with small values of H_{0} (head).

The second approximation occurs along the line boundary because the line is not precisely an equipotential. We describe the relative distortion by dividing the model-predicted potential along the y axis by the exact potential at $x=R, y=0$, using
equation (3). The distortion factor increases exponentially with distance along the y axis under conditions of small R (distance to line), $\mathrm{H}_{0}, \mathrm{U}_{0}$, and large r_{0}^{\prime}. However, as long as the relative distortion is less than 1.10, the effect to calculated travel times and outflow locations is negligible. Setting the relative distortion limit at 1.10 and solving for y_{l} with equation (3) gives:
$y_{l}=\sqrt{\left\{e\left[\left(\frac{-1.10 U_{0} R}{H_{0}}+\frac{U_{0} R}{H_{0}}\right) \ln \left(\frac{U_{0}}{R}\right)\right]\right\}^{2}-1}$
which is the maximum distance (dimensionless) along the line boundary for which the model will produce reliable results. Our model checks for potentiometric distortion at the circle and the line, and prints a message to the user when the limitations are exceeded.

THE STREAM FUNCTION
We use the stream function to obtain pathlines and travel times for this flow system. The stream function describes steady-state flow, and is available as the complex conjugate of the previously defined potential in equation (3), specifically:

$$
\begin{equation*}
\xi=\frac{U_{0} R}{H_{0}} y-\frac{1}{\ln \left(1 / r_{0}\right)} \arctan \left(\frac{y}{x}\right) \tag{7}
\end{equation*}
$$

The terms on the right-hand side of the equation are the imaginary parts of the complex potential $\Phi=0+\mathrm{i} \xi$, which satisfies the Laplace equation. Furthermore, the Cauchy-Riemann condition:

$$
\begin{equation*}
\frac{\partial \xi}{\partial x}=-\frac{\partial \phi}{\partial y} \text { and } \frac{\partial \xi}{\partial y}=\frac{\partial \phi}{\partial x} \tag{8}
\end{equation*}
$$

is satisfied. This verifies that equation (7) is analytic (Boas, 1966).

The stream function is conveniently expressed as the fraction of the total outflow from the discharge location. This is possible because the idealized flow system is symmetric about the x axis. Half of the flow will occur in the positive y quadrants and the other half will occur in the negative y quadrants with the x axis functioning as the line of symmetry. The contaminant plume is bounded by the outermost streamlines (ξ max) which surround the entire flow berween the source and the sink. The flow problem is simplified when we consider the flow only in the positive y quadrants, with the remainder of the solution available as the mirror image. This allows the substitution of $\xi_{\mathrm{m}}=\xi \max / 2$. Expressing the ratio of the positive y source outflow flux in dimensionless form as the ratio $\Psi=\xi / \xi_{\mathrm{m}}$ gives:

$$
\begin{equation*}
\Psi=\frac{y}{2 \pi \gamma}+\frac{1}{2 \pi} \arctan \left(\frac{y}{x}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{\mathrm{H}_{0}}{\mathrm{U}_{0} \mathrm{R} \ln \left(1 / \mathrm{r}_{0}\right)} \tag{10}
\end{equation*}
$$

The stream function Ψ defines a steady pathline location, and also provides the ratio of the outflow flux as:

$$
\begin{equation*}
\Psi_{i}=\frac{Q_{i}}{Q_{T}} \tag{11}
\end{equation*}
$$

where
$\Psi_{i}=$ a particular streamline,
$Q_{i}=$ cumulative flow from $Y=0$ to a particular streamline Ψ_{i}, and
$Q_{T}=$ total flow at circular source-sink.
The flow at the circle is defined as:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{T}}=\frac{2 \pi \mathrm{D}_{0} \mathrm{~K}_{0} \mathrm{H}_{0}}{\ln \left(1 / \mathrm{r}_{0}\right)} \tag{12}
\end{equation*}
$$

where $D_{0}=$ thickness of contaminated zone, $\mathrm{K}_{0}=$ hydraulic conductivity, and other terms are as previously defined. A revised form of equation (12) which solves for H_{0} can be used when the flow rate $\left(Q_{T}\right)$ is known. Our model uses either a known flow rate or a known head at the circle as input and then calculates and displays the remaining parameter. The zero relative head occurs on the regional gradient at the circle before a hydraulic source-sink is imposed.

A discussion of the physical significance of equation (9) may be helpful. Physically, Ψ is the cumulative fraction of the entire source flux obtained by integrating all of the flow crossing any line connecting a point on the positive x axis, with the specific point having coordinates (x, y) appearing in the right-hand side of equation (9). At any point, Ψ equals a constant, is perpendicular to the potential function, and traces our the entire streamline. By selecting a range of x_{00} and y_{00} values on the circle and calculating corresponding values of Ψ_{i}, the steady-state pathlines are defined for the entire flow field.

STREAMLINE LOCATION AT THE LINE BOUNDARY

The streamline terminates at two locations: a point on the circle and at the line boundary. The maximum value of y for any streamline Ψ_{i} occurs at the line boundary. Substitution of $y=y_{m}$ and $x=1$ into equation (9) yields:

$$
\begin{equation*}
\Psi_{i}=\frac{y_{m}}{2 \pi \gamma}+\frac{1}{2 \pi} \arctan \left(y_{m}\right) \tag{13}
\end{equation*}
$$

Equation (13) does not algebraically solve for y_{m}; therefore, the y_{m} root is extracted using a simple iterative method. We obtain an initial estimate for y_{m} by setting the tangent of a small angle approximately equal to the angle in radians; therefore:

$$
\begin{equation*}
y_{\mathrm{m}} \sim 2 \pi\left(\frac{\gamma}{\gamma+1}\right) \Psi_{\mathrm{i}} \tag{14}
\end{equation*}
$$

and the improvement expression is:
$y_{m}, k+1=\left[\frac{\Psi_{i}}{\frac{y_{m}, k}{2 \pi \gamma}+\frac{1}{2 \pi} \arctan \left(y_{m}, k\right)}\right] y_{m}, k$
The hydraulic flux for a streamline can be computed once we know y_{m}, and is defined as:

$$
\begin{equation*}
q=D_{0} K_{0} U_{0}\left[1+\left(\frac{\gamma}{1+y_{m}^{2}}\right)\right] \tag{16}
\end{equation*}
$$

The hydraulic flux ($\mathrm{L}^{2} / \mathrm{T}$) is used to compute the contaminant outflow flux (M/LT), which is given as:

$$
\begin{equation*}
\mathrm{m}=\mathrm{q} \mathrm{C}_{0}\left(2^{-\mathrm{t} / \S}\right) \tag{17}
\end{equation*}
$$

where
$\mathrm{C}_{0}=$ contaminant concentration or radionuclide activity at source,
$t=$ contaminant travel time to discharge location, and
§ = radioactive half life.
The cumulative contaminant outflow rate (M / T) is given as:

$$
\begin{equation*}
M_{C}=\Psi_{i} Q C_{0}\left(2^{\tau / \delta}\right) \tag{18}
\end{equation*}
$$

The concentration of contaminant at the source can be expressed as either a mass per volume or a radiological activity per volume. For nonradioactive sources the half-life is assumed to be large (1×10^{99}), and decay is essentially zero. The mass outflow flux provides the basis for computing the mass of contaminant being discharged to the biosphere. We can determine the outflow mass by integrating the mass outflow flux over the length of the line.

TRAVEL TIME FROM SOURCE TO SINK

To determine travel time we integrate the x and y components of velocity with time. By expressing as a ratio the shortest travel time (t_{s})
where $y=0$, to the travel time for streamlines $\left(t_{i}\right)$, we determine the dimensionless travel time. The resultant equation is presented without development as:

$$
\begin{align*}
& \frac{t_{i}}{t_{s}}=\frac{1}{\left[1-r_{0}-\gamma \ln \left(\frac{1+\gamma}{r_{0}+\gamma}\right)\right]}\left\{y_{m i} \cot \left(2 \pi \Psi_{i}-\frac{y_{m i}}{\gamma}\right)\right. \\
& -y_{0 i} \cot \left(2 \pi \Psi_{i}-\frac{y_{0 i}}{\gamma}\right) \\
& \quad+\gamma \ln \left[\frac{\left|\sin \left(2 \pi \Psi_{i}-\frac{y_{m i}}{\gamma}\right)\right|}{\left|\sin \left(2 \pi \Psi_{i}-\frac{y_{0 i}}{\gamma}\right)\right|}\right\} \tag{19}
\end{align*}
$$

where $y_{0 i}=y$ position on circle boundary for streamline $\left(\Psi_{i}\right)$, and $y_{m i}=y$ position on line boundary for streamline (Ψ_{i}).

Equation (19) is used to calculate the fluid travel time for varying values of y for each streamline. A reduced form of this equation can also be used to locate contaminant position between the circle and the line boundaries. By choosing a time τ and solving for x and y, the position of the contaminant plume is defined with time. This allows us to observe the advance of contaminant and illustrates the time-dependence of contaminant quantity at the discharge boundary. The time that contaminant will arrive at a known point between the source and the sink can be determined by successive estimations of t. A reduced form of equation (19) is solved for y by the Regula Falsi Method (Rektorys, 1969) of successive iteration given as:

$$
\begin{equation*}
Z_{k+2}=\frac{Z_{k} f\left(Z_{k+1}\right)-\left(Z_{k+1}\right) f\left(Z_{k}\right)}{f\left(Z_{k+1}\right)-f\left(Z_{k}\right)} \tag{20}
\end{equation*}
$$

where
$Z_{k+2}=0$ at a root (y),
$Z_{k}=$ root estimates, and

$$
\begin{aligned}
& f\left(Z_{k}\right)=y \cot \left(2 \pi \Psi_{i}-\frac{y}{\gamma}\right)+\ln \left[1 \sin \left(2 \pi \Psi_{i}-\frac{y}{\gamma}\right) /\right. \\
& \sin \left(2 \pi \Psi_{i}-\frac{y_{0 i}}{\gamma}\right) \|-\frac{U_{0} R_{t}}{H_{0} P}-y_{0 i} \cot \left(2 \pi \Psi_{i}-\frac{y_{0 i}}{\gamma}\right) .
\end{aligned}
$$

When $Z_{k+2} \neq 0, Z_{k+2}$ is used to replace either Z_{k} or Z_{k+1}, depending on whether the sign of $f\left(Z_{k}\right)$ or $\mathrm{f}\left(\mathrm{Z}_{\mathrm{k}+2}\right)$ is respectively positive or negative. Con-
vergence is usually slow with this method. Solving equation (9) for x gives:
where

$$
\begin{gather*}
x=y \cot \left(2 \pi \Psi_{i}-\frac{y}{\gamma}\right) \tag{21}\\
-\frac{\pi}{2}<\left(2 \pi \Psi_{i}-\frac{y}{\gamma}\right)<\frac{\pi}{2} .
\end{gather*}
$$

The restriction on equation (21) is needed to allow the cotangent to be defined.

CHEMICAL RETARDATION

Contaminants that are in chemical equilibrium and sorbed on the porous media are retarded with respect to water travel time. The retardation factor (S) is defined in Freeze and Cherry (1979) as:

$$
\begin{equation*}
S=1+\left(\frac{B_{d} K_{d}}{P}\right) \tag{22}
\end{equation*}
$$

where
$\mathrm{B}_{\mathrm{d}}=$ mass bulk density,
$K_{d}=$ equilibrium distribution coefficient, and
$\mathrm{P}=$ effective porosity.
The retardation factor is a constant multiplier to the kinematic equations already presented. The contaminant travel time is defined as:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{c}}=\mathrm{St} \mathrm{t}_{\mathrm{w}} \tag{23}
\end{equation*}
$$

where $t_{c}=$ travel time for a particular contaminant, and $t_{w}=$ water travel time as defined by equation (18). If the contaminant transport is water-coincident and not solute-sorbed, then $K_{d}=0$, and the problem reduces to equation (18).

MODEL S-PATHS

The equations presented above have been combined to form the ground-water model S-PATHS. As noted previously the analytical expressions are symmetrical about the x axis. The coding for the model S-PATHS calculates the positive y portion of the problem. The negative y results are available as the mirror image. Flow quantities and fluxes are therefore given with respect to the positive y axis and are not the total flow from the source. The program has a userinteractive format that allows several input and output options. Table 1 details the options and also serves as an input worksheet and model illustration.

Upon final data input, the program generates 14 representative streamlines and calculates the time, location, and quantity of contaminant reach-

ing the biosphere. Program running time ranges from 5 to 25 minures depending on the complexity of the output options. The coding presented in Appendix A is written for a Hewlett-Packard $41-\mathrm{CV}$ hand calculator and a peripheral printer (product brand name is used for purposes of identification only; it does not represent endorsement by Battelle-Northwest Laboratories.) A set of test data and results are provided in Tables 2 and 3 to help the user verify keypunch accuracy.

As with all ground-water models, the accuracy of the predictions is directly related to the quality of input data and the validity of the simplifying
assumptions. Areal two-dimensional contaminant transport models, such as S-PATHS, are sensitive to the thickness of the hydrologic unit. Ideally, the thickness of the contaminant zone (D_{0}) is the same as that of a distincr hydrologic unit. In cases where D_{0} is a fraction of the total aquifer thickness, the compured values may not be representative. For example, assuming all of the water being discharged from a well comes from a thin contaminated layer may result in an unrealistic value of drawdown. Model results should be interpreted by the hydrologist as an approximate solution to a complex real-world situation.

Worksheet line no.	Input parameters	Input data
1	Flow direction (flow is toward line)	1
2	DLA (circle diamerer)	0.5
3	U_{0} (gradient)	0.005
4	R (distance to line)	1850
5	P (effective porosity)	0.2
6	$\mathrm{~K}_{0}$ (hydraulic conductivity)	$1+25$
7	D_{0} (contaminated zone thickness)	200
	At well (known flow race)	1
8	QT (discharge rate)	1.4063×10^{6}
9	(K Bd (Distribution coef bulk density)	0.95
10	Co (concentration) 11	Half life
12	Contaminant position? (Yes)	500
	T1	T2
	T3	Potential at time T? (Yes)

INTERPRETATION OF MODEL RESULTS

The combination of model output parameters allows a variety of interpretive graphs to be constructed. A complete description of these techniques using the output available from S-PATHS is presented in Nelson (1978). One analysis useful to the hydrologist is the determination of time and quantity of peak contaminant outflow. This is accomplished by plotting the cumulative contaminated outflow rate versus arrival time as shown in

Figure 3. The figure shows the cumulative arrival of a contaminant of constant concentration at the discharge location. Of importance are the delay time, which is the time from contaminant release to the first contaminant outflow, and the spread time, which is the time period over which the leading edge of the plume is discharged. The maximum outflow rate occurs at 25 years in Figure 3.

A contaminant source often enters the ground-water flow system for a time period (T_{x})

Table 3. Model Output

Calculated value	Streainline 1	Streamline 14
X at circle	0.250	-0.250
Y at circle	1.118×10^{4}	1.118×10^{-4}
Y at line	1850	1850
Y at line	0.065	455.454
Time to discharge location	234.008	457.885
$\mathrm{Q} / \mathrm{QT}($ from $\mathrm{Y}=0$ to Y$)=\Psi_{\mathrm{i}}$	7.127×10^{-5}	0.500
$\Sigma Q($ from $Y=0$ to Y) L** $3 / \mathrm{T}$	100.223	703050.096
Σ contaminant (from $\mathrm{Y}=0$ to Y) M/T	234.25+	9690.38
Hydraulic flux (at Y) L**2/T	1545.984	1539.070
Contaminant flux (at Y)M/TL	3613.481	21.214
At time	210.000	210.000
$Y=$	0.064	296.524
$\mathrm{X}=$	1688.031	97.457
Head equals	-8.368	0.910
At time	400.000	400.000
$Y=$	"Point beyond discharge location"	446.718
$\mathrm{X}=$		1459.569
Head equals	No output	-7.147

Fig. 3. Cumulative contaminant outflow versus time for an instantaneous source. The contaminant arrives over a period of time due to hydraulic spreading.
which is less than the spread time. These cases are analyzed by replotting the contaminant outflow rate versus time curve shifted along the x -axis a positive distance of T_{x}. This procedure is shown in Figure 4 in which the left-most curve represents the arrival of the leading edge of the contaminant plume and the shifted curve (solid line) represents the trailing edge. The time of contaminant flow at any point is limited to the time T_{x}. Therefore, the contaminant outflow rate becomes the difference between the first arrival curve and the last arrival curve. The resultant contaminant outflow rate is shown as the dashed line in Figure 4. The maximum discharge rate now occurs at the delay time plus T_{x} and then attenuates as shown. When radionuclides are modeled, the peak outflow rate is affected by decay, and the curve representing the trailing edge of the contaminant plume must be modified to account for decay during time T_{x}. Knowing the contaminant outflow rate with time allows the calculation of contaminant mass outflow by graphically determining the area under the curve (shaded area) in Figure 4. The mass outflow with time is particularly useful when evaluating concentration of contaminant in a downgradient surface-water body.

The above example is based on the contaminant outflow rate and time variables. The analysis could be continued by examining contaminant outflow flux with respect to location. It becomes obvious that by combining the linking variables of time, location, cumulative relative water-discharge rate (Q/QT), cumulative water-flow rate ($\Sigma \mathrm{Q}$), location-dependent water-discharge flux (Q flux), cumulative contaminant outflow rate (Σ Contam), and location-dependent contaminant outflow flux (Contam Flux), a suite of analyses can be performed that will provide a technical description of
contaminants entering the environment. Our experience in the application of this technique has demonstrated its flexibility, simplicity, and ability to facilitate communication between the technical evaluator and the decision maker.

ACKNOWLEDGMENTS

The authors wish to thank Mr. Kenneth T. Key, formerly of Pacific Northwest Laboratory, for the initial coding of some sections of S-PATHS.

REFERENCES

Boas, M. W. 1966. Mathematical Merhods in the Physical Sciences. John Wiley and Sons, Inc., New York. 778 pp.
Freeze, R. A., and J. A. Cherry. 1979. Ground Water. Prentice Hall, Inc. 604 pp .
Nelson, R.W. 1978. Evaluating the environmental consequences of groundwater contamination, 1 , an overview of contaminant arrival distribucions and general evaluation requirements, 2 , obtain location/arrival time and location/outflow quantity distributions for steady flow systems. Water Resources Research. v. 14, no. 3, pp. 409-415, pp. 416428.

Nelson, R. W., and J. A. Schur, 1980. PATHS Groundwarer Hydrologic Model. PNL.3162, Pacific Northwest Laboratory, Richland, Washington.
Rektorys, K. 1969. Survey of Applicable Mathematics. The Massachuserts Institute of Technology Press, Cambridge, Massachusetts. 1369 pp.

Pbil L. Oberlander is a Research Scientist with Battelle Northwest Laboratories operated by Battelle Memorial Institute in Richland, Washington. His current research interests include bydrogeologic characterization of nuclear core melt accidents, environmental consequence analysis of contaminant transport, and coupled geostatisti-cal-bydrologic modeling. He bas a B.S. in Geology from Westem Illinois University and an M.S. in Hydrology from

Fig. 4. Cumulative contaminant outflow versus time for a continuous source. Contaminant outflow is limited by time period of contaminant entry to aquifer.
the University of Vevada．He bas experience in aquifer analysis，geophysics，and gro und－water regulation．

R．William Nelson is a Staff Scientist with Battelle－ Northwest Laboratories in Richland，Washington．He is the author of over 60 papers on the evaluation of contaminant movement in aquifers and analysis of the subsequent
environmental consequences．In 1978，Mr．Veison received the O ．E．Meinser Award from the Geological Soctety of America in recognition of bis contributions to research in contaminant bydrology．He is currently conducting
－research on the ground－water bazards associated with the disposal of uranium mill tailings．

APPENDIX A．S－PATHS CODE LISTING

	XEQ FPDA Star jito ic	539023－87	42－68， 3	$5.54+68 \mathrm{i}$ if	Snlole
$\cdots{ }^{2}+68$	SF gi ENTER ITME 5＊	ij KCL		Pl ＋R PN	
－Mides j－potat			9CL i4 SEX POX		
			－Y GT LIME＊	53842ct 15	
		＊CL 11 －3T0 60	－XEA－PRX＇RCL Ja		
$\because=$ LIME ${ }^{\circ}$ PR ${ }^{\text {a }}$		51019		542＋L㓦 16	
			20L 时 PCi mi		官 ${ }^{2}$
	144＋L3L ${ }^{\text {a }}$	3790 LCL 脂			
＂Ehter CiRCLE＊	$55^{5}+11 \mathrm{l}$	VCL if－Jout		$54{ }^{5}+685$	
	Fel 17\％		PCL m_{6} ，	CF94 PCO	
rea miap it Ebi！	＂ENTER HEAD L＂PRE		4BS／Lh RCL jo°＊		$3 T 04780$
－ENTER GRADIEmi．${ }^{\text {a }}$					
Siop Sto 1\％		QL it $=.97049$			
	WN：50，		$1 / 8$ PCL 83	FQA PRE RLL	
－TO LINE Fing Sof					Pric ：＊河可岛
$3 T 014$＂EWTER PGROST＂．		319＊ 6 BL	\％ 7 27	ROLI2 RCL 17	
		－MT CiRCLE REE PRA＂	－TME TO ISCHRE．ESN	QCL 14×4.2－ 30089	
－EATEP aydraulie fin	16\％＊LEL M 3		－LOCTION SEY POAP	RCL i3 RCL Lt	IAN S SY：Titi ${ }^{\text {a }}$
－coniuliticiti			P8X 》Cl 15		
	H0才 PLCLJ 的，it＊	ACL 11 PCL 14		PCL $16: 1$ ：	
－EHTE THICXWESE FRA		3to di RCL 15 ati 17			
－JF CONTAM．GOME PAA		$\cdots 37087$ RCL			
stop sio if	PCL［4，LH－EfX	STO Ms Rel is REL is	KE9－β RXP RCL 2 ：		
		＊RCL 14 ＊ RCL 方	${ }^{\text {c Cunduative }}$－		713048． Cb_{6}
	＊行 3 的配 14		vep aris．		
			$\cdots \mathrm{Y}=10 \mathrm{O}$	if 16	fel 13 FSt 日it ins
			KEQ＂PRx＇ 2 糺 27		RC3 31 －RCL 12
TCL 14 RCL ！！：	\therefore ， 2 vin iTu 4		RCL 88 ，LiAs 7tx		
	＊ThCle disukin aiv			Pricht	
STOP 3 T0 38 ＊ 2.6			－Cum．Dowtan．＂	－ －3tiog 3 3ik	
		万t un RCL	SEP－ 8 OL －		farr ETL ！！：Li
		T0，明 $\mathrm{x}+2$－39PT			
Pag pox 5i0：3	 	3 SO 26 RCL 14 ＊ － 4 AT CTRCLE KEO －PRA－	YEO PPAC XEO PFET	1－x 9LL 	PPA PRX GTO is
	SEEP STMP	PSX PCL 36 SCL SO_{3} ：			－ 450 col
		\＃A ATAM＜＜9？ $269: 1$	＂hydrailit flux．		－POLNT EEYONA＊FRA
$=1413$	$225 * 24$ NOV HEN		KEN P9\％－		－Disialipice lut
－EHT Comtantmint $=26$	－STRECHLIME Nu．		 		YEQ－FRG＂GTO 14
abj 50］			＂COMTAn，FLGX＇DOL	$336+\mathrm{L8L} 22$	7504．5 23
Erjp gTo St		510 14	－at y Mrto onit frix		－INE STSMRT＊rem
				RTt 0^{3} PCiL di	
		3 FCl			
	ST＋	－${ }^{\text {che }}$ d4 HTMA？	F3？解 5015 5！ 35		［10 ${ }^{\text {¢ }}$
	2¢L 1！＊ 3003	FI＊＊＊ 20.4		9＊2＊ 6 ¢ 29	931068 ${ }^{3}$
	3010	avy ECL B4．	3F 92 if 33 SF 24		－X JNHEFINED FRA
 			CTO id_{4}		
－EHTEA＊：ME ：－	$354+$ Lex Mis	－ 6 S			CTO ： 4 ，EMS
center ink i＂					
					，

MOC SOLUTIONS OF CONVECTIVE-DISPERSION PROBLEMS

by Raz Khaleel ${ }^{\text {a }}$ and Donald L. Reddell ${ }^{\text {b }}$

Abstract

The merhod of characteristics is used to solve the one- and two-dimensional convective-dispersion equations in steady, uniform flow fields. Fully documented listings of the FORTRAN programs are presented. Comparison of numerical results with existing analytical solucions show excellent agreement.

Introduction

When convection and dispersion are considered simultaneously, conventional finite-difference techniques introduce artificial numerical dispersion (Peaceman and Rachford, 1962). The artificial dispersion may dominate low physical dispersion especially if dispersivities are small. Garder et al. (1964) developed the method of characteristics (MOC) to overcome the numerical dispersion problem. The MOC does not introduce numerical dispersion and has been widely used for solving miscible displacement problems (e.g., Reddell and Sunada, 1970; Bredehoeft and Pinder, 1973; Konikow and Bredehoeft, 1974, 1978). On the other hand, a number of researchers (e.g., Lam, 1977; van Genuchten; 1977; Huyakorn and Taylor, 1977) have shown that in certain convectiondominated flow systems, the standard Galerkin finite-element formulation will produce excessive numerical dispersion and/or oscillation even if higher order elements are used.

In this paper, MOC solutions of one- and twodimensional convective-dispersion equations for a conservative tracer are presented for steady,

[^14]uniform flow fields. Fully documented listings of the FORTRAN programs are presented and numerical examples are included to illustrate the basic use of the MOC. The accuracy of the computer codes is tested by comparison with available analytical solutions.

Numerical Model

The convective-dispersion equation for a conservative tracer in fluid flow through a saturated porous medium is given as (Scheidegger, 1961):

$$
\begin{equation*}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}+\frac{\partial}{\partial x_{\mathrm{i}}}\left(\mathrm{~V}_{\mathrm{i}} \mathrm{C}\right)=\frac{\partial}{\partial x_{\mathrm{i}}}\left(\mathrm{D}_{\mathrm{ij}} \frac{\partial \mathrm{C}}{\partial \mathrm{x}_{\mathrm{j}}}\right) \quad \mathrm{i}=1 \text { and } 3 \tag{1}
\end{equation*}
$$

where $\mathrm{C}=$ tracer concentration $\left(\mathrm{ML}^{-3}\right)$;
$\mathrm{V}_{\mathrm{i}}=$ components of velocity vector $\left(\mathrm{LT}^{-1}\right)$ in a Cartesian coordinate system of $\mathrm{x}_{\mathrm{i}} ; \mathrm{D}_{\mathrm{ij}}=$ coefficient of hydrodynamic dispersion, a second rank tensor ($\mathrm{L}^{-} \mathrm{T}^{-1}$); and $\mathrm{t}=$ time (T). The double summation convention of tensor notation is implied in the use of equation (1). The coefficient of hydrodynamic dispersion, D_{ij}, depends on the flow pattern and medium characteristics. It is formed from the contraction of a fourth rank tensor and a second rank tensor which is a function of flow (Bear, 1972):

$$
\begin{equation*}
D_{i j}=a_{i j m n} \frac{V_{m} V_{n}}{|V|} \tag{2}
\end{equation*}
$$

where $\mathrm{a}_{\mathrm{ijmn}}=$ dispersivity of the medium, a fourth rank tensor (L); $\mathrm{V}_{\mathrm{m}}, \mathrm{V}_{\mathrm{n}}=$ velocity components in the m and n directions, respectively (LT^{-1}); and $|\mathrm{V}|=$ magnitude of velocity $\left(\mathrm{LT}^{-1}\right)$.

Scheidegger (1961) showed that for an isotropic medium, the longitudinal and lateral dispersion coefficients (D_{L} and D_{T}, respectively) are related to the dispersivities by
and

$$
\begin{align*}
& \mathrm{D}_{\mathrm{L}}=\alpha_{\mathrm{L}}|\mathrm{~V}| \tag{3a}\\
& \mathrm{D}_{\mathrm{T}}=\alpha_{\mathrm{T}}|\mathrm{~V}| . \tag{3b}
\end{align*}
$$

Combining equations (2) and (3), the tensorial forms of the dispersion coefficient for two-dimensional flow in an isotropic aquifer are (Konikow and Bredehoeft, 1978):

$$
\begin{align*}
& D_{11}=D_{L} \frac{V_{1} V_{1}}{V^{2}}+D_{T} \frac{V_{3} V_{3}}{V^{2}} \tag{4a}\\
& D_{33}=D_{T} \frac{V_{1} V_{1}}{V^{2}}+D_{L} \frac{V_{3} V_{3}}{V^{2}} \tag{+b}\\
& D_{31}=D_{13}=\left(D_{L}-D_{T}\right) \frac{V_{1} V_{3}}{V^{2}} \tag{4c}
\end{align*}
$$

The MOC algorithm is not described here in detail because it has already been discussed in the literature (Garder et al., 1964). Briefly, equation (1) approaches a hyperbolic equation as the secondorder dispersion term becomes small with respect to the convective term. According to the MOC, we can associare with a given hyperbolic equation a simplified system of equations in terms of an arbitrary curve parameter, the solutions of which are called the characteristic curves of the differential equation. Detailed derivations of characteristic curves for a homogeneous, linear partial differential equation and for a nonlinear, nonhomogeneous partial differential equation were given by Garder et al. (1964).

In the MOC, in addition to the usual division of the flow region into a grid system, a set of moving points is introduced into the numerical solution. The location of each moving point is specified by its coordinates in the finite-difference grid. Initially, the moving points are uniformly distributed throughout the grid system. The initial concentration assigned to each point is the initial concentration associated with the stationary node of the grid block containing the point. At each time interval, the moving points in a two-dimensional system are relocated using:

$$
\begin{equation*}
x_{1 \ell}^{\tau+\Delta t}=x_{1 \ell}^{\tau}+\Delta t V_{1 \ell}^{t+\Delta r} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{x}_{3 \ell}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{x}_{3 \ell}^{\mathrm{t}}+\Delta \mathrm{t} V_{3 Q}^{\mathrm{t}+\Delta \mathrm{t}} \tag{5b}
\end{equation*}
$$

where $t+\Delta t=$ new time level; $t=$ old time level; $\Delta t=$ time increment; x_{1} and $x_{3_{\ell}}=$ coordinates of the ℓ-th moving point in the x_{1} and x_{3} directions; and $V_{1 \varrho}$ and $V_{3 \ell}=$ velocities of the ℓ-th moving point in the x_{1} and x_{3} directions. When all the moving points have been relocated, each block in the grid system is temporarily assigned a concentration, $\mathrm{C}^{\mathrm{t}+\Delta}$, which is the average of the concen-
trations $C_{l}^{t+\Delta}$ of all the moving points lying inside the grid block at time $t+\Delta t$. Next, the change in concentration due to dispersion, $\Delta \mathrm{C}$, is calculated using an explicit, centered-in-space finite-difference approximation to the dispersive term on the righthand side of equation (1). Each moving point is then assigned a concentration according to:

$$
\begin{equation*}
C_{\ell}^{\mathrm{t}+\Delta \mathrm{t}}=\mathrm{C}_{\ell}^{\mathrm{t}+\Delta}+\Delta \mathrm{C} . \tag{6}
\end{equation*}
$$

To complete the step from time t to $t+\Delta t$, the solute concentration at the stationary grid nodes is calculated according to

$$
\begin{equation*}
C^{i+\Delta t}=C^{t+\Delta}+\Delta C \tag{7}
\end{equation*}
$$

Computer Programs

Listings of the MOC programs for solving onedimensional and two-dimensional tracer flow problems are given in Appendices A and B, respectively. The following steps in the MOC procedure are valid for both one- and twodimensional problems.

Step 1: In addition to assigning nodal coordinates and concentrations, initial coordinates and concentrations are assigned to the moving points in each grid block.

Step 2: Determine which grid block the moving point is located in, and relocate the point using the assigned flow velocity. Also, if during a time step, any point moves out of the system, it is reentered at an inflow boundary with the appropriate boundary concentration and coordinates. Minor changes in the programs must be made when boundary conditions are changed to allow for the proper removal and reintroduction of the moving points. After the moving points have been relocated, a count is made of the number of moving points in each grid block.

Step 3: A temporary concentration equal to the average of the concentrations of moving points inside the grid block is assigned to each grid block.

Step 4: A change in grid block concentration due to dispersion is calculated based on the temporary grid block concentration calculated in Step 3.

Step 5: Each grid block concentration is updated based on the change in concentration calculated in Step 4.

Step 6: Each moving point concentration is also updared based on the change in concentration calculated in Step 4.

Steps 2 through 6 are repeated for each simulated time step. Each step is clearly identified in both programs in Appendices A and B.

Fig. 1. Comparison of analytical and numerical solutions to the longitudinal dispersion problem in one-dimensional flow.

Numerical Testing

Longitudinal Dispersion in One-Dimensional Flow
Numerical simulation results based on the computer code in Appendix A were compared with those obtained from the solution of the following form of the convective-dispersion equation:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D_{L} \frac{\partial^{2} C}{\partial x_{3}^{2}}-V_{3} \frac{\partial C}{\partial x_{3}} . \tag{8}
\end{equation*}
$$

The appropriate initial and boundary conditions for the problem considered are:

$$
\begin{array}{cl}
C\left(x_{3}, 0\right)=0 ; & x_{3} \geqslant 0 \\
C(0, t)=C o ; & t \geqslant 0 \tag{9}\\
C(\infty, t)=0 ; & t \geqslant 0 .
\end{array}
$$

Ogata and Banks (1961) used Laplace transforms with equation (8) to obtain the solution

$$
\begin{align*}
\frac{C}{C_{O}}= & 1 / 2\left[\operatorname{erfc}\left\{\frac{x_{3}-V_{3} t}{2\left(D_{L} t\right)^{1 / 2}}\right\}+\right. \\
& \left.\quad \exp \left\{\frac{V_{3} x_{3}}{D_{L}}\right\} \operatorname{erfc}\left\{\frac{x_{3}+V_{3} t}{2\left(D_{L} t\right)^{1 / 2}}\right\}\right] . \tag{10}
\end{align*}
$$

A numerical solution was obtained using the following data for the one-dimensional program (Appendix A):
number of grid blocks (NR) $=49$. total number of moving points (NP1) $=196$. number of moving points per grid block (NPZ) $=4$. maximum number of time steps (MAXST) $=18$.
simulation finish time (FINTIM) $=1710 \mathrm{sec}$. time increment, $\Delta t(D E L T)=100 \mathrm{sec}$. spatial increment, $\Delta \mathrm{x}_{3}(\mathrm{DELZ})=3.81 \mathrm{~cm}$. total depth of model, $\ell_{3}(T Z)=182.88 \mathrm{~cm}$.
longitudinal dispersion coefficient,

$$
\mathrm{D}_{\mathrm{L}}(\mathrm{DL})=2.94 \times 10^{-3} \mathrm{~cm}^{2} \mathrm{~s}^{-1} .
$$

seepage velocity, $\mathrm{V}_{3}(\mathrm{VEL})=0.01411 \mathrm{cms}^{-1}$. dimensionless concentration ($\mathrm{C} / \mathrm{C}_{0}$) at input boundary $(C O)=1.0$.
dimensionless initial concentration, $\mathrm{C} / \mathrm{C}_{\mathrm{o}}(\mathrm{CINTL})=0.0$.
Note that the required number of grid blocks for a total length of 182.88 cm is 48 . However, in the input data, NR has been increased by one to accommodate the upper boundary condition. This also resulted in an increase in the total number of moving points. The results shown in Figure 1 indicate excellent agreement between the numerical and analytical solutions.

Longitudinal Dispersion in Two-Dimensional Flow

To check the numerical solution using the tensorial form of the dispersion coefficient [equation (4)] , a coordinate transformation was performed (Figure 2). The coordinate axes were rotated so that an angle of 45° existed berween the velocity vector and the transformed coordinate axes. The problem was solved numerically in the rotated coordinate system ($\mathrm{x}_{1}^{\prime}, \mathrm{x}_{3}^{\prime}$). This forced the numerical model to use the rensor transformation for the dispersion coefficient. However, the physics of the problem was not changed, and equation (10) still provides an analytical solution to the problem in the ($\mathrm{x}_{1}, \mathrm{x}_{3}$) coordinate system.

Fig. 2. Schamatic diagram of coordinate axes rotation used for comparing numerical and analytical solutions of the longitudinal dispersion problem in two-dimensional flow.

A rectangular region, $0 \leqslant x_{3} \leqslant \ell_{3}$ and $0 \leqslant x_{1} \leqslant \ell_{1}$, was considered in which the flow is along the x_{1} axis with a steady, uniform seepage velocity, V_{3} (Figure 2). With the coordinates rotated 45 degrees with respect to the velocity vector V_{3}, the numerical solution was carried out in the rectangular region defined by $0 \leqslant x_{3}^{\prime} \leqslant \ell_{3}^{\prime}$ and $0 \leqslant x_{1}^{\prime} \leqslant \ell_{1}^{\prime}$. A steady, uniform seepage velocity with components $V_{3}^{\prime}=0.707 \mathrm{~V}_{3}$ and $V_{1}^{\prime}=0.707 \mathrm{~V}_{3}$ existed in the transformed region. A fluid with a relative concentration of $\mathrm{C} / \mathrm{C}_{o}=1.0$ was injected across the entire interface $0 \leqslant x_{1} \leqslant \ell_{1}$. Data used to numerically solve the problem (Figure 2) were: $\Delta \mathrm{x}_{3}^{\prime}=0.4 \mathrm{~cm}, \Delta \mathrm{x}_{1}^{\prime}=0.4 \mathrm{~cm}, \Delta \mathrm{t}=2 \mathrm{sec}$, $V_{3}^{\prime}=0.071 \mathrm{~cm} \mathrm{sec}^{-1}, V_{1}^{\prime}=0.071 \mathrm{~cm} \mathrm{sec}^{-1}$, $\mathrm{V}_{3}=0.10 \mathrm{~cm} \mathrm{sec}^{-1}$, grid dimensions $=20 \times 20$, $\mathrm{D}_{\mathrm{L}}=0.01 \mathrm{~cm}^{2} \mathrm{sec}^{-1}, \mathrm{D}_{\mathrm{T}}=0.001 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$, $\ell_{3}=5.66 \mathrm{~cm}, \ell_{1}=5.66 \mathrm{~cm}$, and the number of moving points per grid block $=4$. Some modifications to the code listed in Appendix A were necessary to run the longitudinal dispersion problem with and without the tensor transformation in two-dimensional flow. The modified code is not listed because the modifications are minor. It is available on request from the authors.

Two solutions were obtained for this problem; one solution used the tensorial transformations for the dispersion coefficients, D_{L} and D_{T}, given by equations (4), and the other solution used no tensor transformation. With the tensor transformation, the longitudinal dispersion coefficient $\left(D_{33}\right)$ is oriented parallel to the velocity vector $\left(V_{3}\right)$ and the lateral dispersion coefficient (D_{11}) is oriented perpendicular to the velocity vector $\left(\mathrm{V}_{3}\right)$. For the case with no tensor cransformation, the longitudinal dispersion coefficient $\left(\mathrm{D}_{33}\right)$ is oriented parallel to the x_{3}^{\prime} coordinate axis and the lateral dispersion coefficient (D_{11}) is oriented parallel to the x_{1}^{\prime} coordinate axis.

The results from the numerical solution of this longitudinal dispersion problem with and without the tensor transformation are shown in Figure 3. The analytical solution as given by equation (10) is also plotted. The results indicate an excellent agreement between the numerical and analytical solution when the tensor transformation is used. The solution without the tensor transformation yielded a sreeper concentration profile than the analytical solution. Thus, a significant error results in the numerical solution of the dispersion equation when the tensor transformation is not used and the cross-derivative terms in equation (4) are ignored.

Figure 4 shows the lateral concentration

Fig. 3. Comparison of longitudinal concentration distribu. tion calculated with and without the tensor transformation for the longitudinal disparsion problem in two-dimensional flow.
distribution after 0.71 pore volumes of fluid were injected. Again, the numerical solution using the tensor transformation provides more accurate

Fig. 4. Comparison of lateral concentration distribution with and without the tensor transformation for the longitudinal dispersion problem in two-dimensional flow.
results than that without the tensor transformation. Some error in the numerical solution occurs near the boundaries ($x_{1}=0$ and $x_{1}=\ell_{1}$). This occurs because the straight boundaries of the column in the (x_{1}, x_{3}) coordinate system must be approximated by a series of rectangles or squares in the rotated coordinate system ($x_{1}^{\prime}, x_{3}^{\prime}$) (Figure 2). As Δx_{1}^{\prime} and Δx_{3}^{\prime} become very small, a berter approximation of the boundary conditions can be expected. The numerical results for any value of $\mathrm{x}_{3} / \ell_{3}$ were generally the same for $0.3 \leqslant \mathrm{x}_{1} / \ell_{1} \leqslant 0.7$. No dispersion (or mass flow) was allowed to occur across the boundary columns $x_{1}=0$ and $x_{l}=\ell_{1}$. This condition was approximated numerically by setting the dispersion coefficients equal to zero for all nodes on these two boundaries.

Longitudinal and Lateral Dispersion in

One-Dimensional Flow

If a rectangular column $\left(0 \leqslant x_{3} \leqslant \ell_{3}\right.$, $0 \leqslant x_{1} \leqslant \ell_{1}$) is used and a tracer source is maintained over a portion of the input area $\left(0 \leqslant x_{1} \leqslant b\right)$ as shown on Figure 5 , then both longitudinal and lateral dispersion will occur. Assuming a homogeneous and isotropic saturated medium with unidirectional flow in the x_{3} direction and $\partial C / \partial x_{1}=0$, equation (1) becomes

$$
\begin{equation*}
\frac{\partial \mathrm{C}}{\partial \tau}=\mathrm{D}_{\mathrm{L}} \frac{\partial^{2} \mathrm{C}}{\partial x_{3}^{2}}+\mathrm{D}_{\mathrm{T}} \frac{\partial^{2} \mathrm{C}}{\partial x_{1}^{2}}-V_{3} \frac{\partial \mathrm{C}}{\partial x_{3}} . \tag{11}
\end{equation*}
$$

The initial and boundary conditions are given by

$$
\begin{array}{lll}
C\left(x_{1}, 0, t\right)=C & 0 \leqslant x_{1} \leqslant b ; & t \geqslant 0 \\
C\left(x_{1}, 0, t\right)=0 ; & b<x_{1}<\ell_{1} ; \tau \geqslant 0 \\
\frac{\partial C}{\partial x_{1}}\left(0, x_{3}, t\right)=0, & t>0 \\
\frac{\partial C}{\partial x_{1}}\left(\ell_{1}, x_{3}, t\right)=0, & \tau>0 \\
C\left(x_{1}, \infty, \tau\right)=\text { Bounded } & \\
C\left(x_{1}, x_{3}, 0\right)=0 & 0 \leqslant x_{1} \leqslant \ell_{1} ; x_{3}>0 .
\end{array}
$$

Harleman and Rumer (1963) gave the following approximate steady-state solution to equations (11) and (12).

$$
\begin{equation*}
\frac{C}{C_{o}}=1 / 2 \operatorname{erfc}\left[\frac{x_{1}-b}{2 \sqrt{D_{T} x_{3} / V_{3}}}\right] \tag{13}
\end{equation*}
$$

A problem of longitudinal and lateral dispersion in unidirectional flow was run using the code in Appendix B and the following data:

Fig. 5. Schematic diagram of longitudinal and lateral dispersion problem in one-dimensional flow.
number of grid blocks (rows) in the vertical (x_{3}) direction (NR) $=26$.
total number of moving points in vertical (x_{3}) direction (NP1) $=52$.
number of moving points/grid block in x_{3} direction $(N P Z)=2$.
number of grid blocks (columns) in horizontal (x_{1}) direction $(N C)=20$.
total number of moving points in horizontal (x_{1}) direction (NP2) $=40$.
number of moving points/block in x_{1} direction $(\mathrm{NPX})=2$.
maximum number of time sreps $($ MAXST $)=100$. initial value of counter for printing numerical solution $($ KPRINT $)=1$.
number of intervals at which results are printed $($ IFAC $)=100$.
simulation finish time $($ FINTIM $)=200 \mathrm{sec}$.
time increment, $\Delta t(D E L T)=2.0 \mathrm{sec}$.
vertical spatial increment, $\Delta x_{3}(D E L Z)=0.40 \mathrm{~cm}$. total depth of model in x_{3} direction,

$$
\ell_{3}(T Z)=10.0 \mathrm{~cm}
$$

horizontal spatial increment. $\Delta \mathrm{x}_{1}($ DELX $)=0.20 \mathrm{~cm}$.
total width of model in x_{1} direction, $\ell_{1}(T X)=4.0 \mathrm{~cm}$.
longitudinal dispersion coefficient, $D_{L}(D L)=0.01 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$.
lateral dispersion coefficient,

$$
\mathrm{D}_{\mathrm{T}}(\mathrm{DT})=0.001 \mathrm{~cm}^{2} \mathrm{sec}^{-1}
$$

length of tracer source in x_{1} direction, $\mathrm{b}(\mathrm{B})=2.20 \mathrm{~cm}$.
velocity in x_{3} direction, $V_{3}(V E L)=0.10 \mathrm{~cm} \mathrm{sec}^{-4}$.
dimensionless concentration ($\mathrm{C} / \mathrm{C}_{0}$) at input boundary $(C O)=1.0$.
dimensionless initial concentration, $\mathrm{C} / \mathrm{C}_{0}(\mathrm{CINTL})=0.0$.

As in the one-dimensional program, NR was increased by one to accommodate the upper boundary condition.

The results from the numerical solution of the longitudinal and lateral dispersion problem are shown in Figures 6 and 7, at $\mathrm{t}=200 \mathrm{sec}$ and after an approximate steady-state condition was achieved. For comparison, the approximate analytical solutions for the steady-state case as determined from (13) are also plotred in Figures 6 and 7 as the solid lines. In general, the accuracy of the numerical solution is excellent. The region close to the source, i.e., $\mathrm{x}_{3}=0$, is a problem area where the accuracy is not as good. This occurs because of the very steep concentration gradient in the x_{1} direction which approaches a step function. Reddell and Sunada (1970) discussed the problem of achieving accurate numerical solutions along steep concentration profiles or when step-input functions are used. They reported that much smaller grid dimensions are necessary to obtain accurate results in these areas. It should also be noted that equation (13) is only an approximate analytical solution and not an exact one. Also, equation (13) is a steadystate solution, but the numerical solutions are transient. The numerical solutions were terminated after 200 sec of simulation, and the results

Fig. 6. Comparison of lateral concentration distribution at steady state as calculated numerically and by an approximate analytical solution for the two-dimensional dispersion problem in one-dimensional flow.

Fig. 7. Comparison of longitudinal concentration distribution at steady state as calculated numerically and by an approximate analytical solution for the two-dimensional dispersion problem in one-dimensional flow.
were changing only slightly with each additional time step, and a true steady state had not been achieved.

Longitudinal and Lateral Dispersion in Two-Dimensional Flow

A longitudinal and lateral dispersion problem was also solved numerically in the rotated coordinate system ($x_{1}^{\prime}, x_{3}^{\prime}$) as shown in Figure 8. A fluid with a relative concentration of $C / C_{o}=1.0$

Fig. 8. Schematic diagram of coordinate axes rotation used for comparing numerical and analytical solutions of the longitudinal and lateral dispersion problem in twodimensional flow.

Fig. 9. Comparison of lateral concentration distribution at $x_{3} / \ell_{3}=0.2$ as calculated by using the tensor transformation, without the tensor transformation, and by an approximate analytical solution for steady-state conditions for the twodimensional dispersion and flow problem.
was injected over the interval $\mathrm{a} \leqslant \mathrm{x}_{1} \leqslant \mathrm{~b}$ and fluid with a relative concentration of $C / C_{o}=0.0$ was injected over the intervals $0 \leqslant x_{1} \leqslant a$ and $b \leqslant x_{1} \leqslant \ell_{1}$. Data used to numerically solve this problem were the same as for the previously described longitudinal dispersion problem.

Again, some minor modifications to the code listed in Appendix B were necessary to run the longitudinal and lateral dispersion problem with and without the tensor transformation in twodimensional flow. The modified code is available on request from the authors.

The results from the numerical solution of the longitudinal and lateral dispersion problem with and without the tensor transformation are shown in Figures 9 through 12 after 2.1 pore volumes of fluid were injected and an approximate steady-state condition was achieved. For comparison, the approximate analytical solution for the steady case as determined from equation (13) is also plotted.

Fig. 10. Comparison of lateral concentration distribution at $x_{3} / l_{3}=0.5$ as calculated by using the tensor transforma* tion, without the tensor transformation, and by an approximate analytical solution for steady-state conditions for the two-dimensional dispersion and flow problem.

Figure 12 shows that the numerical solutions obtained using the tensor transformation are much closer to the analytical solution than those withour the tensor transformation. However, the accuracy of the numerical solution is not as good as was achieved in the longitudinal dispersion problem described earlier. As discussed earlier, this occurs because of the very steep concentration gradient in the x_{1} direction.

The concentration profiles as plotted do not show any "overshoot" or "undershoot." However, overshoot and undershoot did occur but were generally on the order of 10^{-3} to $10^{-4} \mathrm{C} / \mathrm{C}_{\mathrm{o}}$. Since the numerical solution without the tensor transformation did not produce any overshoot, the use of a "nine-star" grid pattern to estimate the cross derivatives for the tensor transformation is believed to be the source of this small amount of overshoot.

Fig. 11. Comparison of lateral concentration distribution at $x_{3} / R_{3}=0.8$ as calculated by using the tensor transformation, without the tensor transformation, and by an approximate analytical solution for steady,state conditions for the twodimensional dispersion and flow problem.

Fig. 12. Comparison of longitudinal concentration distribution at steady state as calculated by using the tensor transformation, without the tensor transformation, and by an approximate analytical solution for the two-dimensional dispersion and flow problem.

Summary and Conclusions

Four different convective-dispersion problems were considered: (1) longitudinal dispersion in one-dimensional flow; (2) longitudinal dispersion with and without the tensor transformation in twodimensional flow; (3) longitudinal and lateral dispersion in unidirectional flow; and (4) longitudinal and lateral dispersion with and without the tensor transformation in two-dimensional flow. A steady, uniform flow field was assumed and the porous medium was homogeneous and isotropic. A coordinate transformation was necessary to check the numerical solution using the tensorial form of the dispersion coefficient. The MOC was used to solve the convective-dispersion equations. The results from the numerical solutions of the dispersion problems were compared with available analytical solutions. Excellent agreement was obtained between the numerical and analytical solutions when the tensor transformation was used. This provides strong evidence for the accuracy of the MOC and the numerical tensor transformation used.

The MOC appears to be capable of solving the longitudinal dispersion as well as the longitudinal and lateral dispersion problems. No problems with overshoot occurred and no numerical dispersion resulted from the numerical process. The small amount of overshoot that occurred in the numerical solution is believed to be the result of using a nine-star grid pattern to estimate the cross derivatives for the tensor transformation.

The FORTRAN programs presented in the paper are intended to illustrate the basic use of the MOC in solving convective-dispersion problems for a conservative tracer in a saturated porous medium. For specific applications to real-world field problems involving fluid sources and sinks in confined/unconfined heterogeneous aquifers, other FORTRAN programs (e.g., Konikow and Bredehoeft, 1978) are available.

References

Bear, J. 1972. Dynamics of Fluids in Porous Media. Elsevier Publ. Co., NY. 764 pp.
Bredehoeft, J. D. and G. F. Pinder. 1973 . Mass transport in flowing groundwater. Water Resources Research. v. 9 . no. 1, pp. 194-210.
Garder, A. O., Jr., D. W. Peaceman, and A. L. Pozzi, Jr. 1964. Numerical calculation of multidimensional miscible displacement by the method of characteristics. Society of Petroleum Engineers Journal. v. 4, no. 1, pp. 26-36.
Harleman, D.R.F. and R. R. Rumer. 1963. Longirudinal and lateral dispersion in an isotropic porous medium. Journal of Fluid Mechanics. v. 16, pp. 385-394.

Huyakorn, P. S. and D. Taylor. 1977. Finite element models for coupled groundwater flow and convective dispersion. In Finite Elements in Water Resour., Gray, W. G., G. F. Pinder, and C. A. Brebbia, eds. Pentech Press, London. pp. 1.131-1.152.
Konikow, L. F. and J. D. Bredehoeft. 1974. Modeling flow and chemical quality changes in an irrigated streamaquifer system. Water Resources Research. v. 10. no. 3, pp. 546-562.
Konikow, L. F. and J. D. Bredehoeft. 1978. Compurer model of two-dimensional solure transport and dispersion in ground water. U.S.G.S. Techniques of Water Resource Investigations. Chaprer C2, Book 7 , 90 pp .
Lam, D.C.L. 1977. Comparison of finite element and finite difference methods for nearshote advection-diffusion transport model. In Finite Elements in Water Resour., Gray, W. G., G. F. Pinder, and C. A. Brebbia. eds. Pentech Press, London. pp. 1.115-1.130.
Ogata, A. and R. B. Banks. 1961. A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geol. Survey Prof. Paper +11 -A. U.S. G.P.O., Washington, DC. 7 pp .

Peaceman, D. W. and H. H. Rachford, Jr. 1962. Numerical calculation of multidimensional miscible displacement. Sociery of Petroleum Engineers Journal. v. 2, no. 4, pp. 327-339.

Reddell, D. L. and D. K. Sunada. 1970. Numerical simulation of dispersion in groundwater aquifers. Colorado Stare University, Hydrology Papers, No. 41.79 pp.
Scheidegger, A. E. 1961. General theory of dispersion in porous media. Journal of Geophysical Research. v. 66, no. 10, pp. 3273-3278.
van Genuchren, M. T. 1977. On the accuracy and efficiency of several numerical schemes for solving the convective-dispersion equation. In Finite Elements in Water Resources, Gray, W. F., G. F. Pinder, and C. A. Brebbia, eds. Pentech Press, London. pp. 1.71-1.90.

Raz Khaleel is a Staff Engineer with Rockwell Hanford Operations, Rockwell International, Richland, Washington. He is also an adjunct faculty member in the Department of Civil Engineering at Washington State University, Pullman. He obtained bis Ph.D. in Soil and Water Engineering from Texas A\&M University, College Station. His research interests are in numerical modeling of subsurface flow systems.

Donald L. Reddell is a Professor in the Department of Agricultural Engineering at Texas A\&M University, College Station. He obtained bis Ph.D. in Soil and Warer Engineering from Colorado State University, Fort Collins. His research interests are in ground-water bydrology and numerical simulation of fluid flow and transport in sarurated and unsaturated flow systems.

Appendix A. Solution of One-Dimensional ConvectiveDispersion Equation by the Method of Characteristics

Appendix B. Solution of Two-Dimensional ConvectiveDispersion Equation by the Method of Characteristics

mitelifelam, L00)

 WRITE(IPRINT, j00)
300
 WRITETIPAINT, 4OO)

$\mathrm{PZFLOAT}(\mathrm{MPZ})$
$\mathrm{PX}+\mathrm{FLOAT}(\mathrm{NPX}$
ADZ=DELT: XC/DELZ/DELZ
ADX=DELT F OT/DELX/DELX

DDLSZ $=$ DELLZ $/$ P2

$\stackrel{\varepsilon}{6}$
-.-.-- goondinates for stationary grio systen
4 $5(1)=0$.

-w-w-- Inttitalize gume and count

367 tel. NA
SUMC $(t, J)=0$.
COUNT $t, j)=0$.
G-.- step hi assige initial coordinates and concentmations to wovina points ..

DOGZ=FLOAT(:

V(t)-VEL
NLI=TPIX(2) 1)/DELz +1.0)

10 Cowtinus
c------ ASStcn initial concentrations ro stationary calo points

CONTinue

THEAO
------ qrint tnitial concemtrations for each gaid point

G-....- SIMULATION SEARTS \qquad
TSTEP = TSTEP th

 INFLOW BOUNDARY

NPM1 $+N P L=1$
$\infty \quad 64 \mathrm{~K}=1, \mathrm{NP}+\mathrm{H}$
4(HIN) z z (AB-

$\mathrm{NN}=\mathrm{HP} / \mathrm{K}=1, \mathrm{APM}$
(CNM. (N) $=(\mathrm{AN}-1.5$

çan*** restr sume and colnt

coviri i, J) 0
54
C

22
*...** thit 5:Ep has becy completed *****
MRITE out tnteamediate steps -..-+*.
©F ©TSTEP , NE, KPRINT*(FAC) GO TO oul

comparf ABALytichi AND numerical golltions

5 EOMT tivut
oo 75 je:..sc

$5 \begin{gathered}\text { colint } \\ \text { continut }\end{gathered}$
"F.** geck if maximun sumen of time stepg is exceeded
ifitster - Eq. Maxsti gtop

-......-- Lif: if phist swatementi

rompation:3)!

END

(Covino points (COUMT) -.-.....
(Covino points (COUMT) -.-.....

$5040 \mathrm{IA1,NP1}$
$5040 \mathrm{IA1,NP1}$

gocitinit
gitinue
gocitinit
gitinue

SO $30 \quad i=1$. NA
:
SO $30 \quad i=1$. NA
:
SO $30 \quad i=1$. NA
:

gontinue
gontinue
${ }_{c}^{c}$
${ }_{c}^{c}$
(CAVG(NR,2) - GAVG(NR, b)
(CAVG(NR,2) - GAVG(NR, b)
E
c
E
c
gin is update concentrations for siationary grid points
gin is update concentrations for siationary grid points

ctor L. J)-EAVG($5.51 / 00$
ctor L. J)-EAVG($5.51 / 00$
$\stackrel{c}{c}$
$\stackrel{c}{c}$

Applying the USGS Mass-Transport Model (MOC) to Remedial Actions by Recovery Wells

by Aly I. EI-Kadi ${ }^{\text {a }}$

Abstract

The USGS two-dimensional mass-cransport model (MOC) is widely used in the analysis of ground-water contamination problems. A need exists to examine the accuracy of the code in situations dominated by radially convergent and divergent flow around wells. The model is applied here to situations that commonly exist in remedial actions involving recovery wells. The cases simulated are a recharge/recovery single well, a recharge/recovery doublet. and plume capture by one or two production wells. The results were tested against analytical and semianalytical solutions. Inaccuracies in model results occurred especially for the doublet case under continued long-time simulation. Inaccuracies are caused not only by the mainly radial-flow situation, or by the curvarure nature of streamlines, but also by the arrival of contamination at the sink nodes. Better agreement of numerical and analytical solutions was obtained for the single-well and plume-capture situations. However, a large mass-balance error exists for the single-well case. Inaccuracies can be reduced by modifying the code and reducing the finite-difference mesh (e.g., Erickson, 1985). However, the use of a very fine mesh (i.e., on the order of a few feet) may prevent the use of the code in large-scale problems. Care must be taken in applying the model to situations where production or injection wells are close to each other.

INTRODUCTION

The U.S. Geological Survey two-dimensional mass-transport model, known also as MOC and developed originally by Konikow and Bredehoeft (1978), utilizes the method of characteristics and the finite-difference approach in the solution of the mass-transport problem. The model has undergone numerous modifications and revisions (e.g., Sanford and Konikow, 1985). It has been applied in a large number of field studies (e.g., Bouvette, 1983; Chapelle, 1986; and Sophocleous, 1984) and tested against analytical and alternative numerical approaches (e.g., Sophocleous et al., 1982). The well-documented code is relatively easy to use. Various options can be applied to describe different

[^15]hydrological conditions. The recent introduction of a microcomputer version and a preprocessor for input data preparation has increased the popularity of the code.

The model is tested here in situations dominated by radially convergent and divergent flow around wells. The authors of the code do not encourage the application of the model to such problems, especially when using a grid that is too coarse (L. Konikow, pers. comm., 1987). However. some applications of the code to similar situations have been reported in the literature (e.g., Freeberg et al., 1987). Erickson (1985), realizing that problems arise in the use of MOC for these situations, modified the code for use in the analysis of single-well tracer tests. The major changes include simulating the converging/diverging flow field resulting from wells; eliminating the hydrodynamic dispersion in the well during the pumping phase; changing the manner in which particle concentration is estimated from node concentration; changing the way mass is removed by pumpage; and adding new particles before the pumping phase. A finer mesh (one square foot) was also used. Better accuracy as well as better mass conservation was obtained following these changes.

Note, however, that the use of such a fine mesh is impractical due to the limited area thar can be handled by the code in this case. If we consider the large number of particles that must be handled and the limit imposed on the size of the time step, computational costs could be prohibitive. A need exists to examine the suitability of the code in the analysis of relatively large problems of a practical nature.

In general, accuracy of numerical results can be judged using various criteria relevant to the purpose of model application and the expected use of results. For example, when professional judgment is needed, an order-of-magnitude analysis of concentration values or travel times is generally acceptable, especially under uncertainty in data and processes involved. On the other hand, more accurate estimates are needed in some situations involving, for example, the assessment of exposure levels of toxic chemicals in the environment. In the present analysis, both visual inspection and esti-
mates of root-mean-squared error are used to assess the accuracy of the model. "Reasonable" or "good" results are defined in practical terms; "unacceptable" results are based on severe fluctuations.

The objective for the study is to verify MOC for situations pertinent to remedial actions by recovery wells. The cases simulated are a recharge/ recovery single well, a recharge/recovery doublet, and plume capture by one or two production wells. The model is not completely tested in the terms described, for example, by van der Heijde et al. (1985). These authors define a three-level testing approach that ranges between testing against analytical solutions and history matching.

REMEDIAL ACTIONS

Remedial actions include the use of systems to contain spilled or leaked contaminants and to recover and treat ground water. [For details of different techniques see, e.g., U.S. Environmental Protection Agency (1985) and Ehrenfeld and Bass (1984).] Containment systems interfere with transport mechanisms by means of hydraulic barriers such as recovery wells, interceptor trenches, grout curtains, and slurry walls. Treatment systems include the use of physical, chemical, and biological activities. Physical/chemical processes include in situ air stripping and activated carbon absorption; both are effective in reducing volatile organic compounds. Air stripping helps remove volatile chemicals from the soil by drawing or venting air through the unsaturated soil layer. Another form of air stripping passes contaminated water through a packed column or tower with counterflowing air and water. The effectiveness of carbon absorption depends on the type of competing compounds (e.g., Engineering-Science, 1986).

Aboveground and in situ biological methods have been employed recently in the treatment of contaminated ground water. Aboveground processes include fixed film treatment such as trickling filters, or suspended-growth systems such as activated sludge (Jensen et al., 1986). In situ biodegradation can be performed by using existing soil microorganisms or by adding microorganisms and nutrients to the contaminated aquifer. Such treatment is presently in the experimental stage; its effectiveness depends on a number of factors such as type and concentration of contaminants, hydrogeology, nutrient availability, dissolved oxygen, pH , temperature, and salinity (Engineering-Science, 1986).

Recovery wells are the most commonly used
remediation techniques. In aquifer cleanup, they extract the polluted ground water and either reinject it after treatment or release it to a surfacewater body. In some cases, recovery wells are combined with injection wells to improve recovery by altering the hydraulic gradient. The recovery well system should be designed to intercept the contaminant plume such that no further degradation of the aquifer occurs. Modeling is a very useful tool in the design of such systems (Boutwell et al., 1985).

TESTING THE MODEL

Case 1: A Recharge/Recovery Single Well

A recharge-pumping cycle for a fully penetrating well in a confined aquifer is used to cest MOC. Water of a known concentration (C_{0}) is injected into the well. After some time, the flow is reversed and the contaminated water is pumped out. Such a process can be used in field work to define the dispersive properties of aquifers (see e.g., Güven et al., 1985). The situation may also represent a cleanup process following extended contamination.

Gelhar and Collins (1971) derived an approximate analytical solution for the distribution of the relative concentration in the well during the withdrawal period. By neglecting the effects of well radius and molecular diffusion, this expression reads:

$$
\begin{equation*}
\frac{C}{C_{0}}=1 / 2 \operatorname{erfc}\left\{\frac{V}{\left[\frac{16}{3} \frac{\alpha}{R_{1}}\left(2+|V|^{1 / 2} V\right)\right]^{1 / 2}}\right\} \tag{1}
\end{equation*}
$$

With $i=1$ and 2 representing the indices for the recharge and discharge period, respectively, V is given by:

$$
\begin{equation*}
V=1-\frac{V_{2}}{V_{1}} \tag{2}
\end{equation*}
$$

where $V_{i}=Q_{i} t_{i}$ is the recharge or discharge volume of water, Q_{i} is the recharge or discharge rate, and t_{i} is time. In equation (1), α is the radial dispersivity, erfe is the complementary error function, and R_{1} is given by:

$$
\begin{equation*}
R_{t}=\left(\frac{Q_{1} t_{1}}{\pi n B}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where B is the aquifer thickness (assumed constant), and n is porosity. For the special case of $Q_{1}=Q_{2}$, equation (2) reduces to:

$$
\begin{equation*}
V=-\frac{t}{\tau_{t}} \tag{4}
\end{equation*}
$$

in which $t=t_{1}+t_{2}$ is the total time.

Table 1. Common Parameters for Test Cases 1.A, 1.B, 1.C, and 1.D

Parameter	Symbol	Value	Units
Saturated conducrivity	K	0.005	ft / s
Aquifer thickness	B	20.0	ft
Porosity	n	0.30	-
Racio of longitudinal to transverse dispersivity	$\alpha_{\mathrm{t}} / \alpha \mathrm{l}$	1.0	-
Mesh increments in x direction	$\Delta \mathrm{x}$	900	ft
Mesh increments in y direction	Δy	900	ft
Number of increments in x direction	N_{x}	9	-
Number of increments in y direction	N_{y}	11	-
Initial concentration	C_{i}	0.0	$\%$
Concentration of injected water	C_{o}	100.	$\%$

Fig. 1. Time change of relative concentration in the well as estimated both numerically and analytically for case 1.A.

Fig. 2. Time change of relative concentration in the well as estimated both numerically and analytically for case 1.B.

Table 2. Values of $\alpha \ell, t_{1}, Q_{1}\left(=O_{2}\right)$ for Test Cases 1.A, 1.B, 1.C, and 1.D

Case	$\alpha Q(f t)$	$t_{1}($ year $)$	$Q_{1}=Q_{2}(c f s)$
1.A	100.	2.5	1.0
1.B	100.	1.0	1.0
1.C	0.001	2.5	1.0
1.D	100.	2.5	0.5

A number of hypothetical experiments were simulated, and the results were compared to the analytical solution as given by equation (1). The input data for MOC are shown in Tables 1 and 2.

Figures 1 through 4 illustrate results of the analysis for experiments 1.A to 1.D. The root-mean-squared error for the four cases is, respectively, $1.9,2.9,3.4$, and 1.4. Despite the severity of the

Fig. 3. Time change of relative concentration in the well as estimated both numerically and analytically for case 1.C.

Fig. 4. Time change of relative concentration in the well as estimated both numerically and analytically for case 1.D.
test, a radial flow case, reasonable match can be observed for all cases. Some fluctuations can be noticed, yet the overall behavior of the numerical results is good. The largest deviation of the numerical results from the analytical solution exists for case 1.C. The deviations appear in the form of numerical dispersion; errors are most severe for larger well fluxes or longer injection periods. The inclusion of large physical dispersion (Figure 1) did not mask the numerical dispersion effects, suggesting that most of the error is due to poor representation of radial flow near the well rather than to numerical dispersion, i.e., by inaccuracies in predicting the flow field, rather than inaccuracies in estimating the advection term. The percentage mass-balance error is illustrated for all cases in Figure 5 as a function of time. The maximum value of error is about $-16 \%,-22 \%,-23 \%$, and -13% for cases 1.A, 1.B, 1.C, and 1.D, respectively.

Considering the reasonably good results shown in Figures 1 through 4, it seems that, as explained by Konikow and Bredehoeft (1978), the large mass error is caused also by the method of estimating the solute mass removed from the aquifer at sink nodes during each time increment. It appears also that the radial flow does not cause serious problems for MOC in the single-well test, e.g., in terms of large fluctuations leading to unacceptable results. Continuous injection, simulated earlier by Konikow and Bredchoeft (1978), also shows good accuracy. For a similar experiment (results not shown here), the relative mass error ranged approxi-
mately between $+12 \%$ to -19%. It can be concluded that, for practical purposes, MOC is reasonably accurate for continuous injection and for the recharge-pumping cycle. However, the mass conservation in the model should be improved. The introduction of a large number of particles as well as the use of a smaller grid size did not improve the mass error encountered. (The results of these simulations are not shown here.)

Case 2: A Recharge/Recovery Doublet

The second MOC test involved application to a recharge/recovery doubler. A semianalytical solution to the purely convective transport case was introduced and programmed by Javandel et al. (1984). The model, called RESSQ, uses the complex velocity potential to estimate the concentration distribution in the aquifer. The technique is applicable to a two-dimensional flow in a homogeneous confined aquifer in the absence of dispersion and diffusion effects. The calculation steps are as follows (Javandel et al., 1984):

The technique identifies, first, simple flow components such as sources and sinks. Second, the overall complex velocity potential of the system is obtained by combining the expressions for each individual component. Third, the velocity field is identified by taking the derivative of the velocity potential. Fourth, locations of contaminant fronts and flow patterns are estimated at various values of time. Finally, stream function of the system is used to calculate the time variation of the rate at which

Fig. 5. Relative mass-balance error for cases 1.A, 1.B, 1.C, and 1.D, as function of time.

Fig. 6. The aquifer model for the recharge/discharge doublet.
a contaminant reaches any desired outflow boundary.

Figure 6 illustrates the aquifer model for the test problem simulated. Model parameters are given in Table 1. The values of α_{ℓ} and α_{t} were set equal to zero. The rate of withdrawal or recharge was taken as 1.0 cfs .

Figure 7 compares the time change of concentration in the withdrawal well estimated using MOC, with that estimated using RESSQ. The figure shows reasonable match for a short time period (less than 2.0 years). The two models predicted the same value for the time at which the contaminant reaches the production well (about 1.5 years). This value agrees with the available analytical solution (Javandel et al., 1984). For a time larger than 2.0 years, the numerical solution is not accurate and shows large fluctuations for which the analytical solution represents the upper envelope. The time change of concentration in two observation wells is also shown in Figure 8. The concentration in the well upstream of the production well

Fig. 7. Time change of relative concentration in the production well for the aquifer model shown in Figure 5.
[at node (5,6)] shows much less fluctuation than the concentration for the well immediately to the left of the production well [at node $(4,7)$]. The relative mass-balance error was reasonably small, approximately between -10% to $+2 \%$. The error fluctuates between -10% and $+2 \%$ to reach minimum at about 2.0 years, and then grows to about -8%. It can be concluded that MOC is accurate in dealing with similar problems for a relatively short time; the accuracy then declines as the simulation

Fig. 8. Time change of relative concentration in the two observation wells shown in Figure 5.
continues for longer times due to the arrival of contamination at the sinks. Again, as indicated by Konikow and Bredehoeft (1978), the decline in accuracy is a direct effect of the manner in which concentrations are computed at sink nodes and the method of estimating the mass of solute removed from the aquifer at sink nodes during each time increment.

Case 3: Plume Capture

Piume capture is a technique that prevents further degradation of the aquifer by using a number of pumping wells. The optimum number of pumping wells and their discharge rates and locations must be specified in advance. Recently, Javandel and Tsang (1986) introduced a technique, based on the complex potential theory, to define the equations for the streamlines separating the capture zone of one or more pumping wells from the rest of the aquifer. The cases of a single well and of two wells are used here to test MOC.

For the single-well case, assuming that the well is located at the origin, the equation of the dividing streamlines reads (Javandel and Tsang, 1986):

$$
\begin{equation*}
y= \pm \frac{Q}{2 B U}-\frac{Q}{2 \pi B U} \tan ^{-1} \frac{y}{x} \tag{5}
\end{equation*}
$$

in which y and x are locations on the dividing streamline, Q is well flux, B is aquifer thickness, and U is Darcy's velocity for the regional flow. The test problem for this case is illustrated in Figure 9. The parameters used are given in Table 1. The simulation considers only convective transport. A number of problems were simulated considering different values for $\Delta H=H_{1}-H_{2}$, with H_{1} fixed at 100 ft . [H_{1} and H_{2} are the values of the hydraulic head at the upper and lower constant-head boundaries, respectively (Figure 9).1 Equation (5) can be used to estimate the minimum value of Q to capture the plume. The velocity U can be estimated using the head gradient and the hydraulic conductivity. In this case the values x and y represent the coordinate of the right (or left) corner of the landfill relative to the well location.

With a steady-state flow situation, the numerical model was run long enough to represent the steady-state condition for mass transport. An iterative procedure was needed to estimate the well flux. Figure 10 illustrates the node concentrations, as obtained numerically, superimposed on the analytical solution representing the dividing streamlines as calculated using equation (5). The concentrations shown were estimated for the case

Fig. 9. The aquifer model for plume capture by a single production wall.

Fig. 10. Relative concentrations at nodes of a part of the aquifer superimposed on the analytical solution for the dividing streamline. The production well is located at the origin.
with $\Delta H=50 \mathrm{ft}$. The figure shows that MOC is capable of approximating the capture area for this case and also for all values of $\Delta \mathrm{H}$ considered.

Figure 11 compares the well flux obtained analytically [via equation (5)] with that estimated numerically using MOC for different values of $\triangle \mathrm{H}$. The numerical model predicted higher values for well flux over the entire range of $\Delta \mathrm{H}$. The value needed to capture the plume numerically was about 1.5 times the respective analytical value. Sensitivity of results to the mesh size was not studied; it is expected, however, that closer agreement can be achieved as the mesh size decreases.

Figure 12 illustrates the time change of the relative concentration in the well for three selected values of $\Delta H: 20,50$, and 90 ft . Some fluctuations exist, yet their extent is not severe.

The case of a plume capture by two wells also was simulated for $\Delta H=20 \mathrm{ft}$. The case is represented by Figure 9, with two wells located at nodes $(4,5)$ and (5,6). The landfill extended over five nodes, $(3,2)$ to $(7,2)$. The theoretical discharge as estimated analytically by the equation of Javandel and Tsang (1986) is about 1.8 cfs . Although MOC was also able to approximate the capture area, larger fluctuations in the pumping wells were observed. The well flux, 2.3 cfs for this case, was also larger than the theoretical value.

MOC is, in general, accurate in simulating plume capture by recovery wells. The relative mass error for all cases considered was acceptable, with a value between -2.7% to -6.4%.

Fig. 11. Comparison between the well flux needed to capture the plume obtained numerically and analytically for different $\Delta H=H_{1}-H_{2}$.

Fig. 12. Time change of relative concentration in the well for three selected values of $\Delta H(20,50$, and 90 ft$)$.

CONCLUSIONS

The study examined the application of the USGS two-dimensional mass-transport model MOC in the analysis of some remedial actions involving recovery wells. Three situations were examined: a recharge/recovery single well, a recharge/recovery doublet, and plume capture by one or two wells. Solutions were compared to available analytical or semianalytical solutions. The cases considered involve mainly radial flow and curved flow lines; these are considered to be severe tests for the model. However, due to the popularity of the model, it was felt necessary to quantify the errors that may arise during its application to remedial actions.

The study indicates that the results are acceptable in situations involving a recovery/ recharge single well. The radial flow nature caused some inaccuracies and fluctuations in the wellconcentration estimates, with relatively high massbalance errors; yet the overall behavior of results is reasonable. Some inaccuracies are also attributableas Konikow and Bredchoeft indicated-to the manner in which concentrations are computed at sink nodes. Acceptable results also were obtained for plume capture where the cases involved a single well or two wells. In these cases, the model overestimated the value of well flux needed to capture the plume. However, for practical purposes, the model can be used in the analysis of such situations, especially under cases where analytical solutions do not exist, as under heterogeneous conditions or physical dispersion.

The analysis of a recharge/recovery doublet indicates that the model is accurate only for a short time after the start of the simulation. The results are not acceptable for larger simulation times.

Efforts are presently underway to improve on the mass-balance calculations (L. Konikow, pers. comm., 1987; see also Sanford and Konikow, 1985). In addition, improvement of model prediction for radially convergent and divergent flows has been considered (e.g., Erickson, 1985). Major modifications include the simulation of the converging/diverging flow field around the well, and changing the way mass is removed by pumping. A reduced mesh size is needed because the area of the cell should approximate that of the well (on the order of one foot). However, such discretization will reduce drastically the application of the model to large problems. Considering the coarse mesh used here, and the possible trade-off between computer costs and accuracy, the results obtained for the single-well case and for the plume capture case appear quite reasonable.

ACKNOWLEDGMENT

The author acknowledges the input of Dr. L. Konikow of the USGS, Reston, Virginia, who reviewed an earlier version of this manuscript.

REFERENCES

Boutwell, S. H., S. M. Brown, B. R. Roberts, and Atwood Anderson-Nichols \& Co., Inc. 1985. Modeling remedial actions at uncontrolled hazardous waste sites. Office of Solid Waste and Emergency Response, U.S. Environmental Prorection Agency, Washington, DC.

Bouvette, T. C. 1983. The characterization of hazardous waste sites with analytical and numerical models. M.S. thesis, Rice University, Houston, TX.

Chapelle, F. H. 1986. A solute transport simulation of brackish water incrusion near Baltimore, Maryland. Ground Water. v. 24, no. 6, pp. 741-751.
Ehrenfeld, J. and J. Bass. 1984. Evaluation of Remedial Action Unir Operations at Hazardous Waste Disposal Sites. Noyes Publications, Park Ridge, NJ. Pollution Technology Review No. 10. 434 pp.
Engineering-Science. 1986. Cost model for selecred technologies for removal of gasoline components from groundwater. Health and Environ. Sciences Dept., American Petroleum Inst., Washingron, DC. API Pub. No. 4422.
Erickson, J. R. 1985. Parameter-estimation technique for the analysis of single-well tracer tests. M.Sc. chesis, Colorado State University, Fort Collins, CO.
Freeberg, K. M., P. B. Bedient, and J. A. Connor. 1987. Modeling of TCE contamination and recovery in a shallow sand aquifer. Ground Warer. v. 25, no. 1, pp. 70-80.

Gelhar, L. W. and M. A. Collins. 1971. General analysis of longitudinal dispersion in nonuniform flow. Water Resources Research. v. 7, no. 6, pp. 1511-1521.
Güven, O., R. W. Felta, F. J. Molz, and J. G. Melville. 1985. Analysis and interpretation of single-well tracer tests in stratified aquifers. Water Resources Research. v. 21, no. 5, pp. 676-684.

Javandel, I., C. Doughry, and C. F. Tsang. 1984. Groundwater Transport: Handbook of Mathematical Models. American Geophysical Union, Washington, DC. Water Resources Monograph 10. 228 pp .
Javandel, I. and C.F. Tsang. 1986. Caprure-zone type curves: A cool for aquifer cleanup. Ground Water. v. 24, no. 5, pp. 616-625.

Jensen, B., E. Arvin, and A. T. Gundersen. 1986. The degradation of aromatic hydrocarbons with bacteria from oil-contaminated aquifers. Proc. of Petroleum Hydrocarbons and Organic Chemicals in Ground Water Prevention, Detection, and Restoration. National Water Well Association, Dublin, OH.
Konikow, L. F. and J. D. Bredehoeft. 1978. Computer model of two-dimensional solute transport and dispersion in ground water. U.S. Geological Survey, Techniques of Water-Resources Investigation. Bk. 7, Ch. C2.
Sanford, W. E. and L. F. Konikow. 1985. A two-constituent solure-transport model for ground water having variable density. U.S. Geological Survey, WaterResources Investigations Report $85-4270$. Denver, CO.
Sophocleous, M. A. 1984. Groundwater flow parameter estimation and quality modeling of the equus beds aquifer in Kansas, U.S.A. J. Hydrology. v. 69, pp. 197-222.
Sophocieous, M. A., M. Heidari, and C. D. McElwee. 1982. Water quality modeling of the equus beds aquifer in south-central Kansas. Techn. Completion Rep., Kansas Water Resources Research Institute, Univ, of Kansas, Lawrence, Ks.
U.S. Environmental Protection Agency. 1985. Remedial action at waste disposal sites. (Revised). Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC.
van der Heijde. P.K.M., P. S. Huyakorn, and J. W. Mercer. 1985. Testing and validation of ground water models.

Proc. Practical Applications of Ground Water Modeling, National Water Well Assoc., Columbus, OH .

Aly I. El-Kadi is Associate Director for Research in Holcomb Research Institute's Water Sciences Program, Butler University. He received bis B.S. and M.S. degrees in Civil Engineering from Ain Shams University, Cairo, Egypt, and bis Ph.D. degree in Ground-Water Hydrology from Cornell University in 1982. His current research includes modeling the effects of parameter variability on mass transport in soil and ground water, and the transport of contaminants in partially frozen soil. He bas authored or coauthored papers on saturated and unsaturated flow in uniform and fractured porous media, and on stochastic analysis of flow in beterogeneous porous media. His publications include state-of-the-art reports on modeling infiltration and variability studies as they apply to groundwater systems.

Modifying the USGS Solute Transport Computer Model to Predict High-Density Hydrocarbon Migration

by M. Akhter Hossain and M. Yavuz Corapcioglu ${ }^{2}$

Abstract

Chlorinared hydrocarbons, such as trichloroechylene (TCE), trichloroethane (TCA), retrachloroethylene (PCE), chloroform, and carbon terrachloride, enter soils and ground water from chemical waste disposal sites and from accidents. The migration of such high-density hydrocarbons in a natural gradient unconfined gravel aquifer is studied. The Buckley-Leverett approach is extended to a two-dimensional case to simulate a high-density immiscible hydrocarbon displacing ground water in a gravity-driven system. Governing equations that were developed earlier by Corapcioglu and Hossain (1988) are solved by modifying the U.S.G.S. solute transport model (Konikow and Bredehoeft, 1978). The modification incorporates the fractional flow curves of water and their saturation derivatives in vertical and horizontal directions as functions of degree of water saturation. The details of the modification techniques are given, and the numerical results are presented for a hydrocarbon spill. Numerical results show that high-density, low-viscosity immiscible chlorinated hydrocarbons can travel deeper and further in contrast to lower-density, higher-viscosity compounds, and that the migration is dominated by gravity largely uncoupled from the horizontal component until the plume reaches the lower boundary.

INTRODUCTION

Chlorinated hydrocarbons are widely used in the chemical industry as metal degreasers and dry cleaning compounds among other uses. As a result of spills or past mismanagement, they are frequently encountered as contaminants in ground water. Dense chlorinated hydrocarbon groups include halogenated aliphatics such as trichloroethylene (TCE) with specific gravities from 1.2 to 2.2. In contrast to light hydrocarbons like gasoline that float on the water table, dense hydrocarbons sink into the aquifer and remain at the bottom for extended periods of time. The migration of these hydrocarbons is generally governed by the vertical

[^16]component instead of lateral advective transport as for low-density hydrocarbons (Corapcioglu and Baehr, 1987). Limited solubility of high-density hydrocarbons furthermore poses a greater potential risk allowing the compound to dissolve into the ground water over a very long period of time. Meanwhile, the residual amount of hydrocarbon left in the pores during the downward migration continues to leach. Byer et al. (1981) provide an overview of the problem and note that the limited solubility allows chlorinated hydrocarbons to stay on the bottom for extended periods of time. Villaume (1985) describes various case histories involving dense nonaqueous phase liquids (NAPLs) such as coal tar and PCBs.

In this research, we study the migration of a high-density hydrocarbon in an unconfined gravel aquifer. In other words, the transport of an immiscible phase in a natural gradient gravitydriven system is investigated. Any chemical (e.g., adsorption, dissolution) or biological (e.g., biodegradation, biotransformation) processes are neglected in favor of studying density and viscosity effects. These objectives are achieved by presenting the system of equations for modeling dense hydrocarbon contaminant migration in a water-saturated porous medium. Then, governing equations are solved by modifying the solute transport model developed by Konikow and Bredehoeft (1978) at the U.S. Geological Survey. The main emphasis of this paper is to present the modifications introduced into the software for study of high-density immiscible hydrocarbon migration in an unconfined aquifer. Since the USGS program is well-documented and widely available for use in PCs, such a modification to study a timely, but a problem of different nature, would be a welcoming convenience for the practicing hydrogeologist.

TRANSPORT EQUATIONS OF HIGH-DENSITY HYDROCARBONS

Corapcioglu and Hossain (1988) developed the governing equations for high-density hydrocarbon migration in ground water. They assumed
that in contamination of gravity-driven natural gradient systems by dense hydrocarbons ($\rho_{\mathrm{nw}}>\rho_{\mathrm{w}}$), the volumerric rate of ground-water flow is much larger than that of hydrocarbons. In such a system, ground-water flow is essentially horizontal along the impervious bed, and the flow of dense hydrocarbon contaminant is dominated by a sinking mechanism due to density difference. The contaminant penetrates the aquifer essentially in the vertical direction. This conclusion is confirmed by observations of Schwille (1981) and Faust (1985) who states that "For an immiscible fluid more dense than water, we expect gravity effects to be dominant. As a consequence we might anticipate downward migration of the contaminant in both the unsaturated zone and below the water table." Furthermore, Corapcioglu and Hossain (1986) reported the migration of a TCE plume in a plexiglass laboratory flume of 30 inches deep, and note the development of the plume essentially in the vertical direction, independent of lateral flow component. Their results show that it takes around 11 hours to reach the lower boundary.

Corapcioglu and Hossain (1988) obtained the governing equation for two-dimensional flow of high-density hydrocarbons in a homogeneous inclined reservoir with uniform properties (see Figure 1). Ground-water contamination by a dense hydrocarbon can be formulated by a two-phase fluid flow in a porous medium. TCE (hydrocarbon) is referred as the immiscible (nonwetting) phase and the water as the miscible (wetting) phase. In their formulations, Corapcioglu and Hossain neglected capillary pressures, liquid and soil compressibilities to obtain

Fig. 1. Definition sketch of the probiem.

$$
\begin{equation*}
q_{x} \frac{\partial r_{w x}}{\partial x}+q_{z} \frac{\partial r_{w z}}{\partial z}+n \frac{\partial S_{w}}{\partial t}=0 \tag{1}
\end{equation*}
$$

where q_{x} and q_{z} are the total (water plus hydrocarbon) volumetric flow rates in lateral and vertical directions, respectively. Fractional flow expressions $r_{w x}$ and $r_{w z}$ in the lateral and vertical directions, respectively, are defined as

$$
\begin{equation*}
r_{w x}=\frac{q_{w x}}{q_{x}}, \quad r_{w z}=\frac{q_{w z}}{q_{z}} \tag{2}
\end{equation*}
$$

where $q_{w x}$ and $q_{w z}$ are the volumetric flow rate of water in the lateral and vertical directions. In terms of degree of water saturations S_{w}

$$
\begin{array}{r}
r_{w x} \approx \frac{1}{1+\frac{k_{n w}}{k_{w}} \frac{\mu_{w}}{\mu_{n w}}} \\
r_{w z} \approx \frac{1-\frac{k_{n w} \Delta \rho}{\mu_{n w} q_{z}} g \cos \alpha}{1+\frac{k_{n w}}{k_{w}} \frac{\mu_{w}}{\mu_{n w}}} \tag{4}
\end{array}
$$

where k_{w} and $k_{n w}$ are the relative permeabilities of water and hydrocarbon, respectively;
μ_{w} and $\mu_{n w}$ are respective viscosities;
$\Delta \rho$ is the density difference ($=\rho_{\mathrm{w}}-\rho_{\mathrm{nw}}$); and n is the porosity of the aquifer.

We note that in equations (3) and (4), capillary pressure differences are neglected, and in equation (3), the gravity term due to the magnitude of angle of inclination, α, of aquifers in nature is neglected. Since our purpose is to model the migration of TCE spill in a highly pervious gravel aquifer, we can assume capillary pressure gradients have a negligible effect on the flow. However, in other types of aquifers, capillary pressure gradients may be important. Furthermore, Corapcioglu and Hossain (1988) showed $q_{x} \partial r_{w x} / \partial x$ and $q_{z} \partial r_{w z} / \partial z$ to be larger than $r_{w x} \partial q_{x} / \partial x$ and $r_{w z} \partial q_{z} / \partial z$, respectively, to obtain equation (1). We should also note that for an instantaneous hydrocarbon spill of relatively small quantity, the volumetric flow rate of water would be much larger than that of hydrocarbon.

Permeability terms k_{nw} and k_{w}, in equations (3) and (4) are functions of degree of water saturation, S_{w}. Permeability expressions $\mathrm{k}_{\mathrm{w}}\left(\mathrm{S}_{\mathrm{w}}\right)$ and $\mathrm{k}_{\mathrm{nw}}\left(\mathrm{S}_{\mathrm{nw}}\right)$ are obtained from laboratory experiments under no-flow conditions. For example, Lin et al. (1982) obtained relative permeability data for the case of trichloroethylene imbibition in
a TCE-water system. We fitted the following relative permeability expressions to Lin's data. Curves of similar forms were also employed by Faust (1985). Thus, the permeability expressions are

$$
\begin{equation*}
\mathrm{k}_{\mathrm{rw}}=\frac{\left(\mathrm{S}_{\mathrm{w}}-0.331\right)^{3}}{(1-0.331)^{3}}, \quad \mathrm{k}_{\mathrm{rnw}}=\frac{\left(0.83-\mathrm{S}_{\mathrm{w}}\right)^{2.5}}{(0.83)^{2.5}} \tag{5}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
k_{w}=k_{o} k_{r w}, \quad k_{n w}=k_{o} k_{m w} \tag{6}
\end{equation*}
$$

where k_{o} is the porous medium's intrinsic permeability. Therefore, fractional water flow expressions $r_{w x}$ and $r_{w z}$ are functions of degree of water saturation S_{w} only. The viscosity ratio ($\mu_{\mathrm{w}} / \mu_{\mathrm{nw}}$) is assumed to be constant at isothermal soil conditions. Furthermore, ($\Delta \rho g \cos \alpha / q_{z}$) in equation (4) is taken constant based on the assumption of constant vertical flow due to gravity dominance. Then, we can rewrite equation (1) as

$$
\begin{equation*}
\frac{q_{x}}{n} \frac{d_{r w x}}{d S_{w}} \frac{\partial S_{w}}{\partial x}+\frac{q_{z}}{n} \frac{d r_{w z}}{d S_{w}} \frac{\partial S_{w}}{\partial z}+\frac{\partial S_{w}}{\partial t}=0 \tag{7}
\end{equation*}
$$

Equation (7) is a quasi-linear first-order partial differential equation with a single variable S_{w}. For a one-dimensional case (horizontal x-direction), it reduces to the Buckley-Leverett (1942) equation. Buckley and Leverett addressed the oil production problem encountered as a result of linear displacement of oil in the reservoir by water. They considered a homogeneous inclined reservoir with uniform, constant thickness, and solved the governing equation for one-dimensional flow by neglecting capillary pressures, gravity, and liquid compressibilities.

By definition, the material derivative of S_{w} is

$$
\begin{equation*}
\frac{d S_{w}}{d t}=\frac{\partial S_{w}}{\partial t}+\frac{\partial S_{w}}{\partial x} \frac{d x}{d t}+\frac{\partial S_{w}}{\partial z} \frac{d z}{d \tau} \tag{8}
\end{equation*}
$$

A comparison of equations (7) and (8) shows that

$$
\begin{align*}
& \left.\frac{d x}{d t}\right|_{S_{w}}=\left.\frac{q_{x}}{n} \frac{d r_{w x}}{d S_{w}}\right|_{S_{w}} \tag{9}\\
& \left.\frac{d z}{d t}\right|_{S_{w}}=\left.\frac{q_{z}}{n} \frac{d r_{w z}}{d S_{w}}\right|_{S_{w}} \tag{10}
\end{align*}
$$

Note that $\mathrm{dx} / \mathrm{dt} \mid{ }^{\prime} \mathrm{S}_{\mathrm{w}}$ and $\mathrm{dz} / \mathrm{dt} \mid \mathrm{S}_{\mathrm{w}}$ are velocity components of an advancing surface of a given value of the degree of water saturation. On curves $x=x(t)$ and $\mathrm{z}=\mathrm{z}(\mathrm{t})$ which coincide with moving curves of constant $\mathrm{S}_{\mathrm{w}}, \mathrm{x}(\mathrm{t})$ and $\mathrm{z}(\mathrm{t})$ are called characteristic curves of equation (7). Then, equation (7) yields

$$
\begin{equation*}
\frac{d S_{w}}{d \tau}=0 \tag{11}
\end{equation*}
$$

The solution of equation (11) can be obtained by employing the method of characteristics. This method was successfully used by Konikow and Bredehoeft (1978) to solve the conventional solute transport equation.

REVIEW OF USGS MODEL

Konikow and Bredehoeft (1978) developed a two-dimensional digital computer model to predict the concentration of a dissolved chemical species in flowing ground water. In addition to concentration values, the program simultaneously calculates ground-water velocities in two lateral directions. The program solves two coupling partial differential equations, the ground-water flow equation (in terms of head distribution in the aquifer) and the solute tansport equation (in terms of mass concentration).

Konikow and Bredehoeft express the solute transport equation as

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\frac{1}{b} \frac{\partial}{\partial x_{i}}\left(b D_{i j} \frac{\partial C}{\partial x_{i}}\right)-V_{x} \frac{\partial C}{\partial x}-V_{y} \frac{\partial C}{\partial y}+F \tag{12}
\end{equation*}
$$

where $F=\frac{C\left(S \frac{\partial h}{\partial t}+W-\epsilon \frac{\partial b}{\partial t}\right)-C^{\prime} W}{\epsilon b}$
and C is the mass concentration of the dissolved chemical species; D_{ij} is the coefficient of hydrodynamic dispersion; b is the saturated thickness of the aquifer; and C^{\prime} is the mass concentration of the dissolved chemical in a source or sink fluid. V_{x} and V_{y} are components of velocity in the x and y directions, respectively; h is the hydraulic head; S is the storage coefficient; t is the time; $W=W(x, y, t)$ is the volume flux per unit area; and x_{i} and x_{j} are the Cartesian coordinates. $W(x, y, t)$ can be expressed as $W(x, y, t)=Q(x, y, t)-K_{z}\left(H_{5}-h\right) / m$ where Q is the rate of withdrawal or recharge; K_{z} is the vertical hydraulic conductivity of the confining layer, streambed, or lakebed; m is the thickness of the confining layer; ϵ is the porosity; and H_{s} is the hydraulic head in the source bed, stream, or lake. The material derivative of concentration is defined by

$$
\begin{equation*}
\frac{d C}{d t}=\frac{\partial C}{\partial t}+\frac{\partial C}{\partial x} \frac{d x}{d t}+\frac{\partial C}{\partial y} \frac{d y}{d t} \tag{14}
\end{equation*}
$$

A comparison of the second and third terms on the right-hand side of equation (14) with the second and third terms on the right-hand side of equation (12) shows that

Table 1. Correspondence Between Equations in Our Model and USGS Model

Equation \# for bigh-density
bydrocarbon migration Equation \div for USGS model

$$
\begin{align*}
& \mathrm{V}_{\mathrm{x}}=\mathrm{dx} / \mathrm{dt} \tag{15}\\
& \mathrm{~V}_{\mathrm{y}}=\mathrm{dy} / \mathrm{dt} \tag{16}
\end{align*}
$$

Substitution of equations (15), (16), and (12) into equation (14) gives

$$
\begin{equation*}
\frac{\mathrm{dC}}{\mathrm{dt}}=\frac{1}{\mathrm{~b}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\mathrm{~b} \mathrm{D}_{\mathrm{ij}} \frac{\partial \mathrm{C}}{\partial \mathrm{x}_{\mathrm{j}}}\right)+\mathrm{F} \tag{17}
\end{equation*}
$$

Fig. 2. Water saturation profites for $\mu_{w} / \mu_{m w}=1.72$, and $\rho_{n w}=1.46 \mathrm{~g} / \mathrm{cm}^{3}$ (TCE) at three yoars with initial slug injection. Note that $S_{n w}=1-S_{w}$.

Solutions to equations (15)-(17) can be expressed in a general form as $x=x(t), y=y(t)$, and $C=C(t)$ which are called the characteristic curves of equation (12). A comparison of equation (17) with equation (11) shows that the right-hand side of equation (17) is equal to zero for an identical match. Correspondence between equations in our model and USGS model is summarized in Table 1. The general solution technique by the method of characteristics is given by Konikow and Bredehoeft (1978), and the reader is referred to this reference for a more detailed discussion.

In this study, we use an IBM-PC version of the USGS program that is marketed by Scientific Publications Company. Their version incorporates several changes that were necessary to accommodate the main-frame program in the IBM-PC. The details of the modification of the USGS model are given in the Appendix.

RESULTS AND CONCLUSIONS

The numerical model was applied to simulate the formation of a TCE plume in a gravel aquifer due to an instantaneous spill from a buried source in the saturated zone (e.g., storage tank rupture). A spill of a relatively small volume of contaminant can be modeled as a slug injection (i.e., pulse source) into a sloping natural gradient unconfined aquifer. The aquifer is 700 ft thick and 1600 ft wide, inclined at an angle of 10° to the horizontal. The domain includes 162 nodes spaced 100 ft apart in each direction. Note that the figure illustrating the results (Figure 2) shows only a portion of the domain which is 700 ft thick and 800 ft wide. The initial conditions included the assumption of 100% water saturation throughout the domain.

Figure 2 shows the contour plot of the water saturation distribution at three years using data given in Table 2. The results clearly indicate the dominance of gravity effects in the vertical direction; due to the high density of the contaminant,

Table 2. Model Parameters Used

Density of water	$\cdots \rho_{w}=1 \mathrm{~g} / \mathrm{cm}^{3}$
Density of TCE.	$\ldots \rho_{\text {nw }}=1.46 \mathrm{~g} / \mathrm{cm}^{3}$
Density difference	$\Delta \rho=\rho_{\mathrm{w}}-\rho_{\mathrm{nw}}=-0.46 \mathrm{~g} / \mathrm{cm}^{3}$
Dynamic viscosity of water	$\ldots \mu_{w}=1.0019 \times 10^{-2}$ poise
Dynamic viscosity of TCE	$\ldots \mu_{\text {nw }}=0.58 \times 10^{-2}$ poise
Inerinsic permeability of soil	$\cdots k_{0}=5.823 \times 10^{-7} \mathrm{~cm}^{2}$
Porosity of soil	. $n=0.4$
Angle of inclination $\alpha=10^{\circ}$
Residual saturation of water in a water-TCE system	. $S_{\text {wr }}=0.331$
Residual saturation of TCE in a water-TCE system.	. $S_{\text {wnt }}=0.170$
Shock front saruration or cutoff saturation	. $S_{\text {wc }}=0.675$

spreading takes place only after the TCE plume reaches the bottom.

In summary, we study the migration of a highdensity hydrocarbon in an unconfined aquifer. The Buckley-Leverett approach is extended to a twodimensional case to simulate a high-density immiscible hydrocarbon displacing ground water in a gravity-driven natural gradient aquifer. Governing equations are solved by modifying the USGS solute transport model developed by Konikow and Bredehoeft (1978). The modification incorporated the fractional flow curves of water and their saturation derivatives in vertical and horizontal directions as functions of degree of water saturation. Results show that high-density, low-viscosity immiscible chlorinated hydrocarbons can travel deeper and further in contrast to lower-density, higher-viscosity compounds, and that the migration is dominated by gravity largely uncoupled from the horizontal component until the plume reaches the lower boundary.

APPENDIX - MODIFICATIONS OF THE USGS PROGRAM

In this appendix, we continuously refer to Konikow and Bredehoeft (1978) by indicating specific page and program line numbers. Therefore, the reader should obtain an original copy of that publication to follow the modifications needed for modeling high-density hydrocarbon migration.

First, the two-dimensional areal problem is modified to run for a two-dimensional vertical one. Vertical z-coordinate replaces the lateral y-coordinate. To achieve this, the input data are modified as shown in Attachment IV on page 79 of Konikow and Bredehoeft (1978). In the original program (20.0) in Data Set 4 for test problem number 3 stands for the vertical thickness of the aquifer ($\mathrm{THCK}=20 \mathrm{ft}$). To rotate the flow field, we take a unit width in the lateral direction normal to the plane of paper. Thus, (20.0) is replaced by (1.00) (see Table 3). Then, on the same page (p.79) in Data Set 3, VPRM $=(0.1)$, which is a dummy variable in our case, is replaced by an arbitrary constant, e.g., $2 \times 10^{-5} \mathrm{ft} / \mathrm{sec}$.

In the program, the subroutine VELO calculates the flow velocities at nodes and cell boundaries, dispersion coefficients and the minimum number of particle moves required to solve the solute transport equation. In our modified version of VELO, we calculate $\mathrm{dx} / \mathrm{dt}$ and $\mathrm{dz} / \mathrm{dt}$ at a given S_{w} as expressed by equations (9) and (10). Note that in equations (9) and (10), we enter the values of q_{x} and q_{z} calculated by considering gravity terms only. The changes made at VELO are on page 55 between
lines E410 and E460. Lines E410-E460 are replaced by

```
    IF (CONC(IX,IX).GE.82.9) CONC(IX,IY)=82.9
    IF (CONC (IX,IY).[T. 33.2) CONC(IX,IY)=33.2
    WRITE (*,*)'CONC (IX,IY) \(=\prime, \operatorname{CONC}(I X, I Y)\)
    8古= \((0.83) * 2.5\)
    \(\mathrm{AA}=(0.669) * \pm 3\)
    \(\operatorname{RKNW}(I X, I Y)=(10.83-0.01 * \operatorname{CONC}(I X, I Y)) * \pm 2.5) / 8 B\)
```



```
    RKW (IX,IY) \(=((0.01 * C O N C(I X, I Y)-0.331) * * 3) /\) AA
    WRITE (*, *) 'RYG(IX,IY)=', RKW (IX,IY)
    DKRNW (IX, IY) \(=-2.5 / B B^{*}((0.8 j-0.01 * \operatorname{CONC}(I X, I Y)) * * 1.5)\)
    DKRW \((I X, I Y)=3 / A M *((0.01 * \operatorname{CONC}(I X, I Y)-0.331) * * 2)\)
    ALPHA․ 175
    grdx=-SIN (ALPHA)
    GFitel*,*)'grdx=', grdx
    \(\operatorname{DENMX}(I X, I Y)=R K N(I X, I Y)+1,72 \pm R K O N(I X, I Y)\)
    WRITE (*, *) ' DEMRX (IX, IY) =', DENTX (IX, IY)
    DDENMX (IX, IY) =DKRH (IX, IY) +1.72 DKRNH (IX, IY)
    DRWX (IX,IY) \(=(D E N M X(I X, I Y)=\) OKRW \((I X, I Y)-R K W(I X, I Y) \neq D D E N M X(I X\),
1IY) / /(DENHX (IX, IY)**2)
    WRITE (*, *) 'DRWX (IX, IY) =', DRWX (IX, IX)
\(V X(I X, I Y)=P E R M(I X, I Y)\) \#GRDX*PORINY*DRNX (IX,IY)
    WRITE (*, *)'VX=', VX(IX,IY)
```

to calculate $\mathrm{dx} / \mathrm{dt}$ as given by equation (9). Note that the parameter grdx (which calculates the hydraulic gradient in the x-direction) is equal to $-\sin \alpha$, since the hydraulic gradient can be assumed to be constant in a gravity-driven natural gradient system. Furthermore, the first and second lines of this new program segment keep the water saturation values above the residual water saturation $\mathrm{S}_{\mathrm{wr}}=0.33$ and below $\mathrm{S}_{\mathrm{wc}}=0.67$ behind the front as explained by Corapcioglu and Hossain (1986). Note that this restriction on S_{w} is imposed only in this program segment while calculating $d r_{w x} / \mathrm{dS}_{\mathrm{w}}$ and not while calculating S_{w} by subroutine CNCON which computes the change in water saturation in the aquifer. Since this restriction is imposed at the very beginning, it also applies to calculate $\mathrm{dr}_{\mathrm{wz}} / \mathrm{dS}_{\mathrm{w}}$ which is handled by the program segment given below. Such a restriction allows us to avoid the existence of double water saturation at the saturation front due to bulbous saturation profile. A discussion of this phenomenon has been explained by Corapcioglu and Hossain (1986).

One should note that Konikow and Bredehoeft solved the solute transport problem in terms of concentration, C . In this study we solve the highdensity hydrocarbon migration problem in terms of water saturation, S_{w}. Thus, the parameter termed CONC (IX, IY) in the USGS program denotes the degree of water saturation, S_{w} in our modification.

Similarly, $\mathrm{dr}_{\mathrm{wz}} / \mathrm{dS}_{\mathrm{w}}$ and $\mathrm{dz} / \mathrm{dt}$ are calculated
by

DRO=-0.463
92=0.02t
UTNN-0.005

WRITE (*, *)' $\mathrm{UP} \mathrm{F}_{\mathrm{F}}, \mathrm{UP}(\mathrm{IX}, \mathrm{IY})$
DUP (IX, IY) =DKRW (IX, IY) -CI* (RNOW (IX, IY) \#DKRW (IX, IY)
1-RKN(IX,IY) © DKRNH (IX, IY))

WRITE(*,*)'DN=', DN(IX,IX)

DRHZ $(I X, I Y)=(D N(I X, I Y) * D U P(I X, I Y)=U P(I X, I Y) * D O W(I X, I Y)) /$
3 (DN (IX,IX)**2)

which replace lines E500-E540 on pages 55 and 56 in Konikow and Bredehoeft (1978). Note that dz/dt is expressed by equation (10), and DRO $=\Delta \rho$ (in $\mathrm{g} / \mathrm{cm}^{3}$), $\mathrm{UMNW}=\mu_{\mathrm{nw}}$ (in poise), and $\mathrm{QZ}=\mathrm{q}_{\mathrm{z}}$ (in $\mathrm{ft} / \mathrm{sec}$). Similar to grdx , in a gravity-driven natural gradient system, grdz $=\cos \alpha$. In the program segments given above, we take $\rho_{\mathrm{nw}}=1.46 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mu_{\mathrm{w}} / \mu_{\mathrm{nw}}=1.72$. We keep the hydraulic gradient and velocities at the cell boundaries constant by replacing E590, E610, E620, and E640 on page 56 with

E 580

C $\quad=V E L O C I T L E S$ AT CELL BOUNDARIES- -GROX=-害LK (ALPGA)
 GEdY-COS (MLPAA)

Additional DIMENSION statements are added between lines E200-E210 to include new variables in the program

[^17]Furthermore, the Data Sets given in Table 3 include
proper initial conditions for the problem studied. Note that Konikow and Bredehoeft (1978) consider an initially clear (i.e., $C=0$ at $t=0$) aquifer. This would correspond to 100% water saturation in our problem (i.e., $S_{w}=100$) as given by the last block of numbers and Data Set 9 in Table 3. In Data Set 6 , two 1 's in the third row refer to the referral code of pulse source points. The 0's in Data Set 6 indicate $S_{w}=100 \%$. In Data Set 7 , Table 3 shows

1 Referral code to source point
1.0 Code for leakance from the source
83.0 Source concentration ($\mathrm{S}_{\mathrm{wr}}=0.83$)
0.0 Diffusive recharge

0 OVERRD
In the case of pulse source, a slug of hydrocarbon initially ($t=0$) was injected into the aquifer at a concentration $\mathrm{S}_{\mathrm{w}}=0.33$; input modifications are shown in Data Set 9. In Data Set 7, the source concentration is taken as 0.83 since after $t=0$, some hydrocarbon will remain in the pores at a level $S_{\text {or }}=0.17$ so $S_{w}=1-S_{\text {or }}=0.83$. After an initial pulse, water saturation will go back to 83% at the source nodes. Similarly, initial conditions are placed on the second row ($S_{w r}=33 \%$) instead of the first one. Figure 13 on page 29 of Konikow and Bredehoeft (1978), shows the location of a slug of tracer for a pulse source.

As we do not include observation wells, we eliminate Data Set 1 by setting NUMOBS (number of observation points) equal to zero. We also do not include pumping wells so we eliminate Data Set 2 by setting NREC (number of pumping or injection wells) equal to zero. Thus, the coordinates of observation and pumping wells in Data Sets 1 and 2 are eliminated.

With these modifications to subroutine VELO and Input Data, we use subroutine CNCON and other subroutines of the program without changes. Subroutine CNCON, in this case, computes the change in water saturation at each node and at each particle for the given time increment. Note that in the original Konikow and Bredehoeft (1978) program, CNCON computed solute concentrations.

ACKNOWLEDGMENTS

The authors appreciate the comments of an inonymous reviewer which greatly improved the presentation of the material.

REFERENCES

Buckley, S. E. and M. C. Leverett. 1942. Mechamism of fluid displacement in sands. Transactions of AIME. v. 146, pp. 107-117.

Byer, H. G., W. Blankenship, and R. Allen. 1981. Groundwater contamination by chlorinated hydrocarbons:
causes and prevention. Civil Engineering, ASCE. March, pp. 54-55.
Corapcioglu, M. Y. and A. Baehr. 1987. A compositional multiphase model for groundwater contamination by petroleum products, I. Theoretical consideration. Water Resources Research. v. 23, no. 1, pp. 191-200.
Corapcioglu, M. Y. and M. A. Hossain. 1986. Migration of chlorinated hydrocarbons in groundwater. Proceedings of the Conference on Petroleum and Organic Chemicals in Ground Water, Nov. 12-14, 1986, Houston, Texas. National Warer Well Association, Dublin, OH. pp. 33-52.
Corapcioglu, M. Y. and M. A. Hossain. 1988. Groundwater contamination by high -density immiscible hydrocarbon slugs in gravity-driven gravel aquifers. (Submitted for publication.)
Faust, C. R. 1985. Transport of immiscible fluids within and below the unsaturated zone: a numerical model. Water Resources Research. v. 21, no. 4, pp. 587-596.
Konikow, L. F. and J. D. Bredehoeft. 1978. Computer model of two dimensional solute transport and dispersion in groundwater. Techniques of Water Resources Investigations of the U.S. Geological Survey. U.S. Government Printing Office, Washingron. DC. Book 7, Chapter C2.

Lin, C., G. F. Pinder, and E. F. Wood. 1982. Warer and trichloroethylene on immiscible fluids in porous media. Princeton University. Water Resources Progress Report, 83-WR-2. October.
Schwille, F. 1981. Groundwater pollution in porous media by fluids immiscible with water. In Quality of Groundwater, ed. W. Van Duijvenbooden, P. Glasbergen, and H. van Lelyveld. Elsevier, The Netheriands, pp. 451-463.
Villaume, J. F. 1985. Investigations at sites contaminated with dense, non-aqueous phase liquids (NAPLs). Ground Water Monitoring Review. v. 5, no. 2, Spring, pp. 60-74.
W. Akbter Hossain received bis B.S. in Civil Engineering from Bangladesh University of Engineering and Technology, Dhaka in 1982 and bis M.S. from the University of Delaware in 1986 under the supervision of Dr. Corapcioglu. After bis graduation in 1982, he worked as a research lecturer for two years at the Institute of Flood Control and Drainage Research of the Bangladesh University of Engineering and Tecbnology. Specifically, bis research interests include the development and application of computer models in microcomputers, and ground-water contamination by bydrocarbons.

An Associate Professor of Civil Engineering at Washington State University, M. Yavuz Corapcioglu received bis Ph.D. in Civil Engineering (1975) from Cornell University. His research interests include ground-water flow, transport and fate of pollutants in ground water, bydrocarbon contamination, land subsidence, and mathematical modeling. He bas directed various ground-water pollution projects funded by federal and private agencies.
Dr. Corapcioglu has over 50 publications to bis credit. He coedited Transport Phenomena in Porous Media (Martinus Nijboff, 1984) and Advances in Transport Phenomena in Porous Media (Martinus Nijhoff, 1987).

COMPUTER NOTES

APPROXIMATE AND ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT FROM AN INJECTION WELL INTO A SINGLE FRACTURE

by Chia-Shyun Chen ${ }^{\text {a }}$ and S. R. Yates ${ }^{\text {b }}$

Introduction

In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation (e.g., Neretnieks, 1980; Rasmuson and Neretnieks, 1981; Tang et al., 1981; Sudicky and Frind, 1982; Barker, 1982; Hodgkinson and Lever, 1983; Rasmuson, 1984; Neretnieks and Rasmuson, 1984; Chen, 1986). By treating the radioactive decay constant as the appropriate first-order rate constant, these solutions also can be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. In these works, the fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Using this macroscopic approach, Chen (1986) gave solutions to different cases regarding the injection of radioactive material into a fractured formation. The planar fracture was assumed to have a constant aperture thickness, 2 b , and intersect the well with a radius r_{0} (see Figure 1). Water containing radioactive constituents was discharged into the fracture through the well under a constant tlow rate of Q . The injected radionuclides moved primarily through the fracture in a steady, radial flow field where the velocity as a function of radial distance, r, is described by

$$
\begin{equation*}
V(r)=A / r \tag{1}
\end{equation*}
$$

where $A=Q /(4 \pi b)$ as the advection parameter.

[^18]Ground water was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix (i.e., at $z=0$). Two models (Models I and II) were studied by Chen (1986). Model I assumed advection and longitudinal dispersion as the transport mechanisms in the fracture, while Model II considered only advection. Both models included matrix diffusion. Solutions of these two models are different under transient conditions but converge to the same solution at steady state for commonly occurring conditions. Compared to the steady-state solutions of Model I, the steady-state solutions of Model II are mathematically simpler and thus are recommended for use when dealing with steady-state conditions of the stated problem. In addition to quantifying a "worst case" scenario, the steady-state solutions can be used to determine the maximum transport distance of the injected radionuclides in the fracture. For time-dependent conditions, however, the transient solutions of Model I are suggested because they are more generalized in the sense that the longitudinal dispersion process in the fracture is taken into account.

These transient and steady-state solutions have potential usefulness for quantitative study of problems where radioactive material is injected into a fractured formation for disposal or for tracer tests. They also can be employed to check the accuracy of portions of pertinent three-dimensional numerical codes; for axial symmetric systems the radial dimension is a combination of the horizontal x and y Cartesian dimension (i.e. $r^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$), and the matrix diffusion normal to the radial direc-

Fig. 1. Schematic of radionuclide transport from an injection well into a single, planar fracture situated in porous formation.
tion adds the third dimension, z. Consequently, these solutions could be used to check two-dimensional areal flow with matrix diffusions in the vertical direction.

By making use of the Stehfest method (Stehfest, 1970a, b), the transient solutions were determined by numerically inverting the solutions to Model I in the Laplace domain, which involve the transcendental Airy functions. Calculation of the transient solutions is not straightforward, and the purpose of this paper is to document a contained FORTRAN program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases. A formula determining the maximum transport distance is given here.

Mathematical Model and Solutions

The mathematical model and its solutions are briefly discussed here. Detailed discussions of development of the model and derivation of the solutions are provided in Chen (1986).

The dispersion theory for solute transport in porous media is adopted, and the longitudinal dispersivity in the fracture is assumed to be constant. Hence, the longitudinal dispersion coefficient for the radial flow field neglecting molecular diffusion can be written as

$$
\begin{equation*}
D_{\mathrm{r}}=\alpha_{1} V \tag{2}
\end{equation*}
$$

where V is the steady-state, radial ground-water velocity described by (1); and α_{1} is the constant longitudinal dispersivity.

The governing equations of the model can be formulated as

$$
\begin{equation*}
D_{m} \frac{\partial^{2} C_{2}}{\partial z^{2}}-\lambda R_{2} C_{2}=R_{2} \frac{\partial C_{2}}{\partial t} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\alpha_{1} A}{r} \frac{\partial^{2} C_{1}}{\partial r^{2}}-\frac{A}{r} \frac{\partial C_{1}}{\partial r}+ \\
& \left.\quad \frac{n_{2} D_{m}}{b} \frac{\partial C_{2}}{\partial z}\right|_{z=0}-\lambda R_{1} C_{1}=R_{1} \frac{\partial C_{1}}{\partial t} \tag{4}
\end{align*}
$$

where λ is the decay coefficient for the radionuclides (or the first-order rate constant for chemical or biological transformation); C_{1} and C_{2} are concentrations in the fracture and in the porous matrix, respectively;
D_{m}, n_{2}, and R_{2} are, respectively, the effective molecular diffusion coefficient, the porosity, and the retardation factor for the linear-isotherm adsorption in the porous matrix; and
α_{1}, b, and R_{1} are, respectively, the dispersivity, half aperture thickness, and retardation factor in the fracture.

The initial condition for (3) and (4) is

$$
\begin{equation*}
C_{1}(r, 0)=C_{2}(z, 0)=0 \tag{5}
\end{equation*}
$$

which states that no contaminants exist in the system prior to injection.

The boundary condition at the interface of the fracture and the porous matrix is given by the continuity of concentrations as

$$
\begin{equation*}
C_{1}(r, \tau)=C_{2}(z, \tau) ; \quad z=0 \tag{6}
\end{equation*}
$$

as $r \rightarrow \infty$ and $z \rightarrow \infty$, a bounded condition is prescribed for C_{1} and C_{2} as

$$
\begin{equation*}
C_{1}(\infty, t)=C_{2}(\infty, t) \text { is bounded; } r^{2}+z^{2} \rightarrow \infty \tag{7}
\end{equation*}
$$

Two different boundary conditions for decay and nondecay sources are considered at the well bore. The decay boundary condition is

$$
\begin{equation*}
C_{1}\left(r_{0}, t\right)=C_{0} e^{-\lambda t} / C_{0}=e^{-\lambda t} \tag{8}
\end{equation*}
$$

which may be relevant to injecting a radioactive substance with a short half-life. Due to the rapid decay, the concentration of the substance in the well bore cannot remain at a constant level but decreases with time following the exponential law as stated in (8).

The nondecay boundary condition, however. may be used if the concentrations at the injection well remain at a constant level because of the long half-life of the injected radioactive materials; that is,

$$
\begin{equation*}
C_{1}\left(r_{0}, t\right)=C_{0} / C_{0}=1 \tag{9}
\end{equation*}
$$

In fact, if $\lambda t \leqslant 0.01$, the boundary conditions (8) and (9) are approximately equivalent since (8) yields a source concentration which like (9) is approximately equal to unity. Therefore, use of the decay or nondecay condition at the injection well does not cause significant difference in the calculated results provided $\lambda t \leqslant 0.01$.

Transient Solutions by Numerical Inversion

Analytical solutions to (3) and (4) subject to (5) through (8) or (9) can be determined by the Laplace transform technique. In appropriate dimensionless forms, the solutions for the decay boundary condition (8) in the Laplace domain is

$$
\begin{gather*}
G_{1}(\rho, p)=\frac{1}{p+\alpha_{1}} \exp \left[\left(\rho-\rho_{0}\right) / 2\right] \frac{\operatorname{Ai}\left[\beta^{1 / 3} y\right]}{\operatorname{Ai}\left[\beta^{1 / 3} y_{0}\right]} \tag{10a}\\
G_{2}(\rho, p)=G_{1} \cdot \exp \left[-\xi\left(p+\alpha_{1}\right)^{1 / 2}\right] \tag{10b}
\end{gather*}
$$

where G_{1} and G_{2} denote the concentration distributions in the fracture; and within the porous matrix in the Laplace domain, respectively, p is the Laplace transform parameter of the dimensionless time τ defined by

$$
\tau=\mathrm{At} / \mathrm{R}_{1} \alpha_{1}^{2}
$$

and the symbol $\mathrm{Ai}(x)$ represents the Airy function. The dimensionless radial distance ρ, the dimensionless vertical distance ξ, and other dimensionless parameters are defined in the Nomenclature.

The analytical Laplace inversion of (10) gives closed form solutions of C_{1} and C_{2} for the problem. As shown by Chen (1986), however, approximate solutions determined by numerically inverting (10) with the Stehfest method (Stehfest, 1970a, b) yield accurate results for practical purposes. Specifically, C_{1} and C_{2} for the decay boundary condition are obtained by numerically inverting G_{1} and G_{2} given in (10) with the following finite series of N terms

$$
\begin{align*}
& C_{1}(\rho, \tau) \cong p \sum_{n=1}^{N} W_{n} G_{1}(\rho, n p) ; p=\ln (2) / \tau \tag{11a}\\
& C_{2}(\rho, \tau) \cong p \sum_{n=1}^{N} W_{n} G_{2}(\rho, n p) ; p=\ln (2) / \tau \tag{11b}
\end{align*}
$$

During the inversion calculation, p is inversely related to τ, and N must be an even integer. The weighting factors, W_{n}, are determined with the rational function given by Stehfest (1970a, b). These weighting factors are only dependent on the value of N chosen; that is, they need to be determined only once for any numerical inversions so long as N is fixed. In the computer examples provided in the Appendix, 16 weighting factors (i.e., $N=16$) are given. It was found that 16 weighting factors provided sufficiently accurate results on an IBM-AT compatible microcomputer or on a DEC-20 main frame. Double-precision calculations are suggested when using the program. It should be noted that the arguments in the Airy functions are also dependent on p and hence on N and r (see Nomenclature).

The Airy functions in (10) are calculated using appropriate formulae given by Abramowitz and Stegun (1970). Arguments of the Airy functions in (10) are always positive. The first 16 terms of the power series given by Abramowitz and Stegun (1970, equation 10.4.2) are used to evaluate $\mathrm{Ai}(\mathrm{x})$ when $0 \leqslant x<3$. For the condition, $3 \leqslant x \leqslant 5$, $\mathrm{Ai}(\mathrm{x})$ is determined using a two-step procedure. Firstly, the modified Bessel function of the second kind of order $1 / 3, \mathrm{~K}_{1 / 3}(\mathrm{x})$, is calculated by the integral formula of equation 9.6.24 in Abramowitz and Stegun (1970). Secondly, the calculared $\mathrm{K}_{1 / 3}(\mathrm{x})$
is converted to $\operatorname{Ai}(x)$ using the mathematical identity of equation 10.4.14 in Abramowitz and Stegun (1970). This method of determining $\operatorname{Ai}(x)$ for $3 \leqslant x \leqslant 5$ increases the computational stability of the algorithm. For $x>5$, the first 14 terms of the asymptotic expansion given by equation 10.4.59 in Abramowitz and Stegun (1970) are employed for evaluating $\mathrm{Ai}(x)$. If a computer with sufficient precision is available, $\mathrm{Ai}(\mathrm{x})$ can be calculated by using the power series in the range $0 \leqslant x \leqslant 5$, and by the asymptotic expansion for $x>5$ as mentioned above. In this event, the two-step computation for $3 \leqslant x \leqslant 5$ is not required. When $x>5, \operatorname{Ai}(x)$ becomes small and can cause exponential underflow problems. Therefore, $\mathrm{Ai}(\mathrm{x})$ is scaled by a multiplying factor, $x^{1 / 4} \exp \left[(2 / 3) x^{3 / 2}\right]$. To recover the actual value for the Airy function during the calculations, the result is multiplied by $x^{-1 / 4} \exp \left[-(2 / 3) x^{3 / 2}\right]$. This approach for evaluating $\operatorname{Ai}(x)$ was suggested by Hsieh (1986).

In a similar manner, C_{1} for the nondecay boundary condition can be determined by replacing

$$
\begin{equation*}
\mathrm{G}_{1}(\rho, \mathrm{p})=(1 / \mathrm{p}) \exp \left[\left(\rho-\rho_{0}\right) / 2\right] \frac{\operatorname{Ai}\left[\beta^{1 / 3} y\right]}{\operatorname{Ai}\left[\beta^{1 / 3} y_{0}\right]} \tag{12}
\end{equation*}
$$

in (11a), and C_{2} can be obtained by introducing (12) to (10b) and (11b).

The effect of the nondecay boundary condition is to replace the term $1 /\left(p+\alpha_{1}\right)$ in (10) by the term $1 / p$. The calculation for the nondecay case follows identical procedures as the decay case. Hence, determination of concentration distributions for both the decay and nondecay boundary conditions requires only a slightly different calculation in the program.

Exact Steady-State Solution

Under steady-state conditions (i.e., injection time approaches infinity), the decay boundary condition yields a zero source concentration at the injection well, leading to a trivial solution of zero concentration everywhere in the system. However, nontrivial steady-state solutions exist for $\lambda>0$ and a nondecay boundary condition; that is,

$$
\begin{align*}
& C_{1}=\exp \left[\left(-E_{1} \lambda-E_{2} \lambda^{1 / 2}\right) \bar{r}\right] \tag{13a}\\
& C_{2}=C_{1} \exp \left[-z\left(R_{2} \lambda / D_{m}\right)^{1 / 2}\right] \tag{13b}
\end{align*}
$$

The longitudinal dispersivity is absent in (13) because the longitudinal dispersion in the fracture was neglected. Although Chen (1986) noted that longitudinal dispersion in the fracture could be neglected for steady-state conditions without introducing noticeable error based on one problem, we
have verified that this conclusion is tue for general conditions unless the parameter α is greater than approximately 10 , which is unreasonably high and would rarely occur for practical problems. Therefore, (13) provides a useful steady-state solution for the stated problem.

The ultimate extent with which the concentration front can move in the fracture can be approximated with (13a). If the concentration front is taken as the location where x percent of the injected concentration takes place, then this ultimate moving distance is approximately equal to

$$
\begin{equation*}
r_{x}=\left[\frac{2 \ln (1 / x)}{E_{1} \lambda+E_{2} \lambda^{1 / 2}}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

which is derived from (13a) by setting C_{1} to x and the well radius is neglected. For example, if the frontal concentration is taken as 0.05 , then the associated ultimate moving distance is

$$
\begin{equation*}
r_{0.05}=2.5\left[E_{1} \lambda+E_{2} \lambda^{1 / 2}\right]^{-1 / 2} \tag{15}
\end{equation*}
$$

Examples

To illustrate the solutions contained herein, several hypothetical examples were created. To provide for the implementation of the computer program by future users, the data used to create the examples are reported in Appendix 2. To use the program, which is listed in Appendix 1, aquifer and chemical properties are required. The properties used for the following example are: half aperture thickness (b), well radius (r_{0}), flow rate into the fracture (Q), dispersivity (α_{1}), effective diffusion coefficient (D_{m}), and matrix porosity (n_{2}). respectively; $5.0 \times 10^{-5} \mathrm{~m}, 0.1 \mathrm{~m}, 3.65 \mathrm{~m}^{3} / \mathrm{day}$, $0.1 \mathrm{~m}, 1.0 \times 10^{-3} \mathrm{~m}^{2} /$ day, and $0.01 \mathrm{~m}^{3} / \mathrm{m}^{3}$. Other required parameters include the decay coefficient and retardation constant, which are 0.01 day ${ }^{-1}$ and 1.0 , respectively. For each calculation, 16 Stehfest weighting coefficients and double precision were used.

Figure 2 shows the concentration distribution as a function of radial distance at several times and for two different boundary conditions at the well. The solid and dotted lines indicate, respectively, the concentration profiles based on the nondecay and decay boundary conditions. For the injection time equal to 0.01 day, the solutions determined by the two different boundary conditions are practically the same (see Figure 2) because the relationship $\lambda t \leqslant 0.01$ is satisfied. Under steadystate conditions, the solid line calculated by (12) with a large value of time is almost identical as the

Fig. 2. Concentration with respect to time and radial distance in the fracture. The solid and dotted lines indicate the results from the nondecay and decay cases, respectively. The model coefficients are given in Appendix 2.
dots which resulted from the zero-dispersivity approximation, equation (13). This coincidence indicates that longitudinal dispersion in the fracture is not important for steady-state conditions. The ultimate moving distance, $\mathrm{r}_{0.05}$, determined with equation (15), is about 238 m , which is found in Figure 2 by graphic interpolation.

Figure 3 is a diagram of the concentration distributions in the porous matrix for the example contained in Figure 2. In Figure 3a, the concentration profiles of C_{2} at a radial distance of 1.0, 5.0, and 10.0 m and a time of 0.01 day is shown. In Figure $2 b$, the concentration profiles are for steady-state and radial distances of $1.0,100.0$, and 150.0 m . The dots indicate the results from the approximate solution. As was shown for the fracture, the zero-dispersivity approximation produces almost the same results as the more rigorous exact solution for this example.

Figure 4 contains a transient and steady-state contour diagram of the concentration in the fracture and porous matrix. For clarity, the fracture has been enlarged. The dotted line in Figure 4 a indicates the position of the well bore. In Figure 4b, again it can be shown that equation (15) is a valid approximation for the ultimate moving distance, $\mathrm{r}_{0.05}$.

Nomenclature

Dimensional Parameters

A advection parameter equal to $\mathrm{Q} /(4 \pi \mathrm{~b}), \mathrm{m}^{2} / \mathrm{s}$.
b half fracture aperture, m.
$C_{0} \quad$ concentration at the well bore, $\mathrm{kg} / \mathrm{m}^{3}$.
$D_{m} \quad$ effective diffusion coefficient of porous matrix, $\mathrm{m}^{2 / 5}$.

Fig. 3. Concentration in the porous media for times 0.01 d (a) and at steady-state (b). The dots in (b) indicate the results from equation (13). The model coefficients are given in Appendix 2.
$D_{r} \quad$ longitudinal dispersion coefficient, $\mathrm{m}^{2} / \mathrm{s}$.
$E_{1} \quad R_{1} / A, s / m^{2}$.
$E_{2} \quad n_{2}\left(R_{2} D_{m}\right)^{1 / 2} /(b A), s^{1 / 2} / m^{2}$.
$Q \quad$ constant injection rate, $\mathrm{m}^{3} / \mathrm{s}$.
r radial distance, m.
$r_{0} \quad$ well radius, m.
$\bar{r} \quad\left(r^{2}-r_{0}{ }^{2}\right) / 2, m^{2}$.
t time, s.
V ground water in fracture defined by (1), m / s.
$z \quad$ vertical distance in the porous matrix, m.
$\alpha_{1} \quad$ dispersivity of fracture, m.
λ radioactive decay constant or first-order rate constant for chemical or biological reactions, s^{1}.

Dimensionless Parameters

$\mathrm{C}_{1}, \mathrm{C}_{2}$ normalized concentration in fracture and in porous matrix, respectively.
$n_{2} \quad$ porosity of porous matrix.
R_{1}, R_{2} retardation factors in fracture and in porous matrix.

P Laplace transform parameter.
$y=p+1 /(4 \beta)$.
$y_{0}=\rho_{0}+1(4 \beta)$.
$\alpha=\left(n_{2} \alpha_{1} / b\right)\left(R_{2} D_{m} / R_{1} A\right)^{1 / 2}$.
$\alpha_{1}=R_{1} \lambda \alpha_{1}^{2} / \mathrm{A}$.
$\beta=p+\alpha_{1}+\alpha\left(\mathrm{p}+\alpha_{1}\right)^{1 / 2}$.
$\xi \quad\left(z / \alpha_{1}\right)\left(R_{2} A / R_{1} D_{m}\right)^{1 / 2}$, dimensionless vertical distance.
$\tau \mathrm{At} /\left(\mathrm{R}_{1} \alpha_{1}{ }^{2}\right)$, dimensionless time.
$\rho \quad \mathrm{r} / \alpha_{1}$, dimensionless radial distance.
$\rho_{0} \quad r_{0} / \alpha_{1}$, dimensionless well radius.

Function

$\mathrm{Ai}(\mathrm{x})$ Airy function.

Disclaimer

Although a portion of the research described in this article has been funded wholly or in part by the United States Environmental Protection Agency, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

Fig. 4. Contour diagram of the concentration with respect to position and time. For $t=0.01 \mathrm{~d}(\mathrm{a})$, the contour levels are: $0.95,0.9,0.8, \ldots, 0.1$. For $t=$ steady-state (b), the contour levels are: $0.95,0.9,0.8, \ldots, 0.1$, and 0.05 . The dotted line in $\{a\rangle$ indicates the position of the well bore.

TMIS PROCDAM COMPUTES THE GAPLAEE INVERSION OF TME RAOIAL OISPERSIOM EQUATIOM FOR VELOCITY DEPENDEMT FLOM AMD RAOIOACTIVE
 OECAF GIVEN BY
STEMFEST(I9TD)

INPUT IMFORMATIOM:
thout parameters can be proviatd to the progron fram ither disk file or the kpyoond. In ither cast, the parateters that rust be supplifed art:

IMIERACTIVE IWHUT (for oponing filas)

IN $\quad \begin{aligned} & \text { inpur file number. lunt for disk, in\#5 for } \\ & \text { keyoomat. }\end{aligned}$

10 - Output mitemmbtr $10=2$ for ditk, $10: 5$ for terminal, lowb for printer.
file - IF IOs2, then give the ourput file nemp.

WOEL INPUT OAFA (eithtr from dist file or intertcrivelv)

 RECORO $1:($ fret formet)TITLE(3) - three lines of tifle or problydetiprion.
18 C - Stetring parmater for the boungary cordition at the well: if iscion then a decay poundery. If IBCal; then a non-ditay gourdary.

* - Mumber of Stentest wititing coefficionts. for

11 - Retardation coufficient for the fracture gurfoce.
R2 - tetardation cotfitient for the porous matif.
0 - Dispersivity of the fracture.
3 . Fitcture aperaturt thickmass.
m2 - Porosity of the porous mettin.
Om2 - Effective diffution cotfiteient for the porous matrix.

LAM - Radioactive atcivy coeffieime.
$9 \quad \cdot f l o w$ inco the fracture.

2Ecorg 2:

Ma	- whater of radial epordinates whare a conconeration is co bet catculated.
20	The radius of the wellbort.
2	- The radial distance where fne first concentration is to Betctatated.
$2 n$	The giscance between contsecutive radial distances. for $i=1,2,3, \ldots$, MR .

2ETORO $3:$
41 . Mumer of timbthe concentration is to be calculation.
i(NT) . The mi values of itme. The mazimansize for thit array is 10 .

RECORO 4 ;
mZ - Munber of vartical coorainatis (in the gorous dittia) where eoncentration is to be caleulatea. mote: the total muther of concentration ealeutared will be: MR*W2*NT.

02
The distance between sonstoutive vertical ditithces.

IMPGUTAMT VABIAELES

A M00	- Dimentiontett mell radiut
Ofmo	- Incrematel dimentiontesE radial distmex
140	- Dimmatonl tis redius
DxI	- Incrotmentel dimmationt tat veritcal distance
XI	- Diommtiontes vartical distane
140	- Gimmetiontese time
a	- Aevection garamiter
Alf)	- Pordmeter releting to the radionctive detay
ALf	- Phrmeter foldiong to the difturive ldateqt

THALEIT DOULLE PHECIStom (A.M, O:2)

A10(30), 20(30)

609NON 14, 17,10, 14
OATA MESil(1)/'Vertied conemitracions will nos be esiculated'/ H, MES1(2)/'Vertical eoncentrations will be cateulsted'/

,ME52(2)/A constome bontory eorsition txists of the well'/ DATA IMH, 10 , ITI/1, 2,5/, 1A/30/,18/15/
$\stackrel{C}{6}$
1T:17T
WRITE(IT,900)
READ(tT: ith
IF(IM.EQ.O) CALL VF100
IF(IN.EQ. i) CAL6 Vi52
t
VRITE([T, *), GIVE [MPUT DEVICE MUNAER (i=dsk, 5=tty)
READ(1t, is IM
ff(IN.EG.iMM) THEN
CALL VIPOSI
GRITE(IT: ${ }^{-}$) GIVE IMPUT FILE NAME'
READ(IT, (A)') FILE

ELSE
EMDIF
6 call vipos!

16455
$1 F(10.60 .5) 16=20$
$1 F(10.50 .50)$

CALL VI'OD!
WRITE(If: *) GIVE OUIPUT FILE NAME
READ(IT, (A)') FILE
OPEM(UMITAIO,FILEFFILE,STATUSZ'MEW')
ELSE
$\stackrel{C}{C}$
c- read in ingut parmaters of the fracturt
1F(1W.EO.1) THEM
READ(IM, ($\left.(A)^{\prime}\right)$ (TITLE(I), $\left.1 * 1,3\right)$

AEAD(IM, *) M, R1, M2, O, B, N2, OR2, LAM, O
REAO (IM.*) MR, RO,R, OR

REAC(in.*) M2,22
-- interactive ingeut oorion
CALL IMTRACTITLE,IBC,M,R1,R2,O,B,N2,OM2,IAM,O,NR,RO,R,OR,

WZ Z OZ, MT, T)

 EMゆ!C
c

1FZN: 0

whiterto. 005)
WR(TE(10, F10) (TITLE(1), 1=1,3)
URITE(10.915)

IF (0.WE.0.300) URITE(10.925) M
1F(0.50.0. 300) URITE(10,930)
IF(10.Eg.it) EALL vTVAIT
WRIE (10,935) $2, R 1,3,0 m 2, ~ Q 2, ~ M 2, L A M, 0$
IF (1O.EQ.IT) CALL YTWAI
$\begin{gathered}C \\ C \\ C\end{gathered} \ldots . .$. ge to appropriate analytical solution $\operatorname{moc} . .$.

 -.OA, MZ.O2,MT,T)
farmat star mants

923 fomithtitil2. stentege wighting factors will be usted to invert

030 fomal (ix, 'the disparsivity of the fratture is zero. vill use the

Mr, 'pitpersivity of the fracturf (Li......................10(th.)
4, 1PE $13.6,1$.

4,ifg 13.6.\%.

TfPE13.6,1?

\#, iPE13.6.1.
fix, 'Recaraition eqfificient for perous merrix (0].', 1061H.) H. PPET\$.6./.

4x, ipgrosity of the perens metrix (0才................', 10(1m.) 4, 1PE13.4.

4, PEE $13.6, f$,
 \#, ipg 13.6)
END

SUBOUTIME MODELI - - CALCULATES THE LAPLACE IMVEREIOM SOLUTIOM of then (iges) UWEM TWE Oispersivity is onearen TMAM ziteo.

Sughourime monticIA, it, ISC, M, R1, R2, D, B, M2, DM2, LAM, Q, WR, RO

 Wh(IB)
COMMON IH, 1T, 10, 16
COMHON /ARCU/ ATJ,ALF, BETA, BETAS
…. csiculati the prooten constants
RHOO = RO/D
QRHO $=$ OH 10
RHOI $=810$
Pl $=2.000$ OATAN $(1.0 .30)$

A13x1.00/3.00
$423=2.000 / 3.000$
.---- print out calculated parmaters
WRITE (!O, 900) A, RHCO, DRHO,ALF, ALF!
IF (NZ.GT.O) URITE(10,905) OXI
**... determint the stentest meighting coeffigients

GALL LINV(IA, lB, N, Y,G,M)
frio.ze.it) call vivalif
00 101×1
$11=\mathrm{m} / 2: 1$
Whtre(10.0t5) 1, v(1), 11, V(1t)
10 CONTIMUE
call vibalt

IF(1O.EQ.1T) EALG VTPOS!
URITE(10.920)
1F(10.EG. If) EALL VtUAIf
…- now time -....
$0020 \mathrm{~K}=1, \mathrm{NT}$

6
IF(ID.ED.IT) CALL VTPOSI
IF(I(K). LT.0.000) Wilte (10.923)
IF(T(K). GE. 0.000) URITE(10,930) T(K), TAU
WRITE(10,935)
$=$
...-- diftrmine Aio and 20 (only onci)
IF(TCK).6T.0.000) THEM
IF(19C.EO.0) HittE(5,040)
if (iac.eg.0) retud
If (LAM.E0.0.000) UWITE (10,965)
E
.---- find valums for $\$$ ctaty state case
YO $=\operatorname{ARG}(A L F i, R N O D)$

1F(YO.LT. 3.000$)$ ICPF=:
(F(YO.GE,, 000)
(10(1) $=$ Al $\langle\mathrm{YO},(\mathrm{OPF})$
ELSE

Iopfal
IF(YMX.LT. 3.000) $10 \mathrm{PT}=1$

0025 L\#1. 1

YO $=$ ARC(PA 1, RWCO)

25 COMTIMUE
EMOIF
ϵ
....- chtculare the concentrations in the fracture $=-=$.
0030 :RE1, ME
0D=0.500* (ŔMO-RHOO)
If(T(X).6†.0.000) THEM
5
F-...estculato she
lf(Y.LT. 5.00) THEN

ELSE
OXP=(YO/T)**. 2500
xp 423*(70**1.500-Y**1.500)
G1=0XP ${ }^{\circ} \mathrm{DEXP}$ (DO*KP)
ELSE
\%
-.-. eateulate the timeompenctent vatues

fictel
F(7MM.L7.3.000) 1007=-1
\vdots
IF(TMM.GT.5.000) $10 \mathrm{PT}=0$

y = ARG(pal, Amo)
FACT $=0$ OXP $(00+20(L)-2)^{*}(20(L) / 2)^{* *} .35$

(F(IEC.EO.1) PA1xPA1-ALF1
AlFM = Al(Y, IOpl)

XP $=X P$ * KR(b)
35 comtinue

```
    G:ExP=AlO2/TAL
    ENOIF
E
    R=0"&HO
    L0=60+1
    LF(Ct.LT.0.000) 6120.000
    \F(61.6T.0.000) 6ix0.000
    If(LO.Eg.mR ,AMO. #z.Eg.0) coro 50
    IF(FLQAT(LO/IL),GQ.FLOAT(LO)/FLOAT(IL)) CALL VTHAIT
    IF(FLQAT(LO/ILS.EG.FLQAT(LO)/FLOAT\IL)) URITE(IO,935)
E
    ....." ealeulate emmentration in poromat matrix .....
    M1=0x!
    0040 1Z=1,MZ
    [F(T(K).LT'0.000) TMEN
E
```



```
    G2xCiogexp(-il*SgRT(ALFI))
    ELSE
```



```
    %P0.000
    OO 45 L=1,M
    \rhoAt = EAÍR2/TMU+ALFI
    22 DExP(-xI-0sent(PA1))
    2p * 2P}+2\mp@subsup{2}{}{+}\timesR(6
    45 COMT (MWH
    \2=%p-Aln2/tau
C -.** print out rotults ......
```



```
    40=40+1
    1F(C2.LT.0.000) C2=0.000
```



```
    fr(LO.EQ,MR+Mz) EOTE,40
    IF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) CALL VTHA!T
    IP(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) WALLYE(IO,935)
    60 x! 2x1+0x1
    30 RMOFRMOHORWO
20 IF(K.ME.MI) CALL VTMAIT
C ..... formate statamants ......
```



```
    #1PE13.6./
```



```
    4,19E13.4.1.
    Mix,'0imeryignt ose distanee betwemh radii (0Rm0)...',10(1H.)
    4,1PE13.6,/.
    '1X,'Rario of diffutive loss to injection (ALPMA)..', to(1M.)
    #,IPE13.6,/
```



```
    61x,'0imgry
    905 f0&#4,6)
    *,10(14,),1PE13.6)
```



```
    5x,'1', 12x, 'v(1)!,27x,'11',11x,'v(1!)')
    915 fómat(ix, is,1PE20.7,20x,15,1PÉ20.7)
    920 fonmar (1Gx, 'comCEmtRATIOM oIStRI#NFION'
    0,f,16x,26(iM=),//)
```



```
    g35 formar(5x,'t',i4x, 'R',16x,'t',i5x,'C/Co''
```



```
    965 fotmar(5x, 'gimgh: Lamate carmot be zero for a steact seate
    * solurion.',/ 12X, 'The epmemntration is 1.0 for K & infinity',/)
    950 rotmar<1x,is,5x,Fiz.3,5(5x,F12,4))
    RETURM
        EMD
```


SUAROUTIME NANE MODEL2 * THIS PROGMAH CALCULATES TME SOLUTIOM
OF Chon (1983) WHEN TME DISpERSIVITY IS 2580.
 , On, MZ,OZ, MT, T)
IMPLICIT DOUSLE PRECISIOM (A-H,O-2)
gOLSLE PRECISIOM LAN,MZ
ointinsion (itb)

$1=2.000$ Datan ($1.0+50$)
A. $0 /\left(4,000^{+4} 1^{-1}\right)$

E! $=1 / 1$

- A1TE(10,900) A,E1, E2
fall vinait
if(10.E9.1T) CALL VTPOSI wiritio., 0)
: F(IO.EQ, :T) CALL VTMAIT

$0010 \times=1, \mathrm{MT}$
If(10.EQ.if) that vTRost
IF(T(K).6f.0.000) 4ititic 10.910)

witeldo.920)
 2:0.000

c
0015 Inet, wh

200,000
IF(I(X).6T.0.000) TMEM

```
C ---- steady-state solution ---..
```



```
    If(TAC.EQ.O.AMO-LAM,ME.O.ODO) E1 = 0,000
    IF\IEG.ME-D.ANO. LAN.WE,0.000) C1=0EXP(ARG1)
    IfIIBC.NE.0.AMO.LAM.ES.0.000) El=1.000
    EnSE
C
    TYT(K)-E1**
    ARG1*E2*RR/OSART(T)
    AKCH2
```



```
    EXPZ=51*PR*1AM (LAM)
    .*--- calculation for a decay bouncmry condition .....
    1F(18C.EG.1) cofo 20
    F120EXF(-LAN*T(K),ARC:)
    Goro }3
C ..*.. catculacion tor a non-decay boundery condition .....
    20 G1=0.500'(DEXF(-EXP1-EXP2,ARG1-AREZ)
        *DEXF(EXP1-EXPZ,AMG1+ARG2)
        6070 30
    30 EOWTINUE
        EMOIF
    LO#40+1
    WhilE(10,925) L0,R,2.E:
    IF(LO.EO.NR ,AMD, WZ.EO.0) coTO 35
    [F(FLOAT(LO/TL).EG.FLOAT(LO)/FLOAI(IL)) CALL VTHALT
```



```
G
    35 2=02
        00 60 W=1,Nz
        IF(T(K).LF,0,000) THEN
\zeta
        #-** itgay+state solution (onty non-Gecay moungary
        ELSE
6
    ***- time-ongtmatent solution *-...
        1F (F1.6E.0,0) GOTO $0
        42*2-()
        ARG(18E-6MO2)/050&t(T1)/2.0
        1F(18C.EO.1) G0T0 }6
C
        ---- decay moumdry condition
        C2=0EXF(-LAM*T(I),ARGT)
        goro 55
c ....- non-decay boundary condition ...
    65 62-0.500*(OEXF (+EXP1-EXP2-05ORT (LAH)*22, ARG1-ARG2)
        * +0EXF(ExPI-EXP2-DSEMT(LAM)=2Z,ARG1+MRG2))
        coto 55
    50 c2m0.0
        endif
\xi
    COnt0+1
        #NITE(10,925) LO,R,Z,C2
        lF(LO.EO,NR"#Z) coro <0
        IF(FLOAT(LO/Th).EQ.FLOAT(LO)/FLOMT(IL)) CALL VTHAIT
        !F(FLOAT(LO/IL),EQ.FLOAT(LO)/FLOAT(IL)) WRITE(IO,92O)
    40 2=Z-02
    15 R=R ODR
    10 \F(E.WE.NT) CALL VTHALT
        RETURN
C
    g00 FORMAT(///1x,'CALOULATED PARMMETERS'/1x,22(1MH)//
```



```
        #1pEt3.6,%,
```



```
        *,ipe13.b,1,
        |ix, "Fecror'E2
        #,1PE13.6)
    g05 FONHAT(16x, COMCEMTRATION OISTMIBUTIOM'
        #,t,16x,26(inz),11)
```



```
    915 FONMAT(5x.'TiN# = 1 IPE15.5./)
```



```
    920 fonmat{5x,'!',i4x,'R',16x,'2',15x;'
        \5%(MO
C**
```



```
C
        8ETA m panlfagsent(P)
```



```
        AMG = 的TAJ*(R * 0.2500/4ETA)
        neruam
        ENO
C
```



```
        ONOLE PRECI$IOM FUMCTION OEXF(A, E)
        IHPLICIT DOU#LE PHECISION (A-H,O-Z)
        *20/ A2/. 2%44%%760001
        4.A3/1,42141376100%,A4;1,65315202700/,A5/4.06140542500/
G
            OEXF=0.000
            (F(fOAOS(A).GT,02.00).AMD.(A.LE.0.000)) RETURM
            if(f0ARS(A).GT,02.00)
            IFEM-MEXP(A)
```

RETURM

IF (C,LT. -82.000) GOFO 25
$x=9 A 0 \$(B)$
If $(X, G T, 3,000)$ tolo 15

1. $1.00 /\left(1.000+{ }^{+*} \mathrm{~F}\right)$

$15 y=.564189600 /(x+.500 /(x+1.00 /(x+1.500 /(x+2.00 /(x+2.500 /(x+1.00$ ") 3)1"
20 DEXF Y Y EEXPCC
25 IF(S.LT. 0.000) OEXF $* 2.00{ }^{\circ} 0$ EXP $(A)-0 E X F$
RETU
EMD
function alcza,lopir) -. this fumction sumhoutine computes the
alry function fod positive arcuments.
IF 10pt : - 1 , USE THE SMALL ARGUMENT SERIES SOLUTIOM
if iop a i, use the integral solution methoo
THE ATRY FUMCTIOM IS SCALEO (MULTPLIED) BY:
$(2 * * 0.23) * E X P(U), W H E R E=(2.13) *.(2 * * 1.5)$

IMPLICIT OCABLE PREEISIOM (A-H,O-2)
oduthe PRECISTOM XG(10), we(10)
Comion IN, !T, 10.1L

$1 \quad 4.2356055970200-32,1.6610215027530-35,1.0135782124940 \cdot 29$,
2 4. $4094311747180-33,1,6249740477820-361$
DA7a V/, $3333333133333350 /$. P $15003 / 5,641398003001$

OATA MG/10/XG/,76525521133407330-1, 227785851141645000,

$1,766331906469150700, .839116971822218800, .912234428251325900$,
2859185094900
DATA WG/. 132733387130725800 . . 149172986472603700.
+. $142096109318392000, .13164863949176400, .116194531961518400$.

5 function sternments

© IF(2A.LT.O.DO) vilte (10,900)
1F(24.L†.0.80) 570
if(10.1) $10,20,30$

RETURM
ϵ

30 2X $=2,000^{+(24 * *+500) / 3.000}$
1\% = $70.00 / 2 x^{2}$
1F (TMP.LE.1.000) THEW
$x 4=20.000 / 2 x$
ELS
XL: OACOEN(TMC)
ENOIF
c SAZ $\times 12.00$
$3 A 2=x L / 2.00$
$5 L 40.00+0$
Sunt $=0.00+0$
$6 \quad 0035$ [19. No

35 comrtmut

RETURM
E
FOMMAT（．＊＊＊WARMIMG＊＊＊SURROUTIME MI（Z）YILL NOT EVALUATE A yOM－POSITIVE ARGMEMT OF Al（2）．＇ EMO

IMPLIEIT DOUBLE PREC！SION（A－N，O－2）
OIMEMSION G（IA），V（1A），M（IB）

```
G(1)=1.00
    00 10: : =2,M
        G(1) xG(I-1)*OLRE(1)
    O ECMITMUE
    *(1)*2.00/G(NH-1)
```

$6 \quad \begin{aligned} & 0020[\mathrm{EL}, \mathrm{NM} \\ & \mathrm{FI}=\mathrm{OBLE}(\mathrm{I})\end{aligned}$
IF(I.EO.MN) COTO 15

coto 20

20 comilmue
t $5 M=2=(M H-(M H / 2) * 2)-1$

- $\quad 0025!=1, N$
$v(1)=0.00$ '
K1*(1* 1) $/ 2$
K2=1
(f(K2.GT.MH)K2=NH
$0040 \times 41,1 \times 2$

1F(l.EO.X) E010 33

toro 60
$30 \begin{gathered}v([)=V(t)+M(K) / G(1-K) \\ \text { coto }\end{gathered}$
coto 40
$35 \mathrm{~V}(1)=V(1)+H(K) / G(2+K+1)$
60 Contiwut
60 cont Imye
$V(1) \geq\left[5 M^{-} V(1)\right.$
25 COMTIMUE
25 cowrimu
RETUR
5**
SUTROUIIME IMTRAC * ALLOAS IMTERACTIVE IMPLT
CThis subroutine ant the calling otatement in the mitim progre
ean bo romeved if inceractive ingut is not rocuifol

 * , R, OR,MZ,DZ,NT, ${ }^{\text {(}}$)
(MPLICIT DOUSLE PAECISIO (A-M,O-Z)
OCILLE PREEISIOM M2,LAM
oimension T(10)
GMARACTER TITLE(S)-70
comon lif,IT,10,IL
5
300 FORMAI (IX,A50, $\$$)
305 FORMAT(1x,A50)

CALG VTPOS
00
10
101

10 READ(IT, '(A)') TITLE(I)
call víóst

baltecif, BOO)' of $1:$ for comstant comtentrariom goumpary me:
READ (IT, IBC
CALL VTPOS!

GEAD(It, *)
CALL VTPOS!
WITIE(IT, SOO)' GIVE RETARDATION FACTOR (FRACTURE: RII
WEITE(1才, B00)

REND(IT:) Q2

VRIfE(IT, SOO)
READ (IT, $) 0$

VITE (IT, 800)
REAP (If
WITE(1T.
UITE(1T, 805)
URITE(IT,

call viposi

UITE(IT, 800)
READ(IT, O)
eatl vitost

EALL vipos!

CALL VTPGSI
VRITE(IT, SOS)' GIVE TME MLHER OF QAOII [WTI, WELL RAOIUS (ROI,

- 1 (TE(17, 800).

eall vipóst

UKTE(11, 800)
call vipost
CALG VTPGst
CALL VTPGS!

URITE（1才，s10） 1

GALL YTPOS！
WRITE（IT，005）＇GIVE THE MUHER OF VERTICAL POSITIONS WMERE A WRITE（IT，gOS）＇POHOUS MATRIX COMCEMTRATIOM IS TO GE CALEULATED WRITE（IT，800）＇POROS MATRIX GOMCEMTRATIOM IS TO BE CALEULATED， LRITE（IT，800）
READ（IT，
－IF（MZ，EG．O）RETURL
－URITE（IT，GOO）＇GIVE THE SPACIMg BETUEEM VERTICAL POSITIONS zan ，

EEFURM
EMO
$\stackrel{C}{c}$

SUPROLTIMES VTEE ．．VIDEO ORIVERS FOR VT－100 AMO VT－52

SUPROUFINE VI100
CHARACTER＊1 ESC
DATAESC／：18／

SETURM
EMO
E SURROUTIME vTSZ
CHARACTER＂1 ESC
OATA E5C GH18／
WITE 5,900 ）ESE

RETURM
EMD
c SuBaCuTIME vTPOSI
CHARAGTER＊ESE
CHARAETER＊ 1 ESE
EMARACTER OD

UR！TE（5，90s）ESC，ILIME，ICDL
WRITE（5，9OS）ESC，ILIME，ICO
RETURM
3 EnTit vTposi
URITE（5，900）ESC，EMD 1，ESE，EMOZ
900 Fopmat $(1+1, A, A, A, A, S)$

QEfURW
6
sutiout the vibalt
CMARACTER 1 ESE
CMARACTE CHDIES，CMD2＊3
COHmOW IM，IT，10，IL

OATA CMO！M！！ifi／，
－0102／（2 +1 ＇
$\stackrel{6}{6}$
．．．．．it output deyice is the princer ．．．．．．
18（10．E0．11）coro 10
WITIE（10，900）
aETURM
ϵ
10 U⿴囗十 18 outaut device is the ferminal ．．．．．

READE（10，910）
READ（1T，P15）TMP
WEITE（5．920）ESE，MOT，ESC，GNO2
goo fotmari！i＂）

715 FORMA $(5: A)$
020 FGRMAT

Appendix 2．Examples of Program Input and Output

1
$161.01 .0 \quad 0.15 .0 \mathrm{E}-5$ OL 1．0E－3 ． 013.65
100.11 .01 .0
1.01
5.002

Enample imput date set

PNOLEM SPECIf！CATIOWS
Yortical concemtratiens will be caleulated
4 conar ram Downary condition enises ar the well
16 stentate weignting factort will be ufad to invert the laplace transform

stenfest veighting factols 	
1	v(1)
1	-3.9682540E-04
2	2.13373025+00
3	-5.5101667E*02
4	$3.3500161 E+04$
5	-8.1266511E*05
6	1.0076184E+07
7	- $7.3261383 E * 07$
,	3.3905963E*00

V(11) $0525395 E+09$ 1.0525395E+09 $2.2590133 E+09$
$3.3097020 E+09$ $3.3997020 E+09$
$3.5826505 E+09$
$2.591 \angle 064 E+09$ $-2.59149615+09$ $1.2270496 E+09$
3.4273456500 $3.42756565+00$
$6.28618194+07$ CONCEMTRATIO DISTRI能ION

 1.00
1

References

Abramowitz, M. and I. A. Stegun. 1970. Handbook of Mathematical Functions. Dover, New York. 1046 pp.

Barker, J. A. 1982. Laplace transform solutions for solure transport in fissured aquifers. Adv. Water Resour. v. 5, pp. 98-104.

Chen, C. S. 1986. Solutions for radionuclide transport from an injection well into a single fracture in a porous formation. Water Resour. Res. v. 22, no. 4 , pp. 508-518.
Hodgkinson, D. P. and D. A. Lever. 1983. Interpretation of a field experiment on the transport of sorbed and nonabsorbed tracers through a fracture in crystalline rock. Radioacr. Waste Manage., Nucl. Fuel Cycle. v. 4, no. 2, pp. 129-158.

Hsieh, P. 1986. A new formula for the analytical solution of the radial dispersion problem. Warer Resour. Res. v. 22, no. 11, pp. 1597•1605.

Neretnieks, I. 1980. Diffusion in the rock matrix: an important factor in radionuclide retardation? J. Geophys. Res. v. 85, no. B8, pp. 4379.4397

Neretnieks, I. and A. Rasmuson. 1984. An approach to modeling radio-nuclide migration in a medium with strongly varying velocity and block sizes along the flow path. Water Resour. Res. v. 20, no. 12 , pp. 1823-1836.
Rasmuson, A. 1984. Migration of radionuclides in fissured rock: a nalyrical solutions for the case of constant source strength. Water Resour. Res. v. 20, no. 10. pp. 1435-1442.
Rasmuson, A. and I. Nerernieks. 1981, Migration of radionuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. J. Geophys. Res. v. 86, no. B5, pp. 3749-3758.
Stehfest, H. 1970a. Numerical inversion of Laplace transforms. Commun. ACM. v. 13, no. 1, pp. 47-49.
Stehfesr, H. 1970b. Remark on algorithm 368. numerical inversion of Laplace transforms. Commun. ACM. v. 13, no. 10, p. 624

Sudicky, E. A. and E. O. Frind. 1982. Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour. Res. v. 18, no. 6, pp. 1634-1642.

Tang, D. H., E. O. Frind, and E. A. Sudicky. 1981. Contaminant transport in fractured porous media: analytical soltuion for a single fracture. Water Resour. Res. v. 18, no. 3, pp. 555-564.

Cbia-Sbyun Chen is an Associate Professor of Hydrology in the Geoscience Department of New Mexico Institute of Mining and Technology. He did bis M.S. and Ph.D. in the Agricultural Engineering Department of Colorado State University and Texas A \& M University, respectively. Prior to joining academics, be worked in a consulting firm for three years working on numerical simulation of transport problems under field conditions. His research interest is mathematical modeling of transport phenomena in subsurface bydrology.

Scott R. Yates received bis B.S. in Geology from the University of Wisconsin in 1980, M.S. in Hydrology from New Mexico Institute of Mining and Technology in 1982, and Pb.D. in Soil and Water Science from the University of Arizona in 1985. He is currently a Soil Scientist for the USDA/ARS at the U.S. Salinity Laboratory in Riverside, California. His research interests include soil physics, modeling the fate and transport of contaminants in variably saturated media, and geostatistics.
\square Regional Hydrology

Ground-Water Modeling: Applications ${ }^{2}$

by James W. Mercer and Charles R. Faust ${ }^{\text {b }}$

Abstract

The numerical models used in ground-water studies are general computer programs that can be applied to a variery of hydrogeological conditions. These programs are based on approximations to the goveming partial differential equations for ground-water flow and transport. To use these models requires an understanding of the physical problem and field data. Although program inpur data and output results are quantitative, the appropriate application of numerical models remains a partly subjective procedure. To use models, the hydrologist must assess the merits of altemative numerical methods, evaluate available data, estimate data where missing or absent, and interpret computed results. The review of previous model applications can provide valuable insight on how these tasks may be approached.

INTRODUCTION

The effective application of numerical models to field problems in ground-water hydrology is ironically a qualitative procedure. The hydrologist must first decide whether a numerical model is necessary for project objectives. If needed, he is then faced with the decision of which numerical method is best for his problem. Once a particular method or computer program is selected, he must assess the reliability of data that are needed to run the program and the quality of the data that will be used to verify computed results. Because available data are never as comprehensive as desired, he will probably have to fill in data gaps with estimated, interpolated,

[^19]or extrapolated values. Although running the computer program is fairly straightforward, interpreting or analyzing the output can be very difficult. The computed results may not compare well with observed data. It is then necessary to adjust and refine input data and rerun the compurer program until some satisfactory agreement is obtained. This refinement procedure is known as model calibration. A calibrated model may be used for future forecasting, but care must be taken to avoid unwarranted prediction.

The above discussion suggests that a successful model application requires a combination of experience with (1) hydrologic principles, (2) numerical methods, (3) the aquifer to be modeled, and (4) model use. Model use is the topic of this paper, fourth in this series. In the previous papers we (1) provided an overview of numerical modeling, (2) presented and discussed the partialdifferential equations on which numerical models are based, and (3) reviewed commonly-used numerical methods. If we accept that model use is a subjective procedure, then one way to gain experience is to see how other problems have been approached using modeling techniques.

There are several good review articles on models used in ground-water studies. Prickett (1975) presents a review of the available literature on ground-water modeling. In addition to Prickert's work, Narasimhan and Witherspoon (1977) present an overview on ground-water modeling. Anderson (1979) summarizes the literature concerned with modeling solute transport while Mercer and Faust (1979) summarize the literature dealing with modeling heat transport. Because of these articles,
we do not present a literature review. Instead, in this paper we consider, in detail, three examples. The first deals with ground-water flow in a glacial aquifer. The second application involves the analysis of a poilution problem. The final example illustrates the potential for using models to aid in data collection.

GROUND-WATER SUPPLY EXAMPLE

This particular example was chosen for discussion because it is typical of many applications (only limited data are available), and it provides a qualitative comparison of two alternative numerical methods. This application was first presented by Pinder and Bredehoeft (1968). It represents the use of a ground-water flow model to analyze an aquifer system composed of glaciofluvial deposits. It includes a history match with limited data and a prediction using a finite-difference model. This problem was later simulated by Pinder and Frind (1972) using a Galerkin, finite-element model. Based on this field application and numerical experiments, they present a discussion on the relative merits of both numerical techniques.

Problem

The village of Musquodoboit Harbour, Nova Scotia (location map is shown in Figure 1) depends entirely on domestic wells for a water supply. Unfortunately, bedrock wells are of poor quality, and shallow wells cannot meet demands during summer months. Field studies indicate a nearby, unconsolidated deposit containing good quality water. Can this deposit provide an adequate water supply for Musquodoboit Harbour?

Fig. 1. Location map of the Musquodoboit River basin (from Pinder and Bredehoeft, 1968).

Fig. 2. Geologic map of Musquodoboit Harbour, Nova Scotia. Inset is the well configuration for the pump test conducted on this aquifer (numbered wells are observation welis) (from Pinder and Bredehoeft, 1968).

Hydrogeology

According to Pinder and Frind, the aquifer is adjacent to the Musquodoboit River $1 / 4$-mile northwest of the village of Musquodoboit Harbour (see the geologic map in Figure 2). The aquifer is a glaciofluvial deposit consisting of coarse sand, gravel, cobbles, and boulders deposited in a typical U -shaped glacial valley cut into the slates and quartzites of the Meguma group and granite intrusives of Devonian age. The contrast in permeability between the granitic and metamorphic rocks and the glaciofluvial valley fill is so great (approximately 10^{6}) that the bedrock is considered as impermeable in the aquifer analysis. The aquifer, which is up to 62 feet thick, is extensively overlain by recent alluvial deposits of sand, silt, and clay. The alluvial deposits are less permeable and act as confining beds. A cross section through the valley is given in Figure 3.

Aquifer Analysis

A pumping test was conducted to evaluate the aquifer transmissivity and storage coefficient, and to estimate recharge from the river. The test was run for 36 hours using a well discharging at 0.963 cubic feet per second (432 gallons per minute) and three observation wells (see insert of Figure 2 for locations). The test was discontinued when the water level in the pumping well became stable.

Fig. 3. Geologic cross section, Musquodoboit Harbour area, Nova Scotia (from Pinder and Bredehoeft, 1968).

Initial estimates of aquifer parameters were calculated using the Theis curve and the early segment of the drawdown curves for the observation wells. Results are shown in Figure 4. The values are somewhat variable, and because of the close proximity of boundaries, the pumping-test results are difficult to analyze using standard analytical methods.

Although not included in the original report, the late time data may also be analyzed using Jacob's method for distance drawdown data (Jacob, 1950). The transmissivity calculated by this method is $0.288 \mathrm{ft}^{2} / \mathrm{s}$, which is about five times smaller than the values determined from the early time data.

Aquifer Model

The boundary used in the model is the contact between the valley-fill deposits and the bedrock.

Fig. 4. Time-drawdown curves for a pump test conducted at the Musquodoboit Harbour aquifer (from Pinder and Bredehoeft, 1968).

Fig. 5. Finite-difference grid showing the modified transmissivity matrix adjusted on the basis of three additional test well logs and digital model results (from Pinder and Bredehoeft, 1968).

Because of the very low permeability of the bedrock, the boundary condition is considered no-flow. A uniform 45 by 57 rectangular grid was used by Pinder and Bredehoeft, and is shown in Figure 5. Note that approximately half the nodes are outside the aquifer area and are not included in the calculation. The aquifer is considered to be confined; however, steady-state leakage is allowed through the river bottom.

According to Pinder and Frind, this grid could be redesigned with approximately 25% of the nodes by introducing a variable grid. Furthermore, a model based on Galerkin's approximation in conjunction with deformed isoparametric quadrilaterals was used to examine this problem and contained 96 nodes and 44 elements (see Figure 6). The flexibility introduced through the use of irregular elements is apparent in the definition of the impermeable boundaries and the river. Often, however, the subsurface geometry is not that well known. The shape and distribution of the internal elements demonstrate how an understanding of the hydrologic system can guide the hydrologist in the selection of an efficient nodal arrangement. On the other hand, a poorly designed model may be inefficient and may provide inaccurate results.

History Match

The history match consisted of reproducing the pump-test results. An initial estimate of transmissivity was made based on the pump-test analysis and the geologic information. Approximately 37 computer runs were made with the finite-difference model, varying aquifer parameters until a satisfactory match was obtained.

Fig. 6. Element configuration for Galerkin analysis of Musquodoboit Harbour aquifer (from Pinder and Frind, 1972).

The final transmissivity distribution used in the model is shown in Figure 5. Using the same data, the problem was again simulated with the finiteelement model. A comparison of finite-difference and finite-element drawdowns is shown in Figure 7. These may be compared with the observed drawdowns in Figure 4. Note that by using drawdowns, the initial conditions for this linear problem are simply initial drawdown is equal to zero everywhere.

According to Pinder and Bredehoeft,

[^20]

Fig. 7. Comparison of finite-difference and Galerkin solution at Musquodoboit Harbour (from Pinder and Frind, 1972).
thickness of river bottom. The shape of the time-drawdown curve was changed markedly by adjusting this value as little as 0.000005 feet/sec."

The aquifer is not confined everywhere and, in parts, behaves as a water-table aquifer. Although the saturated thickness does not change much with time because the drawdown is small, the storage coefficient is time-dependent due to drainage of the aquifer system. To account for this the following crude approximation was made. The initial value for the storage coefficient of 0.003 was allowed to increase linearly with time to a maximum of 0.06 after 10 minutes, over the entire aquifer.

Prediction

The areal head distribution in the aquifer after 206.65 days of pumping at a rate of 0.963 cfs is shown in Figure 8. Because of the aquifer's high transmissivity, a rapidly expanding, flat cone of depression develops. The influence of the Musquodoboit River is observed within a minute after pumping begins, and after 300 minutes the drawdown at the closest impermeable boundary is greater than 0.1 feet.

The drawdown for long pumping periods was computed for the three observation wells used in the pumping test (Figure 9). It is interesting to note that the steeply rising time-drawdown curve levels off rapidly after approximately 273 days of pumping, and has essentially attained steady state after 5,000 days. Based on this study, it was concluded that the aquifer could easily supply the village of Musquodoboit Harbour indefinitely at a rate of 0.963 cfs (approximately 0.6 mgd). This quantity of water was more than adequate to supply the village needs for the immediate future.

Fig. 8. Potentiometric surface determined from the digital model after 206.65 days of pumping at a rate of 0.963 cfs (from Pinder and Bredehoeft, 1968).

Fig. 9. Time-drawdown curves obtained from the digital model (from Pinder and Bredehoeft, 1968).

Discussion

In the Musquodoboit example, the subjective aspects of model application are evident. The first task was to determine if a numerical model was necessary. Pumping-test data suggested that because of boundary effects, analytical techniques may not be adequate. The authors, therefore, decided to use a numerical model, and performed the necessary developmental work.

Evaluation of available data involved reducing information from geologic reports to a form usable in the model (that is, boundary conditions, aquifer thickness, etc.). The pumpingtest data were also analyzed to provide estimates of transmissivity and storage coefficient. These values were refined via model calibration. This took 37 runs and necessitated the assumption of an arbitrary time-dependent change in the storage coefficient.

It is interesting that the final transmissivity value in the vicinity of the pumping well (see Figure 5) was close to the value calculated using Jacob's method for the late time data. Although effort was spent to match early time data, the arbitrary time-dependent storage coefficient probably had little effect on the predictive results because after 10 minutes of pumping a constant value was used. The predictive results are more limited by the lack of data for both later times and greater distances from the pumping well.

In addition to making predictions, this application considered two different types of models. Conclusions regarding the relative merits of the two numerical methods are provided by Pinder and Frind as:

1. "The analysis of the aquifer at Musquodoboit Harbour indicates that a carefully designed model using 490
deformed elements may provide the same accuracy as a finite difference model that used many more nodes."
The relative cost, however, will depend mainly on the matrix solution technique used for each method.

> 2. "The theorerical development of the Galerkin method of approximation is possibly more abstract than finite difference theory and the development of an efficient computer code for the Galerkin procedure is a formidable task."
3. "Experience has shown that errors in the input of nodal locations in the Galerkin model can lead to problems that are difficuit to detect. This problem does not arise in the finite difference model because the entire grid is specified by the spacing between rows and columns."
4. "In the final analysis the primary advantage of the Galerkin approach to digital modeling of aquifer systems is its flexibility in application."

GROUND-WATER POLLUTION EXAMPLE

Konikow (1977) presents a good example of a solute-transport model applied to a chemical pollution problem at the Rocky Mountain Arsenal, near Denver, Colorado. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation.

Problem

Liquid waste by-products from the manufacturing of chemicals for warfare and pesticides were disposed into unlined ponds from 1943-1956. The wastes contained chloride concentrations of several thousand mg/l. In 1954, severe crop damage occurred to fields irrigated with ground water along the South Platte River. This prompted the construction of an asphait-lined evaporation pond. The purpose of this study was to demonstrate the application of a numerical solute-transport model to a complex field problem involving contaminant movement in an alluvial aquifer.

Hydrogeology

The location of the study area is shown in Figure 10, and the major hydrologic features are presented in Figure 11. The records of about 200 observation points were used to determine the hydrogeologic characteristics of the alluvial aquifer, including saturated thickness and transmissivity of the aquifer. Observed chloride concentration for 1956 is shown in Figure 12 and a water-table configuration is given in Figure 13. The major features to be noted are the areas where the alluvium is absent or unsaturated most

Fig. 10. Location of study area (from Konikow, 1977).

Fig. 11. Major hydrologic features. Letters indicate disposal-pond designations assigned by the U.S. Army (from Konikow, 1977).

Fig. 12. Observed chloride concentration, 1956 (from Konikow, 1977).

—roem- WATEM.TA数L CONTOUA = Showe cepromimate aivizude of
 Datum is momen tere tovel

Fig. 13. General water-table configuration in the alluvial aquifer in and adjacent to the Rocky Mountain Arsenal, 1955-71 (from Konikow, 1977).
of the time. Bedrock below the alluvium is considered impermeable for the purposes of the model analysis.

Aquifer Analysis

The transmissivity of the alluvial aquifer in this area ranged from 0 to over $200,000 \mathrm{ft}^{2} / \mathrm{d}$ (over $1,800 \mathrm{~m}^{2} / \mathrm{d}$), and the saturated thickness was generally less than 60 feet (18 m). No field data were available for effective porosity and dispersivity of the aquifer. These were determined by trial and evaluated through a sensitivity analysis.

Aquifer Model

Konikow states:

> "The limits of the modeled area were selected to include the entire area having chloride concentrations over $200 \mathrm{mg} / \mathrm{l}$ and the areas downgradient to which the contaminants would likely spread, and to closely coincide with natural boundaries and divides in the ground-water flow system. The model includes an area of approximately $34 \mathrm{mi}^{2}\left(88 \mathrm{~km}^{2}\right)$."

The modeled area was subdivided into a finite-difference grid of blocks 1,000 feer (305 m) on a side (see Figure 14). The grid is 25 columns by 38 rows, but because of the boundaries, only 516 nodes are actually used to compute heads. The boundary conditions for flow are indicated in Figure 14. Constant-head boundaries were specified where it was believed that either recharge or underflow into or out of the modeled area was sufficient to maintain a nearly constant water-table altitude at that point in the aquifer. Leakage was allowed from the canal.

No data were available to describe the chloride concentrations in the aquifer when the Arsenal began its operations. Because more recent measurements indicated that the normal background concentration may be as low as $40 \mathrm{mg} / \mathrm{l}$, an initial chloride concentration of $40 \mathrm{mg} / \mathrm{l}$ was assumed to have existed uniformly throughout the aquifer in 1942.

Recharge and discharge into and out of the aquifer had to be estimated. Recharge from the disposal ponds varied from 0 to $1.08 \mathrm{ft}^{3} / \mathrm{s}$ with concentrations that ranged up to $4,000 \mathrm{mg} / \mathrm{l}$ (but were reduced significantly after 1956). The ponds were treated as constant-head nodes.

History Match

Insufficient field data were available to accurately calibrate a transient-flow model. Therefore, the hydraulic history of the aquifer

Fig. 14. Finite-difference grid used to model the study area (from Konikow, 1977).
was approximated by simulating four separate steady-flow periods which differed on the basis of the disposal pond operations. The computed chloride concentration at the end of one of the periods, 1956, is given in Figure 15. This compares well with that observed given in Figure 12. A comparison of observed and computed chloride concentration patterns indicated that an effective porosity of 30 percent and longitudinal and transverse dispersivities of 100 feet (30 m) were best.

The problem was simulated for a 30 -year period, 1943 to 1972, and numerous comparisons of chloride distributions are given in the original reference.

Prediction

During the history-match portion of this study, leakage from pond C was found to be relatively important in flushing pollution out of the aquifer. To further assess this leakage, two simulations were made over the time period 1972-1980. In the first simulation, pond C was represented as full of fresh water; the compured
chloride concentrations for this case are shown in Figure 16. For the second simulation, recharge of fresh water from pond C was kept to a minimum; the computed chloride concentrations for this case are shown in Figure 17. With artificial recharge, only one small area north of the Arsenal would contain chloride concentrations between 200 and $500 \mathrm{mg} / 1$; for the second case, there are two relatively large areas of contamination.

Possible changes in water management in the area were also considered. These might, for example, involve maintaining withdrawal wells along parts of the northern boundary to intercept the contaminated ground water. To demonstrate the value of a solute-transport model as a planning tool, two sinks were incorporated into the model and their steady-state effects on the chloride concentrations were evaluated. Assuming the wells begin operating in 1968 and that pond C remains full after 1968 results in the computed chloride concentrations in Figure 18. Intercept wells would only slightly increase the rate of waterquality improvement between 1968 and 1980 in the area between the source and the sinks. Also

Fig. 16. Chloride concentration predicted for 1980 , assuming that pond C is filled with fresh water during 1972-80 (from Konikow, 1977).

Fig. 15. Computed chloride concentration, 1956 (from Konikow, 1977).

Fig. 17. Chloride concentration predicted for 1980 , assuming that recharge from pond C is minimal during 1961.80 (from Konikow, 1977).
note that the intercept wells should be placed further downgradient to effect a more thorough cleanup.

According to Konikow,
"Analysis of the simulation resules indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water."

Discussion

As with the example for Musquodoboit Harbour, the Rocky Mountain Arsenal example illustrates the presence of some subjective aspects in model applications. In addition, this example shows the additional complexity typical of solute transport problems. The additional complexity leads to some practical considerations: (1) input data determination, preparation, and evaluation are more difficult; (2) some data are likely to be missing for both model and input and for history

Fig. 18. Chloride concentration predicted for 1980, assuming that artificial recharge from pond C is coupled with drainage through two hydraulic sinks (from Konikow, 1977).
matching; and (3) some assumptions based on qualitative arguments are necessary.

In this example, additional data were needed

- for dispersion coefficients, effective porosity, initial and observed concentrations, and recharge from the disposal ponds and from irrigation. Insufficient data made calibration of transient ground-water flow not possible, so four steadystate flow periods were assumed. Comparisons with observed and computed chloride concentrations were made to determine the "best fit" values of dispersion coefficients and porosity.

Konikow also concluded that the stringent data requirements for applying the solute-transport model pointed out deficiencies in data existing at the start of the investigation. The subsequent analysis and reinterpretation of hydrogeologic and chemical data led to a revised and improved conceptual model of flow and contaminant transport in the alluvium.

The conclusions and predictions based on model results, though quantitatively nonunique, provided a great deal of qualitative insight into reclamation alternatives. In this particular situation, the relative merits of the various proposed remedial measures would have been extremely difficult to assess without the use of a model (also see Warner, 1979).

DATA-COLLECTION DESIGN EXAMPLE

In practice, models have been applied generally to field problems after data have been collected. However, models also can be used to help in data collection. In this example, we consider the use of a model to help design two-well tracer rests in a relatively porous limestone. Results from the tracer tests will be used to determine field dispersivity values for subsequent solute transport studies.

Problem

Denmark is presently undertaking a drilling program to evaluate the potential for storage of radioactive waste in salt domes. In particular, the focus is on data collection in order to more fully evaluate the geology and safety of such storage for two potential dome sites. The hydrological data collected at the sites will play a major role in the final evaluation.

As part of this study, a need for the field dispersivities that characterize the carbonate strata overlying the salt domes was identified. To determine these values, a conventional two-well tracer test will be used. This test involves injecting
water containing a nonreacting tracer in one well while withdrawing water from the second well, both having the same constant volumerric flow rate. The tracer concentration is measured in the withdrawal well as a function of time. This data can be analyzed to determine dispersivity values.

Because little data are available on the hydrologic properties at these sites, several questions were raised about the test design. Among the most important were:

1. What range of pumping rates is necessary?
2. What range of well spacing is adequate?
3. How long should the test take? and
4. Are three-dimensional effects important?

Hydrogeology

Other than a generalized stratigraphy, little of the hydrology of the test site is known, especially for the deeper units. In descending order, the units consist of: (1) an upper aquifer system of Quaternary and Miocene age composed of clay, till, sand and gravel, totalling about 200 m in thickness; (2) Tertiary clays having a low permeability and a thickness ranging from 200 to 400 m ; (3) a lower aquifer system consisting of Paleocene and Cretaceous limestone and chalks with a thickness ranging between 200 and 500 m ; and (4) a Precretaceous cap rock for the salt dome, having a low permeability. Based on this description, the lower aquifer system is considered to be confined, with fluid pressures slightly in excess of hydrostatic.

Analysis

To help answer the design questions discussed earlier, two models were used. The first model is an analytical solution for quasi-steady-state flow between a recharging-discharging well pair for partially penetrating wells in three dimensions (Hantush, 1961). The second model is based on finite-difference approximations to the groundwater flow and solute transport equations in three dimensions (INTERCOMP, 1976).

In order to use either of these models, it is necessary to estimate probable ranges of pertinent hydrologic parameters. Based on values obtained at other locations for units similar to the lower limestone aquifer system, the ranges in Table 1 are assumed. The well field consists of two wells with equal open intervals at the top of the aquifer (assumed to be 200 meters thick). Major design variables include injection flow rate,

Table 1.

Parameter or Design Variable	Range
hydraulic conductivity	$1.0 \times 10^{-4} \cdot 1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
porosity	$0.08-0.32$
horizontal to vertical	$100.0-1.0$
\quad anistropy	
longitudinal dispersivity	$5.0-40.0 \mathrm{~m}$
injection flow rate	$1.61 \times 10^{-3} \cdot 1.61 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}$
length of open interval	$10-20 \mathrm{~m}$
well spacing	20.40 m

length of the open interval and well spacing, which are also included in Table 1.

With the major hydrologic and design parameters estimated, a sensitivity analysis was performed, which involved both models. The main purpose of the analytical model was to estimate the length of time to run the test. In a standard tracer test, three injection periods occur: (1) injection at a constant flow tate with no tracer until quasi-steady state is achieved between the two wells, (2) continued injection at the same flow rate, but now introducing the tracer-the slug period, and (3) continued injection, now with the tracer eliminated. This procedure produces a concentration breakthrough curve at the withdrawal well that looks like an asymmetrical bell (see Figure 19). The shape of this curve is used to estimate dispersivity. In designing a tracer test, a common practice is to end the slug period when the tracer is first encountered in the withdrawal well. The analytical solution provides an estimate of when this occurs, if dispersion is neglected. The analytical results show that for a horizontal to vertical anisotropy ratio of 100 or

Fig. 19. Concentration breakthrough curves for the two-well tracer test at the withdrawal well, for different values of longitudinal dispersivity, $\alpha \ell$. Transverse dispersivities are one-tenth as large as the longitudinal values for each case. Other data include: slug period, 4.63 days; porosity, 0.2 ; hydraulic conductivity, $1.0 \times 10^{-5} \mathrm{~m} / \mathrm{s}$; well spacing, 40 m ; open interval, 20 m ; and pumping rate, $1.61 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}$.

Fig. 20. Concentration breakthrough curves for different ratios of horizontal to vertical hydraulic conductivity, $\mathbf{k}_{\mathbf{p}} / \mathbf{k}_{\mathbf{z}}$. Longitudinal dispersion is 10 m ; aquifer thickness is $\mathbf{1 4 0} \mathrm{m}$; all other data are the same as that given in Figure 19. Note that the three-dimensional results for partially penetrating wells approach the two-dimensional results as the anisotropy ratio increases.
larger, three-dimensional effects are not significant (see Figure 20). For isotropic conditions, results show the slug period is generally twice as long as for the corresponding anisotropic case.

In addition to providing the duration of the slug period, the analytical solution also determines the injection (and pumping) rate for the solute transport model. The injection rate was calculated assuming a head difference between wells of 160 m . If the injection rate required to sustain this difference exceeded $0.0161 \mathrm{~m}^{3} / \mathrm{s}$ (about 360,000 gpd), then $0.0161 \mathrm{~m}^{3} / \mathrm{s}$ was still used. With these data and injection constraints, sensitivity analysis using a two-dimensional, areal transport model was performed to assess the influence of porosity, dispersivity, and well spacing. To evaluate the importance of three-dimensional effects, a threedimensional transport model was used in conjunction with different ratios of anisotropy. Some results from the sensitivity analysis are shown in Figures 19 through 22.

Fig. 21. Concentration breakthrough curves for different values of porosity, ϕ. Longitudinal dispersivity is 10 m ; all other data are the same as that given for Figure 19.

Discussion

In this final example, models are used before data are collecred to provide insight into system behavior. The relative importance of the various hydrologic and design parameters were assessed and used to guide data collection. Conclusions (somewhat oversimplified here) of this study include: (1) For a given well spacing and head differential in the wells, the duration of the test will be related inversely to hydraulic conductivity and directly to porosity; (2) The major design criteria affecting the duration of the test are well spacing and head differential between the wells, which are related directly and inversely to the duration of the test; (3) Based on the range of possible hydrologic data and design criteria for the site, a single injection test may require from less than one month to two years to obtain sufficient

Fig. 22. Concentration breakthrough curves for two well spacings. Slug periods were 10.4 and 46.3 days with purnping rates of 1.80×10^{-3} and $1.61 \times 10^{-3} \mathrm{~m} / \mathrm{s}$ for spacings of 20 and 40 m , respectively. Other data include: hydraulic conductivity, $1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}$; porosity, 0.2; open interval, 20 m ; and anisotropy ratio, 100.
information about the system; (4) If the hydraulic conductivity of the aquifer is low, a small well spacing will be required in order to conduct the test in a reasonable amount of time; (5) The time required to reach a quasi-steady flow between wells will be short in comparison to the duration of the test; (6) Tests can be designed for a moderate injection rate of less than $1,500 \mathrm{~m}^{3} / \mathrm{day}$; and (7) Analysis of the field-test data can use a two-dimensional model if the anisotropy ratio is greater than 100; otherwise a three-dimensional model may be required.

Consideration of the model results led to recommendations, that are not presented in this article, on both test design and well drilling. As an example, it was recommended that single-well flow tests be performed on the first well before drilling the second. The resulting information would be useful in selecting appropriate well spacing for the next well.

This type of sensitivity analysis employing models may be used for other data collection programs. For example, model results could be used to guide the placement of monitor wells to help insure their success in detecting the possible movement of contaminants from disposal sites.

Abstract

SUMMARY The effective application of ground-water flow models involves several interrelated areas: model selection (need), computer program use, sensitivity analysis, system conceptualization, data collection design, history matching calibration and prediction. The use of models cannot be considered a step-by-step procedure. Actually, it is an iterative process to which one never achieves a fully satisfactory conclusion. The reason for this is that when dealing with real systems, a model is never exact and complete data are never available. Consequently, considerable scientific judgement of a subjective or intuitive nature is necessary for any degree of success. For transport problems, the need for subjective judgement is greater than with ground-water flow.

ACKNOWLEDGMENTS

This effort was supported by the Holcomb Research Institute, Bucler University, which is, in part, supported by EPA grant R-803713. The authors also wish to acknowledge the National Water Well Association's contribution for drafting, editing and publication. The authors wish to thank ELSAM, Denmark for granting permission to discuss the data-collection design example. We
also appreciate the critical review provided by Lenny Konikow.

REFERENCES

Anderson, M. P. 1979. Using models to simulate the movement of contaminancs through ground-water flow systerns. Critical Reviews in Environmental Control, v. 9, issue 2, pp. 97-156.
Hantush, M. S. 1961. Drawdown around a partially penetrating well. Proc. Am. Soc. Civil Engrs. 87, HY4, pp. 83-98.
INTERCOMP. 1976. A model for calculating effects of liquid waste disposal in deep saline aquifers. U.S. Geol. Survey Water-Resources Inv. 76-61.
Jacob, C. E. 1950. Flow of groundwater. p. 346. In Engineering Hydraulics, edited by H. Rouse. New York, John Wiley and Sons.
Konikow, L. F. 1977. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado. U.S. Geol. Survey Water-Supply Paper 2044, 43 pp .
Mercer, J. W. and C. R. Faust. 1979. A review of numerical simulation of hydrothermal systems. Hydrological Sciences Bulletin. 24 (3), pp. 335-343.
Narasimhan, T. N., and P. A. Witherspoon. 1977. Recent developments in modeling groundwater systems. Presented at the IBM Seminar on Regional Groundwater Hydrology and Modeling, Venice, Italy, May 25-26, 1976, 35 pp.
Pinder, G. F., and J. D. Bredehoefr. 1968. Application of the digital computer for aquifer evaluation. Water Resour. Res. v. 4, no. 5, pp. 1069-1093.
Pinder, G. F., and E. O. Frind. 1972. Application of Galerkin's procedure to aquifer analysis. Water Resour. Res. v. 8, no. 1, pp. 108-120.
Prickett, T. A. 1975. Modeling rechniques for ground-warer evaluation. In Advances in Hydroscience. V. T. Chow, (ed.). Academic Press, New York. pp. 1-145.
Warner, J. W. 1979. Digital-transport model study of Diisopropylmechylphosphonate (DIMP) ground-water conramination at the Rocky Mountain Arsenal, Colorado. U.S. Geol. Survey Open-File Report 79-676. 39 pp.

James W. Mercer attended Florida State University and University of Illinois, where be received bis Ph.D. in Geology in 1973. Prior to graduation, be worked for Exxon Oil Corporation and the Desert Research Institute, University of Nevada. Most recently, be worked for the U.S. Geological Survey, and is currently President of GeoTrans, Inc. Dr. Mercer has taught ground-water modeling at the U.S.G.S. and at George Washington University. He bas also coauthored several articles on modeling transport problems in ground water.

Cbarles R. Faust received his B.S. and Pb.D. in Geology from Pennsylvania State University in 1967 and 1976. Until recently, be was a Hydrologist with the Water Resources Division, U.S. Geological Survey. His interests there involved tbermal pollution in rivers, geothermal reservoir simulation, and fluid flow in fractured rocks. Presently be is a principal with GeoTrans, Inc., where be is interested in quantitative evaluation of bazardous waste and radionuclide migration in fractured rocks.

Microcomputer Model of Artificial Recharge Using Glover's Solution

by D. Molden, D. K. Sunada, and J. W. Warner ${ }^{\text {a }}$

Abstract

An interactive program written for an APPLE II + +8 K computer is presented which solves Glover's (1960) analytical solution for recharge from a rectangular basin. The program is capable of graphically displaying the rise and decline of the recharge mound for either an infinite homogeneous medium or for a stream aquifer system.

INTRODUCTION

Advances in technology are rapidly increasing the speed and storage capabilities of microcomputers, enabling them to perform more tasks that were previously reserved for main frame computers. But, unlike the many programs available for main frame computers, at present there are relatively few ground-water programs available for microcomputers. The program presented here is a model of artificial recharge, written in BASIC for use on the APPLE II +48 K microcomputer (APPLE II + is a trademark of APPLE computer). Glover's (1960) solution for a rectangular basin with a constant recharge rate and the principle of superposition are used to model the growth and decline of a recharge mound in the cases of an infinite, homogeneous aquifer and for a stream aquifer system. The model can also be used to calculate discharge from the recharge basin into a stream for various times. The results of the model are displayed both graphically and numerically. The program is interactive, allowing for easy data input and program execution.

Analytical solutions have been derived for the problem of artificial recharge from circular and rectangular recharge basins and for various assumed initial and boundary conditions (Baumann, 1952; Glover, 1960; Hantush, 1967; Hunt. 1971; Rao and Sarma, 1981). Most of these analytical solutions have not been used extensively by practicing hydrologists because the solutions often involve

[^21]complex integrals which are poorly behaved and difficult to evaluate (Sunada et al., 1982). Handheld programmable calculators are capable of solving many simple problems, such as those involving the well function. However, the analytical solutions for artificial recharge are typically too complex and impractical to solve on handheld calculators. Conventional solution of the artificial recharge problem on large main frame computers has been by numerical methods, such as finite-difference and finite-element methods. The microcomputer is ideally suited to solve many types of problems, such as that of artificial recharge, which do not require the enormous capabilities of the main frame computer. The advent of the microcomputer has added greater importance and usefulness of many analytical solutions, such as that for artificial recharge. The increasing capabilities of microcomputers coupled with their increasing personal availability, primarily due to their decreasing cost, are destined to make the microcomputer an indispensable tool of the hydrologist.

MATHEMATICAL BASIS OF RECHARGE FROM RECTANGULAR SOURCES

Glover's (1960) solution for constant recharge from a rectangular basin (Figure 1) has the form

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{Rt}}{4 S} \int_{0}^{1}\left(\operatorname{erf} \frac{\mathrm{u}_{2}}{\sqrt{\tau}}-\operatorname{erf} \frac{\mathrm{u}_{1}}{\sqrt{\tau}}\right)\left(\operatorname{erf} \frac{\mathrm{u}_{4}}{\sqrt{\tau}}-\operatorname{erf} \frac{\mathrm{u}_{3}}{\sqrt{\tau}}\right) \mathrm{d} \tau \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
u_{1}=\left(\frac{x-W / 2}{4 T / S t}\right) & u_{2}=\left(\frac{x+W / 2}{4 T / S t}\right) \\
u_{3}=\left(\frac{y-L / 2}{4 T / S t}\right) & u_{4}=\left(\frac{y+L / 2}{4 T / S t}\right)
\end{array}
$$

and
$\mathrm{H}=$ mound height (L),
$\mathrm{R}=$ recharge rate (L / T),
$\mathrm{S} \quad=$ storage coefficient (dimensionless),
$\mathrm{T}=$ transmissivity ($\mathrm{L}^{2} / \mathrm{T}$),

Fig. 1. Definition sketch of artificial recharge from a rectangular basin.

$$
\begin{aligned}
\mathrm{W} & =\text { basin width }(\mathrm{L}), \\
\mathrm{L} & =\text { basin length }(\mathrm{L}), \\
\mathrm{x}, \mathrm{y} & =\text { Cartesian coordinates }(\mathrm{L}), \\
\mathrm{t} & =\text { time }(\mathrm{T}), \\
\tau & =\text { dummy variable of integration, } \\
\operatorname{erf}(\mathrm{u}) & =\text { error function. }
\end{aligned}
$$

Glover's solution is for a homogeneous, isotropic unconfined aquifer with constant recharge and an initially horizontal water table. For Glover's solution to be valid, the mound rise should be small compared to the initial saturated thickness of the aquifer.

To utilize Glover's solution it is necessary to evaluate the integral in equation (1). This integral is difficult to solve which is a major reason why Glover's solution is not used more extensively by practicing hydrologists. Both Simpson's rule in 10 steps and Gaussian Quadrature with up to 20 points (Abramowitz and Stegun, 1972) were tried to solve equation (1) directly, but neither method gave completely satisfactory results over a large range of data inputs. In evaluating Glover's solution, Simpson's rule applied directly to equation (1) gave the least satisfactory solution. Gaussian Quadrature applied directly to equation (1) gave satisfactory answers in most but not all cases that were simulated.

Hantush (1967) provides a better means of evaluating equation (1) by integration by parts. Performing the multiplication indicated in equation (1), Glover's solution is written as

$$
\begin{align*}
\mathrm{H} & =\frac{\mathrm{Rt}}{4 \mathrm{~S}}\left[\int_{0}^{1} \operatorname{erf} \frac{\mathrm{u}_{2}}{\sqrt{\tau}} \operatorname{erf} \frac{\mathrm{u}_{4}}{\sqrt{\tau}} \mathrm{~d} \tau-\int_{0}^{1} \operatorname{erf} \frac{\mathrm{u}_{2}}{\sqrt{\tau \tau}} \operatorname{erf} \frac{\mathrm{u}_{3}}{\sqrt{\tau}} \mathrm{~d} \tau\right. \\
& \left.-\int_{0}^{1} \operatorname{erf} \frac{\mathrm{u}_{1}}{\sqrt{ } \tau} \operatorname{erf} \frac{\mathrm{u}_{4}}{\sqrt{\tau}} \mathrm{~d} \tau+\int_{0}^{1} \operatorname{erf} \frac{\mathrm{u}_{1}}{\sqrt{\tau}} \operatorname{erf} \frac{\mathrm{u}_{3}}{\sqrt{\tau}} \mathrm{~d} \tau\right] . \tag{2}
\end{align*}
$$

Hantush shows that the integrals in equation (2) can be evaluated as

$$
\begin{align*}
& \int_{0}^{1} \operatorname{erf} \frac{u_{i}}{\sqrt{\tau}} \operatorname{erf} \frac{u_{j}}{\sqrt{\tau}} d \tau= \\
& \quad \operatorname{erf}\left(u_{i}\right) \operatorname{erf}\left(u_{j}\right)+(4 / \pi) u_{i} u_{j} W\left(u_{i}^{2}+u_{j}^{2}\right) \\
& \quad+(2 / \sqrt{\pi})\left[u_{i} e^{-u_{i}^{2}} \operatorname{erf}\left(u_{j}\right)+u_{j} e^{-u_{j}^{2}} \operatorname{erf}\left(u_{i}\right)\right] \\
& \quad-2\left[u_{i}^{2} M^{*}\left(u_{i}, u_{j}\right)+u_{j}^{2} M^{*}\left(u_{j}, u_{i}\right)\right] \tag{3}
\end{align*}
$$

where

$$
\begin{gather*}
M^{*}\left(u_{i}, u_{j}\right)=\frac{u_{j}}{\pi u_{i}} \int_{-1}^{1} \frac{\exp \left[-u_{i}^{2}\left(1+r^{2}\right)\right]}{1+r^{2}} d v \tag{4}\\
\tau=(v+1) \frac{u_{j}}{2 u_{i}} \tag{5}
\end{gather*}
$$

and $W(u)=$ well function.
For implementation of equation (2) on the microcomputer, expressions for the error function and well function are used and the integral in the function .l* is numerically evaluated by Gaussian Quadrature. In the program the error function is evaluared by a polynomial approximation (Abramowitz and Stegun, 1972).

For $u \geqslant 0$. the error function is given by

$$
\begin{equation*}
\operatorname{erf}(u)=1-\left(e_{1} b+e_{2} b^{2}+e_{3} b^{3}+e_{4} b^{4}+e_{5} b^{5}\right) e^{-u^{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{array}{ll}
b=1 /(1+p u) & e_{4}=-1.453152027 \\
e_{1}=.25+829592 & e_{5}=1.06140543 \\
e_{2}=-.284496736 & p=.3275911 \\
e_{3}=1.421413741 &
\end{array}
$$

and $\operatorname{erf}(-u)=-\operatorname{erf}(u)$. The error in equation (6) is in the order of 10^{-7}.

The well function is found by approximations given by. Huntoon (1980) and Abramowitz and Stegun (1972). For values of $u \leqslant 1$, the program uses

$$
\begin{equation*}
W(u)=a_{0}-\ln (u)+a_{1} u+a_{2} u^{2}+a_{3} u^{3}+a_{4} u^{4}+a_{5} u^{5} \tag{7}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{0}=-.57721566 & a_{3}=.05519968 \\
a_{1}=.99999193 & a_{4}=-.00976004 \\
a_{2}=-.24991055 & a_{5}=.00107857
\end{array}
$$

For values of $1 \leqslant u \leqslant \infty$, the program uses

$$
\begin{equation*}
W(u)=\frac{1}{u \exp (u)} \frac{u^{4}+b_{1} u^{3}+b_{2} u^{2}+b_{3} u+b_{4}}{u_{4}+c_{1} u^{3}+c_{2} u^{2}+c_{3} u+c_{4}} \tag{8}
\end{equation*}
$$

where

$$
\begin{array}{ll}
b_{1}=8.57332874 & c_{1}=9.57332235 \\
b_{2}=18.0590170 & c_{2}=25.6329561 \\
b_{3}=8.63476089 & c_{3}=21.0996531 \\
b_{4}=.267773734 & c_{4}=3.95849692
\end{array}
$$

In the program the integral in M^{*} is evaluated using six-point Gaussian Quadrature given by

$$
\begin{equation*}
M^{*}\left(u_{i}, u_{j}\right)=\frac{u_{j}}{\pi u_{i}} \sum_{k=1}^{6} \frac{\exp \left[-u_{i}^{2}\left(1+r^{2}\right)\right]}{1+r^{2}} \cdot v_{k} \tag{9}
\end{equation*}
$$

where
$\tau \quad=\left(A_{k}+1\right) \frac{u_{j}}{2 u_{i}}$,
$A_{k}=$ abscissas of Guassian Quadrature,
$V_{k}=$ weights of Guassian Quadrature.
The abscissas and weights are

$$
\begin{array}{ll}
A_{1}=-A_{6}=0.238619186 & V_{1}=V_{6}=0.467913935 \\
A_{2}=-A_{5}=0.661209386 & V_{7}=V_{5}=0.360761573 \\
A_{3}=-A_{4}=0.932469514 & V_{3}=V_{6}=0.171324492
\end{array}
$$

USE OF SUPERPOSITION

The principle of superposition (McWhorter and Sunada, 1977) is used to obtain additional solutions for the case of a finite aquifer or for the case of a variable recharge rate. Superposition in time is used to calculate the decline of the recharge mound after recharge is stopped. With a stream in the vicinity, superposition in space is used to calculate mound profile and discharge to the stream with time.

At the end of the recharge period an image basin at the same location as the real basin begins withdrawal (negative recharge) while the real basin continues to recharge. The mound height due to the real basin is added to the drawdown due to the discharging image basin to give the actual mound height:

Fig, 2. Definition sketch of the use of superposition when a stream is in the vicinity ($x_{r}=$ real \times coordinate; $x_{i}=$ image x coordinate).

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{r}}+\mathrm{H}_{\mathrm{it}} \tag{11}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
\mathrm{H}_{\mathrm{r}}= & \text { mound height contribution from the real } \\
& \text { basin, }
\end{array}\right\}
$$

If a stream is in the vicinity, an image discharging basin is set up on the opposite side of the stream equidistant from the real basin (Figure 2). The drawdown from the image basin is superimposed onto the mound height contribution from the real basin to give the actual mound height

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{r}}+\mathrm{H}_{\mathrm{is}} \tag{12}
\end{equation*}
$$

where
$H_{\text {is }}=$ drawdown contribution from the image basin superimposed in space.
If the end of the recharge period has been reached and a stream is in the vicinity, an image basin at the same location as the real basin begins discharging and another image basin at the same location as the image basin opposite the stream begins recharging. The mound height at a selected location is given by

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{r}}+\mathrm{H}_{\mathrm{is}}+\mathrm{H}_{\mathrm{ir}}+\mathrm{H}_{\mathrm{its}} \tag{13}
\end{equation*}
$$

where
$\mathrm{H}_{\text {its }}=$ mound height contribution from the image basin superimposed in time and space.

DISCHARGE TO THE STREAM

The integral equation for flow to a stream is (McWhorter and Sunada, 1977)

$$
\begin{equation*}
Q_{T}=\int_{-\infty}^{\infty}\left(T \frac{\partial H}{\partial x}\right) d y \tag{14}
\end{equation*}
$$

where
$Q_{T}=$ total discharge to the stream $\left(\mathrm{L}^{3} / \mathrm{T}\right)$.
The integral is evaluated numerically by computing the integrand at selected intervals along the stream and integrating the distribution by the method of trapezoids. The numerical evaluation yields the expression for discharge

$$
\begin{equation*}
Q_{T}=2 \sum_{i=1}^{n} \frac{\left[(T \partial H / \partial x)_{i-1}+(T \partial H / \partial x)_{i}\right] \Delta y_{i}}{2} \tag{15}
\end{equation*}
$$

where
$\Delta y_{i}=$ the interval between points $\mathrm{i} \cdot 1$ and i along the length of the stream,
$n \quad=$ number of locations that stream discharge per unit length was calculated.

The value of n is selected by the program so that the discharge between locations $n-1$ and n is less than 0.1% of the total discharge calculated up to location n. The quantity $\partial H / \partial x$ is approximated by computing the mound height at 1 foot away from the stream denoted by H^{\prime}. Because the head at the stream is constant and known (selected to be zero in this case) the discharge is approximated by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{T}}=\mathrm{T}{\underset{\mathrm{i}}{\mathrm{=}} \mathrm{n}}_{\mathrm{n}}\left[\mathrm{H}_{\mathrm{i}-1}^{\mathrm{l}}+\mathrm{H}_{\mathrm{i}}^{\mathrm{l}}\right] \Delta \mathrm{y}_{\mathrm{i}} \tag{16}
\end{equation*}
$$

Figure 3 is a plot of discharge to the stream vs. time, with values obtained from the program using the data in Figure 5.

PROGRAM DESCRIPTION

Taking full advantage of the capabilities of the microcomputer, this interactive program is written to be self-explanatory and easy to use. The graphics are employed for quick visual study. An example run is described to demonstrate the flow of the program. The figures represent what would be shown on the screen.

Fig. 3. Discharge to the stream vs. time.

The program can be easily operated by persons with very little knowledge of computers, yet many advantages of computer use are available. The program works by a "turn key" system; that is, the disk containing the program is inserted, the computer turned on and the program execution begins. The user is prompted at each step, often with a variety of options. Data are easily entered or changed; results are quickly obtained and readily compared.

When starting the program, a menu presents the user with selection of model options (Figure 4). For our example, option 1 is selected to model artificial recharge in an aquifer with a fully penetrating stream. The recharge parameters and their values are then displayed on the screen (Figure 5). To change a value, the number corresponding to the recharge parameter to be changed is input. The old value is displayed and the user asked to input a new value (Figure 6). The updared parameter list is again displayed and the process repeated until \emptyset is typed. The program then checks for any value which is out of range. A message will inform the user if there are any mistakes and appropriate values must be entered. With no mistakes, the program begins execution.

Fig. 4. Screen display. Model options: artificial recharge will be modeled with a stream in the vieinity.

In this example, both mound protile and discharge to the stream are calculated. As values for head are calculated at selected distance they are plotted on the graphics screen with the values of

Fig. 5. Screen display. Parameter display: the depth to water will be changed.

Fig. 6. Screen display. The depth to water is changed from 30 to 20 feet.

Fig. 7. Screen display. Mound profile at 30 days.
time, distance and mound height shown beneath the plot (Figure 7). Upon completion of the plor, the user is asked to type C to continue. The graphics screen is then cleared and discharge to the stream is calculated. The display gives the distance along the stream, the mound height at one foot away from the stream, and the discharge per unit length at that point as the points are calculated (Figure 8). When the discharge per unit length becomes negligible, the total discharge to the stream is given.

To reexamine and study the problem, the user is presented with a variety of output options (Figure 9). The "data display" option gives a list of the recharge parameters used. The "results display" tabulates the numerical values of the resuits. A hard copy of the data and results can be obtained with the "results printout" option. The graphics are quickly recreated by the "graphics display" option. Data and results can be stored on the disk

Fig. 8. Screen display. Discharge to the stream at 30 days.

options

1) Data display
2) Resutts drsplay
3) Graphics otsplay
4) results printout
5) CREATE FILE
6) ANOTHER RUN
7) EXIT
type the nember of your choice ;

Fig. 9. Screen display. Output options: create file is chosen to store data on the disk.

Fig. 10. Screen display. Read files: the file "no stream" is read from the disk.
with the "create file" option. The "another run" option allows the user to go back to the original model option, retaining all the present values of the recharge parameters. The "create files" option is chosen and the name given to the file is "stream."

Next, the "another run" option is chosen and the original recharge option appears (Figure 4). "Read files" is then selected and the name of the file to be read is entered (Figure 10). The previously made file "no stream" is read from the disk. This file has exactly the same recharge parameters as "stream" but simulates recharge in an infinite aquifer. After the file has been read, the list of output options again appears on the screen with the exception that "create file" has been changed to "read another file." Up to 10 files can be read and simultaneously stored in memory. "Read another tile" is chosen to read in the file "stream."

To compare the influence of a stream, the graphics will demonstrate any difference in mound profile. The "graphics display" option is chosen. The program has the capability of plotting several sets of points on the same graph enhancing comparison of solutions. "No stream" is chosen and plotted. The "graphics display" option is again chosen with "stream" to be plotted. The program asks if the same plot is to be used. In this manner, "stream" (dotted line) and "no stream" are plotted on the same graph (Figure 11). With a stream in the vicinity, the mound height is lower than an infinite aquifer and not symmetric around the center basin.

Glover (1960) also presents a solution for recharge from a circular basin using instantaneous slug injections. A comparison was made between the mound profile under a square basin using the
data of "no stream" and a circular basin of the same area (Figure 12). Using 250 instantaneous injections took over 100 times the execution time required by the rectangular basin program, yet gave approximately the same solution, showing that this program could also be used to simulate recharge from a circular basin.

DISCUSSION

To calculate one point on the recharge mound takes about 13 seconds in interpreted basic and 6 seconds in compiled basic. To get a good graphical representation of the recharge mound height, it is usually adequate to calculate abour 10 to 20 points, and total time of execution is usually only a few minutes. Memory requirements are not restrictive, as the program takes about 25 K bytes of random access memory leaving about 15 K bytes of memory for variables and 8 K bytes for graphics

Fig. 11. Screen display. "Stream" (dotted line) and "no stream" are plotted on the same graph.

Fig. 12. Square basin (solid line) vs. circular basin (dotted line). The solution for the circular basin almost completely overlaps the solution for a rectangular basin.
in a 48 K computer. The compiled version requires additional storage and will run on a 64 K computer.

A major problem faced by hydrologists is to reduce the complex mathematical equations used in the study of ground water into results that can be readily understood by lay persons interested in water. By making programs which are very "user friendly" and which make extensive use of graphics, the ground-water hydrologist is much better able to communicare with nontechnical water users. This program was developed as part of a demonstration of artificial recharge in the San Luis Valley, Colorado, in cooperation with several local irrigation districts. The graphics features of the microcomputer were well suited to describe the effects of artificial recharge to nontechnical water users.

Using the program, the effects of various recharge strategies can be quickly investigated. For example, the user can study the effects of changing basin geometry, changing recharge rates and changing duration of recharge. The effects of different soil characteristics and boundary conditions can also be easily studied. The comparison of results for different case studies is enhanced by the capability of the program to plot several different case studies on the same graph.

CONCLUSIONS

The advent of microcomputers has given ground-water hydrologists another choice of tools for problem solving. The microcomputer is well suited to solve many types of problems, such as that of artificial recharge, which do not require the enormous capabilities of the large main frame computer. By making programs which are very "user friendly" and which make extensive use of graphics, the ground-water hydrologist is much better able to give a clear understanding of his results to the nontechnical water user. The program presented in this paper is one example of a large number of problems which could be solved on a microcomputer.

ACKNOWLEDGMENTS

The authors would like to thank the Office of Water Resources Technology and the Colorado State University Experiment Station Project 1-51101 for funding this project.

NOTE
A program listing is available, and can be obtained by request to Ground Water. A floppy disk for the APPLE II + and documentation is
available at duplication and mailing cost (approximately $\$ 20$). Every effort has been made to provide an error-free program, but the authors do not take responsibility for any errors which may have been overlooked.

REFERENCES

Abramowitz, M. and 1. A. Stegun. 1972. Handbook of Marhematical Functions with Formulas, Graphs and Mathematical Tables. 8th ed., Dover Publications. Inc., New York, NY. 1046 pp.
Baumann. P. 1952. Groundwater movement controlled through spreading. Transactions, ASCE. v. 117, pp. 1024-1060.
Glover. R. E. 1960. Mathematical Derivations as Pertain to Groundwater Recharge. Agricultural Research Service, USDA, Ft. Collins, Colorado.
Hantush, M. S. 1967. Growth and decay of groundwater mounds in response to uniform percolation. Water Resources Research. v. 3. pp. 227-234.
Hunt, B. W. 1971. Vertical recharge of unconfined aquifers. Journal of Hydraulics Div., ASCE. v. 97, no. HY7. pp. 1017-1030.
Huntoon, P. W. 1980. Computationally efficient polynomial approximations used to program the Theis equation. Ground Water. v. 18, no. 2, pp. 134-136. March-April.
McWhorter, D. and D. K. Sunada. 1977. Ground Water Hydrology and Hydraulics. Water Resources Publications, Ft . Collins, Colorado. 290 pp.
Rao. N. H. and P.B.S. Sarma. 1981. Ground-water recharge from rectangular areas. Ground Water. v. 19, no. 3, pp. 270-274.

Sunada, D. K., J. W. Warner, and D. J. Moiden. 1983. Artificial Groundwater Recharge, San Luis Valley, Colorado. Colorado Water Resources Research Institure. Colorado State University, Ft. Collins, Colorado. Rep. No. 23.

David Molden is a graduate student in Civil Engineer. ing at Colorado State University. He received bis M.S. from Colorado State University in the ground-water program in 1982, and his B.S. from the University of Denver in 1977. He is presently a Pb.D. student at Colorado State University. He was a Peace Corps volunteer in Lesosho from 1977-1979.

Daniel K. Sunada is a Professor of Civil Engineering and leader of the ground-water program at Colorado State University. He has conducted research and written numerous papers and reports for the past 20 years. He bas taught courses in ground-water engineering, ground-water bydraulics, drainage, pumping plants and basic courses in engineering. He is coauthor of a texbook which is used in several universities. For the past six years be has been beavily involved in international water management.

James W. Warner is an Assistant Professor of Civil Engineering in the ground-water program at Colorado State University. Formerly be worked as a ground-water bydrologist with the U.S.G.S. He bas taught courses in ground water, ground-water modeling and basic engineering.

Mapping Recharge Areas Using a Ground-Water Flow Model - A Case Stụdy

by Mary W. Stoertz ${ }^{\text {a }}$ and Kenneth R. Bradbury ${ }^{\text {b }}$

Abstract

We have developed a merhod to calculate groundwater recharge rates using the mass-balance equation, watertable elevation data, estimates of hydraulic conducrivity, and aquifer thickness data, and have applied this merhod to produce a map of the recharge and discharge parterns for a ground-vater basin in central Wisconsin. This recharge mapping merhod is simplified using a modified computer program, the USGS Modular Groundwater Flow Model (McDonald and Harbaugh, 1984). The modeled recharge pattern compares favorably with a recharge map based on field observations. Because recharge rates are extremely sensicive to hydraulic conductivity, the magnitudes of the calculared rates are less reliable than the patrerns of recharge and discharge areas. However, introducing stream discharge data constrains the model to produce net recharge rates averaged over the basin which agree with estimates of the basin yield. Because the method is insensitive to the position of lateral boundaries, it can be used to map recharge over areas within basins that are not physically bounded. Recharge maps made with this merhod can be used to design ground-water monitoring networks and as frameworks for interpreting geochemical or potentiomerric data.

INTRODUCTION

Of the many factors which control a well's susceptibility to contamination from the surface, the areal distribution of recharge and discharge is one of the most difficult to measure or predict, often requiring installation of extensive networks of multilevel piezometers in which water levels are measured frequently (e.g., Faustini, 1985 ; Sophocleous and Perry, 1984, 1985 ; Rehm et al., 1982).

[^22]This paper describes a method for mapping recharge and discharge areas using an existing water-table map. Like Freeze's (1967) method of mapping recharge and discharge areas, vertical fluxes derived from Darcy's Law are contoured to produce a map. In applying Darcy's Law, however, Freeze (1967) determined the vertical hydraulic gradient with a three-dimensional mathematical model. In contrast, we obtain a water balance for each water-table cell by calculating fluxes between the water-table cell and its four adjacent cells. Heads specified for each cell determine the hydraulic gradients. The recharge or discharge rate is interpreted as the deficit or surplus in the water balance. Other studies of recharge that are similar in concept to this one have been presented by Stallman (1956), Tanaka and Hollowell (1966), Cooley et al. (1971), Weeks and Sorey (1973). and Lappala (1978).

We apply the method areally in two dimensions to a ground-water basin in Portage County, Wisconsin and verify the resulting recharge map by comparing it to a field-based recharge map of the same basin.

OVERVIEW OF THE METHOD APPLIED IN TWO DIMENSIONS

The recharge mapping merhod described here is based on the steady-state mass-balance equation, and is illustrated in Figure 1 for one-dimensional flow in a homogeneous aquifer. The flux Q between two adjacent cells is calculated by Darcy's Law, using observed heads h, hydraulic conductivities K, and aquifer thickness, all of which must be specified. Heads in cells are fixed, so the entire water table is represented as a specified-head surface. Cell D (Figure 1) loses more water to cell C than it gains from cell E, according to Darcy's Law which determines the flux between the constant-head cells; there is a net mass deficit for cell D . To maintain the observed head, h_{D}, water must be added as recharge, R_{D}. Similarly, vertical

Fig. 1. Schematic of the recharge mapping method.
discharge R_{B} from cell B will offset a mass surplus for cell B. To extend this schematic to two dimensions, the mass balance is calculated using the four cells adjacent to each water-table cell. Contouring the values of the recharge and discharge rates for each water-table cell produces a recharge/discharge map.

The USGS Modular Groundwater Flow Model (McDonald and Harbaugh, 1984) contains a pro-
cedure to calculate the mass budger for individual cells. The Appendix gives modifications of the model to include flows between specified-head cells in its cell-by-cell budget calculations.

APPLICATION TO CENTRAL WISCONSIN

The Buena Vista Groundwater Basin occupies an area of $170 \mathrm{mi}^{2}$ in central Wisconsin (Figure 2). The unconfined aquifer is composed of medium to coarse moderately sorted outwash sand, ranging in thickness from 50 to 150 ft with the depth to water from 5 to 60 ft . The aquifer is bounded below by igneous and metamorphic bedrock and in places by sandstone. The surface relief is about 150 ft , primarily due to the series of moraines forming the eastern no-flow boundary of the basin. The Wisconsin River bounds the basin on the west, and the northern and southern boundaries correspond to flowlines determined from a water-table map (Lippelt and Hennings, 1981). Comparison of seasonal water-table maps and a water-table map prepared from well-construction reports spanning several decades indicates that these flowline boundaries do not shift significantly (Blanchard and Bradbury, 1987). Faustini (1985) showed that

Fig. 2. Map of the Buena Vista Basin showing August 1984 field-observed water-table contours. Locations of water-level control points and surface drainage are shown, along with outline of the ditch subarea.

Table 1. Summary of Hydraulic Conductivity Values (in ft / s) as Determined by Various Methods

Method	Number of samples	$\begin{aligned} & \text { Lower endpoint Upper endpoint } \\ & \hline----95 \% \text { C. } L^{*}-------1 . \end{aligned}$		Geometric mean	Standard deviation of $\log (K)$
Aquifer pumping test	11	6.2×10^{-4}	1.3×10^{-2}	2.9×10^{-3}	0.98
Specific capacicy test	266	1.9×10^{-3}	2.2×10^{-3}	2.1×10^{-3}	0.25
Slug test	48	4.2×10^{-4}	1.2×10^{-3}	7.2×10^{-4}	0.79
Permeameter test	8	2.2×10^{-5}	8.2×10^{-3}	4.3×10^{-4}	1.53
Grain size analysis	71	8.9×10^{-4}	1.8×10^{-3}	1.2×10^{-3}	0.68

* The large 95% confidence intervals for pumping and permeameter tests are due to the small number of data points rather than scatter in the values.
the Buena Vista Groundwater Basin behaves as a closed basin with respect to ground water; i.e., ground water does not cross the boundaries except where it flows into the Wisconsin River. Detailed studies of the drainage ditches in the central basin (Faustini, 1985), corroborated by theoretical studies of these ditches as flow boundaries (Zheng and Anderson, 1985), show that local flow systems are well-developed within the basin.

Hydraulic Conductivity

Several hundred measurements of hydraulic conductivity have been made in the vicinity of the Buena Vista Groundwater Basin using pumping tests (Weeks, 1964, 1969; Holt, 1965; Weeks and Stangland, 1971 ; Karnauskas, 1977 ; Rothschild, 1982), specific capacity tests (Bradbury and Rothschild, 1985), slug tests (Allen, 1985),
permeameter tests (Stoertz, 1985), and grain-size analyses (Brownell, 1986). Although several hydrostratigraphic units are discernible (Brownell, 1986), the aquifer is generally homogeneous as indicated by the narrow confidence intervals for specific capacity tests, slug tests, and grain-size analyses (Table 1). We treat the aquifer as homogeneous and use the geometric mean of pumping test conductivities as an initial estimate of the hydraulic conductivity of the whole basin.

Water Table

Figure 2 shows the August 1984 water table (Faustini, 1985), measured over several days following a week without rain. Because vertical gradients were relatively stable and storage changes were small, we view this water-table map as a steady-state map corresponding to late summer

Fig. 3. Modeled map of recharge and discharge rates for the Buena Vista Basin, based on the August 1984 water-table map and a hydraulic conductivity value of $3.0 \mathrm{E} \cdot 3 \mathrm{ft} / \mathrm{sec}$. Basin outline (dashed) is the same as in Figure 2.

Fig. 4. Map of the ditch subarea showing water-table contours for July 2, 1984. Locations of water-level control points, gaging stations, and surface drainage are shown.
seasonal conditions. We argue that the water table in very permeable aquifers can be viewed as a series of quasi-steady-state profiles interrupted by briet periods of intense recharge. The primary influences on water-table profiles between recharge events are fairly steady fluxes, including a steady feeding of the aquifer from water traveling through the unsaturated zone in recharge areas, and a steady draining of the aquifer by evapotranspiration and ditch discharges. The resulting water table, while seasonal, is therefore fairly steady.

Model

The data just described, including boundary conditions, hydraulic conductivity, and water-table contiguration, were used with a modified version of the USGS Modular Groundwater Flow Model (McDonald and Harbaugh, 1984). Modifications are described in the Appendix. The basin was modeled on a 16 by 32 grid, and the resulting recharge/discharge map is shown in Figure 3.

Calibration to Streamflow

Because the method is based on Darcy's Law, the calculated flux between adjacent cells varies in direct proportion to the hydraulic conductivity which is inherently uncertain. Additional information about the flow system, such as measurements of fluxes (e.g., streamflow or pump discharges), must be used to constrain the hydraulic conductivity.

Faustini (1985) measured streamflow at eight gaging stations along Ditch 4 in the central basin, and one day later made a detailed water-table map of a subarea of the basin including Ditch + (Figure 4, also outlined in Figure 2). Ditch stages were used
in constructing the map and were assumed to be close to the underlying aquifer heads. The streamflow data allow calibration of hydraulic conductivity to streamflow but require a finer-meshed model of the ditch subarea (Figure 5) to give sufficient resolution to capture the details of the water-table map near the ditches. By applying the recharge/ discharge mapping method to the ditch subarea, we can compute the discharges from nodes along the ditches and then compare them to the fieldmeasured discharges for each segment of the ditch. Modeled and measured discharge gains between the upstream gage (Gage 8) and the downstream gage (Gage 1) for three different values of hydraulic conductivity are plotted in Figure 6. Stream sediments, aquatic vegetation, and local variations in

Fig. 5. Map of recharge and discharge rates for the ditch subarea based on the July 2, 1984 water-table map.

Fig. 6. Comparison of measured and modeled ditch discharges for the diteh subarea. Modeled discharges are shown for three hydraulic conductivity values.
hydraulic conductivity affect stream discharges, so the model cannot reproduce exactly the discharge increases. We nevertheless get an acceptable fit to the changes in ground-water discharge along the ditch using a value of K of $3 \times 10^{-3} \mathrm{ft} / \mathrm{sec}$ which agrees with the geometric mean of conductivities from pumping tests in the Buena Vista Basin (Table 1). Moreover, basin yield estimates using this hydraulic conductivity value agree with estimates from previous studies in the area. This estimate of hydraulic conductivity was used to prepare the map in Figure 3.

Field Verification

We verified the modeled recharge pattern (Figure 3) by comparing it to a field-based recharge map (Figure 7) prepared by Faustini (1985) using topography, piezometric patterns, seepage measurements in stream sediments, and water-table response to precipitation, as indicators of recharge. Faustini (1985) did not assign rates to his various recharge and discharge zones, but instead differentiated them on the basis of whether they were part of regional, intermediate, or local flow systems. It is therefore
possible to compare only the pattern and not the rates of recharge and discharge in Figures 3 and 7. In both figures, recharge occurs at the upper (eastern) end of the basin, and along the north and south flanks of the lower basin. Discharge occurs along streams and at the break in slope below the moraine in the east. The recharge patterns in the ditch area are poorly reproduced due to the large cell dimensions relative to the size of the ditches. The map for the ditch subarea (Figure 5) shows that with an appropriate discretization, the modeled discharge pattern near the ditches matches the field-measured pattern.

The model results are summarized in the first row of Table 2. Recharge areas cover 57.5% of the basin, and discharge areas cover 42.5% of the basin. Recharge rates averaged over recharge cells average $13 \mathrm{in} . / \mathrm{yr}$, while discharge rates (over only discharge cells) average $-17.6 \mathrm{in} . / \mathrm{yr}$. Because the system is assumed to be at steady state, the volume of recharge must equal the volume of discharge. Since recharge areas are larger than discharge areas, the rates are higher in discharge areas. While recharge areas will not always be larger than discharge areas

D, Primary discharge area.
O_{2} Local (or intermediate) discharge area.
Transitional between recharge and discharge.
R_{3} Recharge induced by a dam.
Recharge area for local (or intermediate) flow system.

Secondary recharge area associated with ground-
R_{2} water divide between streams tributary to the regional discharge stream.

R, Primary recharge area associated with a regional groundwater divide.

Fig. 7. Recharge map based on fieid observations (after Faustini, 1985, Plate 7).

Table 2. Comparison of Recharge and Discharge Rates and Areas, and Basin Yield, for Various Models

Model	K, ft/sec	Recharge area $-----\%$	Discharge area tal - - - -	Average recharge	Average discharge - - in./yr - - - -	Basin yield
8/84	3×10^{-3}	57.5	42.5	- 13.0	-17.6	7
8/84	2×10^{-3}	57.5	42.5	8.6	-11.7	5.0
Coarse	3×10^{-3}	57.4	42.6	8.0	-10.8	4.6
Fine	3×10^{-3}	54.5	45.5	24.1	-28.6	13.0
4/84	3×10^{-3}	57.2	42.8	15.9	-21.3	9.1
12/83	3×10^{-3}	56.3	43.7	13.1	-16.9	7.4
Ditch	3×10^{-3}	58.9	41.1	11.2	-21.0	6.6

Average recharge $=($ Toral recharge $) /($ Total recharge area $)$.
Average discharge $=($ Total discharge $) /($ Total discharge area $)$. Basin yield = (Total flux through system)/(Total area).
Total recharge $=$ Total discharge, at steady state.
(e.g., Freeze and Witherspoon, 1967, Figures 1c and 4a), Freeze and Cherry (1979, p. 197) observe that "discharge areas commonly constitute only $5-30 \%$ of the surface area of a watershed."

Two checks on these rates were used: first, net annual recharge rates cannot exceed precipitation ($31 \mathrm{in} . / \mathrm{yr}$ in Portage County), and should be considerably less because of evapotranspiration. In applying the method, however, calculated rates exceed precipitation at several cells. A high-recharge cell may be caused by a lens of low-conductivity material that was not detected in drilling and therefore not included in the model. Unexpectedly high rates may also be caused by interpolation errors in discretizing the water table.

A second check on the magnitudes of the mapped rates is to compare the net annual recharge for the entire model to the annual basin yield. The net annual recharge is calculated by dividing the recharge volume by the total model area. For a steady-state model, the volumerric recharge rate equals the volumetric discharge rate, so either can be used to calculate basin yield. Holt (1965) estimated that the annual discharge from streams in the region averages $10.3 \mathrm{in} . / \mathrm{yr}$, or 6.8 in ./yr during dry periods. The net annual recharge for this model is $7.45 \mathrm{in} . / \mathrm{yr}$ for August 1984. Because the August water table was measured during a relatively dry period, the calculated net recharge rate over the entire basin agrees with Holt's (1965) estimate of the basin yield.

SENSITIVITY ANALYSIS

We checked the method's sensitivity to discretization, hydraulic conductivity, and head by changing each of these in turn, and observing how the change affected the recharge pattern and rates.

Discretization

To test the sensitivity of the mapping method to cell spacing, we used three different discretizations, with nodal spacings of 0.25 to 0.5 miles ("fine" grid, not shown), 0.5 to 1.0 miles (Figure 3), and 1 to 2 miles ("coarse" grid, not shown). Comparing the basin yields for these three models (Table 2, last column) shows that cell spacing affects the modeled yields profoundly, raising the question of how one should choose the cell spacing. Ideally, one would continue refining the grid until changes between successive simulations become acceptably small. Like other hydrologic parameters, however, recharge appears to be scale-dependent: the apparent recharge for a basin increases as the cell spacing decreases. Local flow systems, which account for much of the recharge and discharge within a basin, occur at all scales, so by using a smaller cell spacing, one accounts for more local flow and hence more recharge. Where the cell spacing is larger than local flow path lengths, warer discharges in the same cell as it is recharged, resulting in zero net recharge. With increasing cell spacing, one overlooks increasing amounts of "intranodal flow" (Feinstein, 1986). At the limit net recharge is zero if a closed basin is viewed as a single cell, and net recharge should approach net infiltration if a fine cell spacing is used.

Increased recharge with small cell spacing can also be an artifact of the data collection and modeling. In detailed water-table maps constructed using geophysical methods, the water table is not artificially smoothed by interpolation between piezometers and can be quite irregular (Geoff Bohling, 1988, pers. comm.). If equally detailed hydraulic conductivity data are not available, calculated recharge rates may be unrealistically high because water-table irregularities arise from
both recharge and conductivity variation. We conclude that

1. Recharge may be scale-dependent. This idea could be tested using mathematical models.
2. The choice of cell spacing is constrained by data availability. If one wishes to equate recharge with basin yield, a cell spacing that captures the general water-table curvature is appropriate. In defense of this vague guideline, we are in much the same position as someone establishing guidelines for piezometer placement: in both cases, one wishes to avoid over-interpolation.

Hydraulic Conductivity

Changing the hydraulic conductivity for the entire basin does not affect the pattern of recharge and discharge, but rates are affected. In many hydrogeologic problems, recharge rates are of less interest than the distribution of recharge and discharge areas. In these problems it is not necessary to constrain the conductivity with flux measurements since the patterns are insensitive to the magnitude of hydraulic conductivity. Even in heterogeneous aquifers, only relative hydraulic conductivity values may be known, but the patterns will still be valid.

Hydraulic Head

Water-table maps for April 1984 and December 1983 were used to make seasonal recharge maps as a test of the method's sensitivity to head changes. Comparison of the April and August maps (not shown) indicates that local flow systems are developed or enhanced during the spring, especially in the central basin where the water table is shallow ($5-15 \mathrm{ft}$). The basin yield increases to 9.1 in ./yr during the spring (Table 2), and average recharge and discharge rates both increase by about 20%. Comparison of the December and August maps shows decreased activity of local flow systems during the winter, especially in the eastern basin where the water table is relatively deep ($30-60 \mathrm{ft}$). The basin yield, average recharge rate, and average discharge rate are similar to those of a dry season. Comparing all the seasonal maps, it is interesting that while fluxes nearly double, the percentage of the basin being recharged remains about the same, approximately 57%, and the general patterns of recharge and discharge are similar from season to season.

THREE-DIMENSIONAL ASPECTS

Modeling the inherently three-dimensional recharge process with a two-dimensional model seems paradoxical: the assumption of horizontal
flow is implicit in a two-dimensional areal model. but the flow of interest is the vertical component. We view recharge not as a vector, but as an addition of water to the aquifer. Provided the full thickness of the aquifer is modeled and the lower boundary is impermeable, recharged water effectively flows horizontally when moving toward discharge areas. Where vertical gradients are very large, however, the appropriate hydraulic heads to assign to nodes in a two-dimensional model are not water-table elevations, but averaged heads one would measure in an aquifer screened over its entire thickness.

In complex hydrogeologic settings, threedimensional models may be necessary. The recharge mapping method for three-dimensional models is similar to the method in two dimensions; the water table is fixed, as in the two-dimensional case, but the heads in the lower layers are calculated with the mathematical model. The flux is calculated between each water-table cell and five adjacent cells, including one below the cell of interest.

CONCLUSIONS

We have presented, demonstrated, and fieldchecked a method for making recharge maps that is readily available because it is adapted to the USGS Modular Groundwater Flow Model (McDonald and Harbaugh, 1984). The advantage of this method over field measurements of recharge is its dependence on data commonly available from well logs. The method must be used cautiously in the following cases:

1. If head data are widely spaced, the method may not have sufficient resolution to make management decisions about individual wells or properties.
2. Where hydrogeologic data are scarce, predicted recharge and discharge rates must be viewed with skepticism because there is a nonunique relationship between the recharge/discharge pattern and the shape of the water table.
3. If flow is strongly three-dimernsional, the method must be applied using a three-dimensional analysis.

Despite these limitations which apply to ground-water flow modeling in general, the method described here is a useful tool for aquifer management. The method can be used to assist field studies, decreasing costs by indicating areas where contaminants might be entering the flow system. The method also should be useful in interpreting concentration data for natural ions, environmental isotopes, and contaminants. The combination of horizontal flow vectors drawn from a water-table map and recharge patterns obtained from the
mapping method produces a pseudo-three-dimensional flow map. Such a map provides, at least roughly, the advective flow regime needed to interpret ground-water movement.

ACKNOWLEDGMENTS

This research was supporred by the Wisconsin Geological and Natural History Survey. Several graduate students at the University of WisconsinMadison contributed to the development of the method, including Doug Rumbaugh, Daniel Feinstein, and Chunmiao Zheng. Tom Osborne and Jim Krohelski provided helpful reviews.

APPENDIX

Modification of the USGS Modular Groundwater Flow Model (McDonald and Harbaugh, 1984) permits the user to calculate recharge to and discharge from a water table. This Appendix describes modifications of the computer code and how to apply the technique.

Code Modifications

Two-Dimensional Models

The example in this paper is a case where flow can be treated as two-dimensional (thin, extensive, permeable aquifer) in which case only one layer is used in the USGS model. Because the water table is specified, there are no active (IBOUND>0) cells, so the model's solution routines are not needed. Some computers require that the solution routines be skipped to avoid terminating the program. Execution goes directly to the budger calculations. The solution routines can be skipped by omitting the following 19 lines from MAIN (McDonald and Harbaugh, 1984, p. 50):
MAIN - Remove the following 10 lines:
DO $300 \mathrm{KPER}=1$,NPER
DO $200 \mathrm{KSTP}=1, \mathrm{NSTP}$
DO $100 \mathrm{KITER}=1$, MXITER
IF(UNTT(9).GT.0) CALL SIPIAP(.. .5 lines total...) IF(IUNTT(11).GT.0) CALL SORIAP(... 4 lines total...) IF(ICNVG.EQ.1) GO TO 110
100 CONTINUE
KITER=MXITER
110 CONTINUE
F(ICNVG.EQ.0) STOP
200 CONTINUE
300 CONTINUE
Because the model as originally written does not calculate flows between adjacent inactive (IBOUND.LE.0) cells, subroutine SBCF1F, which calculates flow from specified-head cells to active cells, must be modified to include flows between specified-head cells. Six lines require modification, as follows:
SBCF1F - In the following lines, change LE. to .EQ.:

In effect, the flux calculations will be skipped only for no-flow cells, not specified-head cells.

Three-Dimensional Models

Although this paper discusses recharge mapping for a single-layer two-dimensional model, the method is similar for creating a recharge map for the upper layer in a three-dimensional model. Because there are active cells in the layers below the water table, MAIN does not have to be modified as in the two-dimensional case. The changes to SBCF1F are the same as for the two-dimensional case.

Data Entry

Two packages are used: the block-centered flow package (BCF), and output control (OC). If the model is three-dimensional, either the strongly implicit procedure (SIP) or the slice-successive overrelaxation (SOR) package will be used as well.

Basic Package Input

The IBOUND array for the water-table layer will be filled with 0 's and -1 's. Set all the watertable cells to -1 , and cells outside the problem. domain to 0 . This makes the water table a specifiedhead surface. The observed heads are entered in the starting-head array (Shead). Head values for the center of each cell are obtained by interpolating between potentiometric contours, either by hand or with a computerized interpolation routine.

Block-Centered Flow Package Input

The simulation is treated as steady state (ISS $=1$). The cell-by-cell flow terms must be printed for each specified-head cell, so $1 \mathrm{CBCFL}=-1$.

Hydraulic conductivities values for each cell are read in array HY. Bedrock surface (aquifer bottom) elevations are read in array BOT.

Output Control Input

This package enables printing of cell-by-cell flow terms; they are not printed if the default output is used. ICBCFL $=1$ to print cell-by-cell flow terms.

Presentation

To contour the recharge and discharge rates, most contouring programs require an input file
containing the array dimensions (NROW,NCOL), the cell spacings (DELR(J),DELC(I)), and a listing of fluxes by row and column. Preparing such a file involves reformatting the USGS Model's ouput file.

REFERENCES

Allen, R. M. 1985. Slug test determination of hydraulic conductivity in the Central Sand Plain of Wisconsin. Wisconsin Geological and Natural History Survey, unpublished report.
Blanchard, M. and K. R. Bradbury. 1987. A comparison of office-derived versus field-derived water-table maps for a sandy unconfined aquifer. Ground Warer Monitoring Review. v. 7, no. 2, pp. 7+-78.
Bradbury, K. R. and E. R. Rothschild. 1985. A computerized technique for estimating the hydraulic conductivity of aquifers from specific capacity data. Ground Water. v. 23, no. 2, pp. 240-245.
Brownell, J. R. 1986. Stratigraphy of unlithified deposits in the Central Sand Plain of Wisconsin. University of Wisconsin, M.S. thesis. 172 Pp.
Cooley, R. L., J. W. Fordham, and J. A. Westphal. 1971. Hydrology of the Truckee Meadows, Nevada. Center for Water Resources Research, Desert Research Institute, University of Nevada System. Project Report No. 15. 49 pp.
Faustini, J. M. 1985. Delineation of groundwater flow patterns in a portion of the Central Sand Plain of Wisconsin. University of Wisconsin, M.S. thesis. 117 pp .
Feinstein, D. T. 1986. A three-dimensional model of flow to the sandstone aquifer in northeastern Wisconsin with discussion of contamination porential. University of Wisconsin, M.S. thesis. 240 pp.
Freeze, R. A. 1967. Quantitative interpretation of regional groundwater flow patterns as an aid to water balance studies. International Association of Scientific Hydrology, General Assembly of Berne. Publication 78. pp. 154-173.

Freeze, R. A. and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ. 604 pp.
Freeze, R. A. and P. A. Witherspoon. 1967. Theoretical analysis of groundwater flow: 2. Effect of watertable configuration and subsurface permeability variation. Water Resources Research. v. 3, pp. 623-634.
Holt, C.L.R., Jr. 1965. Geology and water resources of Portage County, Wisconsin. U.S. Geological Survey Water-Supply Paper 1796.77 pp .
Karnauskas, R. J. 1977. The hydrogeology of the Nepco Lake watershed in central Wisconsin with a discussion of management implications. University of Wisconsin, M.S. thesis. 249 pp.

Lappala, E. G. 1978. Quantitative hydrogeology of the Upper Republican Natural Resources Districe, southwest Nebraska. U.S. Geological Survey WaterResources Investigations 78-38. 200 pp .
Lippelt. I. D. and R. G. Hennings. 1981. Irrigable lands inventory-phase I. Groundwater and related information. Wisconsin Geological and Natural History Survey Miscellaneous Paper 81-1.
McDonald, M. G. and A. W. Harbaugh. 1984. A modular three-dimensional finite-difference ground-water flow
model. U.S. Geological Survey Open-File Report 83-875. 528 pp .
Rehm, B. W., G. H. Groenewold, and W. M. Peterson. 1982. Mechanisms, distribution and frequency of groundwater recharge in an upiand area of western North Dakora. North Dakora Geological Survey. Report of Investigation No. 75.72 pp .
Rothschild, E. R. 1982. Hydrogeology and contaminant transport modeling of the Central Sand Plain of Wisconsin. University of Wisconsin, M.S. thesis. 135 pp.
Sophocleous, M. and C. A. Perry. 1984. Experimental studies in natural groundwater-recharge dynamics. Assessment of recent advances in instrumentation. Journal of Hydrology, v. 70. pp. 369-382
Sophocleous, M. and C. A. Perry. 1985. Experimental studies in natural groundwater-recharge dynamics: the analysis of observed recharge events. Journal of Hydrology. v. 81. pp. 297-332.
Stallman, R. W. 1956. Numerical analysis of regional water levels to define aquifer hydrology. Transactions of the American Geophysical Union. v. 37, no. 4. pp. 451-460.
Stoertz, M. W. 1985. Evaluation of groundwater recharge in the Central Sand Plain of Wisconsin, University of Wisconsin, M.S. thesis. 159 pp .
Tanaka, H. H. and J. R. Hollowell. 1966. Hydrology of the alluvium of the Arkansas River, Muskogee, Oklahoma, to Fort Smith, Arkansas. U.S. Geological Survey Water-Supply Paper 1809-T. 42 pp.
Weeks, E. P. 1964. Use of water-level recession curves to derermine the hydraulic properties of glacial outwash in Porrage County, Wisconsin. U.S. Geological Survey Professional Paper 501-B. pp. 181-184.
Weeks, E. P. 1969. Determining the ratio of horizontal to vertical permeability by aquifer test analysis. Warer Resources Research. v. 5, no. 1, pp. 196-214.
Weeks, E. P. and M. L. Sorey. 1973. Use of finite-difference arrays of observation wells to estimate evapotranspiration from ground water in the Arkansas River Valley, Colorado. U.S. Geological Survey Water-Supply Paper 2029 C. 27 pp.
Weeks, E. P. and H. G. Stangland. 1971. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin. U.S. Geological Survey Open-File Report. 113 pp.

Zheng, C. and M. P. Anderson. 1985. Significance of streams as hydrogeological boundaries. EOS. v. 66. no. 46, p. 888.

Mary W. Stoertz received ber B.S. in Geology (1981) from the University of Washington and berM.S. in Hydrogeology (1985) from the University of Wisconsin-Madison, where she currently is working toward a Pb.D. in Hydrogeology and Civil Engineering. Her research areas include natural ground-water recharge, ground-water parame ter estimation, and measuring and modeling flow in the unsaturated zone.

Kenneth R. Bradbury received bis B.A. (1974) from Ohio Wesleyan University, bis A.M. (1977) from Indiana University, and bis Ph.D. (1982) from the University of Wisconsin-Madison. Currently a Research Hydrogeologist with the Wisconsin Geological and Natural History Survey, bis interests include ground-water field techniques, ground: water parameter estimation, and ground-water modeling.

COMPUTER NOTES

THREE-DIMENSIONAL, CROSSSEMIVARIOGRAM CALCULATIONS FOR HYDROGEOLOGICAL DATA

by Jonathan D. Istok ${ }^{\text {a }}$, Richard M. Cooper ${ }^{\text {b }}$, and Alan L. Flint ${ }^{\text {c }}$

Abstract

Geostatistics is a powerful tool for the analysis of hydrogeological data, but few well-documented computer programs for performing the necessary calculations have been presented in the technical literature. This is especially true for applications that require either three-dimensional or multivariate analyses. This paper describes a FORTRAN subroutine, VARIO, that can be used to compute experimental direct- and cross-semivariograms from a set of sample data, for any specified direction in one-, two-, or three-dimensional space. The subroutine combines into groups those sample pairs that fall within predetermined angular tolerances of the specified direction. The number of sample pairs used to compute the value of the experimental semivariogram at each value of separation can be specified in four different ways, depending on the nature of the available data. Written in FORTRAN 77, VARIO can be used on any computer that supports a FORTRAN 77 compiler. Source code listing, user instructions, and example input and output data for VARIO are presented.

Introduction

Whenever we make measurements at points distributed in space, we may refer to the quantity we are measuring as a regionalized variable. Some examples of regionalized variables in the field of hydrogeology are hydraulic conductivity, transmissivity, porosity, water-table elevation, groundwater temperature, and ground-water contaminant

[^23]concentrations. The term geostatistics refers to a set of statistical procedures (1) for describing the spatial correlation displayed by regionalized variables, and (2) for using theoretical models of this spatial correlation to obtain local and global estimates for regionalized variables over the sample space. Geostatistical procedures are proving to be useful for solving a variety of practical problems in hydrogeology including determining values of aquifer parameters for input into numerical models of ground-water flow and solute transport (Delhomme, 1976; Neuman and Yakowitz, 1980; Vauclin et al., 1983), mapping ground-water levels over large areas, and determining the severity of ground-water contamination at hazardous waste sites (Cooper and Istok, 1988a, b). Several reference texts are available that describe the theory of geostatistics (David, 1977 ; Journel and Huijbregts, 1978; Clark, 1979), but few well-documented computer programs have been presented in the technical literature. This is especially true for applications that require three-dimensional or multivariate analyses.

Essential to a geostatistical analysis ate directand cross-semivariograms (defined in the Theory section). In the case of one- and two-dimensional problems, computer programs may be easily written to compute direct-semivariograms (Journel and Huijbregts, 1978). However, many problems in hydrogeology are truly three-dimensional and the use of direct-semivariograms based on a one- or two-dimensional approximation of the problem domain is not realistic. Also, in many situations (e.g., when more than one type of measurement is made at each sample point) it may be useful to study several regionalized variables simultaneously. If we determine that some of the regionalized variables are intercorrelated, the use of direct-semivariograms (which only display the spatial correlation of a single regionalized variable) is not sufficient. Instead, a multivariate geostatistical analysis is required, and this necessitates the use of directsemivariograms computed for each regionalized variable and cross-semivariograms computed for each pair of intercorrelated regionalized variables. Procedures for the general problem of computing cross-semivariograms in three-dimensional space are more complex and for this reason are not widely used. To our knowledge, a compurer program for performing these calculations previously has not been reported in the technical literature.

The objective of this paper is to describe a FORTRAN subroutine, VARIO, that can be used to compute direct- or cross-semivariograms from a set of sample data for any specified direction in
one-, two-, or three-dimensional space. The subroutine can be used as either an exploratory tool, or as one component of a general purpose geostatistical software package. Future papers will describe subroutines for fitting theoretical models to the semivariograms computed by VARIO, and for using the fitted models to obtain local and global estimates for regionalized variables over the sample space. It is hoped that the publication of these subroutines will promote a more widespread use of geostatistics in the field of hydrogeology.

Theory

We are concerned here with a set of measurements made at an arbitrary number of sample points distributed in one-, two-, or three-dimensional space. The position of a sample point could be specified in a variety of ways, depending on the type of measurement. For example, if the measurements were made on core or ground-water samples, the position of each sample point would probably be specified by the location of the borehole, the elevation of the drill collar, and the depth from the drill collar to the center of the sample. To simplify the following discussion, however, we will assume that the position of each sample point has been specified by a set of coordinates represented by the vector x with components (x_{u}), ($\mathrm{x}_{\mathrm{u}}, \mathrm{x}_{\mathrm{v}}$), or (x_{u}, x_{v}, x_{w}) according to whether a one-, two-, or three-dimensional sample space is considered. The collection of sample points is represented by the set ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}$) where N is the number of sample points. At each sample point x_{k}, as many as M types of measurements may be made, and these are represented by the set $\left\{\mathrm{z}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{k}}\right), \ldots \mathrm{z}_{\mathrm{M}}\left(\mathrm{x}_{\mathrm{k}}\right)\right.$, $\mathrm{k}=1$ to N .

For the following geostatistical procedures to be strictly valid, it is required that (1) the sizes (e.g., the volume or the mass) of all the samples are the same, (2) the same sampling procedures are used to obtain each sample, (3) the same measurement procedures are used for each measurement of the same type, and (4) the dimensions of the samples are much smaller than the dimensions of the sample space. These requirements are collectively referred to as the requirement for constant and point support. These requirements are satisfield approximately in most applications encountered in hydrogeology, but in cases where they are not, an additional procedure called regularizaton may be required (Rendu, 1978).

For many geostatistical techniques, it is also required that the regionalized variables are normally distributed (e.g., when using kriging to estimate the value of a variable at a point, devia-
tions from a normal distribution may result in biased estimates). The probability that the regionalized variables are normally distributed may be determined from any of several statistics, e.g., the chi-squared statistic (Henley, 1981), the Kolmogorov-Smirnov statistic (Henley, 1981), or the Shapiro-Wilk statistic (SAS Institute, 1985). In many cases, a log-transformation will improve the fit of the regionalized variables to a normal distribution (Cooper and Istok, 1988b). A class of geostatistical methods called indicator geostatistics has been developed for the case where the regionalized variables are not normally distributed (Journel and Isaaks, 1984).

Procedure for Semivariogram Calculation

The first step in a geostatistical analysis is structural analysis, the determination of the statistical structure of the spatial correlation displayed by the experimental data. The first step in a structural analysis is to perform a detailed review of all the available data to determine if some or all the spatial correlation displayed by the data can be attributed to known geologic, geographic, topographic, or other factors. Particular attention should be paid to factors that cause trends or discontinuities in the data. For example, an observed trend in measured values of saturated thickness in an alluvial aquifer may be caused by the pattern of deposition (e.g., in an alluvial fan). Faults and nonconformities can often cause abrupt changes in measured values of regionalized variables. For example, measured values of porosity might change abruptly along a transect if the transect crosses a fault that juxtaposes two different lithostratigraphic units.

The next step in a structural analysis is to try to develop a theoretical model to quantify the pattern of spatial correlation displayed by the data and, in general, this requires the calculation of several experimental direct- and cross-semivariograms.

The experimental direct-semivariogram, $\gamma_{\mathrm{ii}}(\mathrm{h})$, is a measure of the spatial correlation displayed by pairs of measured values of a single variable i. The experimental cross-semivariogram, $\gamma_{i j}^{*}(\mathrm{~h})$, is a measure of the spatial correlation displayed by pairs of measured values, of two different variables i and j. Both types of semivariograms are defined by

$$
\begin{align*}
& \gamma_{i j}^{*}(h)=\frac{1}{2 N(h)} \sum_{i=1}^{N(h)} \\
& \quad\left[z_{i}\left(x_{k}\right)-z_{i}\left(x_{k}+h\right)\right]\left[z_{j}\left(x_{k}\right)-z_{j}\left(x_{k}+h\right)\right] \tag{1}
\end{align*}
$$

where h is the vector separating a pair of sample
points, and $N(h)$ is the number of pairs of samples that are separated by the same vector h. Equation (1) defines the cross-semivariogram for regionalized variables i and j. When only one regionalized variable is considered, $\mathrm{j}=\mathrm{i}$, and equation (1) defines the direct-semivariogram for the regionalized variable i.

In a geostatistical analysis, semivariograms usually will be calculated for several specified directions for h. If all the semivariograms are equivalent, the regionalization (the underlying natural phenomenon that the regionalized variable represents) is said to be isotropic. When the spatial structure of a regionalized variable is not the same in every direction chosen for h, we say that the regionalization is anisotropic. The source of anisotropy depends on the type of regionalized variable studied. For example, anisotropy in the physical or chemical properties of alluvial aquifers may be caused by depositional processes. Similarly, anisotropy in ground-water contaminant distributions may be caused by dispersion or by an anisotropic ground-water flow pattern. Whatever the source, anisotropy in a regionalization will cause experimental semivariograms to be anisotropic. Since we will seldom know prior to our analysis if the regionalization is isotropic, we must be able to calculate semivariograms as a function of both the direction and magnitude of h

$$
\begin{equation*}
\gamma_{\mathrm{ij}}^{*}(\mathrm{~h})=\gamma_{\mathrm{ij}}^{*}(\alpha, \beta,|\mathrm{~h}|) \tag{2}
\end{equation*}
$$

where α and β are two angles that define the orientation of h in three-dimensional space (see below), and $|\mathrm{h}|$ is the magnitude of h. Thus, to perform a geostatistical structural analysis on a set of measured values of a regionalized variable, a procedure is needed to compute the values of experimental semivariograms for any specified direction and magnitude of h.

Conceptually, this procedure is simple. The steps are as follows:

1. Select a particular direction h_{0} by specifying the angles α_{0} and β_{0} and the distance $\left|h_{0}\right|$.
2. Find all possible pairs of sample points that are aligned in the specified direction.
3. If a direct-semivariogram is to be computed, retain only those pairs of sample points that have measured values of the regionalized variable for which the direct-semivariogram is being computed. If a cross-semivariogram is to be computed, retain only those pairs of sample points that have measured values of the two specified regionalized variables for which the cross-semivariogram is being compured.
4. Group the sample pairs into categories of
|h| and substitute the measured values at each pair of retained sample points into equation (1).

In practice, performing these calculations can be difficult, primarily because the number of samples available for a geostatistical analysis is usually small and because the measurement points are usually irregularly distributed over the sample space. This means that if we limit the semivariogram calculations to only those pairs of samples points that are exactly aligned in the specified direction, an insufficient number of pairs of sample points will be available to accurately define the values of γ_{ij}^{*} (h) [e.g., Journel and Huijbregts, 1978, p. 194, suggest that a minimum of 30 to 50 pairs of sample points are required for each value of $\left.\gamma_{i j}^{*}(h)\right]$. This problem often can be avoided by performing the semivariogram calculations using those pairs of sample points that are approximately aligned in the specified direction. This is done by specifying angular tolerances for α_{0} and $\beta_{0}, \Delta \alpha_{0}$ and $\Delta \beta_{0}$.

Consider a pair of sample points x_{1} and x_{2}. In three-dimensional space, each point is defined by a set of coordinates (x_{u}, x_{v}, x_{w}). The separation vector $h=x_{2}-x_{1}$ has components

$$
\begin{align*}
h_{u} & \left.\left.=x_{u}\right)_{2}-x_{u}\right)_{1} \tag{3a}\\
h_{\mathrm{v}} & \left.\left.=x_{\mathrm{v}}\right)_{2}-x_{\mathrm{v}}\right)_{1} \tag{3b}\\
h_{w} & \left.\left.=x_{\mathrm{w}}\right)_{2}-x_{\mathrm{w}}\right)_{2} \tag{3c}
\end{align*}
$$

where the term $\left.x_{u}\right)_{1}$, for example, is the x_{u} coordinate of sample point x_{1}. The position of h in space also can be defined by two angles, α_{h} and β_{h} in the $x_{u}-x_{v}$ and $x_{v}-x_{w}$ planes where

$$
\begin{align*}
& \alpha_{h}=\arctan \left(h_{v} / h_{u}\right) \tag{4a}\\
& \beta_{h}=\arccos \left(h_{w} / h \mid\right) \tag{4b}
\end{align*}
$$

and $|h|=\sqrt{h_{u}+h_{v}+h_{w}}$ is the magnitude of h.
Following the procedure outlined above, the pair of measured values at the points x_{1} and x_{2} are used in the calculation of $\gamma_{i j}^{*}\left(\alpha_{0}, \beta_{0},|h|\right)$ only if h is aligned with the specified direction h_{0}. Alignment of the pair of sample points with the specified direction is indicated if

$$
\begin{equation*}
\alpha_{0}-\Delta \alpha_{0} \leqslant \alpha_{h} \leqslant \alpha_{0}+\Delta \alpha_{0} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{0}-\Delta \beta_{0} \leqslant \beta_{h} \leqslant \beta_{0}+\Delta \beta_{0} \tag{5b}
\end{equation*}
$$

These criteria are illustrated in Figure 1. If we wish to compute semivariograms for the isotropic case (i.e., the case that the experimental semivariograms are independent of α_{0} and β_{0}), the criteria in equation (5) still can be used if $\Delta \alpha_{0}$ and $\Delta \beta_{0}$ are both set equal to 180°.

Fig. 1. Definition of angles and angular tolerances used to specify a direction h_{0}.

Once all the pairs of sample points aligned with a specified h_{0} have been identified, they are grouped into categories of $\mathrm{Ih} \mid$. In general, four different methods can be used to perform the grouping operation. The choice of which method to use for a particular problem will depend on the number of sample points and on the way that the sample points are distributed in space. One criteria, for example, is that pairs of sample points with greatly different values of $|\mathrm{h}|$ should not be combined because this will result in a smoothing of the semivariogram. The initial step for all these methods is the same; the pairs of aligned sample points are sorted, from smallest to largest, using the value of $|\mathrm{h}|$ for each pair. Then the sample pairs are combined into groups by one of four methods:

Method 1: Divide the range of $\mid \mathrm{h} /$ values into intervals of constant size. Ihl values are grouped according to the interval in which they occur. The number of pairs of sample points in each group will be different.

Method 2: Divide the range of $|\mathrm{h}|$ values into intervals of variable size. |h| values are grouped according to the interval in which they occur. The number of pairs of sample points in each group will be different.

Method 3: Specify the number of sample pairs to place in each group. The number of pairs of sample points in each group will be the same. The size of the intervals of $\mid \mathrm{h} /$ is variable.

Method 4: Put each unique value of $|\mathrm{h}|$ into a
separate group. The number of pairs of sample points in each group will be different.

Whichever method is used, the measured values of the regionalized variable(s) for each pair of sample points in a group are substituted into equation (1) to compute the value of $\gamma_{i j}^{*}$ for that group. The mean value of $|\mathrm{h}|$ for a group (which is the value that will be plotted on the semivariograms) then can be computed by averaging the $|\mathrm{h}|$ values for all the pairs of sample points in the group.

Computer Implementation-Subroutine VARIO

The FORTRAN subroutine VARIO was written to implement the procedures described above. VARIO can compute either direct- or crosssemivariograms from a set of sample data, for any specified direction in one-, two-, or three-dimensional space. The maximum number of sample points is limited only by the available computer memory and can be adjusted by changing the value of parameter MAX1, currently set at 100. Each sample point can have any number of regionalized variables in addition to the $x_{u}\left(x_{u}, x_{v}\right)$, or (x_{u}, x_{v}, x_{z}) coordinates of the point. The subroutine has been tested and compiled on IBM compatible microcomputers using the Microsoft FORTRAN 77 compiler (version 3.3). The particular machines used had 640 Kbytes of RAM.

The definitions of FORTRAN variables used in VARIO are in Table 1, and the source code

Table 1. Variables Passed to VARIO from Calling Program

DIM	- Dimention of problel (1, 2, or 3).	
ALPFM	- sperified direction in $X_{u}-X_{v}$ plane $\left(-90^{\circ} \leqslant\right.$ ALPWL $\leq 90^{\circ}$).	
DALPAtid	- Tolerance for alpha ($0 \leq$ dalpha $\leq 180^{\circ}$) ,	
BETA	$=\text { Specitied direction in } x_{v}-x_{v} \text { plane }\left(-90^{\circ} \leq\right.$	
DEETA	- Toleranee for beta ($0 \leq 0 \mathrm{CETA} \leq 180^{\circ}$).	
REVI	= Colum number of tireferegionalizad tariable.	
REVJ	= Colum number of aecond reqionalized variable, If REVI = REVJ then a direct-semivariogran be somputed. REVI = REVJ then crose-zanivariogram will be conputed.	
LOGTRAN	- Flag to indicate if senivariograna will be computed on the metural loqarithe of the valueg of the regionalized variable. If LOGTRAN = 1 , natural. logetctehen of tht vilum of the rityionalized variable(s) vilit be uead. If IDGTiNN $=0$, the original values of the regionalized variable(s) will be uled.	
METHOD	- Choice of greuping method to use for $\|\mathrm{h}\|$ (1, 2, 3, or 4),	
LIMITS (1)	* Interval gisa(s) tor \|h	if metatod 1 or 2. Number of stmple pairy in a4ch group if METHOD - 3. Not uted if METHOD $=4$.
*		
LIMITS (30)		
INFIEE	- Input date tile nama (≤ 20 eharactara).	
OUTFILE	- output data tile name (≤ 20 charactera).	
TITLE		
TITLE2	- Steond titie for ourfite (≤ 30 characters).	

SUHOUIINE VARIO（DIM，ALFTA，QALFRA，BETA，DEITA，REVI，REVJ，
PARAFEIER（HAXIF100，NOXZ＝2000）
DTIEGBR DDA，MPIHOD，GRDUFN，GN，CCINNT，GNAM，REVI，REVJ REAL LMMITS（30），LOWXY，LOWYZ
OHARACRER 20 TNFILE CUTFTLE

COMEN／BLYE／XUNW（MAXI，3）

 CTMAN／BLK4／Z（MAXI，2）
DNIA PI／3．141592554／
C
C
C
OPEN INRUT AND OUTAUS DATA FIUES

OFEN\｛6，FILS－OUTTIE，STATUS＝＇NEN＇）
WRITE HEADINES TO CITEOT FTLE
WRITE（6，10）TITLE1，TTIE
FOFAMT（ $15 \mathrm{X}, \mathrm{ABO} / 15 \mathrm{X}, \mathrm{ABO}$ ）
WRITE（6，20）INFILE，DDM
FOPMET（11X，＇MNFT DATA FILE：＇，N20，6X，DIMESSIONS：＇，I2／）
WRITE $(6,30)$ ALFIA，EETA，DALPA，DRETA
FOFMAT（11X，＇SFEXIFTED DIRECIION： $1 / /$

IF (REVI .DQ. REVJ) THEN
*RTE (6,40) REVI
ECRERT (11X, 'DIPECT-SDMIVREIOGPAM FOR RGGIONALIZED'.
TSE
WFITE (6,50) REVI, REVJ
FOFAPAT (11X, 'CPOSS-SEMTVARIOTRAM FOR RECIONATIZDD',

ENDIF

WRITE $(6,60)$
FORAT（ $6 \mathrm{X}, 68$（＇ F^{\prime} ）／）
18X，＇GRCUP＇，5X，＇AVERMGE＇ 5 X ，＇NO．OF＇／
19X，＇NW．＇，9X，＇H＇，8X，＇PATES＇，11X，＇GAMM（H）＇／
CONVERT ANLTES FFOM DECTRE TO RAOLANS
CON＝PI／ 180.
AIFPA $=$ ALFA $* O O N$
OAI期 $=$ DNLFH CEN
BFIT＝BETR＊CON

UFXY＝ALFHA＋CALPAR／ 2.0
LOWKY $=$ ALPHA $=$ DALFHA $/ 2.0$
UPYZ $=$ EETA + DPETA $/ 2.0$
$L O W Y Z=$ EETA - DBETA $/ 2.0$
c
C．．．．．GHEX FOR VALID INRT VAUES．IF CHEGS FAIL，FRINT MPROR MESSACE AND STOP

IF（（RNVI ．ET．1）．CR．（REVJ．IT．1））CAIL RReOR（3）
IF（（LOGRNN ．GF．1）OR．（LOGIRNN，LT．O）CNL EFROR（4）
IF（（NEHOD ．GT．4）．OR．（NEHHCO ．LF．1））CALL ERRCR（5）
ON＝PI／2．

（EEIA ．GT．ONN）．OR．（ETHN ．IT，CON）．OR．
（DALPAR GI．PI）－OR（DALPR ，LT．O．）．OR．
（DEETA ．GI．PI）．OR．（DEETA ．LT．0．））CATL EHFRR（6）
$\stackrel{c}{c}$
c．．．．．INITIALIZATION
D 70 I $=1$ ，MaNa
GRDTH（I）$=0$ ．
GRovith（I）$=0$.
$\operatorname{GFCNPN}(\mathrm{I})=0$
$G(I)=0$.
$G N(I)=0$
$\operatorname{NREF}(\mathrm{I})=0$
70
GMI $=0$
GOXNT＝ 0

IF（REVJ ．ET．RAVI）THEN
$t=R E N T$
RPVI $=$ REV
RND $=I$
ENDIF
NXP1

IF（FEND ．EQ．1）THE

$I F(Z(N X, 1) \cdot N E .-999) N X=.N X+I$
GOIO 80
ETSEIF（KEW ．DQ．2）THIT
 IF（ $2(\mathrm{NX}, 1$ ）．NE， 999 ．．AND． $2(\mathrm{NX}, 2)$ ． $\mathrm{NE} .=999) \mathrm{NX}=.\mathrm{NX}+1$ GOTO 90
ELSEIF（ $\mathrm{E}+\mathrm{NJ}$ ，GT．2）THIT

（DYY，I＝1，R［NJ－kEVI－1），Z（NX， 2 ）
IF（Z（NX，1）．NE．－999．AND．$Z(N X, 2) \cdot N E .-999.) N X \geqslant N X+1$ 6010100
Mor？

SUEROUTINE FANDFIS（DIN，METHDD，LOGIRAN，NX，MCHOICS，REVI，REVJ，UFXX， （DWXY，UFYZ，LOWYZ）
PARANEIER（MAXI＝100，MAXZ＝2000）
INTEEAR DDA，GROUFN，GN，METHOD，GODNT，GMM，REVI，REVJ
REAL LOWXY，LONYZ，HN，HV
LCETCAL CPNEF：
ComoN／BLKC／XINW（MRX1，3）

CCMMEN／RLCA／ 2 （MMXL，2）
REAL XD（MAXI），XV（MAX1），XW（IRXC
ECUIVALDNE（XU，XLVW（1，1）），（XV，XUVW（1，2）），（XW，XUNW（1，3））
DND PI／3．141392654／
IF（DIM ．EQ．1）THEN
$\infty 140 J=1, N X=1$
$\infty 1401=J+1$ ，NX

 ．RR．（Z（I，REW），LE．－990．））GONO 140
Hillidu（I）＝XU（J）
CNIE CIMTHE（ICGIRNN，ZVAIJE，I，J，REVI，REVD）
CALL ADPEE（NETHOD，NOHOICE，DIST，ZNAUE
क्vitute
FIND ALL ALIGISD PATES OF MLASURGYPNT PODNB，AND FUT THE

EISE IF（DDH ，We 2）THEN
© $150, J=1, N X-1$
$\infty \quad 150 \mathrm{I}=\mathrm{J}+2, \mathrm{NX}$
IF（（XII（J）．ED．XU（I））．ANO．（XV（J）．EQ．XV（I））．OR．
（ $7(J, R E V I), L E,-990$.$) ．OR．（Z（J，REVU）．LE．－990．）．OR．$
（2（I，REVI）．LE．－990．）．OR．（2（I，REVJ）．LE．－990．））
6010 150

FIND THE SEAPARMTION VECTOR FUR A PAIR OF SAMPLE PODNIS

```
IU=XU(I) = XIJ(J)
N=XV(I) = XV(J)
DIST-EGET(H\**2 + HV**2)
```


IF（REVJ ．OOS．REVI）THEN

$Z(N X, 1)$
IF（ $Z(N X, 1)$ ．NE．－999．）$N X=N X+1$
GOIO 110
 $Z(\mathrm{NX}, 1), Z(\mathrm{NX}, 2)$
IF（2（NX，1），NE，－999．．AND，$Z(N X, 2), N E,-999.) N X=N X+1$ G\％10 120
SE
READ（5，＊，END＝140）（XIVW（NX，I），I＊1，DMM），（DMY，I＝1，REVI－1），
$Z(N X, 1),(D M Y, I=1, R E V J-R E V I-1), Z(N X, 2)$
IF（Z（NX，1）－NE，－999．AND．$Z(N X, 2), N E, 7999.) N X=N X+1$ $\operatorname{com} 130$
NOIF
$N X=N X=1$
IF（NX ．ET．MAXI）THEN
 GOIO 180
ENDIF
FTN ALL ALIGNED PAIRS OF MEASUREMSN FODISS，AND RUT THE
GNPUTED SEPARATICN AND MEASURED VALUES FOR THE PADR INTO
TENFORARY STORAGE（ONE－DDMENTONAL FROBLDMS）
IF（REVS ．EQ．REVI）THEN
EISE
FEVJ $=2$
ENDIF
CALL FTNDPTS（DPM，HETHOC，LCGTRAN，NX，1，REVI，REVU，UFXY，TCWXY，UPYZ，
IF（COLNT LOWYZ）
IF（CODNT ．GI．MRXI）THEN
WRHTEE（＊，150）＇EXPANDED DATA＇，GCOUNT，MAK2
COTO 280
CNT

© $160 \mathrm{I}=1$ ，GCDNFI
IF（CHOUN（I）．NE．0）THEN

ENDIF
WhIIt（6，170）I，GOUPH（I），GRCLEN（I），GPOUPZ（I）
FCFART（ 17 X, I4，6X， $68.3,7 \mathrm{X}, \mathrm{T3}, 5 \mathrm{X}, \mathrm{G15} .7$ ）
CIOSE（ 5 ，SDATUS＝＇KFFP＇）
CIOSE（6，SIATUS＝＇Kupp＇
REITRW
END

Stercuicme swap（M，N）
LTH

$\mathrm{M}=\mathbf{N}$
$\mathrm{N}=\mathrm{L}$

NETUSN
RETM
END

Fig．2．Source code listing for VARIO（continued）．

Fig. 2. Source code listing for VARIO (continued).

Fig. 2. Source code listing for VARIO.
listing is in Figure 2. All program control information is passed to VARIO through the argument list in the calling statement. The dimension of the problem is specified with the integer variable DIM. The direction for which the semivariogram is to be computed is specified by the real variables ALPHA ($=\alpha$, in Theory section and in Figure 1), DALPHA $(=\Delta \alpha)$, BETA $(=\beta)$, and DBETA $(\approx \Delta \beta)$.

REVI and REVJ are used to specify the column numbers (on the input data file) that correspond to the regionalized variable (s) to be used in the semivariogram calculations. If REVI = REVJ, then a direct-semivariogram will be computed. If REVI \neq REVJ, then a cross-semivariogram will be computed. For example, if REVI $=$ REVJ $=2$, a direct-semivariogram will be computed for the regionalized variable that corresponds to the second column of the input data file. If REVI $=1$ and REVJ $=3$, a cross-semivariogram will be computed for the pair of regionalized variables that corresponds with the first and third columns of the input data file. LOGTRAN indicates if the semivariograms are to be computed using the natural logarithm of the values of the regionalized variable (s). METHOD is used to specify the grouping method to use for $|\mathrm{h}|$. If METHOD $=1$, then method 1 (described in Theory section) will be used. The interval size for h is specified by the value of LIMITS (1). If METHOD $=2$, then method 2 will be used. The interval sizes for h for each group are specified by the values of LIMITS (1)
to LIMITS (30). If METHOD $=3$, then method 3 will be used. The number of pairs of sample points to place in each group is specified by the value of LIMITS (1). If METHOD $=4$, then merhod 4 will be used and the array LIMITS is not used.

VARIO reads the coordinates of the sample points and the measured values of the regionalized variable(s) for each sample point from the data file specified by the character variable "INFILE".
VARIO reads data from INFILE using "freeformat" FORTRAN read statements. The form this data file should be in for one-, two-, and threedimensional problems is shown in Figure 3. The computed semivariograms are written to the data file specified by the character variable "OUTFILE". The two character variables TITLE1 and TITLE2 are used to label the output data file.

Example input data for VARIO are given in Tables 2 and 3. The first example is for a twodimensional problem ($\mathrm{DIM}=2$) used as an example by Clark (1979). Direct-semivariograms are computed for three directions ($\alpha=0^{\circ}, 45^{\circ}$, and 90°) for a single regionalized variable. The results shown in Table 4 are for grouping method 1. The average value of $\left|h_{0}\right|$, the number of pairs of measurement points, and the value of $\gamma_{i j}^{*}\left(\alpha_{0}, \beta_{0},\left|h_{0}\right|\right)$, labeled GAMMA(H) on the output file, are computed for each group.

The second example is a three-dimensional
$D I M=1$

$x_{u}(1)$	$z(1,1)$	\cdots	\cdots	$z(1,10)$
$x_{u}(2)$	$z(2,1)$	\cdots		$z(2,10)$
\vdots	\vdots			\vdots
$x_{u}(N X)$	$Z(N X, 1)$	\cdots		$z(N X, 10)$

DIM $=2$

$x_{u}(1)$	$x_{v}(1)$	$z(1,1)$	\cdots	\cdots	$z(1,10)$
$x_{u}(2)$	$x_{v}(2)$	$z(2,1)$	\cdots	\cdots	$z(2,10)$
\vdots	\vdots	\vdots			\vdots
$x_{u}(N X)$	$x_{v}(N X)$	$z(N X, 1)$	\cdots	$z(N X, 10)$	

$D I M=3$

$x_{u}(1)$	$x_{v}(1)$	$x_{w}(1)$	$z(1,1)$	\cdots	$z(1,10)$
$x_{u}(2)$	$x_{v}(2)$	$x_{w}(2)$	$z(2,1)$	\cdots	$z(2,10)$
\vdots	\vdots	\vdots	\vdots		\vdots
$x_{u}(N X)$	$x_{v}(N X)$	$x_{w}(N X)$	$z\left(N x_{1}\right) \cdots$	\cdots	$z(N x, 10)$

Fig. 3. Input data file structure for VARIO.

Table 2. Example Input Data ${ }^{+}$for VARIO for a Two-Dimensional Problem (DIM*2)

$\mathrm{x}_{\mathrm{u}}, f t$	$\mathrm{x}_{\mathrm{v}}, f t$	$F e, \%$	$\mathrm{x}_{\mathrm{u}}, f t$	$\mathrm{x}_{\mathrm{v}}, f t$	$F e, \%$
0	0	38	100	300	37
100	0	37	200	300	37
200	0	35	300	300	35
400	0	30	400	300	38
600	0	29	500	300	37
700	0	30	600	300	37
800	0	32	700	300	33
0	100	36	800	300	34
100	100	35	0	400	42
200	100	36	200	400	43
300	100	35	300	400	42
400	100	34	400	400	39
500	100	33	500	400	39
600	100	32	600	400	41
700	100	29	700	400	40
800	100	28	800	400	38
0	200	35	0	500	44
100	200	38	200	500	40
300	200	35	300	500	42
400	200	37	400	500	40
500	200	36	500	500	39
600	200	36	600	500	37
700	200	35	700	500	36
0	300	37			

Table 3. Example Input Data for VARIO for a Three-Dimensional Problem (DIM=3)

x	x_{v}	x_{w}	Bromide	Cbloride	Bromoform
	m	-	-- -	$\mathrm{g} / \mathrm{m}^{3}---$	$\mathrm{mg} / \mathrm{m}^{3}$
0.0	0.0	2.9	82	240	27.2
		2.5	178	579	24.8
		2.3	96	267	3.1
		2.1	4	34	0.1
0.0	1.0	3.1	0	3	0.0
		2.9	165	553	0.4
		2.7	212	570	31.9
		2.3	147	472	4.1
1.0	2.0	3.0	103	315	0.0
		2.8	177	558	23.0
		2.6	210	663	20.0
		2.2	30	95	0.4
1.0	3.0	3.0	0	3	0.1
		2.8	151	472	4.2
		2.6	76	230	3.4
		2.2	5	25	0.1
		1.6	174	582	13.9
2.0	4.0	2.7	2	6	1.4
		2.3	2	5	0.1
		1.5	0	2	0.1
2.0	5.0	2.7	118	348	0.1
		2.5	186	632	9.5
		2.3	165	520	3.6
		2.1	8	58	0.1
		1.7	10	28	0.1

problem (DIM=3). Cross-semivariograms are computed for two pairs of regionalized variables. In both cases, the regionalization is considered to be isotropic. The results shown in Table 5 were calculated using grouping method 1 , and the results shown in Table 6 were calculated using grouping method 3.

Summary

A general procedure is presented for calculating direct- and cross-semivariograms, from a set of sample data, for any specified direction in one-, two-, or three-dimensional space. Four different algorithms are presented for combining sample pairs into groups, and these should handle most problems that occur in practice. A FORTRAN subroutine is presented for implementing the procedure on any computer that supports a

Table 4. Output from VARIO for Example Input Data in Table 2
TWO-DIMENSIONAL EXAMPLE GIVEN IN CLARK (1979)
INPUT DATA EILE: TABLEZ
SPECIFIED DIRECTION:
ALFHA
DALPHA

DIRECT-SEMIVARIOGRAM FOR REGIONALIZED VARIABLE $~ I$

Table 5. Output from VARIO for Example Input Data in Tabia 3

FORTRAN 77 compiler. Copies of VARIO, and an example main program and data files can be obtained by sending a formatted $51 / 4$-inch floppy diskette (360 Kb format) to the senior author. Future papers will present procedures and subroutines that use the experimental semivariograms compured by VARIO to fit theoretical semivariogram models, to calculate extension variances, and for kriging and cokriging. It is hoped that the

Table 6. Output from VARIO for Example Input Data in Table 3

increased availability of programs and subroutines for geostatistical analysis will encourage the more widespread use of these methods by practicing ground-water hydrologists.

Acknowledgments

This work was supported by the U.S.
Geological Survey and the Oregon Agricultural Experiment Station. Larry Yuen and Janet Lee wrote the VARIO computer program.

References

Clark, I. 1979. Practical Geostatistics. Applied Science Publishers, London.
Cooper, R. M. and J. D. Istok. 1988a. Geostatistics applied to groundwater pollution. 1. Methodology. Journal of Environmental Engineering, Amer. Soc. Civil Engrs. In press.
Cooper, R. M. and J. D. Istok. 1988b. Geostatistics applied to groundwater pollution. 2. Application. Journal of Environmental Engineering, Amer. Soc. Civil Engrs. In press.
David, M. 1977. Geostatistical Ore Reserve Estimation. Elsevier Scientific Publishing Co., New York.
Delhomme, J. P. 1976. Kriging in the hydrosciences. In : Advances in Water Resources. v. 1, pp. 251-256.
Henley, S. 1981. Nonparametric Geostatistics. Applied Science Publishers, Halstead Press, John Wiley and Sons, New York.
Journel, A. G. and C. J. Huijbregts. 1978. Mining Geostatistics. Academic Press, New York.
Journel, A. G. and E. H. Isaaks. 1984. Conditional indicator simulation: Application to a Saskatchewan uranium deposit. Marhematical Geology. v. 16, no. 7, pp. 685-718.
Neuman, S. P. and S. Yakowitz. 1980. A statistical approach to the inverse problem of aquifer hydrology. 1. Theory. Water Resources Research. v. 15, no. 4 . Pp. 845-860.
Rendu, J. M. 1978. An introduction to geostatistical merhods of mineral evaluation. South African Institute of Mining and Merallurgy, Johannesburg.
SAS Institute, Inc. 1985. SAS Procedures Guide for Personal Computers, Version 6. Cary, NC.
Vauclin, M., S. R. Vieira, G. Vachaud, and D. R. Nielsen. 1983. The use of cokriging with limited field soil observations. Soil Soc. Am. J. v. 47, p. 184.

Jonathan D. Istok is an Assistant Professor in the Departments of Agricultural and Civil Engineering at Oregon State University, specializing in statistical and mathematical modeling of ground-water flow and solute transport.

Richard M. Cooper is a Water Resources Engineer with the Water Resources Division of the South Florida Water Management District, specializing in surface-water bydrology.

Alan L. Flint is a Hydrologist with the U.S. Geological Survey, specializing in soil physics. Dr. Flint is project chief for two components of the size cbaracterization study for the proposed bigh-level nuclear waste repository at Yucca Mountain, Nevada.

COMPUTER NOTES

A GALERKIN FINITE-ELEMENT PROGRAM FOR SIMULATING UNSATURATED FLOW IN POROUS MEDIA

by R. Khaleel ${ }^{\text {a }}$ and T.C. Yeh ${ }^{\text {b }}$

Abstract

A fully documented Galerkin finite-element FORTRAN program is presenced for solving the onedimensional, transient flow equation in unsaturated porous media. Material balance error summaries are presented to demonsrrate accuracy of the numerical scheme. Comparison of our simulated results with other existing numerical solutions using the Galerkin scheme provided excellent agreement.

Introduction

Unsaturated flow typically involves nonuniform, time-dependent moisture contents and flow fields. The partial differential equation governing unsarurated flow in porous media is nonlinear, and is not readily amenable to accurate analytical solutions. In recent years, the Galerkin finite-element technique has been used to solve the transient. unsaturated flow equation (e.g., Neuman, 1973; van Genuchten, 1978; Yeh, 1981 ; Huyakorn and Pinder. 1983). In the Galerkin approach, the dependent variable-the pressure head-is approximated by a series of basis (or shape) functions and associated time-dependent coefficients. The approximating series are then substituted into the governing equations and the resulting errors (residuals) minimized through the use of weightedresidual theorems (Zienkiewicz, 1977). The integral equarions derived in this manner are evaluated using the finite-element method of discretization, resulting in a set of (quasi)-linear

[^24]equations which can be solved using appropriate matrix equation solvers.

In this paper, a Galerkin finite-element solution of one-dimensional unsaturated flow equation is developed using linear basis or shape functions. A fully documented listing of the FORTRAN program is provided. Material balance error summaries are presented to demonstrate accuracy of the numerical scheme. Results obtained using our program are compared with other existing numerical solutions.

Numerical Model

The pressure head form of the differential equation describing one-dimensional, vertical flow of water in an unsaturated homogeneous and isotropic soil profile, can be written as:
$\mathcal{L}(\psi)=\frac{\partial}{\partial z}\left[K(\psi) \frac{\partial}{\partial z}(\psi-z)\right]-C^{*}(\psi) \frac{\partial \psi}{\partial t}=0$
where \mathcal{L} is the differential operator defined in the flow region; ψ is the pressure head, $\mathrm{L} ; \mathrm{K}(\psi)$ is the hydraulic conductivity, $\mathrm{LT}^{-1} ; \mathrm{C}^{*}(\psi)=\partial \theta / \partial \psi$ is the specific water capacity, $\mathrm{L}^{-1} ; \theta(\psi)$ is the volumetric water content; z is cartesian coordinate (positive in the downward direction), L ; and t is time, T . Both ψ and K are assumed to be single-valued function of θ.

The initial conditions are

$$
\begin{equation*}
\psi(z, 0)=\psi_{0}(z) \tag{2}
\end{equation*}
$$

and the boundary conditions are the usual Dirichlet (constant pressure) and Neuman (flux type) conditions:

$$
\begin{equation*}
\psi(z, t)=\psi_{\Gamma_{1}}(z, t) \quad \text { on } \Gamma_{1} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\psi)\left(\frac{\partial \psi}{\partial z}-1\right) n_{i}+9 \Gamma_{2}(z, \tau)=0 \quad \text { on } \Gamma_{2} \tag{3b}
\end{equation*}
$$

where $\Gamma_{1}+\Gamma_{2}=\Gamma$, the boundary of the region; ${ } \Gamma_{2}$ is the surface flux prescribed along the Neuman boundary Γ_{2}; and n_{i} is the unit outward normal on Γ_{2}.

The finite-element equations are formulated using the Galerkin technique (Neuman et al., 1974). A trial function can be selected of the form

$$
\begin{equation*}
\hat{\psi}(z, t)=\sum_{i=1}^{n} \psi_{i}(t) N_{i}(z) \tag{4}
\end{equation*}
$$

where N_{i} are the element shape functions; ψ_{i} are undetermined coefficients which become the nodal values of the function ψ; and n is the total number of nodes in the finite-element grid system. For a one-dimensional linear element e, the shape functions are

$$
\begin{equation*}
N_{1}=1-\frac{z}{L_{e}} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{z}=\frac{z}{L_{e}} \tag{5b}
\end{equation*}
$$

where L_{e} is the length of element e. Upon substituting the trial function (4) into (1) and serting the resulting residual orthogonal to all N_{i} 's, one obtains a set of n integral equations in the flow domain Ω :

$$
\begin{equation*}
\int_{\Omega} \mathcal{L}(\hat{\psi}) N_{i} d z=0 \quad i=1,2, \ldots n \tag{6}
\end{equation*}
$$

which, upon integration by parts on the second derivative term in (6), can be solved for the unknowns ψ_{i}.

A functional representation is used to express the variable parameters K and C within a linear element with two nodes, as weighted averages of the corresponding nodal values of the element.

$$
\begin{equation*}
K(z)=\sum_{\ell=1}^{2} K_{\ell}\left(\psi_{\ell}\right) N_{\ell}(z) \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{*}(z)=\sum_{\ell=1}^{2} C_{\ell}^{*}\left(\psi_{\ell}\right) N_{\ell}(z) . \tag{7b}
\end{equation*}
$$

The same shape functions as those of the trial function (4) are used here. The final finite-element equations are written in the matrix form as

$$
\begin{equation*}
[A]\{\psi\}+\{B]\left\{\frac{\partial \psi}{\partial t}\right\}=\{F\} \tag{8}
\end{equation*}
$$

where for a typical one-dimensional linear element e, the elements of the matrices and the right-hand vector in (8) are:

$$
\begin{gather*}
a_{i j}^{e}=\int_{L_{e}}{\underset{\ell=1}{2} N_{\ell} K_{\ell} \frac{\partial N_{i}}{\partial z} \frac{\partial N_{j}}{\partial z} d z, \quad i, j=1,2}_{b_{i j}^{e}=\int_{L_{e}} \sum_{\ell=1}^{2} N_{\ell} C_{\ell}^{*} N_{i} N_{j} d z,}^{f_{i}^{e}=\int_{L_{e}} \sum_{\ell=1}^{2} N_{\ell} K_{\ell} \frac{\partial N_{i}}{\partial z} d z-\int_{\Gamma_{2}} N_{i} q_{\Gamma_{2}} d \Gamma .} . \tag{8a}
\end{gather*}
$$

Because of the nonlinear nature of the differential equation, the solution is iterative at each time step. Using a time weighting factor ε, where $0 \leqslant \epsilon \leqslant 1$, equation (8) is discretized in time as

$$
\begin{align*}
& {[A]\left(\epsilon\{\psi\}^{k+1}+(1-\epsilon)\{\psi\}^{k}\right)} \\
& \quad+\frac{1}{\Delta \tau^{k}}[B]\left(\{\psi\}^{k+1}-\{\psi\}^{k}\right)=\{F\} \tag{9}
\end{align*}
$$

where k indicates a point t^{k} in time, and $\Delta t^{k}=t^{k+1}-t^{k}$. The matrix [B] in (8) is diagonalized by a procedure known as "lumping." According to this procedure, we calculate the elements in [B] as

$$
\begin{gather*}
b_{i i}^{e}=\int_{L_{e}} \sum_{\ell=1}^{2} N_{\ell} C_{\ell}^{*} N_{i} d z \quad i=j \tag{10a}\\
b_{i j}^{e}=0 \quad i \neq j \tag{10b}
\end{gather*}
$$

Experience indicates that a stable solution is obtained with the lumped mass matrix. A lumping procedure similar to that just described was successfully applied by Neuman (1973) to a number of seepage problems.

Following the mass lumping procedure for matrix [B] and performing necessary integrations, the element matrix for an interior element becomes:
$\frac{\varepsilon}{2 L_{e}}\left[\begin{array}{cc}\left(K_{1}+K_{2}\right) & -\left(K_{1}+K_{2}\right) \\ -\left(K_{1}+K_{2}\right) & \left(K_{1}+K_{2}\right)\end{array}\right]\left\{\begin{array}{l}\psi_{1} \\ \psi_{2}\end{array}\right\}^{k+1}+$
$\frac{L_{e}}{\Delta t}\left[\begin{array}{cc}C_{1}^{*} / 3+C_{2}^{*} / 6 & 0 \\ 0 & C_{1}^{*} / 6+C_{2}^{*} / 3\end{array}\right]\left\{\begin{array}{l}\psi_{1} \\ \psi_{2}\end{array}\right\}^{k+1}=$
$\frac{(\epsilon-1)}{2 L_{e}}\left[\begin{array}{rr}\left(K_{1}+K_{2}\right)-\left(K_{1}+K_{2}\right) \\ -\left(K_{1}+K_{2}\right) & \left(K_{1}+K_{2}\right)\end{array}\right]\left\{\begin{array}{l}\psi_{1} \\ \psi_{2}\end{array}\right\}{ }^{k}+$
$\frac{L_{e}}{\Delta t}\left[\begin{array}{cc}C_{1}^{*} / 3+C_{2}^{*} / 6 & 0 \\ 0 & C_{1}^{*} / 6+C_{2}^{*} / 3\end{array}\right]\left\{\begin{array}{l}\psi_{1} \\ \psi_{2}\end{array}\right\}^{k}+$

$$
\left\{\begin{array}{r}
-\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) / 2 \tag{11}\\
\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) / 2
\end{array}\right\}
$$

The variable coefficients in (9) are evaluated at one-half the time step. At the beginning of the iteration, estimates of $\psi_{i}^{k+1 / 2}$ are obtained by linear extrapolation:

$$
\begin{equation*}
\psi_{i}^{k+1 / 2}=\psi_{i}^{k}+\frac{\Delta c^{k}}{2 \Delta c^{k-1}}\left(\psi_{i}^{k}-\psi_{i}^{k-1}\right) \tag{12}
\end{equation*}
$$

These are used in determining the variable parameters $K(\psi), \theta(\psi)$, and $C^{*}(\psi)$; and in updating coefficient matrices $[\mathrm{A}],[\mathrm{B}]$, and the right-hand vector $\{F$ \} in (9). A tridiagonal system of linear algebraic equations is generated at each iteration and solved for ψ_{i}^{k+1} at all nodes by gaussian elimination (Carnahan et al., 1969). Due to the nonlinear nature of (9), these estimates for ψ_{i}^{k+1} must be improved (Neuman et al., 1974). At each iteration, an improved estimate of $\psi_{i}^{k+1 / 2}$ is obtained by averaging the most recent estimate of ψ_{i}^{k+1} with ψ_{i}^{k}, the value obrained in the previous time step:

$$
\begin{equation*}
\psi_{i}^{k+1 / 2}=1 / 2\left(\psi_{i}^{k}+\psi_{i}^{k+1}\right) \tag{13}
\end{equation*}
$$

After having reevaluated $\mathrm{K}(\psi), \theta(\psi)$, and $\mathrm{C}^{*}(\psi)$ based on $\psi_{i}^{k+1 / 2}$; and coefficient matrices [A$],[\mathrm{B}]$, and right-hand vector \{ F \}, equation (9) is again solved for improved estimates of ψ_{i}^{k+1}. The iterative procedure is continued until the relative change in pressure head between two successive iterations is within a prescribed tolerance.

Computer Program

The computer program is written in FORTRAN for the DEC 2060 computer ar New Mexico Tech computer center. A reprint of the program used in solving an infiltration problem (Warrick et al., 1971) is given in Appendix A.

The FORTRAN code consists of a main program and eight subroutines. The main program acceprs the input data and governs the sequence of operations to be performed. Initial segment of the main program (up to statement number 169) controls the type of input data, their sequence, and printing. Actual simulation of the problem starts at statement 179 (LA is simply an integer number to indicate simulation increments). Equation (12) is programmed in statement 195, whereas equation (13) is programmed in statement 329.

The iterative segment of the program for solving the nonlinear equations starts at statement 203. In statements 207 through 251 , we set up the
individual matrix elements [equation (i1)] . The RH arrays are generated for use in the MATBAL subroutine.

After assembly of individual matrices, the 'global matrices are formed in statements 257 through 305. The program, in its present form, can handle two types of boundary conditions: (1) a constant pressure boundary; and (2) a constant flux boundary. The global matrix for the interior nodes is formulated in statements 276 through 285. The global matrix for the top boundary condition is formulated in statements 257 through 272. For the lower boundary condition, the global matrix is formulated in statements 289 through 305.

The variable time step size used during simulation is calculated in statements 360 through 367. At each time step, the equation for calculating Δt is given by

$$
\Delta t^{k+1}=\min \left(\frac{\Delta \tau^{k}}{\epsilon^{k}} * \operatorname{TOL}, 0.1 * \frac{D E L Z}{Q(1)}\right)
$$

and is programmed in statement 364 . The variables TOL, DELZ, and Q(1) are defined in the initial segment of the main program. The variable e^{k} is defined as

$$
\epsilon^{k}=\max _{i}\left|\frac{\psi_{i}^{k}-\psi_{i}^{k-1}}{\psi_{i}^{k}}\right|
$$

and is programmed in statements 313 through 319.
Subroutine INTERP is used to linearly interpolate for values in the soil hydraulic properties. It is used only when the parameter INT equals 1. When INT $=0$. functional relationships are used to describe the soil hydraulic properties.

The five functional subroutines FNCTP, FNCPT, FNCZT, FNCPK, and FNCPC are used to obtain, respectively, (1) pressure head ψ given moisture content θ, (2) moisture content θ given pressure head ψ, (3) θ as a function of the depth Z for the initial condition, (+) hydraulic conductivity K as a function of ψ, and (5) water capacity C^{*} as a function of ψ.

Subroutine TRIDIA is used to solve the tridiagonal system of equations generated by equation (9). It is adapted from a símilar subroutine given by Carnahan et al. (1969). The arrays A, B, C, and D formulated in starements 257 through 305 during global assembly procedure are inputs to the TRIDIA subroutine. The solution vector of ψ values is contained in array ANS and returned to the main program.

The material balance errors are calculated in subroutine MATBAL. Both differential and cumulative material balance errors are calculated at each time step. The equations used in MATBAL to calculate inflow, outflow, and change in storage are developed following equation (11).

Application

Our computer code was used to solve the infiltration flow problem as described by Warrick et al. (1971). Other finite-element solutions for this particular problem are available (van Genuchten, 1978). Our simulation results could therefore be compared with those of van Genuchten.

Warrick et al. (1971) obtained experimental data from a $6.1-\mathrm{m}$ by $6.1-\mathrm{m}$ square field plot of Panoche clay loam having an approximate initial water content of 0.20 . The soil was wetted with 7.62 cm of $0.20 \mathrm{~N} \mathrm{CaCl}_{\text {z }}$ solution. followed immediately by tracer-free water. The total infiltration time was 17.5 hours.

Functional relationships ($\mathrm{INT}=0$) for θ, ψ, K, and $C^{*}(\psi)$ were given by van Genuchten (1978) for Panoche clay loam soil (Warrick et al., 1971).
$\theta(\psi)=\left\{\begin{array}{l}0.6829-0.09524 \ln |\psi|, \psi \leqslant-29.484 \\ 0.4531-0.02732 \ln |\psi|,-29.484<\psi \leqslant-14.495\end{array}\right.$
$\psi(\theta)=\left\{\begin{array}{l}-1300 \exp (-10.5 \theta), \theta \leqslant .3606 \\ -1.59 \times 10^{7} \exp (-36.6 \theta), \theta>.3606\end{array}\right.$
$K(\psi)=\left\{\begin{array}{l}19.3+\times 10^{5}|\psi|^{-3,4095}, \psi \leqslant-29 .+84 \\ 516.8|\psi|^{0.97814},-29 .+84<\psi \leqslant-1+.+9 j(14 \mathrm{c})\end{array}\right.$
$C^{*}(\psi)=\left\{\begin{array}{l}0.0952+/|\psi|, \psi \leqslant-29.484 \\ 0.02732 /|\psi|,-29.484<\psi \leqslant-14 .+95\end{array}\right.$
where the hydraulic conductivity, K is in $\mathrm{cm} /$ day; and the pressure head, ψ is in cm .

The initial and boundary conditions are as follows:

$$
\begin{align*}
\theta(z, 0) & = \begin{cases}0.15+0.0008333 & z, \\
0.2000 & 0<z \leqslant 60 \\
0 & \\
\psi(0, t)=-14.495 & \theta_{0}=0.38\end{cases} \tag{15a}\\
\psi(125, \mathrm{t})=-159.19 & \theta_{\ell}=0.20 \tag{15b}
\end{align*}
$$

where the distance z is in cm ; and time t is in days.
The following were the input data (main program, Appendix A) for our test problem:

Interpolation parameter, INT $=0$;
Saturated hydraulic conductivity, $\mathrm{KSAT}=37.8$ cm/day;

Saturated moisture content, $\mathrm{POR}=0.38$;
Total number of nodes, NODES $=51$;
Spatial increment, DELZ $=2.5 \mathrm{~cm}$;
Initial time step size, DELT $=1 \mathrm{sec}$;
Convergence criterion, $\mathrm{TOL}=0.01$;
Time weighting factor, EPS $=0.5$;
Maximum iterations during a time step, MAXIT $=10$;
Maximum size of time step, DELMAX $=1000 \mathrm{sec}$.
The variables NP and NPT (main program. Appendix A) were given dummy integer values when the parameter INT $=0$. For node 1, the boundary conditions were given by: type of boundary condition, $\mathrm{NBC}(1)=0$, the pressure head value, $\mathrm{BC}(1)=-14.495 \mathrm{~cm}$, and $\mathrm{Q}(1)=0$. For node 51 , the boundary conditions were: $\mathrm{NBC}(51)=0, \mathrm{BC}(51)=-159.19 \mathrm{~cm}$, and $Q(51)=0$. The initial conditions were provided by calling subroutines FNCZT and FNCTP.

Figure 1 is a comparison of water content profiles obtained using our unsaturated flow

Fig. 1. Moisture content profiles at two and nine hours for the Panoche clay loam soil (Warrick et al., 1971):
$\Delta z=2.5 \mathrm{~cm}$ and $\epsilon=0.5$.
program with those obrained by van Genuchten (1978) using his mass-lumped linear finite-element (MFE) program for the Panoche clay loam soil. As discussed earlier, a variable time increment size was used during simulation. A total of 86 time steps were needed for the nine-hour simulation. Frequently it required no more than four or five iterations to converge to a relative pressure head tolerance value of 0.01 ; at no time did it require more than seven iterations. As suggested by equation (14d), there is a discontinuity in $C(\psi)$ at $\psi=-29.484 \mathrm{~cm}$. However, these same functional relationships (14) were also used by van Genuchten (1978). An indication of accuracy of our numerical results is given by the material balance error analysis. The cumulative material balance error at the end of the nine-hour simulation was of the order of 10^{-5} percent of the total inflow rate. We used a single precision in our computer code; use of double precision would have further improved these errors. Our numerical results are nearly identical to those of van Genuchten (1978); the two solutions were indistinguishable from each other on the plots (Figure 1). However, this is to be expected since both our and van Genuchten's method used identical numerical schemes.

References

Carnahan, B., H. A. Lucher, and J. O. Wilkes. 1969. Applied Numerical Merhods. John Wiley \& Sons, N.Y.
Huyakorn, P. S. and G. F. Pinder. 1983. Computational Merhods in Subsurface Flow. Academic Press, N.Y.
Neuman, S. P. 1973. Sacurated-unsacurated seepage by finite elements. ASCE, J. of Hydraulics Div. v. 99, HY 12, pp. 2233-2251.
Veuman, S. P., R. A. Feddes, and E. Bresler. $197+$. Finite element simulation of flow in saturated-unsacurated soils considering water uptake by plants. Third Annual Repr., Project No. AIO-SWC-77, Israe! Institute of Technology, Haifa.
van Genuchten, M. T. 1978. Mass transport in saruratedunsaturated media: one-dimensional solutions. Water Resourc, Program, Princeron Univ. Techn. Rept. 78-WR-11, Princeton, N.J.
Warrick, A. W., J. W. Biggar, and D. R. Nielsen. 1971. Simultaneous solute and water transfer for an unsaturated soil. Water Resour. Res. v. 7, no. 5. pp. 1216-1225.
Yeh, G. T. 1981 . On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow. Water Resour. Res. v. 17, no. 5, pp. 1529-1534.
Zienkiewicz, O. C. 1977. The Finite Element Merhod, McGraw-Hill Book Co., N.Y.

Raz Khaleel is an Assistant Professor of Hydrology at the New Mexico Institute of Mining and Technology. He
received the Ph.D: degree from Texas A\&M University Some of his current research interests include studies involving multiphase fluid flow in porous media and interaction of surface water/ground water
T. C. Jim Yeb is an Assistant Professor in the Depart. ment of Environmental Sciences at the University of Virginia. He received the Ph.D. degree from New Mexico Institute of Mining and Tecbnology. He is primarily interested in stochastic modeling of subsurface fluid flow.

Appendix A. A Finite-Element Program to Simulate Unsaturated Flow

${ }^{11290}$	${ }^{6}$	
$11+00$	1013	
11590		
(1690		
000		
009	${ }^{1096}$	
-12200	${ }_{192}$	Conwt mue
12100	\square°	
12400	C	head damaneters
00	c	
		ref
\%909	1007	PORATI', '/1, LOX: HTAL Mo.
13000		
3180		
13200		
		/hitx, grumbary coma
\%3408		13x., \%ooe
		vaokinuoge
\%s00		velemenoig.
		cobecr
3900		velemiankere-1
15009	c	inctial condition and gommaky conotftom
${ }^{1} 415000$		${ }_{N=1}^{\infty}{ }^{\text {14, }} 10.2$
4400		
+490		
14600		
:4790	14	ponmet (.10x.215,2F10.2)
4800		
± 780		pesticinimstiv)
0		crim)
	15	chertice
		Triter
-3400	200\%	
5500		IF inde co, 1100 To 96
66900		-0.472 [-2, 4nos:
		fateocur
Stion		Gati pacet lzarime
4,000	102	Gomtinuep (thetare
¢:90		So 30104
166200	8	
		0
6480 6400		
00		\bigcirc
\%00	40	continuestio
$1 \mathrm{tin+10}$,	
15900	10	rokhatisiti.tio. 1)
17100	¢	gimulation starts here
	-	
17300		
17900	c	
17500 $\substack{1700}$	c	ine coor
17,000		
	to00	contimue
${ }^{2} 10009$		timertimetocle
19200		writeinpar, 1010
	1030	
-94909		
${ }^{18600}$	-	
(\%400		
-		\#Henctur
-900a		ws 1 -ws
-960		owiseo.
-7209		OwCute
19300		
-19490		
$\bigcirc 9700$	100	
-9900		:resed
	-	
	¢	iteration loom
${ }_{\substack{20}}^{202080}$	900	confruye
- 204000		
-19900		iet up element stifferss matrix
$\underline{19700}$		do 200 K=1.nELEM
20450		x $\times 1=10.0$
-20000		
21090		c2-0.0
212909		
-1400		
1600		
-		
21400	190	comivos
${ }^{217200}$		
(22000		
${ }_{3200}$		
-2200	: 5	
$\underline{21400}$	-	
23,00		$\times \mathrm{K2}=\times \times 2$ - х3AT
边 2726000	¢	
22400		
(29000		A11-1x $\times 1 . \times \times 21$-0.9/2
${ }^{2} 30060$		
21309		$422 \times \mathrm{Al}$
- 133000		-1146.C1/3.0*C2/4,01/OtL*
21590		8120.0 9210 ± 12
23900 290009		
${ }_{21890}$		
21409		
${ }_{21090}$		${ }_{\text {a }}^{\text {a }}$
24800		
2314090		
-2,400		RHf $1,1, k)=$ = 14
21609 14100		
34400		
24900 29009		
- 29690	200	
(29209	\%	
- 214000	c	TOY BOUNDARY COWOLTtiom

A Three-Dimensional Analytical Model to Aid in Selecting Monitoring Locations in the Vadose Zone

by C.R. McKee and A.C. Bumb

Abstract

Monitoring of the vadose zone is a potentially complex, time-consuming, and expensive problem. The location of monitoring points and selection of monitoring instruments can be optimized by using computer models. Numerical models developed for this purpose in the past have often been expensive and difficult to use. This paper describes a fast. three-dimensional, approximate analytical solution to the moisture content in the unsaturated zone. An analytical solution is available for steady-state drainage, whereas an approximate analytical solution is available for the transient case. The model will handle an arbitrary distribution of fluid sources, as well as vertical and horizontal impermeable boundaries.

The model may be applied to predict the incursion of fluid from accidental leakage or infiltration over large areas from unlined ponds and land treatment sites. The model is quite useful as an aid in designing monitoring or premonitoring programs near hazardous waste sites. Examples are presented to demonstrate the model's utility in estimating the maximum spread of a contaminant, the extent to which the fluid may spread with depth, the regions of high and low capillary pressure, and the non-linear behavior of the saturation when drainage from several sources in considered. These results are useful for the placement of monitoring locations and the selection of appropriate instruments, and as a tool in working with regulatory agencies to design monitoring programs. A glimpse of the future is necessary for today's planning. Computer models are some of the most useful crystal balls we have available.

Introduction

Computer models for predicting unsaturated flow near waste sites have become more numerous and prevalent in recent years, although their use has yet to become widespread. A review of such models has been given by Oster (1982). The use of models in the unsaturated zone is complicated by a lack of data and the need for the operator to be familiar with numerical analysis of nonlinear problems. Moreover, the assessment of the impact at a hazardous waste site is a time-dependent problem in three dimensions (Adams et al. 1983), which further suggests its complexity. Furthermore, instabilities can arise, requiring a linearization of the saturation vs. capillary pressure curve (Segol 1982). Comparatively few hydrologists and geohydrologists have the necessary mathematical and computer training to handle such difficulties. Indeed, many of these problems continue to be the object of present-day research. The authors have developed a computer model that is free of the problems associated with the use of numerical models, yet is threedimensional and can be run rapidly on a microcomputer by the experienced hydrogeologist.

The problems associated with monitoring and predicting the fate of hazardous waste in the vadose zone can lead to considerable expense (see, e.g., Devary and Schalla 1983) and these programs, if not well planned, may not obtain the necessary data, resulting in delays that further escalate costs. Everett et al. (1982), in an
excellent review of monitoring systems, point out that premonitoring programs are necessary because they provide clues on potential mobility rates and valuable information for the design of a vadose zone monitoring system. The approach they advocate appears largely intuitive and based on previous experience. Personal experience, unfortunately, is difficult to quantify and pass on to other investigators. Hence, the use of premonitoring data as input to a mathematical model to predict the direction and rate of migration of contaminants is advocated. Most investigations do not have sufficient funds available in the premonitoring stage to obtain the extensive data required for numerical modeling. Thus, the recommended approach is to use an analytical model. This will allow optimum use of the monitoring budget to concentrate sensors and sampling devices in the most likely avenues of pollutant migration. The authors'experience in working with regulatory agencies is that they often require a worst-case analysis, using a mathematical model, to predict paths of contaminant migration in case containment mechanisms fail. The monitoring systems are then designed, based upon this analysis, for early detection of contaminant migration.

According to Everett et al. (1982), a vadose zone monitoring program consists of premonitoring followed by an active monitoring program. Premonitoring consists of assessing the hydrologic and geochemical properties of the vadose zone. In this study, "premonitoring" is
synonymous with the term "site characterization." Here, the authors are interested only in the hydrologic characterization of the vadose zone. Lack of a chemical assessment is not a significant problem because anions, many complexes, and some organics travel with little or no adsorption. Some chemicals may affect fluid mobility, and this can be readily incorporated in models using different mobility rates. Chemical movement in the vapor phase may be important, but is not considered here. Tracking the infiltration front usually represents a worstcase analysis. If this shows unacceptable migration, then a geochemical site characterization may be necessary.

Selection of a Computer Model

The mathematics of unsaturated or multiphase flow are well known (they are reviewed by Bear 1979, Corey 1977). The equations have also been tested in numerous hydrologic, agricultural and petroleum laboratories. Nonetheless, the equations remain very difficult to solve either analytically or numerically due to their nonlinearity and tendency to form sharp fronts. Sharp fronts, in turn, are the result of a non-linear dependence of the hydraulic conductivity on saturation. Ground water velocity increases with saturation, causing waves or perturbations to catch up to the infiltration front. The process is analogous to the formation of shock waves in hydrodynamics.

Procedures in modeling unsaturated flow are reviewed or illustrated by Lappala (1982), Segol (1982), Sharma (1982), and Dagan and Bresler (1983). These procedures or steps may include: (1) site characterization to obtain field data for a model; (2) selection of a mathematical model; (3) selection of a method to obtain a solution from the mathematical model; (4) prediction and comparison with field data; and (5) history matching and improvement of the model selected.

According to Dagan and Bresler (1983), accurate site characterization in the case of unsaturated flow is a time-consuming process. Moreover, the error due to spatial variability, which is random in many cases, can be much larger than that due to model approximation. The reason for the difficulty stems not only from the usual geologic variability but also from the large array of parameters that must be determined. These include the non-linear functional dependence of saturation on capillary pressure of suction and the corresponding relationship between effective saturation and hydraulic conductivity. Approximately eight parameters are required to characterize a given soil type depending upon the functional forms selected to describe the capillary pressure, saturation, and hydraulic conductivity curves. Because it is often difficult to obtain the desired accuracy for necessary measurements, and because unsaturated flow properties are often unknown and must be inferred from measurements in the literature on materials having similar composition, the selection of an elaborate method to solve the equations would appear unwarranted. This is not a serious limitation because simple approximate methods, even in a spatially variable field, generally lead to predictions as accurate as field data for the saturation over the entire field (Dagan and Bresler 1983).

A typical approach to the problem is to state that because the equations are non-linear and because heterogeneities exist, a finite difference or finite element approach is the only practical method of obtaining a solution. The authors do not agree with this viewpoint, and indeed believe that in many cases there are strong reasons for considering an approximate analytical solution instead. The alternatives will be compared to justify this approach.

Once the basic site characterization is complete and a mathematical model describing the physical situation is at hand, the next step is to select a solution technique for the equations. The major mathematical solution techniques include finite difference, finite element, analytical, and combined analytical and numerical methods.

Finite Difference and Finite Element Models

For steady-state problems, using regular meshes and the common triangular elements, it is easy to show that both the finite element method (FEM) and the finite difference method (FDM) result in identical difference equations (Allen 1955, Zienkiewicz 1977). Higher-order FEM have not proven as useful in solving unsaturated flow equations. Higher-order methods involve more computational time per discretization point, which is compensated for by using fewer points. However, this works only if the functions are smooth and interpolation can be performed with high accuracy (Finlayson 1980). Because unsaturated flow often results in rapid changes in saturation, higher-order methods must still use more points to define these areas, which often makes them prohibitive in cost (Abou-Kassem and Aziz 1982, Ewing 1983).

FEM enjoys advantages over FDM in ease of interpolating data and fitting odd boundaries. However; for steady-state and transient problems with variable coefficients in two dimensions, FEM has some disadvantages (Emery and Carson 1971). These include long execution times and large storage requirements, which may be an order of magnitude larger than using FDM, as well as potential inaccuracies in the treatment of sources and transient terms. For three-dimensional problems, the storage and execution time favor FDM by the square of the matrix band width over two dimensions. Both, however, become unwieldy in storage and execution time in three dimensions when fine zoning is required. According to Brebbia (1981), the finite element method, in many cases, constitutes an inaccurate and expensive technique, whose early claims were often exaggerated.

While these differences are of interest, it is noted that efficiency considerations generally dictate that lowerorder methods be employed. Except for storage and execution times, the stability and accuracy of the two methods are similar.

For regular meshes both FDM and FEM are spatially accurate to second-order terms (square of the nodal point spacing multiplying the higher-order derivatives of the dependent variable). However, most practical problems require the use of irregular meshes that are only accurate to first-order terms. Upstream weighting of conductivities and fully implicit weighting are frequently
used to preserve stability, and these, again are only firstorder accurate. As long as the functions involved are smooth, the higher-order derivatives in the error terms remain bounded. When sharp fronts are present, however, the higher-order derivatives become very large and can cause substantial error. Under this condition, order-of-error concepts lose their value, and the solution of the difference equation will generally not converge to that of the partial differential equation.

Lax's equivalence theorem for linear equations is often invoked to show that if stability of the difference equations occurs, then the solution will converge to that of the differential equation (Smith 1978). However, both the FEM (Segol 1982) and the FDM (Sharma 1982) formulations are unstable (implying lack of convergence to the differential equation) unless the saturation vs. capillary pressure curves are linearized. But if non-linear material properties are to be linearized, why measure the non-linear soil properties in the first place? Upstream weighting of conductivities and the commonly used fully implicit technique are deceptive terms to increase stability. These methods effectively add diffusion terms to the solution, which were not present in the original differential equation.

For low-order FEM and FDM, grid orientation effects can also distort the solution. (For a discussion, see Aziz and Settari 1979). The calculated displacement fronts will appear vastly different depending on whether the leading edge of the infiltration front is moving parallel to or diagonally along the mesh. Both answers are calculated incorrectly! Grid orientation effects are eliminated using higher-order FDM (Yanosik and McCracken 1973, Abou-Kassem and Aziz 1982) and FEM (Settari et.al. 1977), but again at additional expense and complexity.

In the authors' experience, some instabilities can be eliminated by using a grid that is smaller than the displacement head p_{d} (see Brooks and Corey 1964, for definition). However, as Segol (1981) states, "This usually requires the nodal spacing of the finite element grid to be small (on the order of centimeters or tens of centimenters) to avoid numerical instabilities. It is impractical to design such a fine mesh for a field problem because of economic considerations."

The preceding remarks serve to illustrate the authors* reservations concerning the use of FEM and FDM for solving the equations of unsaturated flow. In general. their power and accuracy for solving highly non-linear equations are often overstated. The thousands of waste sites requiring analysis, compared with the relatively few geohydrologists familiar with advanced numerical techniques, and the questionable accuracy of these techniques in practical use, has motivated the authors to re-examine the utility of purely numerical solutions and proceed instead in another direction: that of analytical solutions.

Analytical Solutions

Included in this category are analytical, quasianalytical, and approximate analytical solutions. Following Philip (1969), the authors define analytical solutions as those found completely by mathematical analysis. Quasianalytical solutions are those that have a well-
detined mathematical form, but require numerical techniques for their evaluation; integral equations and iterative successive approximation methods fall in this category. Approximate analytical solutions include situations in which the solution does not exactly satisfy the differential equation, but the error can be shown to be negligible for specified conditions. The latter approach broadens the range of possible applications and increases the flexibility of analytical solutions, and is the approach followed in this article.

The advantages of the analytical solution the authors are proposing are: (1) it is three-dimensional; (2) no numerical dissipation or damping coefficients are required; and (3) it is fast enough to run on microcomputers. The computer model can handle arbitrary distribution of unlined ponds, land treatment areas, and/or leakage from surface sites, directional permeability, vertical impermeable and constant-head boundaries, and horizontal impermeable boundaries. For certain cases. time-dependent solutions are available. Among the disadvantages are that the boundary geometry must be regular, permeability may not vary spatially (although directional permeability is included, which may sometimes account for layering effects), and the model should not be used near the water table if mounding of the phreatic surface is appreciable. These drawbacks will be removed in the future using combined analytical and numerical techniques.

Theory

The governing equation for the movement of fluid in an unsaturated medium was first obtained by Richards (1931). When conservation of mass is applied using Darcy's law, as modified by Buckingham (1907), and allowing that the gravity vector need not coincide with a positive coordinate axis, the governing equation for unsaturated flow is (in general terms)

$$
\begin{equation*}
\nabla \cdot\left\{\underline{K}(\mathbf{S}) \nabla\left(\mathrm{p}_{\mathrm{c}}(\mathrm{~S})+\frac{\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{R}}}{|\mathrm{~g}|}\right)\right\}=-\phi \frac{\partial S}{\partial \mathrm{t}} \tag{1a}
\end{equation*}
$$

where K is the permeability tensor: p_{c} is the capillary pressure head or suction, measured in units of head of the wetting fluid; \bar{R} is the radius vector from the source; S is saturation, t is time; and ϕ is porosity. When z is defined positive downward, with gravitational force downward. in a homogeneous medium, the result is

$$
\begin{equation*}
\nabla \cdot\left\{K(S) \nabla\left(p_{c}(S)+z\right)\right\}=-\phi \frac{\partial S}{\partial t} \tag{lb}
\end{equation*}
$$

On the other hand, if z is taken as positive upward, then the sign of z is negative in Equation Ib. In this article z is taken as positive downward.

A general solution for Equation 16 is not available because of its non-linear character, which arises from the interrelationship of K, p_{c}, and S. For certain cases, analytical solutions are available (Philip 1969). This article describes an analytical solution that is computationally faster than numerical procedures, yet maintains the time and three-dimensional spatial dependence. The solution is obtained by simplifying Equation lb using a Kirchhoff transformation. The simplified differential equation is

Capillary Pressure vs. Saturation

Figure 1. Typical ptot of capillary pressure as a function of saturation to illustrate the selection of $\mathrm{S}_{\mathrm{r}}, \mathrm{S}_{\mathrm{m}}$, and $\mathrm{P}_{\mathrm{c}_{1}}$.
linear for some specific functional relationships between K, S, and p_{c}, described in the following section. An analytical solution can then be obtained for an unbounded medium, while for a bounded medium, a modified method of images is used.

Functional Dependence of $\mathbf{p}_{\mathbf{c}}$ and K on \mathbf{S}

Many empirical relationships for saturation vs. capillary pressure and saturation vs. hydraulic conductivity have been suggested (Corey 1977, Bumb 1987). The specific functional relationships for the dependence of capillary pressure and hydraulic conductivity on saturation. which will be used to transform Richards' equation, are
$\mathrm{S}_{\mathrm{t}}=\frac{\mathrm{S}-\mathrm{S}_{\mathrm{r}}}{\mathrm{S}_{\mathrm{m}}-\mathrm{S}_{\mathrm{r}}}=\exp \left(-\frac{\mathrm{p}_{\mathrm{c}}-\mathrm{p}_{\mathrm{cl}}}{\beta}\right)$
and
$K=K_{0} S_{e}{ }^{n}$
where K_{0} is saturated hydraulic conductivity; n is an exponent in Equation 3; p_{c} is a parameter in Equation 3; S_{e} is effective saturation; S_{m}^{1} is maximum saturation; S_{r} is residual or irreducible saturation, and β is a parameter in Equation 2. When capillary pressure is equal to p_{c}, effective saturation is 1.0 , and actual saturation is equal to the maximum saturation. In general, the more uniform the pore size distribution, the smaller β becomes. Equation 2 is referred to as a Boltzmann distribution. It is not valid for $p_{c}>p_{c}$, since it will yield values of S_{c} greater than unity.

To establish the validity of the functional relationship between p_{c} and S, Equation 2 is used to fit experimental data for capillary pressure vs. saturation. For plotted capillary pressure vs. saturation data, the values of S_{r}, S_{m}, and p_{c} are approximately established as shown in Figure 1. Once approximate values of S_{r} and S_{m} are selected, $p_{c \mid}$ and β can be obtained using standard curvefitting techniques (minimization of absolute error, leastsquares method, relative least-squares method, etc.). Depending on the quality of the curve fit, S_{r} and S_{m} may

Capillary Pressure vs. Saturation Consolidated Material

Figure 2. Curve fits (solid lines) to match data from Brooks and Corey (1964) for consolidated material. Data were converted to an equivalent water-air system using Brooks and Corey's Equation 17.

Capillary Pressure vs. Saturation Unconsolidated Material

Figure 3. Curve fits (solid lines) to match data from Brooks and Corey (1964) for unconsolidated material. Data were converted to an equivalent water-air system using Brooks and Corey's Equation 17.
need to be adjusted and the curve-fitting technique reapplied to obtain final parameter values.

Equation 2 was fitted to data from eight samples studied by Brooks and Corey (1966) and one sample from a low-level waste management site in the Powder River Basin in Wyoming. Figures 2, 3 and 4 show the data points along with the curves obtained from Equation 2 using the values of parameters given in Table 1. As can be seen, the curve fits are excellent in the interval S_{r} to S_{m}.

Expressions defining the relationship between S and p_{c} are more commonly found in the form of a power law (Corey 1977). These, however, are also empirical rela-
tionships. Curve-fitting techniques are required to select the values of the adjustable parameters, and their range of validity is also restricted (Bumb 1987). Thus, these relationships suffer the same restrictions as Equation 2. Equation 2, however, has the advantage of permitting Richards'equation to be transformed to a linear equation for certain cases. This fact, and the fact that a reasonable fit to experimental data is obtained, provide the justification for using Equation 2.

TABLE 1
Properties of the Soils Used in the Examples

Sample	$\mathbf{S}_{\mathbf{r}}$ $(\%)$	$\mathbf{S}_{\mathbf{m}}$ $(\%)$	$\mathbf{P}_{\mathbf{c}_{1}}$ (cb)	β (cb)
Powder River Basin soil	27.7	95.0	3.97	78.09
Touchet silt loam*	36.0	96.5	14.99	8.32
Fine sand *	17.4	94.5	7.39	3.32
Hygiene Sandstone *	58.0	97.5	10.56	3.27
Berea Sandstone *	31.0	96.0	8.48	2.75
Volcanic sand *	15.5	98.0	3.05	2.19
Fragmented sandstone* *	33.0	97.0	1.67	1.70
Fragmented mixture* *	30.0	96.0	3.27	1.47
Glass beads* *	9.5	97.0	5.63	0.91

*Converted to equivalent water-air system using Equation 17 of Brooks and Corey (1964).

A power-law expression relating relative permeability and effective saturation has been proposed by several authors (Corey 1954, Irmay 1954, Averjanov 1962). These expressions are equivalent to Equation 3, the values of $\mathrm{K}_{\mathrm{o}}, \mathrm{S}_{\mathrm{m}}, \mathrm{S}_{\mathrm{r}}$ being defined by the data, leaving n as an adjustable parameter. Corey (1954) proposed a value of 4 for the exponent in Equation 3, while Irmay (1954) proposed a value of 3 . Reiss (1980) suggested a value of 1 for a smooth fracture. Using data from Brooks and Corey (1964) and Irmay (1954), our curve-fitting procedures suggested n to be in the interval from 2 to 3 for consolidated and unconsolidated material. By analyzing drawdown test data from a saturated coal seam in the presence of desorbing methane, Bumb (1987) and McKee and Bumb (1987) obtained $n=3$, in agreement with Irmay's theoretical result. The case for $n=1$ is particularly attractive, because then an analytical solution for the transient case can be obtained. For $\mathrm{n} \neq 1$, Richards' timedependent equation does not transform to a linear equation and successive approximations may be used to obtain a solution.

Analytical Solutions

A new variable, θ, is defined using a Kirchhoff transformation, to reduce the non-linearity of Equation lb :
$\theta=\int_{p_{c}}^{\infty} K d p_{c}=\frac{\beta}{n} K$
Then, using Equations 2 and 3 and assuming an isotropic medium, Equation lb is transformed to

Capillary Pressure vs. Saturation Powder River Basin Soil

Figure 4. Curve fit to match data for PRB soil.

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}-\alpha \frac{\partial \theta}{\partial z}=\frac{1}{D} \frac{\partial \theta}{\partial t} \tag{5a}
\end{equation*}
$$

where
$\alpha=\frac{\mathrm{n}}{\beta}$
and
$D=\frac{\beta K_{0}}{\phi\left(S_{m}-S_{r}\right)} S_{e}{ }^{n-1}$
As can be seen from Equation 5 c , the non-linearity involving θ for the term in brackets becomes unity only for $n=1$. For $n=1$, the coefficient of the diffusivity, D, simplifies to
$D=\frac{\beta K_{0}}{\phi\left(\mathrm{~S}_{\mathrm{m}}-\mathrm{S}_{\mathrm{r}}\right)} \quad$ for $\mathrm{n}=1$
The same result can be obtained for anisotropic media by scaling the coordinate system using the following transformations:
$x=x^{*} \sqrt{k_{y} / k_{x}}$
$y=y^{*} \sqrt{k_{x} / k_{y}}$
$z=z^{*}\left[\sqrt{\frac{k_{x} / k_{y}}{k_{z}}}\right]^{1 / 2}$
and
$\alpha=\frac{\mathrm{n}}{\beta}\left[\frac{\mathrm{k}_{\mathrm{z}}}{\sqrt{\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}}}\right]^{1 / 2}$
where x^{*}, y^{*} and z^{*} are the actual coordinates in the anisotropic media and coincide with the principal axis of permeability.

Note that Equation 5 a is a linear differential equation for $\mathrm{n}=1$ in the transient case and for all values of n at steady-state. The boundary and initial conditions are obtained by recognizing (1) that the medium is initially assumed to be at uniform saturation; (2) that far from the point source the medium will be unaffected; and (3) that there is a source of constant strength (infiltration rate) at the draining site.

Time-Dependent Solution for $\mathbf{n}=1$

The solution to Equation 5 a for $\mathrm{n}=1$ is obtained by analogy with the problem of heat transfer from a point source of constant strength moving through a uniform medium. The solution for a source at the origin is (Carslaw and Jaeger 1959)

where θ_{o} is the value of θ at initial saturation, and $\Delta \theta$ is the change in θ. Evaluating the integral for a source with infiltration rate Q at $x^{\prime}, y^{\prime}, z^{\prime}$ results in

$$
\begin{align*}
\theta-\theta_{\omega} & =\frac{\mathrm{Qe}^{\alpha\left(\lambda-z^{\prime}\right) 2}}{8 \pi R}\left(\mathrm{e}^{\sigma R \cdot 2} \operatorname{erfc}\left[\frac{\mathrm{R}}{2 \sqrt{\bar{D} t}}+\frac{\alpha \sqrt{D t}}{2}\right]\right. \\
& \left.+\mathrm{e}^{-\alpha \mathrm{R} 2 \operatorname{erfc}}\left[\frac{\mathrm{R}}{2 \sqrt{\bar{D} t}}-\frac{\alpha \sqrt{\mathrm{D} t}}{2}\right]\right) \tag{6b}
\end{align*}
$$

where
$R=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}$
This solution is for a point source. Areal leakage for land treatment facilities can be obtained by superposition of a large number of point sources. Superposition can be used to sum any number of solutions of the form of 6 b , since 5 a is linear when $\mathrm{n}=1$ or in the steady-state case. Saturation as a function of space and time is obtained using the inverse transformation from Equations 2, 3, and 4,

$$
\begin{equation*}
S=S_{r}+\left(S_{m}-S_{r}\right)\left(\frac{n \theta}{\beta K_{o}}\right)^{1 n} \tag{7}
\end{equation*}
$$

Time-Dependent Solution for $\mathrm{n} \neq 1$

As noted earlier, governing Equation 5 a is non-linear when $\mathrm{n} \neq 1$. However, the non-linearity occurs only in the coefficient of diffusivity, D. The non-linearity for D (Equation 5c) is in the S_{e} term. To be conservative, the authors evaluate the coefficient of diffusivity by substituting unity for S_{e}. By doing so, diffusivity is overestimated, and therefore the spreading of soil moisture content is overestimated. In the limiting case of large times, time-dependent model calculations are the same as steady-state model calculations, indicating some confidence in the approximation.

Steady-State Solution

If the steady-state case is considered, the $\mathrm{n}=1$ restriction may be removed because the governing equation,

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}-\alpha \frac{\partial \theta}{\partial z}=0 \tag{8}
\end{equation*}
$$

is linear for all values of n. Non-linearity, however, is preserved in the inversion to capillary head and saturation. The solution for the steady-state case is
$\theta-\theta_{\mathrm{o}}=\frac{\mathrm{Q}}{4 \pi \mathrm{R}} \exp \left\{-\frac{\alpha}{2}\left(\mathrm{R}-\left(\mathrm{z}-\mathrm{z}^{\prime}\right)\right)\right\}$
This result is also from Carslaw and Jaeger (1959), as noted by Philip (1969).

Boundaries

The solutions presented in the preceding section are valid for a vadose zone of infinite depth and extent. These assumptions are questionable for many situations, particularly when the physical boundaries of the vadose zone are near the leakage or infiltration. A common example is leakage under a lined pond, where the lining forms a horizontal impermeable boundary. Solution techniques for impermeable boundaries can be developed using the approximate method of images and non-linear superposition for partial differential equations. Because the results are different for horizontal and vertical boundaries, they are presented separately.

Horizontal Impermeable Boundary Above the Source

When no flow through the soil surface is allowed, and the source is at a depth d below the surface, Rats (1972) gives the following equation:

$$
\begin{align*}
& \theta_{d}-\theta_{o}=\Delta \theta_{\infty}[r, z-d]+e^{-\alpha d} \Delta \theta_{\infty}[r, z+d] \\
& -\frac{\mathrm{Q} \alpha}{4 \pi} e^{\alpha z} E_{1}\left[\frac{\alpha}{2}\left(\mathrm{z}+\mathrm{d}+\sqrt{\mathrm{r}^{2}+(\mathrm{z}+\mathrm{d})^{2}}\right)\right] \tag{10}
\end{align*}
$$

where E_{1} is the exponential integral function. Equation 10 is also applicable with appropriate definitions of d for any impermeable boundary above the source.

Horizontal Impermeable Boundary Below the Source

For an impermeable boundary at $\mathrm{z}=\mathrm{a}$, the no-flux condition is represented by:
flux $=-K \frac{\partial}{\partial z}\left(p_{c}+\frac{\bar{g} \cdot \hat{e}_{z} z}{|\vec{g}|}\right)=0 \quad$ at $z=a$
where \hat{e}_{z} is a unit vector in the positive z direction. This condition represented in terms of the Kirchhoff transformation variable θ is

$$
\begin{equation*}
\text { flux }=\left.\frac{\partial \theta}{\partial \mathrm{z}}\right|_{\mathrm{z}=\mathrm{a}}-\left.\frac{\stackrel{\rightharpoonup}{\mathrm{g}} \cdot \hat{\mathrm{e}}_{2}}{|\overrightarrow{\mathrm{~g}}|} \mathrm{K}\right|_{\mathrm{z}=\mathrm{a}}=0 \tag{12}
\end{equation*}
$$

The theory of images, as illustrated in Figure 5, has been used extensively in the hydrology of saturated flow to model impermeable and constant-head boundaries (see, for example, Muskat 1946), and in conduction of heat in solids to model perfect insulation or constant
temperature (Carslaw and Jaeger 1959). For these applications, θ would represent the potential (head or temperature) and the no-flow boundary condition given by $\nabla \cdot \theta$ $=0$ at the boundary. In that case the exact method of images results $\operatorname{in} \theta=\theta_{R}+\theta_{1}$, where θ_{R} is the solution for the real source and θ_{1} is the solution for the image source. In the saturated flow case ($\alpha+0$), the real and image solutions have the same mathematical form, but the presence of gravity causes an asymmetry between them for unsaturated flow. The authors' modified method of images has the same form as the classical method of images, namely

$$
\begin{equation*}
\Delta \theta=\Delta \theta_{\mathrm{R}}+\Delta \theta_{\mathrm{I}}^{\mathrm{h}} \tag{13}
\end{equation*}
$$

In Equation 13, θ_{R} is the solution due to a "real" point source at ($x^{\prime}, y^{\prime}, z$) in an infinite medium (which may be either Equation 6b, time-dependent, or Equation 9, steady-state) and $\theta_{\mathrm{l}}^{\mathrm{h}}$ is the solution due to an "image" point source for a horizontal boundary at ($x^{\prime}, y^{\prime}, 2 a-z$) in an infinite medium with gravitational force acting upward:

$$
\begin{align*}
& \left.+e^{a R_{1}}: \operatorname{erfc}\left(\frac{R_{1}}{2 \sqrt{D t}}+\frac{a \sqrt{D t}}{2}\right)\right\} \tag{14a}
\end{align*}
$$

where
$R_{1}=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-\left(2 a-z^{\prime}\right)\right)^{2}}$
The steady-state image solution is also obtained by changing the sign of ($z-z^{\prime}$) in Equation 9 and replacing R with R_{1}. Notice that the flow due to the "real" solution $\left(\theta_{\mathrm{R}}\right)$ will be downward (gravity pulling water downward), while the flow due to the "image" solution ($\theta_{\text {h }}^{\text {h }}$) will be upward (the direction of gravity is reversed). The flux due to a real source in which gravity is downward is then
flux $_{R}=\left.\left(\frac{\partial \theta_{R}}{\partial z}-K\right)\right|_{z=a}$
and the flux due to an image source in which gravity is upward is
flux $_{1}=\left.\left(\frac{\partial \theta_{1}}{\partial z}+K\right)\right|_{z=a}$
and the total flux at the boundary is given by
flux $=$ flux $_{R}+$ flux $_{1}=0$
which is satisfied as shown in the appendix, and hence the solution is Equation 13. The error introduced by reversing the sign of gravity is evident when Equation 13 is substituted into differential Equation 5 as all the terms do not cancel (see appendix). The remaining terms vanish exponentially with distance from the real source.

Vertical Impermeable Boundary

The vertical impermeable boundary at $\mathrm{x}=\mathrm{b}$ is represented by
$\frac{\partial}{\partial_{x}}\left(p_{c}+z\right)=0$

Figure 5. Schematic of real and image sources used to model a horizontal "impermeable" barrier under the real source.
or, equivalently,

$$
\begin{equation*}
\frac{\partial \theta}{\partial x}=0 \tag{19}
\end{equation*}
$$

This is easily satisfied, with no change in the sign of gravity, by
$\nabla \theta=\nabla \theta_{\mathrm{R}}+\nabla \theta_{\mathrm{t}}^{v}$
where θ_{R} is the solution due to the "real" point source and θ_{1}^{V} is the solution due to the "image" point source located at ($2 \mathrm{~b}-\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, z^{\prime}$); θ_{1}^{y} is obtained by substituting ($2 \mathrm{~b}-\mathrm{x}^{\prime}$) for x^{\prime} in Equation 6 a .

Flux and Velocity

The flux in the unsaturated zone is given by
flux $=-K \nabla \cdot\left(p_{c}+\frac{\overrightarrow{\mathrm{g}} \cdot \hat{\mathrm{e}}_{z}}{|\overrightarrow{\mathrm{~g}}|}\right)$
where \hat{e}_{z} is a unit vector in the positive z direction. Note that p_{c} is in units of head of water (or wetting fluid). The $x . y$, and z components of flux in terms of θ are
x component of flux $=\frac{\partial \theta}{\partial x}$
y component of flux $=\frac{\partial \theta}{\partial y}$
z component of flux $=\frac{\partial \theta}{\partial z}-\frac{\overline{\mathrm{g}} \cdot \hat{\mathrm{e}}_{t}}{|\overline{\mathbf{g}}|} \frac{n}{\beta} \theta$
Derivatives of θ are easily calculated from the expression for θ. Equation 22 is linear, therefore, the method of superposition can be used to obtain flux. If a horizontal impermeable boundary below the source exists, Equation 22 will have the appropriate sign with the second term on the right.

The cross-sectional area for particle movement is reduced by a factor of $\phi \mathrm{S}$. Therefore, the particle velocity, v , is obtained from flux using
$v=\frac{\text { flux }}{\phi S}$

Application of the Computer Model to Monitoring

There are at least six ways in which computer modeling can aid in designing an effective monitoring program: (1) The maximum spread, both laterally and vertically, of contaminants from a leak or waste site can be estimated. Most monitoring should be concentrated in this region, with sparse monitoring outside it to check that the movement of fluid is as anticipated; (2) The model will indicate whether fluid from the site tends to spread with depth. Accordingly, samplers and instruments, such as moisture blocks, can be set at depths where they will be most likely to intercept fluids from the source; (3) Regions beneath the waste site or leak can be classified into areas with low and high soil moisture suction or capillary pressure head values (most moisture movement occurs at less than a few meters of suction head). This information can be used to identify the most accessible flow region for instrumentation, because the high flow region will transport contaminants most rapidly; (4) One can, from the computer output of suction and saturation, estimate the range of suction and saturation values expected in the vertical plume. This range can be used to select the optimum instrumentation to measure moisture content and potential, and the appropriate sampling units such as lysimeters. Many types of instruments are available; however, they often work over limited ranges in soil moisture and suction. Computer calculations will help reduce the uncertainty in selecting appropriate instruments to carry out the desired function. (5) The non-linear nature of hydraulic conductivity and capillary pressure/saturation must be considered when leakage occurs from multiple adjacent sources in the same area. Superposition of flows from multiple sources can create an unanticipated region of higher flow between the sources; and (6) The computer model can be used as an aid in working with regu!atory agencies to lend assurance that an adequate monitoring plan has been, or will be, implemented.

Two different soil types will be used to illustrate the preceding concepts. The first, termed Touchet Silt Loam (TSL), was studied by Brooks and Corey (1964) and has $0.54 \mathrm{ft}^{-1}\left(1.77 \mathrm{~m}^{-1}\right)$ for the value of α when $\mathrm{n}=3$. The second is a sample taken from the Powder River Basin (PRB) in Wyoming in conjunction with an investigation for an experimental low-level waste disposal facility. For this soil, α is $0.057 \mathrm{ft}^{-1}\left(0.189 \mathrm{~m}^{-1}\right)$, again for $\mathrm{n}=3$. According to Philip (1969), α for most soils lies in the range of 1.52 to $0.06 \mathrm{ft}^{-1}$ (5 to $0.2 \mathrm{~m}^{-1}$). Note that α is proportional to $1 / \beta$ and that large β values correspond to a wide range of pore sizes. Hence, TSL soil contains an average range of pore sizes for the soils Philip (1969) studied, while PRB soil is within the range expected but toward the lower range of α, indicative of a wide range of pore sizes.

These two soil types were chosen because they exhibit very different behavior of the vertical unsaturated flow plumes, and they serve to illustrate the points the authors have made for the use of a computer model. In all cases, the effective saturation, S_{e}, is plotted in the accompanying
figures. The real saturation can be obtained using the values of S_{m} and S_{r} found in Table 1. When $\mathrm{S}_{\mathrm{e}}=0$, the soil is at residual saturation, S_{r}, where soil water movement is negligible. The permeability of the PRB soil was measured at 0.4 darcy, or a hydraulic conductivity of 1.15 $\mathrm{ft} /$ day $(0.35 \mathrm{~m} /$ day $)$ for water movement, and a porosity of 34.5 percent. TSL was assumed the same so that the effect of α on the saturation profile can be illustrated.

Vertical permeability is normally less than horizontal permeability. A ratio of horizontal to vertical permeability of 4 was selected based on measurements conducted on shallow aquifers. It is assumed a layered soil will exhibit the same behavior. If S_{e} is the same for both soils, then the hydraulic conductivity will be the same for soils with the same saturated hydraulic conductivity. For the following examples, it is assumed that initially the soils are at irreducible saturation. All the steady-state examples use $\mathrm{n}=3$ to relate effective saturation to hydraulic conductivity, i.e., $K=K_{o} S_{e}^{3}$.

Point Source Leakage

Point source leakage is typical of the behavior of leaks from buried pipes or tanks. The three-dimensional axisymmetric solution for TSL and PRB soils is given in Figure 6. The leakage rate is assumed to be 52.8 gpd (200 liters/day). Note that at 33 feet (10 m) below the source, the fluid has spread laterally to 33 feet (10 m) for TSL and 72 feet (22 m) for PRB soil using the $\mathrm{S}_{\mathrm{e}}=5$ percent contours to illustrate the penetration of the fluid. For equivalent increases in effective saturation, S_{e}, the plume for PRB soil is much wider. However, from a contaminant transport perspective, TSL maintains higher soil moisture content directly under the leak, resulting in faster movernent of the fluid. At 100 feet (30 m) horizontally from the leak and 100 feet (30 m) deep, TSL should not transport contaminants, whereas PRB soil will. The relative siting of monitoring instruments is obvious from the two plots of effective saturation.

Uniform Pond Leakage

Figure 7 shows a cross section of an unlined pond or land treatment site 49.2 feet (15 m) by 98.4 feet (30 m). Infiltration of $9.17 \mathrm{gpm}\left(50 \mathrm{~m}^{3} /\right.$ day $)$ is assumed, which is approximately 30 percent of the maximum soil infiltration rate. This allows for a flow reduction due to fines at the surface. The results of calculations in the TSL and PRB soils are given in Figure 8. Note that at 80 feet (24 m) from the edge of the pond for TSL [120 feet (37 m) from the origin along the major axis] instrumentation would have to be buried at a depth of 100 feet (30 m) to intercept appreciable amounts of fluid seepage from the site. However, the PRB pond calculation indicates considerable saturation at the same distance from near the surface to the maximum depth calculated. The velocity, which increases with saturation, shows more gradual variation. At 65 feet (20 m) deep and less than 30 feet (10 m) away from the pond, the effective saturation is 38 percent, which is very close to saturation under the pond in PRB soil. A sample at this point would therefore be predicted to be representative of that under the pond. For TSL, the

Figure 6. Steady point-source leakage compared for a soil with TSL and PRB soil properties. The relative spreading of the plume in the two cases indicates very different monitoring approaches. Fluid would move most rapidly directly under the leak in a TSL soil. The leakage rate in both cases is 5.28 gpd (200 liters/day).
maximum effective saturation of 80 percent occurs directly under the pond where the flow is highest. In this case, for an existing site, directional drilling would have to be used to sample or install instruments in the most active region of flow.

Multipond Calculation

The layout for two ponds is given in Figure 9. This problem was chosen because it is a true three-dimensional calculation with no axis of symmetry to reduce the amount of calculation required. If this were done accurately with a finite difference or finite element computer program using a 3 -foot (1 m) grid spacing, approximately 15 million nodal points would be required. Needless to say, it would not be in the realm of possibility to run this problem on today's computers. This problem demonstrates the advantages of the analytical approach, particularly to aid in understanding the flow patterns.

Saturation contours for TSL and PRB soils are shown in Figures 10 and 11, respectively. The flows for each pond combine to produce the highest saturation between the ponds. This is due to the rapid non-linear increase in the hydraulic conductivity as the saturation increases. The area between the ponds is the predicted zone of greatest flow, and monitoring should address this area first.

The spreading of fluid is again radically different for the two cases. The TSL needs monitoring close to the ponds, while the PRB soil will influence a larger area. Absolute saturations between the ponds will be in the 45 to 60 percent range. Figure 12 shows the components of particle velocities projected on the cross-sectional plane shown in Figure 9 for TSL soil. Information on velocities (and flux) is important in determining how fast contaminants are moving and in designing leak detection networks.

Time-Dependent Calculations

The principal utility of time-dependent calculations is to estimate arrival time of contaminants at selected loca-

30 m

100m
Figure 7. Cross section for uniform steady infiltration calculation, performed for half the pond along the major axis. Uniform infiltration from the pond at a rate of $9.17 \mathrm{gpm}\left(50 \mathrm{~m}^{3} / \mathrm{day}\right)$ is assumed.

Figure 8. Steady-state effective saturation contours for two different soil types for the cross section shown in Figure 7. Maximum flow and saturation occur directly under the TSL waste site and can be accessed only by directionally drilled holes. The same saturation values are accessible for monitoring near the edge of the PRB site.

Figure 9. Plan view of two asymmetrical ponds for threedimensional computer calculation. The calculation is performed in a vertical plane along the cross-section line.

Figure 10. Steady-state effective saturations along cross section shown in Figure 9 for TSL soil. The highest flow occurs between the two ponds.
tions and to gauge when instruments should begin to respond. The results for $\mathrm{n}=1$ and $\mathrm{n}=3$ are given in Figures 13 and 14 , respectively. The time-dependent calculation is exact for $\mathrm{n}=1$. For $\mathrm{n}=3$ the coefficient of the time-dependent term (D) is the same as for $n=1$; however, the spatial part (α) contains the correct terms. The calculation can only be regarded as an approximation of the transient behavior. This deficiency will be removed in future work. Large differences in saturation profile again persist for the two soil types, although they are not shown.

Notice that for $\mathrm{n}=1$, it takes almost 50 days for 1 percent effective saturation to reach 100 feet (30 m) below the center of the pond. However, in Figure 14 for n $=3$, the 5 percent S_{e} contour reaches the same point in less than 10 days. Although the time-dependent solution for $\mathrm{n} \neq 1$ is approximate, faster arrival times (greater spreading) for $\mathrm{n}=3$ compared to $\mathrm{n}=1$ are also indicated from steady-state calculations (Figures 13 and 14). This is surprising since higher values of n result in lower relative permeability, and one would intuitively expect that lower permeability would result in longer travel times. The preceding statement applies to linear differential equations written in pressure. The governing equation for the vadose zone in terms of capillary pressure (Equation 1) is highly non-linear; it becomes linear only in terms of θ (Equation 5). Note that this equation is analogous to the equation for heat transfer from a constantstrength source moving through a uniform medium. In the analogous problem, a would correspond to the speed of the moving heat source. Since α is proportional to n , one would expect more spreading of heat (and saturation) for higher velocities of the heat source (higher n).

Summary and Conclusions

State-of-the-art for modeling unsaturated flow was

Figure Il. Steady-state effective saturations along cross section shown in Figure 9 for PRB soil. Monitoring in this case shouid be concentrated between the ponds since this is the region of highest flow and saturation.

Figure 12. Steady-state velocity vectors along the cross section shown in Figure 9 for TSL soil.
reviewed, with the conclusion that approximate analytical solutions offer unique advantages-primarily ease and economy of running the program and freedom from a host of numerical instabilities and damping coefficients that were not present in the original differential equation. The disadvantages include a lack of spatial variation in hydraulic conductivity.

Six reasons were given for using a model to guide the installation of instrumentation in the vadose zone. The primary reasons are that instruments can be selected to optimally respond to the saturation and soil potential
condition in situ. Instrumentation can be located in the areas of the highest fluid mobility to afford the eariest detection of contaminant escape. Also, the model can be used in working with regulatory agencies to justify and optimize the design of a monitoring system. The model is not advocated as the final solution for a site, but rather as a tool with which to guide and develop a vadose zone monitoring program. The final model must, of course, include the effects of site-specific geometrical constraints and heterogeneities.

Acknowledgments

We wish to express our appreciation to J.T. Laman, T.L. Deshler and R.H. Jacobson for helpful comments and discussions; to M.S.P. Ramesh for helping in coding the program; and to J.M. Reverand for technical editing. The model described here is available as a proprietary computer code, VADOSE, from In-Situ Inc., Laramie, Wyoming.

Appendix: Calculations for Horizontal Boundary Conditions

From Equations 15, 16, and 17, it is known that the flux at the impermeable boundary is given by

Flux $=\left.\left(\frac{\partial \theta_{\mathrm{R}}}{\partial \mathrm{z}}-K+\frac{\partial \theta_{1}}{\partial z}+K\right)\right|_{z=a}$
From Equations 6 and 14, it can be shown that
$\left.\frac{\partial \theta_{\mathrm{R}}}{\partial z}\right|_{z=a}=-\left.\frac{\partial \theta_{1}^{\mathrm{h}}}{\partial \mathrm{z}}\right|_{\mathrm{z}=\mathrm{a}}$
Substitution of Equation A-2 into Equation A-1 yields

Flux $\left.\right|_{z=a}=0$
Hence the image solution
$\nabla \theta=\nabla \theta_{\mathrm{R}}+\nabla \theta_{i}^{\mathrm{h}}$
satisfies the no-flux criterion. However. when the "image" solution for a horizontal boundary is substituted in the differential equation, all the terms do not cancel. This is due to reversing the sign of gravity for the "image" solution. The remaining terms for the steady-state case are

$$
\begin{equation*}
\frac{\mathrm{Q}}{4 \pi}\left\{\frac{2\left(\mathrm{z}-\mathrm{z}^{\prime}\right)}{\mathrm{R}^{3}} \alpha+\left(\frac{1}{\mathrm{R}}+\frac{\left(\mathrm{z}-\mathrm{z}^{\prime}\right)}{\mathrm{R}^{2}}\right) \alpha^{2}\right\} \mathrm{e}^{-0.5 \sigma\left(\mathrm{R}-\mathrm{z}-\mathrm{z}^{\prime}\right)} \tag{A-5}
\end{equation*}
$$

Since α is a small number, these remaining terms are negligible. As long as R and z are positive. the error

Figure 13. Time-dependent frontal (1 percent effective saturation) advance for PRB soil and the pond layout shown in Figure 7. The exponent relating effective saturation to hydraulic conductivity is 1; therefore, for this case, the analytical solution is correct.

Figure 14. Time-dependent front (1 percent effective saturation) advance for PRB soil and the pond layout shown in Figure 7. The exponent relating effective saturation to hydraulic conductivity is 3, and thus, this calculation is only a rough approximation. Fluid spreads much more rapidly in this case.
term decays exponentially. Similarly, it can be shown that the remaining terms for the transient differential equation are also negligible. Thus, this image solution technique, while not exact, is still a preferred approximation to an otherwise very complex proolem.

Nomenclature

$a=$ distance to impermeable boundary [L]
$d=$ depth to the source [L]
$D=$ parameter defined in Equation $5 \mathrm{~d}\left[\mathrm{~L}^{2} / \mathrm{T}\right]$

$$
\begin{aligned}
& e_{r}=\text { unit vector in the positive } z \text { direction } \\
& \mathrm{K}=\text { hydraulic conductivity [L;] } \\
& \mathrm{K}_{\mathrm{o}}=\text { hydraulic conductivity at maximum } \\
& \text { saturation [L/T] } \\
& \mathrm{n}=\text { power in the power-law relationship for } \mathrm{K} \\
& \text { as a function of soil saturation } \\
& p_{c_{1}}=\text { displacement pressure head obtained by } \\
& \text { extrapolating the capillary pressure curve } \\
& \text { to } \mathrm{S}=1 \text { [L] } \\
& P_{c}=\text { capillary pressure head [L] } \\
& \left.Q=\text { flow rate or strength of point source [} L^{3} / T\right] \\
& R=\text { distance from point source [L] } \\
& \mathrm{R}_{1}=\text { distance from image point source [L] } \\
& S=\text { saturation of the soil } \\
& S_{e}=\text { effective saturation } \\
& \mathrm{S}_{\mathrm{m}}=\text { maximum saturation } \\
& S_{r}=\text { irreducible or residual saturation } \\
& t=\text { time since drainage began [T] } \\
& \mathrm{v}=\text { velocity of particles } \\
& x . y . z=\text { Cartesian coordinates, } z \text { defined positive } \\
& \text { downward [L] } \\
& x^{\prime} . y^{\prime}, z^{\prime}=\text { location of point source [L] } \\
& \alpha=\text { constant defined in Equation } 5 b\left[\mathrm{~L}^{-1}\right] \\
& \beta=\text { adjustable parameter in the saturation vs. } \\
& \text { capillary pressure relation, Equation } 2 \text { [L] } \\
& \theta=\text { dependent variable defined by Kirchhoff } \\
& \text { transtormation, Equation } \left.4 \text { [} \mathrm{M}^{2} \mathrm{~T}\right] \\
& \theta_{0}=\text { value of } \theta \text { at initial conditions } \\
& \theta_{\mathrm{R}}=\text { dependent variable for real point source in } \\
& \text { an infinite medium [} \mathrm{M}^{2} / \mathrm{T} \text {] } \\
& \theta_{1}^{\text {h }}=\text { dependent variable for image point source } \\
& \text { for a horizontal impermeable boundary in } \\
& \text { an infinite medium [} \mathrm{M}^{2} / \mathrm{T} \text {] } \\
& \boldsymbol{\theta}^{y}=\text { dependent variable for image point source } \\
& \text { for a vertical impermeable boundary in an } \\
& \text { infinite medium [} \mathrm{M}^{2} / \mathrm{T} \text {] } \\
& \phi=\text { porosity }
\end{aligned}
$$

References

Abou-Kassem, J.H. and K. Aziz. 1982. Grid Orientation During Steam Displacement. Soc. Petr. Eng. of AIME. SPE Paper 10497.
Adams, W.M., S.W. Wheatcraft and J.W. Hess. 1983. Downhole Sensing Equipment for Hazardous Waste Site Investigations. Proc. National Conf. on Management of Uncontrolled Hazardous Waste Sites, Washington, D.C., Oct.-Nov. 1983, pp. 108-113. Hazardous Materials Control Research Inst., Silver Spring, Maryland.
Allen, D.N. 1955. Relaxation Methods. McGraw-Hill, New York.
Arnold, E.M., G.W. Gee and R.W. Nelson, eds. 1982. Proc. Symposium on Unsaturated Flow and Trans-
port Modeling, held at Seattle, March 1982. Sponsored by the Office of Nuclear Material Safety and Safeguards of the U.S. Nuclear Regulatory Commission. NUREG/CP-0030, PNL-SA-10325.
Averjanov, S.F. 1962. About Permeability of Subsurface Soils in Case of Incomplete Saturation. The Theory of Groundwater Movement, by P.Y. PoluarinovaKochina, trans. J.M.R. DeWiest. Princeton Univ. Press, Princeton, New Jersey.
Aziz, K. and A. Settari. 1979. Petroleum Reservoir Simulation. Applied Science Publishers, London.
Bear, J. 1979. Hydraulics of Groundwater. McGraw-Hill, New York.
Brebbia, C.A. 1981. Progress in Boundary Element Methods, v. I. John Wiley \& Sons, New York.
Brooks, R.H. and A.T. Corey. 1964. Hydraulic Properties of Porous Media. Hydrology Paper No. 3, Colorado State University, Ft. Collins, Colorado.
Buckingham, E. 1907. U.S. Dept. Agr., Bur. Soils Bull. 38.
Bumb, A.C. 1987. Unsteady-State Flow of Methane and Water in Coalbeds. Ph. D. thesis, Dept. of Chemical Engineering, University of Wyoming, Laramie.
Carslaw, H.S. and J.C. Jaeger. 1959. Conduction of Heat in Solids, 2nd ed. Oxford Univ. Press, New York.
Corey, A.T. 1954. The Interrelation Between Gas and Oil Relative Permeabilities. Producer's Monthly, v. 19, no. 1.
Corey, A.T. 1977. Mechanics of Heterogeneous Fluids in Porous Media. Water Resources Publications, Fort Collins, Colorado.
Dagan, G. and E. Bresler. 1983. Unsaturated Flow in Spatially Variable Fields, I. Derivation of Models of Infiltration and Redistribution. Water Resour. Res., v. 19, pp. 413-420.
Devary, J.L. and R. Schalla. 1983. Improved Methods of Flow System Characterization. Proc. National Conf. on Management of Uncontrolled Hazardous Waste Sites, Washington, D.C., Oct.-Nov. 1983, pp. 117-122. Hazardous Materials Control Research Inst., Silver Springs. Maryland.
Emery, A.F. and H.W. Carson. 1971. An Evaluation of the Use of the Finite-Element Method in the Computation of Temperature. J. Heat Transfer, May 1971, pp. 136-145.
Everett, L.G., L.G. Wilson and L.G. McMillion. 1982. Vadose Zone Monitoring for Hazardous Waste Sites. Ground Water, v. 20, no. 3, pp. 312-324.
Ewing, R. 1983. University of Wyoming, Laramie. Wyoming. Private Communication.
Finlayson, B.A. 1980. Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New York.
Irmay, S. 1954. On the Hydraulic Conductivity of Unsaturated Soils. Trans. AGU, v. 35, no. 3, pp. 463467.

Lappala. E.G. 1982. Recent Developments in Modeling Variably Saturated Flow and Transport. Arnold et al.. eds.. 1982. pp. 35-54.
McKee, C.R. and A.C. Bumb. 1987. Flow-Testing Coalbed Methane Production Wells in the Presence of Water and Gas. SPE Formation Evaluation, December 1987, pp. 599-608.

Muskat, M. 1946. The Flow of Homogeneous Fluids Through Porous Media. J.W. Edwards, Ann Arbor, Michigan.
Oster, C.A. 1982. Review of Ground-Water Flow and Transport Models in the Unsaturated Zone. Battelle Pacific Northwest Laboratory, Richland, Washington, report for U.S. Nuclear Regulatory Commission, NUREG/CR-2917, PNL-4427.
Philip, J.R. 1969. Theory of Infiltration. Advances in Hydroscience, ed. V.T. Chow, v. 5, pp. 215-296. Academic Press, New York.
Raats, P.A.C. 1971. Steady Infiltration from Point Sources, Cavities, and Basins. Soil Sci. Soc. Amer. Proc., v. 35, pp. 689-694.
Reiss, L.H. 1980. The Reservoir Engineering Aspects of Fractured Formations. Gulf Pub. Co., Houston, TX.
Richards, L.A. 1931. Capillary Conduction of Liquids Through Porous Mediums. Physics, v. 1, pp. 318-333.
Segol, G. 1982. Unsaturated Flow Modeling as Applied to Field Problems. Arnold et al., eds., 1982, pp. 35-54.
Settari, A., H.S. Price and T. Dupont. 1977. Development and Application of Variational Methods for Simulation of Miscible Displacement in Porous Media. Soc. Petr. Eng. J., v. 17, no. 3, pp. 228-246.
Sharma, D. 1982. Fluid Dynamics and Mass Transfer in Variably Saturated Porous Media: Formulation and Applications of a Mathematical Model. Arnold et al., eds., 1982, pp. 179-210.
Smith, G.D. 1978. Numerical Solution of Partial Differential Equations: Finite Difference Methods. 2nd ed. Oxford Univ. Press, Oxford, United Kingdom.

Yanosik, J.L. and T.A. McCracken. 1979. A Nine-Point, Finite Difference Reservoir Simulator for Realistic Prediction of Adverse Mobility Ratio Displacements. Soc. Petr. Eng. J., v. 19, no. 4, pp. 253-262.
Zienkiewicz, O.C. 1977. The Finite Element Method, 3rd ed., p. 430. McGraw-Hill, New York.

Biographical Sketches

Chester R. McKee, president of In-Situ Inc. (P.O. Box I, 210 S. Third St., Laramie, WY 82070), holds a B.S. in physics from Duquesne University, and an M.S. and a Ph.D. in physics from the New Mexico Institute of Mining and Technology. His research interests include ground water modeling, contaminant migration, saturated and unsaturated permeability testing, and in situ mining. He has published numerous technical papers on hydrodynamics, explosive fracturing, subsidence, hydrology and ground water restoration.

Amar C. Bumb is manager of the computer technology division of In-Situ Inc. (P.O. Box I, 210 S. Third St., Laramie, WY 82070). He specializes in hydrology and computer applications. He received his B.E. with honors in chemical engineering from the Birla Institute of Technology and Science in Pilani, India, and his M.S.Ch.E. and Ph.D. from the University of Wyoming. His research interests include in situ mining, optimum well field design, ground water restoration, hydrodynamics, and multiphase flow.

ULTIMATE PORTABILITY.

THE MARSCHALK SYSTEM is now available as a convenient package mounted in a rugged trailer for easy transition to the next well or job site. Pump drivers are available in gasoline or propane models.
THE MARSCHALK PUMP
-316 SS construction

- Serialized components
- Purge rate to 4 GPM
- Portable and dedicated systems
- Assaying and certification services

Simulation of Vapor Transport Through the Unsaturated Zone - Interpretation of Soil-Gas Surveys

by Lyle R. Silka

Abstract

Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of pesticides generally differ substantially from those of VOCs.

This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through unsaturated soils using a two-dimensional, finite-difference, solution to Fick's second law of diffusion. An effective diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data, nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal variations in moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC liquid and contaminated ground water.

Introduction

Volatile organic chemicals (VOCs) have been identified nationwide as one of the more ubiquitous groups of hazardous chemicals present in contaminated ground water. A major reason for this is the widespread use of VOCs in the manufacture of pesticides, plastics, paints, pharmaceuticals, solvents and textiles, as well as constituents of petroleum products. Due to the presence of VOCs at many sites of contamination, there has been increasing interest in the sampling and measurement of VOCs in soil gas to estimate their extent in soils and ground water. With the recent development of the portable gas chromatograph, the quantitative and semiquantitative field analysis of VOCs in soil gas is now a reality.

Portable gas chromatography, a relatively new technology, has been shown to be especially applicable to the investigation of soil and ground water contamination through the analysis of shallow soil gas. Under diffusive transport, VOCs volatilize from ground water and move upward through the unsaturated zone, ultimately venting
to the atmosphere. This process provides a means to delineate areas of subsurface contamination through the analysis of VOCs in the shallow soil gas. Also, it has been shown empirically that the concentration of VOCs in samples of shallow soil gas are related to the concentration of VOCs in ground water (Glaccum et al. 1983, Lappala and Thompson 1983a and b, Swallow and Gschwend 1983, and Marrin 1984). Soil-gas surveys are recognized as a valuable tool, both alone and in conjunction with other remote-sensing techniques, that can provide data on the location and extent of soil and ground water contamination and can aid in the design of more detailed ground water studies involving soil borings and monitoring well networks.

The successful interpretation of a soil-gas survey depends on several factors, including the size and age of the source, the moisture content and organic carbon content of the unsaturated zone, and the volatility and solubility of the VOC. Prior to conducting a soil-gas survey, the effects of these factors should be evaluated in
order to optimize the design of the soil-gas survey. Through a review of theory and application of a computer model, this paper presents an evaluation of the operational limitations of soil-gas surveys.

Behavior of VOCs in the Subsurface

Transport Mechanisms

The transport of VOCs from a source through unsaturated soil may be by mass flow as a solute in percolating water or by diffusion as a vapor in soil gas. Mass flow as a vapor due to advective migration may be important in the upper few feet of the unsaturated zone. Advective vapor migration in the shallow soil may be induced by diurnal temperature and barometric variations. Barometric, or atmospheric pressure changes are not considered here because, on the scale of typical soil-gas investigations, changes in barometric pressure would produce minor vertical piston-type fluctuations in the soil gas as the air alternately compresses and expands. The alternating up and down movement of the soil gas under the influence of the barometric fluctuations would tend to approach an average condition.

However, pressure and temperature gradients can become important near subsurface structures such as basements and utilities that are vented to the atmosphere. Nazaroff et al. (1987) found that pressure and temperature gradients may be transmitted to the subsurface by residential houses with basements and could induce significant advective transport of soil gas to lateral distances of 20 feet (6 m). Although this paper does not address these influences and considers vapor migration under isothermal and isostatic conditions, the influences of atmospheric wind-induced pressure gradients and tempera-ture-induced thermal gradients near subsurface structures should be considered in the interpretation of soil-gas surveys.

For VOCs that have low solubility limits in water, as is generally the case with the chlorinated solvents, diffusive transport in soil gas can predominate (Spencer and Farmer 1980). When a liquid VOC is spilled on the soil or leaks from a tank into the soil, the VOC will begin to partition into the liquid and vapor phases and become dissolved in soil moisture and adsorbed onto the surfaces of soil minerals and organic matter. The degree of paritioning of the VOC among these four components will depend on the volatility and water solubility of the VOC. the soil moisture content, and the nature of soil solids.

Partitioning Between Liquid and Soil Gas

The saturated equilibrium concentration of a VOC in air above a volatile liquid is expressed by Raoult's law and is described by a partition coefficient that is dependent on the vapor pressure of the VOC and the temperature (Thibodeaux 1979). At equilibrium, the mole fraction of a VOC in the air space above the pure VOC liquid at a specified temperature is expressed as:
$y=p / P r$
where y is the mole fraction of the VOC, p is the vapor pressure of the VOC, and p_{T} is the total pressure in the air space.

Equation I provides a means to estimate the source concentration of a VOC vapor in the soil gas above a free VOC liquid spill. Vapor pressures for many VOCs at ambient temperatures are available in the literature (for example, Perry and Chilton 1973, and Callahan et al. 1979).

Partitioning Between Soil Gas and Soil Moisture

Partitioning between the VOC vapor in the soil gas and VOC dissolved in soil moisture may be expressed as the ratio of its concentration in each of the two phases (Equation 2). At equilibrium, this ratio is constant for constant temperature and is governed by the relationship expressed as Henry's law, i.e., (Thibodeaux 1979):
$\mathrm{K}_{\mathrm{H}}=\mathrm{C}_{\mathrm{G}} / \mathrm{C}_{\mathrm{L}}$
where K_{H} is Henry's law constant for the VOC at a specified temperature, C_{G} is the concentration of the VOC in soil gas, and C_{L} is the concentration of the VOC in the water.

The Henry's law constant may also be expressed as a function of the VOC vapor pressure, the concentration of the VOC in water, and temperature as (Thibodeaux 1979):
$\mathrm{K}_{\mathrm{H}}=16.04 \mathrm{p}_{\mathrm{a}} \mathrm{M}_{\mathrm{a}} / \mathrm{TC} \mathrm{L}_{\mathrm{L}}$
where M_{a} is the gram molecular weight of the VOC, T is the temperature (in degrees Kelvin), and the other parameters are as previously defined.

Dilling (1977) reports values of Henry's law constant for numerous chlorinated solvents with those for selected VOCs presented in Table 1. Empirically derived values of Henry's law constants reported by Dilling (1977), Swallow and Gschwend (1983), and Lappala and Thompson (1983) are in reasonable agreement with the calculated values of $\mathbf{K}_{\mathbf{H}}$, keeping in mind the temperature dependence of K_{H}.

Partitioning Between Soil Moisture and Soil Solids

In addition to the partitioning of the VOC between the vapor and aqueous phases, some of the VOC will be adsorbed onto the soil minerals to a lesser extent and onto soil organic matter to a greater extent. Although no research in this area is known to this author, adsorption of VOC vapor on to organic matter may be an important sink for VOC transport in soil gas. In order to estimate the possible importance of adsorption onto organic matter, results of research on the adsorption of aqueous VOCs have been utilized. Although not specifically directed at the current problem, the results from the experiments with aqueous solutions of VOCs may prove applicable, because soil solids will be surrounded by water lavers of at least several molecules thick for even the driest soils. The process of partitioning of the VOC between the soil gas and the soil solids then becomes a two-step process of partitioning from the vapor into the water and subsequently from the water onto the soil solids.

Since no known research has been directed at the problem of determining the partitioning of VOCs in a three-phase system, the validity of the approach utilized

TABLE 1

Chemical	Solubility in Water (ppm)	Vapor Pressure (mm Hg)	Henry's Law Constant Calculated (Measured) (Dimensionless)
1,1,2,2-Tetrachloroethane	3000	6.5	0.019
1,1,2-Trichloroethane	4420	23	0.038
1,1-Dichloroethane	8700	82	$0.050(.040)^{1}$
Tetrachloroethylene	140	18.6	$\begin{aligned} & 1.2(0.5)^{2} \\ & (0.43)^{1} \end{aligned}$
Trichloroethylene	1100	74	$0.49(0.33)^{3}$
trans-Dichloroethylene	6300	326	0.27
cis-Dichloroethylene	3500	206	0.31

Source: Dilling (1977).
Notes:
${ }^{1}$ Empirical values reported by Dilling (1977).
2 Empirical values will vary from calculated values due to differences in temperature.
${ }^{3}$ Empirical values reported by Lappala and Thompson (1983).
for this model is unknown. Nevertheless, as described later, to the extent that Jury et al. (1984) tested this approach, they reported finding good agreement between calculated and empirically derived values for the effective diffusion coefficient.

At equilibrium, the degree of partitioning between the soil solids and the soil moisture is expressed as:
$K_{D}=S / C_{L}$
where K_{D} is the partition coefficient or distribution coefficient (with units of $\mathrm{l}^{3 / \mathrm{m}}$), S is the mass of chemical adsorbed per unit dry mass of soil solids, and C_{L} is the concentration of the chemical in the soil moisture.

For aqueous solutions, it has been observed that strongly hydrophobic organic chemicals tend to adsorb more strongly onto the soil solids. Empirical studies by Karickhoff et al. (1979) found that K_{D} was proportional to the organic carbon content of the soil, as well as the octanol:water partition coefficient (K_{ow}), a measure of the hydrophobicity of an organic chemical. For the equilibrium condition, this relationship has been expressed as (Karickhoff et al. 1979, which is essentially the same relationship determined by Rao et al. 1985):
$\mathrm{K}_{\mathrm{D}}=0.63 \mathrm{~K}_{\mathrm{OW}} \mathrm{f}_{\mathrm{oc}}$
where K_{D} is the distribution coefficent of Equation 4, $f_{o c}$ is the soil organic carbon content, and K_{Ow} is the octanol:water partition coefficient.

The amount of carbonaceous matter in the soil is the dominant factor controlling the extent of adsorption of dissolved organic chemicals. Karickhoff et al. (1979) also found that the particle size of the mineral fraction was important. For example, the distribution coefficients for pyrene and methoxychlor on the sand-sized fraction were approximately 100 times less than the distribution coeffi-
cient for the silt- and clay-sized fraction, due primarily to the lower organic carbon content of the sand (Karickhoff et al. 1979). Table 2 presents data for K_{OW} and calculated values of K_{D} using Equation 5 for selected VOCs. From the example calculations of distribution coefficients in Table 2, these VOCs are not strongly adsorbed onto the soil solids due to their relatively low octanol-water partition coefficients. Pentachlorophenol, in comparison, with a $\log K_{\mathrm{OW}}$ of 4.74 , has a K_{D} of 35 , i.e., pentachlorophenol will be preferentially adsorbed to the soil solids by a factor of 100 to 1000 times greater than the chlorinated solvents listed in Table 2.

VOC Vapor Diffusion in Soil Gas

As previously stated, the primary transport mechanism for VOCs in the unsaturated soil is by diffusion through the soil gas. The distribution of VOC concentration in the soil gas can be modeled by Fick's second law, which in one dimension is expressed as (Thibodeaux 1979):
$\mathrm{C} / \mathrm{dt}=\mathrm{Dd}^{2} \mathrm{C} / \mathrm{dz}^{2}$
where C is concentration of the VOC in air, D is the diffusion coefficient, and z is the distance traveled.

Assuming the outer boundary condition is zero concentration, Equation 6 can also be expressed as (Thibodeaux 1979):

$$
\begin{equation*}
\frac{\mathrm{C}_{(\mathrm{z}, \mathrm{t})}}{\mathrm{C}_{(z=0, t=0)}}=\operatorname{erf}\left[z /(4 \mathrm{Dt})^{0.5}\right] \tag{7}
\end{equation*}
$$

where $\mathrm{C}_{(2, n)}$ is the concentration (as mole fraction) at a distance z and time $t, C_{(z=0, t=0)}$ is the initial concentration, and erf is the error function.

Swallow and Gschwend (1983) conducted limited

TABLE 2
Reported Values of Log Octanol: Water Partition Coefficient and Calculated Values of Distribution Coefficient for Selected Chlorinated Solvents

Chemical	Log Octanol:Water Partition Coefficient ${ }^{4}$	Calculated Distribution Coefficient ${ }^{5}$		
		Fraction Organic Carbon		
		0.001	0.01	0.03
1,1,2,2-Tetrachloroethane	2.56	0.23	2.3	6.9
1,2,2-Trichloroethane	2.17	0.09	0.9	2.7
1,1-Dichloroethane	1.79	0.04	0.4	1.2
Tetrachloroethylene	2.88	0.48	4.8	14.4
Trichloroethylene	2.29	0.12	1.2	3.6
trans-Dichloroethylene	1.48	0.02	0.2	0.6
cis-Dichloroethylene	1.48	0.02	0.2	0.6

Notes:
${ }^{4}$ From Callahan et al. 1979.
${ }^{5}$ Calculated from $K_{D}=0.63 \mathrm{~K}_{\mathrm{ow}} \mathrm{f}_{\mathrm{oc}}$.
controlled laboratory experiments using a glass tank. Although their experimental design prevented a direct measurement of the concentration of VOCs in the unsaturated zone, Swallow and Gschwend (1983) concluded that volatilization can be adequately modeled by Fick's second law.

Diffusion Coefficient in Soil Gas

The diffusion coefficient for VOC vapor in air was estimated by Jury et al. (1983 and 1984) to be $4.6 \mathrm{ft}^{2} / \mathrm{d}$ ($0.43 \mathrm{~m}^{2} / \mathrm{d}$) based on studies by Brattain in 1929 of the gas diffusion coefficient of intermediate molecular weight organic chemicals. However, Bruell and Hoag (1986) reported values of the diffusion coefficient for benzene in air of from 8.0 to $8.4 \mathrm{ft}^{2} / \mathrm{d}\left(0.74\right.$ and $\left.0.78 \mathrm{~m}^{2} / \mathrm{d}\right)$.

The diffusion coefficient in soil gas has been found to be reduced from that in air by a tortuosity factor which accounts for decreased cross-sectional area for flow and increased length of the flow path. Jury et al. (1983 and 1984) concluded that the Millington-Quirk tortuosity formula has been proven useful for describing pesticide soil diffusion coefficients. More recently, Bruell and Hoag (1986) confirmed the validity of the Millington-Quirk model in column experiments. Jury et al. (1983) estimated the diffusion coefficient in soil gas by determining the effect of the Millington-Quirk tortuosity formula on the diffusion coefficient in air by:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{G}}=\mathrm{Da}^{10 / 3 / \mathrm{n}^{2}} \tag{8}
\end{equation*}
$$

where D_{G} is the diffusion coefficient in soil gas, D is the diffusion coefficient in air, a is the volumetric air content of the soil, and n is the total soil porosity.

Since the VOC vapor may partition between the gas, liquid, and solid phases, an effective diffusion coefficient can be formulated that incorporates that partitioning. The removal of VOCs from the soil gas by partitioning into the soil moisture and soil organic matter results in a reduction in the apparent diffusion rate, and con-
sequently, the apparent, or effective, diffusion coefficient. Jury et al. (1983) developed the following relationship between the diffusion coefficient in soil gas from Equation 8 and the effective diffusion coefficient:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{c}}=\mathrm{D}_{\mathrm{G}} /\left[\left(\mathrm{b} \mathrm{~K}_{\mathrm{D}} / \mathrm{K}_{\mathrm{H}}\right)+\mathrm{w} / \mathrm{K}_{\mathrm{H}}+\mathrm{a}\right] \tag{9}
\end{equation*}
$$

where D_{e} is the effective diffusion coefficient in soil gas corrected for effects of partitioning, D_{G} is the diffusion coefficient corrected for tortuosity using Equation 8, b is the bulk dry density of the soil, K_{D} is the soil partition coefficient from Equation $5, \mathrm{~K}_{\mathrm{H}}$ is Henry's law constant from Equation 3, w is the volumetric soil moisture content, and a is the volumetric air content, where n (total porosity) $=a+w$.

Jury et al. (1984) report that the model for the effective diffusion coefficient expressed in Equation 9 gives results that are in good agreement with empirically derived values of D_{e}.

Model Description

Although several investigators have developed models for the simulation of the transport of organic chemicals in the soil (for example, Leistra 1973, Jury et al. 1983 and 1984, Rao et al. 1985), these models are limited in their application to the simulation of the diffusion of VOCs in soil gas. In general, the previous models were developed for application to the modeling of pesticide movement and fate in soils. The models are one-dimensional analytical solutions that do not allow for heterogeneous soil properties and initial conditions. Also, these models incorporate transport of the chemical in the liquid phase. as the models were intended for the study of the leaching of pesticides from soils (Jury et al. 1983). In the case of the model developed by Rao et al. (1985), transport by vapor diffusion was omitted.

Corapcioglu and Baehr (1987) described a onedimensional. finite-difference model of VOC transport through the unsaturated zone. Although their model
simulates multiphase transport in vapor, water and immiscible liquid. and accounts for partitioning, adsorption, and transformations, the vertical, one-dimensional nature of their model limits its application to the interpretation of soil-gas survey results that are two- to threedimensional in nature.

To correct for these limitations, a two-dimensional vapor diffusion model was developed and described previously (Silka 1986). This model is a finite-difference, forward-difference approximation relative to time, and is based on Fickian diffusive transport. (Although unavailable to this author ar this writing, Striegl (1987) subsequently reported on the development of a similar model).

Model Assumptions

The model is based on the following assumptions.

> Assumption 1 Diffusion is described by Fick's second law.

Assumption 2 Partitioning coefficients are linear and system is at equilibrium with respect to partitioning, i.e., Equations 3 and 5 are valid.

Assumption 3 The Millington-Quirk tortuosity formula defined in Equation 8 is valid.
Assumption 4 The soil properties of bulk density, b. and total porosity, n, are homogeneous.
Assumption 5 The diffusion coefficient in air, D, is constant.

Assumption 6 The soil gas is isostatic and at atmospheric pressure, i.e., there is no pressure-gradient induced advective vapor flux.
Assumption 7 The soil system is isothermal, i.e., there is no thermal-gradient induced convective vapor flux.
Assumption 8 The VOC is conservative, i.e., the VOC is unaffected by biotransformation, hydrolysis, or redox reactions.

The model allows for heterogeneous initial concentrations with either constant concentration sources or instantaneous spike sources. The diffusion coefficients may be varied over the finite-difference grid and in the x and y directions by weighting coefficients. The effects of partitioning are incorporated by using the effective diffusion coefficient as defined in Equation 9.

Since the finite-difference equation is solved using the forward-difference approximation relative to time, the maximum size of the time steps must meet the following criterion for the solution to be stable. For two dimensions where $d x=d y=x$, (i.e., the grid spacing is the same in both directions and equal to X):
$d t<0.25 X^{2} \mathrm{a} / \mathrm{D}_{\mathrm{e}}$
where dt is the maximum time step, X is the grid spacing, a is the volumetric air content, and D_{s} is the effective
diffusion coefficient (after Wang and Anderson 1982).

Model Verification and Validation

To date, the verification of the vapor diffusion model has been limited to comparisons with computed results from the one-dimensional analytical solution presented in Equation 7. At this time, it is difficult to adequately validate the vapor diffusion model against real field data due to the lack of good data.

An adequate validation problem requires information on the moisture content and organic matter content of the soil, the soil texture, as well as the concentration and distribution of the source. Further complications arise when one considers that field conditions are dynamic, i.e., always changing. This problem is especially acute for soil moisture content, which, over the large scale, fluctuates seasonally. Also, field data are not available in sufficient detail to allow description of the spatial variability of soil conditions resulting in necessary oversimplification of the physical setting. Jury (1986) lists several potential problems that must be considered to successfully carry out a field validation experiment of a vapor diffusion model:

1. Lateral and vertical variability of transport and retention parameters may introduce heterogeneities and anisotropy not included in the model;
2. Macropores, cracks, plant root holes and animal burrows may create discontinuities difficult to account for in the model;
3. Time-dependent boundary conditions, such as depth to water table and seasonally saturated zones may alter the system geometry from that modeled:
4. Problems with validity of measurement techniques for characterizing field properties may introduce model error:
5. Scale effects may be important in the field that are not accounted for in the model. such as temperature variation.

Although not available at the time of this writing, Striegl (1987) published an account of an apparently successful modeling of the diffusion of methane from a waste disposal trench in Illinois using a two-dimensional finite-difference solution of Fickian diffusion similar to the model described here.

Implications for Soil-Gas Surveys

Delineating Surface Contamination

Previously, this author has presented the results of sensitivity analyses using the model 2D-DIFF to assist in designing and interpreting soil-gas surveys for contaminated soil and leaking underground storage tanks (Silka 1986, and Ferre and Silka 1987, respectively). With regard to the use of soil-gas surveys for identifying shallow contaminated soil (Silka 1986), the optimum grid spacing for the soil-gas survey was found to be primarily dependent upon soil moisture and the value of Henry's law constant. and, to a lesser degree, organic matter content. Figure I illustrates the dependence of the effective diffusion coefficient on K_{H} and fraction of pore volume occupied by water (W / n). The reduction in D_{e} is represented by the ratio of D_{e} / D_{G}, where D_{G} is the diffusion coeffi-
cient corrected by the Millington-Quirk tortuosity formula in Equation 8. Therefore, in dry soil $\mathrm{D}_{\mathrm{e}} / \mathrm{D}_{\mathrm{G}}$ is unity.

Obviously, optimum conditions for soil-gas surveys are obtained when dry soil conditions have prevailed prior to the survey. Since moist soil is the rule, though, especially in the more humid regions, the optimum grid spacing will generally be less than 100 feet (30.5 m). For VOCs with even moderate values of K_{H}, for example, trichloroethylene (TCE) with K_{H} of 0.4 and 1,1,2,2-tetrachloroethane (TET) with K_{H} of 0.02 , the reduction in the effective diffusion coefficient is sufficient to reduce their distance of migration. Compared to a VOC with a K_{H} of 0.0, TCE would migrate on the order of only 60 percent of the distance, while TET would migrate on the order of only about 20 percent of the distance of the unretarded VOC within the same time period. In homogeneous soils, the maximum extent of the migration of vapor through soil gas will be limited by the thickness of the unsaturated zone. However, many soils are heterogeneous and stratified, and greater lateral migration may occur.

Mapping Ground Water Plumes

Several observations reported in the literature concerning the interpretation of soil-gas surveys for ground water plume mapping have been investigated using the model 2D-DIFF. It has been reported that concentrations of VOCS in soil gas decrease from the source at the water table to the surface by up to 5 orders of magnitude (Lappala and Thompson 1983). This field observation follows from the diffusive transport equation. Since the soil-gas system is bounded below by an essentially constant concentration source and above by a constant zeroconcentration boundary (i.e., the atmosphere), the vapor concentration will decrease logarithmically from the water table to the surface in an ideal, homogeneous soil.

Figures 2 and 3 show two cases for the distribution of vapor concentration with distance above the centerline of a plume of contaminated ground water where the water table is at a depth of 32.8 feet $(10 \mathrm{~m})$. The concentration is presented in dimensionless units. Figure 2 shows the results for a relatively dry soil having only 8 percent water content ($a=0.32, w=0.08$) and a VOC with a K_{H} of 0.02 . Figure 3 shows the results for a wetter soil with a 20 percent water content ($a=0.2, w=0.2$). In both cases, there is greater than a 3 to 5 order of magnitude change in the VOC concentration in soil gas from the water table to the surface, even when the concentration profile approaches steady-state.

For the dryer soil (Figure 2), the higher effective diffusion coefficient results in the concentration profile approaching steady-state faster than the wetter soil case (Figure 3). Thus, the dryer soil conditions will result in a more responsive concentration profile as compared to the wetter soil. Shallow soil-gas measurements in the dryer setting will better reflect the distribution of the VOC in the ground water at that point in time.

More recently, Evans and Thompson (1986) concluded that aerobic biodegradation of hydrocarbon vapors was the cause of lower than expected concentrations, $<10 \mu \mathrm{~g} / \mathrm{L}$, in shallow soil gas at depths of less than

Figure 1. Dependence of the effective diffusion coefficient, expressed as the ratio of D_{C} / D_{G}, on moisture content. expressed as the fraction of total porosity occupied by water, and Henry's law coefficient, K_{H}.

Figure 2. VOC concentration in soil gas vs. time and distance above the water table under nearly dry soil conditions ($\mathbf{w}=\mathbf{0}, 08$).

5 feet (1.5 m) when compared to the $>1000 \mu \mathrm{~g} /$ L concentrations in the 6 - to 14 -foot interval (1.8 to 4.3 m). However, they also reported at least one instance when the concentration gradient reversed and decreased with depth below the 6 - to 14 foot (1.8 to 4.3 m) interval.

In order to substantiate the interpretation that biodegradation was occurring, active microbial populations and degradation by-products, such as CO_{2} generation should be confirmed in the soil column. Since these data are lacking for their particular site, alternative explanations may be just as viable. For example, the lower-thanexpected concentration in the uppermost 5 feet (1.5 m)

Figure 3. VOC concentration in soil gas vs, time and distance above the water table under wet soil conditions ($\mathbf{w}=0.02$).

Figure 4. Extent of migration of 0.01 ppm contour for VOC in soil gas from a vertical spill source and advancing NAPL front floating on the water table dry soil conditions.
could be due to the normal decrease in concentration expected under the concentration gradient established by diffusion alone. Inspection of Figures 2 and 3 shows that transient concentration profiles can produce a concentration decrease of greater than 3 orders of magnitude from the 6 - to 14 -foot (1.8 to 4.3 m) interval to the less than 6 -foot (1.8 m) interval. Considering that the concentration decrease due to the diffusion gradient would be greater in wetter soils, biodegradation is not necessary to explain the observed decrease.

Evans and Thompson (1986) also reported the observation that vapor concentrations decrease rapidly, by 2 to 3 orders of magnitude, just beyond the edge of the ground water contamination zone. Simulations were conducted using 2D-DIFF for an advancing front of a non-aqueous phase liquid (NAPL) floating on the water table. The model was set up with a constant saturated vapor concentration of 6000 ppm at the NAPL-soil gas interface and an initial concentration of 6000 ppm along the left side to represent the downward path of liquid VOC migration. Two variations were run, one with a vapor diffusion rate that was faster than the NAPL front velocity, and the second with a vapor diffusion rate that was slower than the NAPL front velocity. Figures 5 and 6 show the results in terms of the relative positions of the NAPL front and the 0.01 ppm concentration contour. The results presented in these figures can be applied to the case of only dissolved VOC in a ground water plume by dividing 0.01 ppm by 6000 ppm , i.e., the contours in the figures would be equivalent to 1.6×10^{-6} times the concentration of the VOC in the soil gas just above the water table.

Figure 4 indicates thatt for a source front, i.e., NAPL or dissolved contaminant plume, that moves slower than the diffusion rate, the VOC does diffuse beyond the plume edge as observed by Evans and Thompson (1986), up to a height of 40 feet (12.2 m) above the water table. Above a height of 40 feet (12.2 m) from the water table, the vapor front falls behind the liquid front. However, Figure 5 indicates that when the diffusion rate in soil gas is less than the velocity of the source front, the VOC distribution in the soil gas will lag behind the source front or edge of the plume at a much lower height above the water table. In the case illustrated in Figure 5, the VOC diffusion in the soil gas begins to lag behind the front at a height of about 15 feet (4 m) above the water table. The lag increases to about 60 feet (18.3 m) at a height of 30 feet (9.2 m) above the water table. Therefore, it may not always be the case that the soil-gas survey will detect VOCs beyond the edge of the plume, and, in fact, may underestimate the extent of the plume.

Discriminating Between Ground Water and Surface Sources

A problem that arises in the course of soil-gas surveys for detection of surface sources, but more so, for mapping ground water contamination, is the potential interference caused by VOC vapors from another source. The interferences are especially problematic in highly industrialized areas with multiple contaminant sources. Based on sensitivity runs, the vapor concentration due to a con-
taminant source may be sufficient out to several hundred feet to mask the detection of vapors emanating from contaminated ground water when vapor concentrations due to ground water contamination are much less than those due to the diffusion from a surface source. This potential probiem was first recognized by Marrin (1984).

Computer simulations reported previously (Silka 1986) were used to estimate the potential interference from the upward diffusion of VOC vapors emanating from contaminated ground water. For the modeling, it was assumed that the highest VOC concentration in ground water underlying the area of the soil-gas survey was 100 ppb . The depth to the water table was 30 feet (9.2 m). This level of ground water contamination could result in soil-gas concentrations in the upper 3 feet (0.9 m) of soil as high as 150 ppb .

In comparison, a surface source of TCE, with a saturated vapor concentration of $72,000 \mathrm{ppm}$, could cause a concentration in soil gas at a distance of 100 feet (30.5 m) of as high as 72 ppm . Even with a relatively low saturated vapor concentration, for example TET at 6000 ppm , the concentration in soil gas at a distance of 100 feet (30.5 m) could be several parts per million. Vapor concentrations of less than a part per million due to diffusion from contaminated ground water would be completely masked by such surface sources.

Conclusions

Previous investigators have shown that VOC vapor migration through the unsaturated zone is primarily under diffusive transport. The vapor diffusion is adequately described by Fick's second law, and the effects of partitioning between soil-gas and soil moisture can be incorporated into the model by the use of Henry's law coefficient. Adsorption of VOCs onto soil organic matter is accounted for by the empirical relationship between the octanol-water partition coefficient and the liquid-solid partition coefficient.

Design of soil-gas surveys should be developed with an understanding of the potential extent and distribution of contaminants in the subsurface. Preliminary modeling of the diffusive transport using a model such as 2D-DIFF can provide useful criteria for designing the survey and interpretation of subsequent results. Modeling results presented here and in a previous paper (Silka 1986) demonstrate the importance of soil moisture content to the design of the soil-gas survey. Optimum conditions for soil-gas surveys occur when lengthy, dry soil conditions have preceded the survey, which usually occur during July, August and September over much of the United States.

Interpretation of soil-gas survey results are hampered by unknown or poorly defined parameters, such as soil porosity, moisture content, organic matter content, as well as source attributes. In general, the variation in soil moisture will have the greatest influence on the rate of diffusion of VOC vapors through the unsaturated zone, especially for those VOCs with small values of K_{H}. Slight increases in soil moisture dramatically reduce the effective diffusion rate and increase the time required for concentrations in soil gas to approach steady-state values. Dry

Figure 5. Extent of migration of 0.01 ppm contour for VOC in soil gas from a vertical spill source and advancing NAPL front floating on the water table under slightly moist soil conditions ($\mathbf{w}=\mathbf{0 . 1 7}$).
soils in arid regions may allow quasi-steady-state concentration profiles to be approached. However, steady-state conditions probably are never approached in the humid, temperate regions where frequent, episodic wet and dry periods occur.

References

Bruell. C.J. and G.E. Hoag. 1986. The Diffusion of Gasoline-Range Hydrocarbon Vapors in Porous Media. Experimental Methodologies. Proc. of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground WaterPrevention, Detection and Restoration. National Water Well Association, pp. 420-443.
Callahan. M.A.. et al. 1979. Water Related Environmental Fate of 129 Priority Pollutants, v. II EPA-440/4-79-029b. Environmental Protection Agency, Washington, D.C.
Corapcioglu, M.Y. and A.C. Baehr. 1987. A Compositional Multiphase Model for Ground Water Contamination by Petroleum Products. I-Theoretical Considerations. Water Resources Research, v. 23, no. 1, pp. 191-200.
Dilling. W.L. 1977. Interphase Transfer Processes. II. Evaporation Rates of Chloro Methanes, Ethanes, Ethylenes, Propanes and Propylenes from Dilute Aqueous Solutions. Comparisons with Theoretical

Predictions. Environ. Sci. Technol., v. 11, na. 4, pp. 405-409.
Evans, O.D. and G.M. Thompson. 1986. Field and Interpretation Techniques for Delineating Subsurface Petroleum Hydrocarbon Spills Using Soil Gas Analysis. Proc. of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water-Prevention, Detection and Restoration. National Water Well Association, pp. 444-455.
Ferre, P.T. and L.R. Silka. 1987. Application of the Soil-Gas Survey to Underground Storage Tank Monitoring and Leak Detection. Proc. of the Assoc. of Ground Water Scientists and Engineers Conference, Focus: Eastern Regional Ground Water Issues, pp. 187-205.
Glaccum, R., N. Michael, R. Evans and L. McMillion. 1983. Correlation of Geophysical and Organic Vapor Analyzer Data Over a Conductive Plume Containing Volatile Organics. Proc. of the Third National Symposium on Aquifer Restoration and Ground-Water Monitoring, May 25-27, 1983, Columbus, Ohio, National Water Well Association, pp. 421-427.
Jury, W.A. 1986. Chemical Movement Through Soil. Hern, S.C. and S.M. Melancon, Editors. Vadose Zone Modelling of Organic Pollutants. Lewis Publishers Inc., Chelsea, Michigan, pp. 135-158.
Jury, W.A., W.F. Spencer and W.J. Farmer. 1983. Behavior Assessment Model for Trace Organics in Soil: I. Model Description. Jour. of Environ. Qual., v. 12, no. 4, pp. 558-564.

Jury, W.A., W.F. Spencer and W.J. Farmer. 1984. Behavior Assessment Model for Trace Organics in Soil: IV. Review of Experimental Evidence. Jour, of Environ. Qual., v. 13, no. 4, pp. 580-586.
Karickhoff, S.W., D.S. Brown and T.A. Scott. 1979. Sorption of Hydrophobic Pollutants on Natural Sediments. Water Research, v. 13, pp. 241-248.
Lappala, E.G. and G.M. Thompson. 1983a. Detection of Ground Water Contamination by Shallow Soil Gas Sampling in the Vadose Zone. Proc. of the Characterization and Monitoring of the Vadose (Unsaturated) Zone, December 8-10, 1983, Las Vegas, Nevada, National Water Well Association, pp. 659-679.
Lappala, E.G. and G.M. Thompson. 1983b. Detection of Ground Water Contamination by Shallow Soil Gas Sampling in the Vadose Zone. Proc. of the National Conference on Management of Uncontrolled Hazardous Waste Sites, November 7-9, 1984, Washington, D.C., Hazardous Materials Control Research Institute, Silver Spring, Maryland, pp. 20-28.
Leistra, M. 1973. Computation Models for the Transport of Pesticides in Soil. Residue Review, v. 49, pp. 87-130.
Marrin, D.L. 1984. Remote Detection and Preliminary Hazard Evaluation of Volatile Organic Contaminants in Ground Water. Ph.D. Dissertation. University of Arizona.
Nazaroff, W.W., S.R. Lewis, S.M. Doyle, F.A. Moed and A.V. Nero. 1987. Experiments on Pollutant Transport from Soil into Residential Basements by Pressure-Driven Air Flow. Environ. Sci. and Tech., v. 21, no. 5, pp. 459-466.

Perry, H.P. and C.H. Chilton, Editors. 1973. Chemical Engineers Handbook. 5th edition, McGraw-Hill Book

Co., New York.
Rao, P.S.C., A.G. Hornsby, D.P. Kilcrease and P. Nkedi-Kizza. 1985. Sorption and Transport of Hydrophobic Organic Chemicals in Aqueous and Mixed Solvent Systems: Model Development and Preliminary Evaluation. Jour. Environ. Qual., v. 14, no. 3, pp. 376-383.
Silka, L.R. 1986. Simulation of the Movement of Volatile Organic Vapor Through the Unsaturated Zone as It Pertains to Soil-Gas Surveys. Proc. of the NWWA/ API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water-Prevention, Detection and Restoration. National Water Well Association, pp. 204-224.
Spencer, W.F. and W.J. Farmer. 1980. Assessment of the Vapor Behavior of Toxic Organic Chemicals. R. Haque, Editor. Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Ann Arbor Science. Ann Arbor, Michigan.
Striegl, R.G. 1987. Transport of Methane in the Unsaturated Zone. Proc. of the Association of Ground Water Scientists and Engineers Program, Focus: Contaminant Hydrogeology NWWA Annual Meeting and Expo, September 14-16, 1987.
Swallow, J.A. and P.M. Gschwend. 1983. Volatilization of Organic Compounds from Unconfined Aquifers. Proc. of the Third National Symposium on Aquifer Restoration and Ground Water Monitoring, National Water Well Association, pp. 327-333.
Thibodeaux, L.J. 1979. Chemodynamics. Environmental Movement of Chemicals in Air, Water and Soil. John Wiley \& Sons, New York. 501 pp.
Wang, H.F. and M.P. Anderson. 1982. Introduction to Groundwater Modeling. W.H. Freeman and Co. San Francisco, p. 70.

Biographical Sketch

Lyle R. Silka is president of HYDROSYSTEMS Inc. (2042 Peach Orchard Dr., Falls Church, VA 22043). He has more than 15 years of experience in hazardous waste site characterization, risk and liability assessment, evaluation of remedial actions, and computer modeling applications. From 1976 to 1980, he was a hydrogeologist with the U.S. Environmental Protection Agency in Washington, D.C., involved in regulatory development under RCRA and program implementation inder Superfund. From 1980 to 1983, he was senior hydrogeologist with GeoTrans Inc. in Herndon, Virginia. Currently, Silka is directing the remedial investigation/feasibility study of a Superfund site in Virginia and is the principal technical advisor for responsible parties at three other Superfund sites in Washington, Oregon and Virginia. Silka has applied soil-gas surveys for the detection of subsurface VOC contamination as part of environmental audits at 12 industrial sites and is directing research into the transport and fate of VOCs in the unsaturated zone. Silka has published more than 20 professional papers and is a member of the NWWA Association of Ground Water Scientists and Engineers, A ssociation of Engineering Geologists, the Geological Society of A merica, and the American Chemical Society.

[^0]: ${ }^{\text {a }}$ Supervisory Hydrologist, Southwest Florida Water Management District, 5060 U.S. Highway 41 South, Brooksville, Florida 33512.

 Discussion open until February 1, 1977.

[^1]: ${ }^{a}$ Senior Scientific Officer and Principal Scientific Officer, respectively, Hydrogeology Unit, Insritute of Geological Sciences, Maclean Building; Wallingford, Oxon, OX10 8BB, England.

 Manuscript received August 1981, accepted October 1981.

 Discussion open until September 1, 1982.

[^2]: ${ }^{3}$ National Hydrology Research Institute, Ground Water Division, 101-4616 Valiant Drive N.W., Calgary, Alberta, Canada T3A OX9.

 Received October 1981, revised December 1981, accepted December 1981.

 Discussion open until November 1, 1982.

[^3]: ${ }^{\text {a }}$ Civil Engineering Department, University of Birmingham, P.O. Box 363 , Birmingham B15 2TT, United Kingdom.

 Received April 1984, accepted May 1984.
 Discussion open until March 1, 1985.

[^4]: ${ }^{a}$ Staff Hydrogeologist, GAI Consultants, Inc., 570 Beatty Rd., Monroeville, Pennsylvania 15146. Received August 1983, revised June 1984, accepted July 1984.

 Discussion open until May 1, 1985.

[^5]: ${ }^{\text {a }}$ Wisconsin Geological and Natural History Survey, 1815 University Avenue, Madison, Wisconsin 53705.
 ${ }^{\mathrm{b}} \mathrm{CH} 2 \mathrm{M}$ Hill, 310 W isconsin Avenue, Suite 700 , Milwaukee, Wisconsin 53201.

 Received December 1983, revised Ocrober 1984, accepted November 1984.

 Discussion open until September 1, 1985.

[^6]: ${ }^{2}$ Institure of Earth Sciences, Free Universicy, P.O. Box 7161, 1007 MC , Amsterdam, The Netheriands; and Water Supply Company "A \& V," Meerkerk, The Netherlands.

 Received June 1984, revised Seprember 1984, accepred November 1984.

 Discussion open until September 1, 1985.

[^7]: ${ }^{\text {a }}$ Consulting Geologisr, P.O. Box 2096, Carmel, California 93921 .

 Received December 1985, accepred February 1986.
 Discussion open until November 1, 1986.

[^8]: ${ }^{\mathrm{a}}$ Shell Development Company, Westhollow Research Center, P.O. Box 1380, Houston, Texas 77001.

 Received June 1987, revised November 1987, accepted November 1987.

 Discussion open until January 1. 1989.

[^9]: ${ }^{3}$ Techn. Univ. Vienna, Abt. Geophysics, Gusshausstrasse 27-29, A1040 Vienna, Austria.
 ${ }^{\text {b }}$ Universidad Nacional de Colombia, Dpto. de Geociencias, Apartado Aereo 14490, Bogotá D.E., Colombia.

 Received April 1989, revised April and July 1990, accepted August 1990.

 Discussion open until November 1, 1991.

[^10]: ${ }^{\text {a }}$ Department of Geology, Kent State University Contribution No. 241.
 ${ }^{\text {b }}$ Department of Geology, Kent Stare University, Kent, Ohio 44242.

 Received April 1982, revised August 1982, accepted September 1982.

 Discussion open until July 1, 1983.

[^11]: - Copies of the program may be obrained on dise (single, or double density) or tape-cassette for a nominal fee by contacting Dr. Yoram Eckstein, Department of Geology, Kent State University, Kent, Ohio 44242.

[^12]: ${ }^{2}$ Laboratory of Isorope Geochemistry. Department of Geosciences, University of Arizona, Tucson, Arizona 85721. Received April 1987, revised December 1987, accepred January 1988.

 Discussion open until January 1, 1989.

[^13]: ${ }^{\text {a }}$ Geosciences Research and Engineering Department, Battelle-Northwesr Laboratories, P.O: Box 999, Richland, Washington 99352.

 Received October 1983, revised March 1984, accepted April 1984.

 Discussion open until January 1, 1985.

[^14]: ${ }^{\text {a }}$ Staff Engineer, Rockwell Hanford Operations, P.O. Box 800, Richland, Washingron 99352.
 ${ }^{6}$ Professor of Agricultural Engineering, Texas A\&M University, College Station, Texas 77843.

 Received November 1984, revised March 1986, accepted April 1986.

 Discussion open until May 1, 1987.

[^15]: ${ }^{\mathbf{a}}$ Associate Director for Research. Water Sciences Program, Holcomb Research Institure, Butler University, 4600 Sunser Avenue, Indianapolis, Indiana +6208.

 Received May 1987, revised Ocrober 1987, accepted October 1987.

 Discussion open until November 1. 1988.

[^16]: ${ }^{\text {a }}$ Department of Civil and Environmental Engineering, Washington State University, Pullman, Washingron 99164-3001.

 Received January 1987, revised March 1988, accepred March 1988.

 Discussion open until May 1, 1989.

[^17]: DIMEMSION TKNW $(20,20)$, RNW $(20,20)$, DKRNW $(20,70)$, DKRW $(20,20)$,
 IDENMX $(20,20), \operatorname{DDENEX}(20,20), \operatorname{UP}(20,20), \operatorname{DUP}(20$,
 $220)$, $\operatorname{DN}(20,20), \operatorname{DDN}(20,20), \operatorname{DRWX}(20,20)$, $\operatorname{DRW}(20,20)$

[^18]: ${ }^{2}$ Department of Geosciences, New Mexico Instinte of Mining and Technology, Socorro, New Mexico 87801.
 ${ }^{\text {b }}$ U.S. Salinity Laboratory, USDA/ARS, Department of Soil and Environmental Science, University of California, Riverside, California 92521.

 Received Ocrober 1987, revised April 1988, accepred April 1988.

 Discussion open until July 1, 1989.

[^19]: ${ }^{a}$ This is the fourth in a series of papers on groundwater modeling.
 ${ }^{\text {b GeoTrans, Inc., P.O. Box 2550, Reston, Virginia }}$ 22090.

 Discussion open until March 1, 1981.

[^20]: "A decrease in transmissibility results in a greater drawdown after a given period of pumping. The storage coefficient affects the shape of the time-drawdown curve before equilibrium is reached in the aquifer system. The most pronounced effect of an increase in the storage coefficient was a decrease in the drawdown during the early periods of pumping. Steady-flow conditions in the aquifer depend upon the quantity of water entering the system through the river bed. The closest approximation to the pump test results was obtained using a permeability value (for the confining material) of 0.00002 feet $/ \mathrm{sec}$ for 10 -foot

[^21]: ${ }^{\mathrm{a}}$ Graduate Student, Professor, and Assistant Professor, respectively, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado 80523.

 Received February 1983, revised October 1983. accepred October 1983.

 Discussion open unril July 1, 1984 .

[^22]: ${ }^{a}$ University of Wisconsin-Madison, Deparment of Geology and Geophysics, 1215 W. Dayton St., Madison, Wisconsin 53706.
 ${ }^{b}$ Wisconsin Geological and Natural History Survey, 3817 Mineral Point Road, Madison, Wisconsin 53705.

 Received January 1988, revised June 1988, accepred July 1988.

 Discussion open until September 1, 1989.

[^23]: ${ }^{\text {a }}$ Assistant Professor, Department of Agricultural Engineering, Oregon State University, Corvallis, Oregon 97331.
 ${ }^{6}$ Water Resources Engineer, Water Resources Division, South Florida Water Management District, P.O. Box V, West Palm Beach, Florida 33402.
 ${ }^{\mathrm{c}}$ Hydrologist, U.S. Geological Survey, Mercury, Nevada 89023.

 Received April 1987, revised February 1988. accepted Feburary 1988.

 Discussion open until March 1, 1989.

[^24]: ${ }^{2}$ Assistant Professor of Hydrology, Department of Geoscience, New Mexico Insticute of Mining and Technology, Socorro, New Mexico 87801.
 bAssistant Professor, Department of Environmental Sciences, University of Virginia, Charlotresville, Virginia 22903.

 Received July 1984, accepred Seprember 1984. Discussion open until July 1, 1985.

