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Association believes they are among the best contributions on explaining the role
computers can play in understanding and illustrating ground water concepts.

NWWA uses its anthologies as a means to disseminate information about
narrow, but very important subjects.

All the articles presented within the anthology are available at the National
Ground Water Information Center and are stored within Ground Water On-Line,

the 65,000 record bibliographic data base operated by the Center. The National

Ground Water Information Center was established in 1960 as a repository
available to scientists, government, contractors, business and the public.
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represents all segments of the ground water industry. Its more than 23,000
members from nearly 70 nations include the world's leading ground water
geologists and hydrologists, ground water contractors, engineers, manufacturers,
and suppliers of ground water-related products and services. From its Dublin,
Ohio headquarters NWWA provides the industry, government, business, and
consumers guidance for sound scientific, economic, and beneficial development,
protection and management of the world's ground water resources.
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Understanding Computer Use in Ground Water Science:
An Anthology
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A Simple Computer Program for the

Determination of Aquifer Characteristics

from Pump Test Data

by Joseph C. Holzschuh 11?

ABSTRACT

A computer program, based on the Hantush inflection
method and designed for “desk top’' computers is presented.
The method assumes a leaky, isotropic, homogeneous
aquifer of infinite areal extent. The language employed is
BASIC, an interactive language used on the Wang Model
2200 programmable calcularor. The program can be easily
adapted to FORTRAN IV for use on larger machines.

INTRODUCTION

The staff at our Water Management District
required a fast, approximate, and simple method for
checking the analyses of pump test data submitted
by various consultants in support of permit applica-
tions. Such a method would be used, not to replace
type curve solutions but rather to provide initial
estimates of aquifer characreristics, cross check
other types of analyses and lend further support to
them. Machine analysis was desirable, to eliminate
human errors. '

The equipment available was a Wang Model
2200 desk type calculator with 8K of memory and
a cassette tape darta storage system. A large IBM
system was also available, but could not be directly
used by our hydrologists in a “hands on” mode as
could the Wang. Also, “turnaround’’ time for the
larger system was typically 1 day or longer. Turn-
around time for the desk top system was usually on
the order of minutes. Many organizations have
like or similar mini-computers available. Adapting
the program to such machines would prove no
problem.

aSupcrvisory Hydrologist, Southwest Florida Water
Management District, 5060 U.S. Highway 41 South,
Brooksville, Florida 33512.

Discussion open until February 1, 1977,

Vol. 14, No. 5—-GROUND WATER—September-October 1976

METHODOLOGY

The method finally selected and adapred for
machine use was the Hantush inflection point
method (DeWiest, 1965). This method is based on
determining the slope of a semi-log, drawdown
versus time curve, at the inflection point (Figure 1),
The inflection point (shown on Figure 1 at S feet
of drawdown and occurring at time T) is assumed
to be at one-half the maximum or equilibrium
drawdown (S¢). The computation of the slope of
the line should be done over a full-time log cycle
centered about the inflection point. The program
first determines the time (T) at which (8) occurs.
Since the darta points fed into the machine will
probably not include point (T,S), T must be
determined by interpolation from points (T1, S1)
and (T2, S2). This is done by computing the slope
(M1) between points (T1, S1) and (T2, S2) and

ARITHMETIC AX)S (drowdown)

1

X : .
[Bravs 1 Tn ]nr: TS
] 100 1900

1.0G, AXIS (time)
Fig. 1. Semi-log drawdown curve.
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utilizing that slope to compute (T). When point
(T, S) has been determined, the value of T3 and T4
(+ and - 0.5 log cycle respectively) can be found.
Since (T3, S3) and (T4, S4) are again probably not
in the input data, they too must be interpolated
from the closest input data points available, i.c.
(T8, $8), (T6, S6), (T7, 87), and (TS5, S5), utilizing
slopes (M3) and (M2) respectively. The program
determines the slope of the drawdown curve (M)
over Y-log cycle and full-log cycle intervals. This
was done because in rare instances equilibrium
is reached so quickly that using a full-log cycle
would include points outside the straight-line
portion of the curve. Both slopes are printed out
although only the full-log cycle slope is used. The
investigator should check to see that both slopes
agree closely. Any significant difference should be
investigated.

_Once the slope has been determined the only
remaining difficulty is solving for '/B. Hantush
provides the following equation:

K =¢"'B K, (t/B) (1)

where:
K=2385M (2)

Equation 1 is an implicit equation and cannot
be solved directly. A solution is provided, however,
by plotting values of '/B vs. K on semi-log paper,
and approximaring the curve so derived with a series
of straight lines. Depending then on the value of K,
the program selects the proper straight-line equation
and solves for */B. Accuracy is usually sufficient
for most purposes but the values of both K and '/B
are printed out by the program so the investigator
may consult a set of tables if so desired.

With '/B now known, transmissivity, storage
and leakance can be solved for directly using the
equations given by Hantush and shown in lines
950-970 in the program. The complete program is
shown in Figure 2.

The inflection point method requires that
equilibrium be reached during the pump test, and
accordingly one of the assumptions made in the
program is that the final data point entered is on
the flat or equilibrium part of the curve. Experi-
menting with the program using data derived from
local pump tests has indicated that if the test is
terminated at a time when an appreciable portion
of the equilibrium drawdown has already occurred,
the transmissivity and storage coefficients reported
by the program will differ only negligibly from their
actual values. The leakance reported will tend to
reflect a limiting value which will always be greater
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18 REM
20 PRINT "INFLECTION POINT MEtHGO™
10 nlu z2(2, 110}

40 REM —#maucmsucmcmuccesdcsmsacasns
30 “E" ~=THIS SECTION INPUTS DATA--

70 {NPUT “HOW MANY “MCASUREMENTS” Ny
ao INPUT “GIVE PUMPED VELL Q (aFi)™,
INPUT “GIVE RADIUS TO O8S WehLL (FT. R1
100 INPUT "DO YoOU uxsu T0 ENTER DATA un READ GFF TAPE
ENTER AND RECQRD OATA = 1
R!AD OFF TAPE - 2",
aN A GOTO 120,

PRINT ‘PLEASE LOAD BLANK DATA TAPE"

FOR C=1TO

:g?UTC"GtVE TIME (MIN.), DRAVDOWN (FTI™, 2(1,¢),1(2,&)
DATA SAVE z()

GOt0 250

;gégf VYPLEASE LOAD APPROPRIATE DATA TAPE"

PRINT :PRINT :PRINT :FRINT
::3A LOAD 2()

-----------------------------------------------

...............................................

B B B I L 00 ) o L2 Ll Lk P B B B B B g 3 et T et B 2t et o e et

B pt OO W a T A P L B b O 10 VL B (N e 0 08 O LA BN L N e
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Sa5d/
FOR C=L1TO
!Fx€ { Z(z ¢) THEN 300
sL-*(z C)y:82m2(2,C-1):T1=2Z(],C):T3m2(1,C-1)
Ml= (51—52)/(.41a2ﬂahalonx1~(Lor(tl) LOG(T2)))
B=5l-41%,4141744919033%LOC (Y1)
rEloz((s ~8)/11)
REM -~COMPUTE SLOPE OVER ONE HALF
AMD FULL LOG CYCLES--
REM mocuccmsacm s s e ey s b a s =
R=0
Laralii%5a319011*Loa(r)-LL-L+ W25 :L2w ke 25 TIwL0tLL TamLA
G
L. 0342944319033 %L0G(T) sLl=t+. 8 sL2 L~ 5:TI@10LL:T4=10 L2
FOR CwlTQ
I¥F 13 ( z¢l,c) tHEN 440
NEXT
TS‘Z(L.C) T7#Z(1.C=1):532(2,C)1872(2,C~1)
450 FOR ClTO ¥
460 IF T4 [ 2(1,C) THEN 430
470 NEXT ¢
480 Th=Z(1,C):tTamI(L,G-1):5368Z(2,C):53m2(2,Cx1)
490 M2= (($5-57)/(.53427443L90334(LOC(T3)=-LIG(TTI)))
500 53« (M2€(.4 3429443190334 (LOG(TI)=LAAG{TTI}))+57
10 M3=(($6=83)/(,4342945819931%(LOG(T6)-LOG(TI))))
20. S4=(1H3%¢ h]4:"4é1190!3'(LOC(T&)-LOG(TS))))+sa
39 IF H=l THEN 370
4 ns-(s:-sa)-z
50 Ha
6 coro 400
70 Ha5le$4
80 K« (2,3%35)/x
9 REH ~mocscrrsacemvac——
:E" - COMPUTE R/ 3==
20 IF RK)4.783 THEY 510
IF xiz.éez THEX 790
IF £]1.3%2 TUEN 720
30 tF KI:.Xh& THER 740
LF K| 547 ‘hE( 75n
70 PRINT “ERRO ] 5"
Re10! ((Ke. zsa)/( 2.256))
GOTe 100

T
R-LO'((!-.S?G)/( 2.N86))
GOTO
a-xox((h- 1433/ («1.739))
GoTO 140
Rel0! ((Kel,146)/(w1,3564))
GOTO 300
i;lo'((x =l.144)/(-.85130))
REM ~~START OUTIUT--
REM macecrucewssmm—
PRINT “R/B =" 1

vk !

“IIALF LOC CYCLE SLOPE =" M4
"FULL LDG CYGLE SLOPE =" i

"SLOPES SHOULD AGREE CLOSKLY”

“1F THEY DO HoT, PLOT ON SEMI-LOG PAPER TQ SEE 1F"
"FULL LOG GYCLE SLOPE KNCLUDES POINTS QUTSIDE"
“STRAICHT LINE PART QF CURVE"

1 1PRINT :PRINT ;PRINT
REM ~-COUPUTE TRANRMISSIVITY,
STORAGE ANN LEAKAGE==

AN B 1 B s £330 00 g S WA 8= L N 10 O 0 D0 g O B 1 it e D
=] n.;og;o::=(:ocso::::ac:oc:ocao::al:nc:oc:oc;a:>o=>o<:a::o«:c:os:c
“w
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-------------------------

RE!
950 TO=(2&4wQerXP(«R)) /Y

tREM  COMPUTE TRANSH!SSIV!TY
960 se-(ro-r-k)l(a\sntnxtz) tREN  COMPYTE STORAG
973 P-Ts/((lll«) 2) ‘REM  COHPUTE LrAxAvcr
980 REM smacwmaccrms—cawa—s—
390 REN --cherrr QUTPUT ==
1000 RLM =mccrsascsmssvmems

1010 FRINT "AUUIPIK CHARACTERISTICS ARE AS FOLLOWS™
1020 PRINT CRIN
1030 PP!NTU%!H? 1nan TT:PRINT

1040% TﬂAﬂﬁll§§!V!TY JARe 108 CPRD/FT,
1050 PRIBTUSLIUG LOGH,SASPRINT

Q607Z STORACE LurFF!CIEuT - t 0P80

10706 PRINTUSING 10 n

1080% LEARANCE (T /ﬂ ¥ - F.488440 CPD/FTLLY

1090 END

Fig. 2. Program listing.

than the actual value. Such a limiting value for
leakance can be useful when field conditions have
prevented running the pump test to equilibrium.
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RUN

INFLECTION PQINT METHOD

HOW MANY MEASUREMENTS? 12

GCIVE PUMPED WELL Q (GPM)? 1000
GIVE RADIUS TO 0OBS WELL (FT.)? 190

DO YOU WISH TO ENTER DATA OR READ OFF TAPE
ENTER AND RECQRD DATA - 1
READ OFF TAPE - 2?71
PLEASE LOAD BLANK DATA TAPE

GIVE TIME (MIM.), DRAWDOWN (FTI)? .2,1.76

GIVE TIME (MIN,), DRAWDOWHN (FT)? .5,2.75

GIVE TIME (MIN,), DRAWDOWN (FT)? 1,3.59

GIVE TIME (MIW.), DRAWDOWN (FT)? 2,4.26

GIVE TIME (MIN.), DRAWDOWY (¥T)? 5,5.23

GIVE TIME (MIM.), DRAWDOWH (FT)? 10,5.90

GIVE TIME (MIN.), DRAWDOWN (FT}? 20,6.47

GIVE TIME (MIN,), DRAWDOWN (FT)? 50,6.92

GIVE TIME (MIN.), DRAWDOWN (FT)? 100,7.11

GIVE TIME (MIN.), DRAWDOWN (FT)? 200,7.20

GIVE TIME (MIN.), DRAWDOWN (FT)? 500,7.21

GIVE TIME (MIN.), DRAWDOWN (FT)? 1000,7.21

R/B = 5,07672123E-Q2
K = 3.296153200416

HALF LOC CYCLE SLOPE = 2,500443771153
FULL LOG CYCLE SLOPE = 2,515308077402

SLOPES SHOULD AGREE CLOSELY

IF THEY DO NOT, PLOT ON SEMI-LOG PAPER TO SEE IF
FULL LOG CYCLE SLOPE INCLUDES POINTS OUTSIDE
STRAIGHT LINE PART OF CURVE

STOP
tCONTINUE

AQUIFER CHARACTERISTICS ARE AS FOLLOWS

TRANSUISSIVITY - 99753 GPD/FT.
STOQRAGE COEFFICIENT = n.000095
LEAKANCE (P'/M') - 0.725709 GPD/PFT.!3

END PROGRAM
FREE SPACE=1912358

Fig. 3. Typical printout.

UNITS AND DATA ENTRY

All variables used in the program are in the
gallon/foot/day system. The specific units used for
input and output data are specified in the program
and shown in the example.

Since much of the drawdown data that we
work with are already stored on tape cassettes,
ptovisions are made in the program to read the
time-drawdown data directly from a tape and to
write that data on a tape when they are initially
entered. If only direct entry of darta is desired

Table 1.

Type Curve Inflection Point
Transmissivity 100,000 gpd/ft. 997353 gpd/fr.
Leakance (P'/m’) .025 gpd/fc.? 0257 gpd/fe.?
Storage .0001 .000095

with no provisions for tape storage, lines 100-120
and 160-210 of the program can be eliminated.

EXAMPLE

An example (employing generated data) used
by Cooper (Bentall, 1963) to illustrate the use of
type curves is used here to compare the two
methods. Figure 3 is a print-out yielded by the
program, when the data presented in Cooper's
Table 6 (T = 100 ft.) are inputed. The values
obtained using the type curve method are shown
here in Table 1 in comparison with those obtained
by the program. The values in this case agreed
closely, well within the limits of most field darta.

CONCLUSION

Much has been said recently about the dangers
of computerizing pump tests, with most of that
fear probably well founded. The author wishes to
emphasize that the program presented herein
should notbe used indiscriminantly, i.e. as a black
box which grinds out answers of unquestionable
reliability. The applicability of the inflection point
method to the problem at hand must be considered,
as well as other factors such as anisotropy and
boundary condirtions.

REFERENCES
Bentall, R. 1963. Shortcuts and special problems in
aquifer tests. U.S. Geological Survey, Water-Supply
Paper 1545-C.
DeWiest, J. M. 1965. Geohydrology. John Wiley and Sons.
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Pumping Tests in Patchy Aquifers

by J. A. Barker and R. Herbert?

ABSTRACT

A numerical simulation and analyrtical study of a
constant-rate pumping test, for a well situatéd at the centre
of a disc of anomalous transmissivity and storage coefficient,
have been used to aid in the interpretation of tests performed
in a “‘patchy’ aquifer in India. Equations describing the
long-time behaviour of drawdown show that Jacob’s method
can be employed ro estimate the regional transmissivity from
drawdowns measured at any point in the aquifer or in the
pumping well. However, these equations also show that an
average storage coefficient should be calculated from draw-
downs measured outside the aquifer discontinuity.

The results of this study support the hypothesis that
the average transmissivity of a heterogeneous aquifer can be
calculated from rates of drawdown observed after long
periods of pumping.

INTRODUCTION
All aquifers are to some extent heterogeneous
and this fact brings into question the validity of
normal methods of pumping-test analysis which
assume homogeneity. While it is perhaps obvious
that pumping tests tend to ‘‘average out” the

*Senior Scientific Officer and Principal Scientific
Officer, respectively, Hydrogeology Unit, Institute of
Geological Sciences, Maclean Building; Wallingford, Oxon,
0X10 8BB, England.

Manuscript received August 1981, accepted October
1981.

Discussion open until September 1, 1982.
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properties of aquifers, it is natural to be suspicious
of results obtained when the pumping well is situated
in a region of the aquifer which is considered to be
atypical—especially if the only drawdown measured
is that in the pumping well.

This paper describes (i) a field investigation
that led to a consideration of the general problem
of pumping tests in patchy aquifers, (ii) our attempts
to gain insight into the problem by computer
simulation and mathematical analysis of a simple
form of heterogeneity, and (iii) a general hypothesis
suggested by this study and previous work. Some
particularly unusual pumping-test data, which appear
to have a simple interpretation in the light of the
analysis, are also presented.

BACKGROUND

The Overseas Section of the Hydrogeology
Unit of the Institute of Geological Sciences is
carrying out a study in the Deccan Traps of India
which involves the drilling and pump-testing of
many wells. Well yield has been found to be
unpredictable. Typically, a test sitc would be
centred on an established well yielding about 5 to
10 1/5 (0.18 to 0.35 ft3/s). It is quite common for
an observation well subsequently drilled 20 metres
away to yield less than 1 1/s (0.035 ft*/s). This
variability in yield has led to the conclusion that
the aquifer is generally of low transmissivity but
has within it pockets of relarively high
transmissivity.

Vol. 20, No. 2—~GROUND WATER—March-April 1982



Fig. 1. Idealised heterogeneous aquifer studied.

The theoretical study described here was
carried out to assist interpretation of the results
of pumping tests performed in such an aquifer. In
particular, the case of a pumping well situated in a
high transmissivity pocket with observation wells
both inside and outside the pocket, has been
studied.

IDEALIZATION OF THE SYSTEM

In order to make the problem amenable to
analytical as well as numerical methods, the system
was chosen to have radial symmetry about the
pumping well (see Figure 1). The aquifer is confined
and consists of two regions with transmissivities T,
forr < R and T, for r > R, and corresponding
storage coefficients S, and S,. It is assumed thata
constant pumping rate, Q, is maintained throughout
the test in a fully penetrating well.

NUMERICAL STUDY

This idealized pumping test was simulated
using a simple one-dimensional (radial) finite-
difference model. Parameter values were chosen to
approximate typical conditions encountered in the
field tests in India. The values chosen were T, = 80
m?/d (0.01 ft*/s), T, = 5 m*/d (0.0006 ft*/s),

S, =S,=0.001,R=60m (197 ft), Q=51/5(0.18
ft}/s). The pumping well was assumed to have a
small finite diameter 2ry = 0.2 m (0.66 ft).

Figure 2 shows a semilog plot of simulated
drawdown dara, s, against time of pumping, t, for
the test well (r = ry,) and for observation wells
in both aquifer regions, r = 2 m (6.6 ft) and r = 62
m (203 fr).

For a fully-penctrating well pumping from a
homogeneous, confined aquifer of transmissivity, T
well storage may have a significant effect on draw-
downs if Tt/ry? < 25 (Papadopulos and Cooper,
1967). This corresponds to times less than 4.5
minutes (25ry */T,) in the simulated test. Following
this initial period there is a phase of the test when
drawdowns in the outer aquifer region are negligible
and the test results are consequently similar to those
expected for a line sink in 2 homogeneous aquifer
of transmissivity T,. Further, since the quantity
u = r?8,/4T,t is less than 0.01 for t > 4.5 minutes
andr < 10 m (33 fr), drawdowns in both the
production well and the inner observation well
should follow the Jacob equation (Cooper and
Jacob, 1946; Todd, 1959):

1]

S Q 4Tt )
= n___...

' 4aT,  CrS,

where C=1.78....

The simulated data are approximated by equation
(1) during the period 4.5 min. to 30 min.

As the radius of influence of the test moves
into the outer aquifer region, drawdowns increase
more rapidly until most of the water results from
the lowering of heads in the outer region. It then
seems reasonable to expect that rates of drawdown
would become dominated by the transmissivity T,.
Figure 2 shows that all three curves tend to straight
lines with roughly the same slope which, applying
Jacob’s equation, gives a transmissivity value close
to the simulated values, T,.
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Fig. 2. Simuiated drawdown data.
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ANALYTICAL STUDY

The above numerical study suggests that
Jacob's method can be used to obtain the trans-
missivity, T,, from the rate of drawdown, measured
in any part of the aquifer, after a sufficiently long
time of pumping. In order to investigate this
hypothesis, analytical expressions for the drawdown
valid after long times were obtained by the method
outlined in the Appendix. If 5, and s, are the
drawdowns in the inner and outer aquifer regions
respectively, then for large t:

4‘77Tn 4Tz[ 2T7 R
e =1 — n — 2
Q PTG R T 2)
and
47TT2 4Tat
= —— 3
qQ ?ThCse @

A simple interpretation of these equations
suggests that the inner aquifer region is in a quasi-
steady-state with the drawdown described by the
Thiem equation, while the drawdown in the outer
region is described by the Theis equation for a
homogeneous aquifer.

These equations confirm that a semilog plot of
drawdown against time will tend to a straight line
with slope Q/4nT,. They further show that the
intercept of this line on the t-axis can be used to
estimare the storage coefficient S,, but only if the
drawdown is measured in the outer aquifer region
(assuming R to be unknown). A plot of s againstIn r
should consist of two straight lines with slopes
Q/2xT, torr < Rand Q/2nT, forr > R.

AN UNUSUAL FIELD RESULT

Figure 3 shows the results of a pumping test
carried out in India in an aquifer known to have
“patchy” properties. The results are unlike those
usually obtained from a pumping test in that
observed drawdowns are almost independent of the
distance of the observation well from the pumping
well.

All the wells drilled at this site had exceptionally
high specific capacities which indicates that the wells
lie within 2 zone of abnormally high transmissivity.
If, as a first approximation, the pumping well is
assumed to lie at the centre of a disc of high trans-
missivity, then equation (2) can be used to predict
the drawdown after long times. If T, is much greater
than T, the final term in equation (2) can be
ignored, so the drawdown, s,, will be independent
of the radial distance (r) of the observation—on
reflection, a fairly obvious result. The apparently
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Fig. 3. Field data from a pumping test performed in India,

anomalous data presented in Figure 3 thus can be
explained, and the applicarion of Jacob’s method
reveals a relatively low regional transmissivity of
about 50 m?/d (0.006 ft?/s). The transmissivity of
the inner region must, by contrast, be very high—
possibly greater than 3,000 m*/d (0.4 ft*/s).

A GENERAL HYPOTHESIS

The results of these investigations lead to the
following hypothesis concerning the interpretation
of pumping-test data for heterogeneous aquifers:
The average transmissivity of an aquifer can be
determined, using Jacob's method, from rates of
drawdown measured at any point in the aguifer, or
in the pumping well, after long times of pumping.

We have only confirmed this hypothesis for a
very special case of heterogeneity; Toth (1967)
argues the general case as follows: “Generally, pump
tests indicate the presence of some kind of bound-
arv. If, however, the pump test is long enough to
permit a ‘sampling’ by the cone of influence of rock
volumes which are large even on a regional scale,
time-drawdown curves will behave again as if water
was withdrawn from an infinite, homogeneous
aquifer.”

Vandenberg (1977) used a two-dimensional
computer model to simulate a constant-rate pumping
test in an aquifer with randomly distributed trans-
missivity but constant diffusivity. He concluded
that the Theis curve-ficting method could be used
to obtain average values of the transmissivity and
storage coefficient, the fit to the simulated data
being best for large values of t/r?. Other work on
the effects of statistical variations of properties on
flow in porous media is reviewed by Freeze (1975).



From his own study of a one-dimensional
model, Freeze concludes that a heterogeneous
formation in general cannot be replaced by an
equivalent homogeneous formation when consider-
ing transient flow. However, the “average trans-
missivity "’ referred to above is that which would be
appropriate for use in a regional aquifer model with
long time-scales; more precisely, for use when the
characteristic time for changes of interest is much
greater than x*/k, where x is the characteristic scale
of spatial variation of transmissivity (e.g., R in
Figure 1) and « is the characteristic diffusivity. Here
the implicit assumption is that the aquifer is essen-
tially homogeneous when viewed on a sufficiently
large scale. \

DISCUSSION

In Figure 2 the transition between the two
straight-line sections of the drawdown curves is
characterized by a continuous increase in slope.
Figure 4a shows an alternative form of the curve
that may be observed when T, < T,. Similarly,
for the case T, > T,, numerical simulations
revealed the two forms of behaviour shown in
Figures 4b and 4c. The form obtained depends on
$:/S, and t/R for a given value of T,/T,.

-,

lnt -~
Fig. 4. Alternative forms of the drawdown variation for the
idealised system. The form depends on T,/T;, §,/8, and r/R.

o 8 v R"RRA

In deriving equations (2) and (3), no
assumption was made concerning the size of R, so
these equations could be applied to a well where a
cylindrically symmetrical region of formation
damage is expected, or even to a well with a thick
gravel pack. In both cases the equations show thar
the aquifer transmissivity can be calculated from
rates of drawdown measured either in the pumping
well or in observation wells, although the storage
coefficient should be deduced from drawdowns
measured some distance from the pumping well.

CONCLUSIONS

A pumping test performed in an aquifer with 2
radial discontinuity in its properties will resulr in
time-drawdown curves of one of the forms shown
in Figures 2 and 4; after long times of pumping the
drawdown behaviour is described by equations
(2) and (3).

When considered in conjunction with the results
of previous studies of pumping tests in heterogeneous
aquifers, the results of this study demonstrate that
Jacob’s method can be used with confidence to
obtain a regional average for the aquifer transmissiv-
ity. An average storage coefficient should, however,
be calculated from drawdowns measured at large
distances from the pumping well.

NOMENCLATURE
C = exp v (=1.78..).

§° ( modified Bessel functions of the first kind.
1
0 ( modified Bessel functions of the second kind.
1
Laplace transform variable.
= (p $; RVT)%
well discharge rate.

-

radial distance from the pumping well.

R radius of the boundary of the two aquifer
regions (Figure 1).

s, drawdown forr < R.

s1  Laplace transform of s,.

s, drawdown forr> R.

s;  Laplace transform of s,.

S, storage coefficient for r < R.
S, storage coefficient for r > R.

t  time after the start of pumping.
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T, transmissivity for r < R.

T, transmissivity forr > R,

u  =r$/4Te

a  =(S, T./S, Tp)%

B =21 T,/Q

¥ = Euler's constant (= 0.5772 .. .).

6 =T,/T,.

¢ =pqlfa K, (xq)l,(q) - Kolaq) L, (¢)].
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APPENDIX
Derivation of the Asymptotic Drawdown Equations
Referring to Figure 1, lets, and s, be the
drawdowns in the inner and outer aquifer regions,
respecuvely. Applying Darcy’s law and the equation
of continuiry:

as, Tl a asl

§ = Sty f
v ar(rar) orr< R (A1)
and
s, T, 9 as, .
S, 2 =2 (2t f
e rar(rar) orr> R (A2)

Assuming the well to be a line source with no
storage:

lim 95y
21T, — =-— A

The drawdowns and radial fluxes in the two
regions must be equal at r = R, so:

si (R,0) =s5; (R,0) (A4)
and:
a8y 35,
Tl - (th) = T2 - (R!t) (AS)
ar ar

The drawdown at a sufficiently large distance
from the well will be zero:

$2(=,0)=0 (A6)

Initially, at the start of pumping, the drawdown will
be zero everywhere:

s (r,0) =5, (r,0) =0 (A7)

The solution of equations (A1) to (A7) can be
tackled by taking Laplace transforms and solving
the resulting ordinary differential equations.in terms
of modified Bessel functions to give:

_ _Ko(qr/R)  Ko(aq) Ko(q) . Io(qr/R)
s () 1= P Io (@)
L (A8)
/R
@&m=&%?J (A9)
where

p is the Laplace transform variable,

q*=p S;R¥ T,

¢ =pq[6a K, (@q) o (q) - Ko (xq) I, (q)],
a?=8.T,/5T,,



g =2rT,/Q,

6§ =T,/T,.

The transforms given by equations (A8) and

- (A9) are exact and could be inverted to give explicit
expressions for the drawdown at all times; the
inversion procedure would, however, be very compli-
cated. Since only the long-time behaviour of the
drawdown is of interest, equations (A8) and (A9)
can be replaced by expressions that are valid for
small values of p (and hence q). Now, for small x:

Ko (x) = In (2/x)— v
K, (x)=1/x
Io(x) =1
and I, (x) = x/2

So, for small values of p, equations (A8) and
(A9) become:

-1 R 1. 2 ¥
g, =—(In—+—=In—-=) (A10)
p r & aq 0
and:
- 1 2R
Bs; = — (In—=-1) (A11)
fp aqr

Equations (A10) and (A11) are easily inverted
to give:

4nT,s, 4Tt 2T, R

+e—In— Al2
Q. "CSRT, T (A12)
and:
41TT352 4T,t
= A
Q In oS (A13)

where In C = v.

Equations (A12) and (A13) are the required
expressions for the drawdown after long times.
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Program HVRLV1 — Interactive Determination of
Horizontal Permeabilities within Uniform Soils
from Field Tests Using Hvorslev’s Formulae

by K. U. Weyer and W. C. Horwood-Brown?

ABSTRACT

A computer program is presented for interactive,
user-oriented calculation of permeabilities from slug tests
using Hvorslev's formulae for filters in uniform soil. The
analysis scheme is cost-efficient and allows for simple
sensitivity analyses.

INTRODUCTION

In 1951 the U.S. Corps of Engineers (Hvorslev,
1951) presented a synopsis of methods and equa-
tions for the determination of permeabilities in
granular material from laboratory and field tests.
Although many different methods have been
published since then, Hvorslev’s methods still are
used widely in practice for a calculation of
permeabilities from “slug tests” in piezometers. In
a slug test a rise of water level is caused in a well or
piezometer by an instantaneous addition of
material, be it water or solid material, The recession
of the water level over time is used to calculate the
permeability of the surrounding rock. In general,
Hvorslev’s methods are considered to be an adequate

*National Hydrology Research Institute, Ground
Water Division, 1014616 Valiant Drive N.W, Calgary,
Alberta, Canada T3A 0X9.

Received Qctober 1981, revised December 1981,
accepted December 1981,

Discussion open until November 1, 1982,

Vol. 20, No. 3~GROUND WATER—May-June 1982

tool for an estimation of the magnitude of permea-
bilities in aquifers. For this reason the compurer
program HVRLV1 has been developed by the
National Hydrology Research Institute (Calgary).
The program has been written such that the
calculations can be carried out interactively. This
facilitates efficient evaluation and permits sensitivity
analyses of ficld data obtained.

The terms permeability and hydraulic conduc-
tivity are used interchangeably in this paper.

METHODS OF PERMEABILITY
DETERMINATION

The theory of Hvorslev's permeability deter-
mination has been summarized in Hvorslev’s (1951)
original figure 18 which also presents the field
methods and equations used.

The program HVRLV1 applies to field condi-
tions where the well point filter is installed in
uniform soil (see Figure 1). Three basic methods
for permeability determination are considered:
the constant head method, the variable head method
and the basic time lag method. Assumptions are as
follows:

® Soil at filter intake.

e Infinite depth and directional isotropy (kg
and ky constant).

e No disturbance, segregation, swelling or
consolidation of the soil.
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Fig. 1. Field arrangemaent for Hvorslev slug tasts calculated
by program HVRL V1. See Table 1 for explanation of
variables,

e No air or gas entrapped in soil, well point or
pipe.

e Hydraulic losses in pipes, well point or filter
negligible.

® No sedimentation or leakage,
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Constant Head Method
The calculation makes use of the equation

q-ln[-“;)—l‘»f‘/n("_l’).':)’]

Zon L-He

kp =

Before commencement of calculation the following
parameters need to be known: q, H¢, L, D, and the
ratio kp/ky. The notations, dimensions and names
of input variables are listed and explained in Table 1.

Variable Head Method
The calculation makes use of two equations

SV ARE.UE:
dln[D+1+(D)] H, L

kp = In— for-— < 4
8-L-(t,~1ty) H, D
2mL
2, 2=
d ( D ) H, mlL
h = —————— In— or —
k 1 £ >4
8'L' (t; - tl) Hz D

Before commencement of calculation the following
parameters need to be known: H,, H,, t;, t;,d, L,
D, and the ratio ky/ky.

Basic Time Lag Method
The calculation makes use of the equartions

g L mL
dln[D+ 1+(D)] L
kp = for— < 4
8- LT D
dz.ln(.ziL)
kp = D formL>4
P TR T D

Before commencement of calculation the following
parameters need to be known: d, L, D, the ratio
kn/ky, and T. The determination of the basic time
lag is outlined in Figure 2. The basic time lag T is
the time t at which H is equivalent to 0.37 H,.

PROGRAM STRUCTURE AND OPERATION
The program HVRLV1 has been listed in

Appendix 1. It has been written in Multics
FORTRAN which is an extension to ANSI Standard
FORTRAN, 1966. The program has been tested at
the University of Calgary Honeywell computer. The
computer operates on a DPS Level 2 running
Multics Release 8.2. The program can be operated

-y s
;



Table 1. List of Notations and Data Input Parameters

Name of [nput

Notation Variable' Dimensions of Inpuc
D DSCREEN Diameter of intake area, [cm]
d DPIPE Inside diameter of piezometer pipe, {cm)|
L LSCREEN Length of intake, [m]
H, HC Constant piezometer head, [m]
H, H1 Piezometric head for t = t;, {m]
H, H2 Piezomertric head for t = t5, [m]
q Q Flow of water, {cm’/s]
t T1,T2 Time, [s]
T TLAG Basic time lag, [s]

- ky Vertical permeability of soil
kp Horizontal permeability of soil
m Transformation ratio: m = Vky/ky
kn/ky RATIO
IDENT Name of piezometer (up to 8 characters)

! Input is format free. Variables are separated by a semicolon, data values by blanks or commas.

in interactive and in batch mode. Table 2 shows

the hierarchy of subroutines used.

After program and data files have been set

up in the mass storage area of the computer
system, the program can be operated simply

Ho

o
-]
1+
Q
L 37H,
°
®
£
Q
N
@
o,
10H,

i I

following the

logic and steps outlined in Figures 3

and 4. The control commands used are listed and
explained in Table 3. Within the execution of the
program they are submitted as outlined in Figures
3 and 4. Necessary data variables are listed and

Table 2, Hierarchy of Subroutines in Program HVRLV1

HVRLVL -

ORIVER

BLOCK DATA

INTERP
SKIP

ROTITL
RDVAL
CHEAD
VHEAD AND PRINTING OF RESULTS
BTLAG

MALNLINE

INTERACTIVE AND BATCH
CONTROL STRUCTURE

L

L PERMEABILITY CALCULATION

PRTITL i

Tabis 3. List of Control Commands for Program HVRLV1

Fig. 2. Determination of basic time lag T from semilog plot
of time vs, head, H, is the piezometric head M at the time

t=0,

Time t

INPUT=X1

QUTPUT=X2

TITLE{....}

CHEAD
VHEAD
BTULAG
PROC or PROCEED
STOP

= K1l=$§ inceractive mode
= X1#5 bateh sode, data on file spacified

- X2 output to terminal
XI1#6 outpuc o file X1, A2#§

= genetal heading for oucput table,
72 charactets magimum,

use conseant head mecthod of calceulacion

use variable head mechod of calculation

P

use basic time lag mechod of calculation
- progeed with calculation

= no further calculation
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ENTER MODE AND FILE CONTROL {INPUT=X1; OQUTPUT=X2):

Y _ o _________-
1 INPUTaS —interactive mode

|
| OUTPUT®§ —=mm=output to terminal |
| QUTPUT=X2 ——output to file X2; X346 1
) OUTRUTEX2,6 —e output to tezminal and to file X2

“HEAD ,cqun '

== CONSTANT HEAD METHOD --
ENTER: TITLE,IDENT,DSCREEN,LSCREEN,RATIO,Q,HC

DrrTLE(...); (DENTa...; YT
IDSCREEN'DSL 082....; LSCAEENSLL,.LZ,...: MTIO-IL,RZ,...:M
1 0=@(1) .QU2) ,...; HC=HE(L) ,HC{2),...; |

~+ VARIABLE WEAD METHOD -~-
ENTER: TITLE,IDENT, ORIPE,DSCREEN,LSCREEN,RATIO,T],T2,H1,H2

I$1TLE(...): IDENT=.,.: DPLPEsDPl,DP2
| GSCREEN=DS1,D82,...1 LSCREENaLL,L2,.
P TLOTLIL) TL(2)senv T2eT2(1) ,T2(2), 0001
| HL=HL (L) (HL(2),.00: HZ=HZ(L),H2(D).100t

== BASIC TIME LAG METHOD --
ENTER: TITLE,IDENT,DPIPE,DSCREEN,LSCREEN,RATIO,TLAG

Fig. 3. Operation of program HVR LV1 in interactive mode.
Program messages are in solid boxas, user responses in boxes
with broken lines, Use of TITLE(. .. .) is facultative. STOP
can be submitted at any response time,

explained in Table 1. Error messages generated by
the program are listed in Table 4. Figures 5 and 6
are examples of interactive and batch executions,
respectively.

ENTER MODE AND FILE GONTROL (INPUT=X1; QUTPUT=X2): l

| INPUTwX1 rr——i0put from file X1, X1ed )
QUTPUT=X2 r— OUtput to file X2, X2ee

| QUTPUTSE  ——e cutput to terminal

| OUTPUT=6,%X2 ——= output to terminal and to file X2 |

: GHEAD :

: TITLE(...): I[DENTa,,,; H Calgulation 1
. DSCREEN=0S1,DS2,...; RATIO*ALl,R2,...: B

T QeQL) QU2 ... HC=HC(L) HC(2),...;

:  PROCERD

DSCREEN+DSL,D52,...; RATIO=RL,R1,...;
PROCEED
STOPR

Fig. 4, Operation of program HVRLV1 in batch mode.
Program messages are in solid boxes; user responses are in
the broken-line box. An example of a batch input file for
two different calculations is in the dotted box.

BTLAG
IDENTw,,,; DPIPE=DPL,DPZ,...; TLAG#TLLl,TL1,...; : } Caleulation 2
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To terminate the program the command
STOP can be submitted at any time when response
is required. The use of TITLE(. . . .) is facultarive,
The sequence of data variables s not restricted.
Data variables are format free; commas and blanks
serve as dividers for data, semicolons as dividers for

“variables.

AUTOMATIC LOOPING FACILITY
Up to 10 values can be assigned to a data
variable, (e.g. DSCREEN = X1, X2, ... ., X10).

Where more than one value is assigned, the program
will automatically loop through all possible combina-

tions of data, within one input set. The looping
sequence is outlined in Table 5. Within the table
the looping sequence follows the rows before
progressing vertically.

PROGRAM QUTPUT

QOutput can be routed to a terminal, a separate
output file or both as outlined in Figures 3 and 4.
Separate output files are automatically structured
by pages and paginated, with column headings and
titles printed on each page (see Figure 6). The
tables contain the input darta, the ratio (mL)/D and
the calculated permeabilities in cm/s and m/s.

Tables can be built up interactively from a
terminal or by using batch files. If use is made of
the automatic looping facility, interactive output
at the terminal is in the form of a table (see
Figure 5). Otherwise the output at the terminal is
interspersed with the record of interactive
communication. Using the output parameter
OUTPUT = 6, X2 will build up a table in tile X2
which does not contain the record of the inter-

Table 4. List of Error Massages
MESSAGES DURING FILE CONTROL SPECIFICATION:

* ERROR * UNEXPECTED END OF DATA INPUT
INPUT AND OUTPUT FILE MUST BE SPECIFIED, OR "STOP™

* ERROR * UNABLE TO READ FILE CONTROL CARD
RE-ENTER INPUT AND OUTPUT STATEMENTS

* ERROR * NIT NUMBER MUST BE FROM 1 TO 99

* ERROR * CONPLICTING INPUT/OUTPUT SPECIFICATION
RE-ENTER INPUT AND QUTPUT STATEMENTS

MESSAGES FROM SUBROUTINE DRIVER:

* ERROR * CALCULATION METHOD MUST BE SPECIFIED
* ERROR * UNEXPECTED END OF DATA INPUT

* ERROR * PARAMETER NAME NOT RECOGNIZED

* ERROR * MISSING EQUAL SIGN

* ERROR * UNABLE TO READ DATA VALUE AT COLUMN ..

© % ERROR * MISSING VALUE FOR PARAMETER .......

a Yy A W e

)
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ASSIGN INPUT-OUTRUT FACTLITIES:
INTER ¥ODE AND FILE CONTROL | (NPUTwxl: OUTRUTEX2):
T INPUT#&: QUTPUT=6

THOOSE CALCULATION METHOD AND SUPPLY DATA:

DNT“ CALCULATION METHOD ("THEAQ® . ”HEAQ®,"3TLAGC" ,™5T0P*):
? ATLAG

s+ GASIC TIME LAG WETHOD --
SNTER; TUTLE, [DENT,OPIPE, JSCREEN, LITREEN, RATIQ. TLAG

T TITLE(EXAMPLE |, NTERACTIVE IESSION USING PROGRAM HVRLVI)
? [DENTaR[EID: DBIp@wy,31: 25CHEENw4 .91, 10.15: LECREEN®4, ): AATIO=],
TOTLAGH L, L LD PROC -

RESULT 2F CALCULATIONS:

TXAMPLE . INTERACTIVE SEBFION JSING FROGRAM HVRLYV

HORIZONTAL AYORMAULIC IDNDUCTIVITY (HVORSLEV'3 BASIC TIME LAG METMOD)

alein OPIPE  QSCREEN LECREEN RATIO  TLAG B B PEAM =revam-a
NGO, o ™) M LS 3 /%) [{=. T3 3]
PIEZO 4,91 4.91 a.1a t.og .20 “&R.Y6 2.13€-04 2.13E-02
PIEIQ 4,33 4.%3 .1 JR 1| 10.30 L68.2¢ 2.13E-05% 2.131g-2)
PLEID 4.9 .16 1,34 .20 L.o00 q91.69 L.ATE=04 1.07¢-07
PLEZO 4.9) 0. 1l8 3.0 L.20 10,20 Bl.6% L.a7E=0% L.878-01

ATOR SXECUTION:

—
l ENTER CALCULATION METHOD ("CHEAD”. "VHEAD, "WTLAGT, "9T0P*):
T 3TOR

Fig. 5. Example of interactive communication at a terminal
using the automatic looping facility for basic time lag
calculations, The figure shows data input and the results

of calculations,

active communication. All tables printed are
suitable for direct inclusion in reports without
further typing. An example of the procedure and
results is given in Figure 5.

Table 5. Looping Sequence for the Three Types of
Data Input. Looping Sequence Is in Order of Listing.
Data Pairs Are Treated as One Variable. Horizontal
Progress Precedes Vertical Progress.
1. Constant head method

Q } data {Ql, Qre v . Qm
HC pair . Hy, Hyy i y Hm
RATIO : T » Ry
LSCREEN : Ly, Lay ooivnnnnns + Ly
DSCREEN : DSy, DSz ..vi..is, » DSy
2. Variable head method.
Ti, T2 Aty, bty il WAt
} data pair g
HL, H2 8Hy, AHa, ol J8Hyg
RATIO TRy, Ra, e LRI
LSCREEN DLy Ly e Lo
DSCREEN 1 DSy, DS7, .ieiliaaee, D810
DPIPE D DS), DS24 veiviiniinnn. ,081q
3. Basic time lag method
TLAG FTL Tas e - Tia
RAT1O SRy Ry e Ry
LSCREEN ) : LSI' LSZ’ ............. ,LSm
DSCREEN : DSy, DSy tiiiiiiinnnn. ,0Sy4
DPIPE D DPY, DPy, tiiiiiinn, ++PPyg

COMTENTS OF FILEL:

BTLAG

TITLE(EXAMPLE 1. BATCH SESSIQN USING PROGRAM HVRLVI)
IDENT=PIEI0Z: JPIPEaL, 3% DSCREEN=1.39; AATIO®.5,...10.
LECAEENS . ) TLAGeL0.,20.: PROC

STOR

EXECUTION OF PROCRAM HVARLVL GFING FILEL:

INTER 4ODE AND FILE CONTROL (INPUT#XL: OUTRUT#X?):
? OINPUTeL: OUTBUT=2

-~ READING [NFUT OATA FROM FILE | -~

SALCULATION RESULTS STIRED (N FILED:

EXAMPLE 2, BATCH SESSION USING PROGRAM HYRLVL

HORIZONTAL HYDRAULLC COMDUCTIVITY (HVORSLEV'S BASIC TIME LAG NETHOD)

FIEZD QPIPE  OSCREEN LSCREEN RATIO  TLAG R el PERN ~=waa-aw
N0, oMy oMy Ll R (§) M/8) =Y

FIEZOZ 1.9 t.19 2.0 0.%9 1.0 15,28 7. t5E-23 1.15E+3)
[343:7) 1.39 Pt} 9.3 $.56  10.00 15,26 1.38E-0% PRI
PTE20? 1.3% 139 2.0 1,00 i0.d9 1.9 1.9)E-as 1. 11E=9)
PLEIOY L1 [ ] 2.3 1.00 10,39 24,58 L SZE=DY 1.53€-93
PLEZO2 109 1.9 2.30 9.20  10.99 58,29 3,96E=0% 1.95E01
PIEZOL 1.19 1.3 9.30 1900 10.00 5N.2% 1. 38E-D% 1.9

Fig. 6. Example of batch execution using the automatic
loaping facility for basic time (ag calculations. The figure
shows data input and the resuits of calculations.
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APPENDIX 1. HVRLV1 PROGRAM

Crrnvissssrrreivintersreny HVARLVL XX YT LTI TRy sreannegc CravrerterrrIRisRRNLES BLOCK DATA v AT PR Ry
< c [+ o
G PROGRAM HVRLVL CALCULATES, [N INTERACTIVE AND BATCH MODE, c c BLOCK DATA INITIALIZES PARAMETERS [N COMMON BLOCKS 2
c HORIZONTAL HYDRAULIC CONDUCTIVITIES FOR CASE *G IN 4 [ =
[+ FICURR L8 OF HVORSLEV,M.J.,19%5l, TIME LAG AND SOIL =4 ct'n-o.nunolu....n:tq-ct.nquwu..u-un-vo--nqu---u-nvq--on--oc~|1~--.q..c
< PERMEARILITY IN GROUNDWATER JBSERVATIONS, < BLOCK DATA
[ < «.HARACTER'L ALANK, COMMA, SCOLAN, LARACK, RBRACK, JVEC, PLUS,
[ AUTHORE - W, C.HQRWOQD +« X U WEYER c MINUS
4 2 n.onncm /C3000/ SLANK
[ APRIL, 194} < . /C3100/ COMMA, SCOLAN
[ad [« * /C3200/ LBRACK, RBRACX
Crevevevnanhen P L I T L T R R » /€100 CYEC(L21, pLUS, MINUG
CHARACTER=L IARD, FILPAR(].51, COMMA, SCOLAN DATA ALANK/LH /, COMMA/1H,/, SCOLAN/LH;/, LARACK/LH(/,
COMMON /C1000/ IN, IOUT, IAIN, [AQUT, [NTER " RBRACK/IH)/, PLUS/1H+/, MINUS/LH=-/
. /€2000/ CARD{RO), ICOL DATA CVEC/1HQ, LHL, 1H2, 1R3, LH4, LHS5, 146, 147, LHB, lH9, H,,
/C1100/ COMMA, SCOLAN * L
DATA FILPAR/ 1HI, LHO, LHS, ND
. 1HN, 1RU, LHT,
M LHe, LT, LHO,
. 1HU. iHP, LEP, L LI R P R R R TR ) pRIVER L
L LHT, MU, 1H , [ In
* 1H , LHT, LM / [+ SUBROUTINE DRIVER DIRECTS THE READING OF ZOMMANDS AND 2
IALNAS < PARAMETER VALUES AND CALLS THE CALCULATION 3URBROUTINES o
IAOUT«6 I -
&, QPEN STATEMENTS IN MULTICS FORTRAN GONNECT A FILE QR DEVICE R R A R T e el
c TO A UNIT AND ASSIGN CONTROL ATTRIBUTES FOR A CONNECTED UNIT SUBROUTINE DRIVER
OPEN(IAIN,FORM="f0rmatted” ,MODE="in" FROMPTw, TRUE,) CHARACTER*1 CAAD, PARA(LS%,7), AMETHO(4.5), IDENT, ALANK, SCOLAN,
OPEN{ [AOUT ,FORM="formatted” ,MODE="ouc” ,CARRIAGE= , TRUE. ) . COMMA, TITLE
OIMENSLON NVCH (%), NVVH{8), NVABTL(Y)
99 ICl=0 <OMMON /CL0QQ/ IN, IQUT, LAIN, TAQUT, INTER
{C2a0 M /C2000/ CARD(80), ICOL
IHeg M /€1000/ BLANK
I0UT=g M /CI1007 COMMA, 5COLAN
INTMPw) - /G4000/ IDENT(8), DATPAR{LL,10), NVALIlL)
T0UTHPD . /C4300/ IMETH, IAQFLG, IOFLG
INTER=4 . /043007 TITLE{72), NTITL, NWTITL
c v /C4400/ NLINE, NLINEX
[P READ MODE AND FILE CONTROL PARAMETERS TA AMETHD/ lHC, LHV, tHB, 43,

100 WRITE{IAOUT, 110} . IHH, LHH, (HT, tHT,

110 FORMAT(/* ENTER MOQE AND PILE COMTROL (INPUT=XLl: OQUTPUT=X2):") . IHE, IHE, LHL, LlHO,

120 READ{(IA[N,130,END#B00) CARD . LHA, LHA, LHA, 1HP,

130 FORMAT (B0AL} . LHD, lHD, WG, L4 /

[COLaL DATA PARA /
C.....THE 3IGN *5° INOICATES A MULTIPLE AETURN OPTION “LHQ, LD, LHL, LHR, LHY, LHT, LHY, LHH, LHH, LHH, LHQ, 141, LHT, LHP, LHS,
CALL SKIP(L,0,$B00) *LHP, LY, LHS, LHA, 14L, IH], 142, LHL, IH2, LHC, L4 , LHD, IMT, LHR, IHT,
o *LHI, LHC, LHC, 14T, LHA, LN , L , U1 ,H ,LH ,iH ,LHE,LHT, .40, 1HO,
[ READ PARAMETEAS *LHP, LHR, MR, LHT, LHG, LK 1R ,LH ,1H IR ,IH ,LHM, LHL,.4C,LH?,

140 CALL INTERB(FILPAR,3,6,1C) *LHE, LME,LKE, LHO,WH , 1 ,LH ,1H ,LH ,1H ,IH ,LHT,IHE,IH W
[P(10.£9.01 GO TO 640 *1H ,LHE LJHE, LK L1H LR LLH L IH LM MM LM L UH LR L 0H L H
IF{IC.EQ. 3} GO TO 999 vid  LHN, LM, LH LR IR L LH L IH L UH L IH UM LW LR L LH R

¢ OATA NVCH/ 2, 3, 4. 10, ll/ .
¢.....5KIP TO EOUAL SIGN . NWH/ L, 2, 3, 04, 6, 7,09, 97,
CALL SKIP(4,1,3840) e NVRTL/ L, 2. ). §, %/
[ - NLINE=D
Cornnn SKIP TO NUMBER NLINEXe)S
150 CALL SKIP(L, ), S840} LANPLGaG
[ IFLE=0
G.ue..READ NUMBER IF({TADUT GT.0) IAOFLG=l
CALL ROVAL (REALF, LERR) IP(IQUT.GT.0) IOFLGsL
tFIIERR.EQ. L) GO TO a40 IMETHaG
TUNTIFIX(REAL®) L 00 2 LaL, )
TF(IUNT.LE.O.OR. TUNT.CT .99} GO TO 860 2 NVAL(I) =0
c NWTiTLe0
[ ASSIGN NUMBER ACCORDINGLY Nnﬂ.-u
IP(IC.2Q.2) GO TO 160 00 % fwl,8
= . $ IDENT(I1wBLANK
C.....ttINPUDS [
Cy=lCls1 IPIIAIN.GT,0) WRITE[INTER,LO)
TR{TNT.NE,S5) IN®=IUNT 10 TORMAT(// ° ENTER CALCULATION METHOD ("IHEAD®,"VHEAD®, 3TLAG", 5T
TF{IUNT,.SQ.5) INTMBas§ [T A A
GO TO 179 IF(IAIN,GT,0) READ(IAIN,20,END=3000) CARD
¢ IF(IN.GT.0) READ(IN,20,END=3000) CARD
C... .. outeyTe 20 FORMAT (30A1)

160 1C2e1Q2+L 1CoLal
IF{IUNT . NE.6) LOUT*LUNT ITMETHO={METH
IP{IUNT.EQ.6) IOUTMP=é CALL SKIP(L,0,52900)

CALL INTERPIAMETHD, 4,5, IMETH)
.., CHECR FOR ADCITIONAL UNIT NUMBER IF(IMETH ,2Q.0) GO TO 2900
170 CONTINUE IF (IMETH,ZQ, IMETHO) GO TO 2%
CALL SKIP(L,1,5180) IF(IADUT,CT.1) [AQOFLGal
LF({CARD(ICOL) (EQ.COMMA) GO TO 150 (F{IQUT.GT.2) LOFLGaL
IF (CARD (1COL) .NE_ SCOLAN) GO TO 840 25 CONTINUE
¢ IP{IOUT.GT, 0, AND.NLINE GT NLINEX) IOFLal
C...,SKIP 70 NEXT PARAMETER TP (IMETH EQ.4) 30 70 400
CALL SK1?{l,..5180) ¢
GO TO 140 EF(LAIN.LE.O) GO TO 60
c : IF (IMETH.2Q.1) WRITE(INTER, 30)
C.....CHECK ASSIGNMENT OF UNIT NUMBERS 30 FORMAT(/" =+ CONSTANT WEAD METHOD --"/

180 CONTINUE . ‘ BMTER: TITLE,IDENT,DSCREEN,LSCREEN,RATIOQ.HCT)
TP{INTMP GT.0.AND.IN.GT.0) GO TU &8¢ IF(IMETH BQ.2) WRITE(INTER,40)

IF{IN.2Q.0) G0 TO 200 40 FORMAT(/® == VARIABLE NEAD METHOD -7/
TF(TN.EQ. IOUT . OR, IN, 20, IOUTHS) GO 7O 480 . * ENTER: TITLE,[DENT,.DPIPE, OSCREEN,LSCREEN, RATIO, TL,T2. 0L H

200 LF(INTMP.EG.0Y GO TO 210 2
LF(INTMP, £Q, IOUT,OR, INTMP . EQ, IOUTHS) GO TO 880 [P (IMETH.EQ. )} WRITE(LNTER,S0)

210 CONTINUE 50 FORMAT(/* -- BASIC TIME LAG METMOD --°/
IP(IN,EQ.0.AND.INTMP.EQ.0) GO TO 120 . * ENTER: TITLE,IDENT,OPIPE,DSCREEN,LICRERN,RATIO TLAG®)
IF{IOUT.EQ.0.AND, IOUTHIF.EQ.0) GO TO 120 &0 IF{IAIN.GT.Q) READ(LALN,20,END=3000) ARD
IAIN=[NTMP IF{IN.GT.0) READ (IN, 10,END=1000) CARD
[AGUT=IOUTHP 1coLal
IP (IOUT.GT,0) OPEN(IOUT,PORMw"formatted”,MODRe out”, CALL SXIP(1,0,51000)

. GARRIAGES ,TRUE.) [
¢ 70 CALL INTERP(PARA;L3,7,IP}
IP(IN.GT.Q) WRITE(INTER,220) [N . IF(IP.2EQ.0) 0O TO 1420
220 FORMAT(//” -= READING INPUT DATA FROM FILE " ,12," --"/} IF(IP.GE,1}} GO TO %0
[+ €,....58T# TO EQUAL 3STIGN
Convnn PILE GONTROL PAMAMETERS AND MODE HAVE BEEM SPECIFIED CALL SKIP(4,1,%3040)
CALL DRIVER 90 CONTINUE
[ IF(IP.GT.11) GO TO 200
C.,...3T0P EXECUTION e
399 3TOP . €.....READ PARAMETER VALURY
[ NVAL (1P} 0
[ ERROR MESSAGES 100 CALL SRIP(Z,1.%560)
800 WAITE(IAOUT.NL0} LF (CARD(TGOL) . £Q,.SCOLAN) GO TO 700
810 FORMAT(® * ERROR * UNEXPECTED ENO OF OATA INPUT'/ GALL KDVAL (REALPF, IERR}
. *  INPUT AND OUTPUT FILE MUST BC SPECIFIED, OR “STOP* °) TF(IERR,EQ.1) GO TO 3080
GO 10 100 4 UP TO L0 VALUES FOR EACH PAMAMETER ARE PERMITTED, SKTIP REST

940 WRITE(IAGUT,850) IF(NVAL (TP ,EQ. 101 GO TO 166

450 PORMAT(® * ERAOR ¥ UNABLE TO READ FILE CONTROL CARD®/ NVAL (1P) sHVAL (IPY+1
- RE-ENTER INPUT AND QUTPUT STATEMENTS®) OATPAR{LP NVAL{IP} ) vREALP
30 TC 90 GO T 100

960 WRITE(IAGUT,AT0) [

870 PORMAT(® * ERROR * UNIT NUMBER MUST SE FROM | 7O 997) 200 CONTINUE
GO 10 100 I1=EiP~il

880 WRITE(IAOUT,290) GOTO100,400,%00,600) ,11

890 FORMAT({” * ERROR * CONFLICTING INPUT/OUTPUT SDBCIH'CAT!ON / [+
M *  RE-ENTER INPUT AND OUTPUT STATEMENTS® Go... . TDENT
G0 170 90 300 CONTINUE
] NID=0
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GO TO 700
<
C... . "TITLE"
400 CONTINUE
CALL SKIB!3,1,53000)
CALL aDTITL
NWTITLal
CALL 3KIP(3,1.560)
@0 TO 700
I
[ "PROC™
590 CONTINUE
[FLAUT,GT. 7, AND NWTITL, EQ, 1} TOFLI=L
F(IAOUT.GT. ). AND NWTITL.EQ. L) [AOFLGal
GOTO(510,530.350) , IMETH
510 00 520 [=1,3
NaNVEH (D)
[F{NVAL(N) .ZE. Q) GO TO 1080
[F{IAOUT,GT.J.AND,NVAL (N} ,GT, 1) IADFLG=]
320 CONTINUE
CALL CHEAD
GO TO L
330 00 540 Ial.8
N*NVVH (1)
[F(NVAL(N) .LE.OY GO TO 1080
IF{IAQUT.T.0.AND NVAL(N) .GT.1) fAOFLGel
540 CONTINUE
CALL YMEAD
™ L
350 DO 560 [=l.5
NuNVBTL(])
IF(NVAL{Y) .LE.0) GO T2 3080
[F({[AQUT.3T.0.AND NVAL(N) ,GT. 1) IAOFLG=]
560 CONTINUE
CALL BTLAG
GO TO L
[
[ “sTOR"
500 STOP
c
C,....ADDITIONAL INPUT
700 CALL SKIp¢l.l,56Q)
G0 TQ 70
[«
[= ERROR MESIAGES
2900 WRITE(INTER,2910)
2910 FORMAT( " ERROR + CALCULATION METHOD MUST SE FPECIFPIED )
IMETHw [METHO
IF(IAIN.GT.0) GO TO 1
GO TO 4000
1000 WRITE(INTER, 1010)
1010 FORMAT(® * ERROR * UNEXPECTED END OF DATA INPUT™)
GO MO 4000 .
1020 WRITE(INTER, 3030}
3030 FORMAT(" * ERROR * PARAMETER NAME NOT RECOGNIZED®)
GO TO 4000
31040 WRITE(INTSR,I050) .
3050 PORMAT(” * ERROR * MISSING EQUAL SIGHN")
GO TO 4000
1060 WRITE(INTER, 3070} ICOL
3070 FORMAT(” * ERROR * UNAALE 10O READ DATA VALUE AT COLUMN *,[2)
4000
1080 WRITE{INTER,3090) (PARA(N,N1) Ni=l, T}
3090 FORMAT(" * ZRROR * MISSING VALUE FOR PARAMETEN ~,7TAl}
TF(IAIN.GT.O) GO TO 60
GO TO 500
1000 CONTINUE
IF(LAIN.GT.0) GO TO 60
WRITE(INTER, 40100 (CARD(I),I=1,90)
1010 FORMAT! LAST CARD READ: ,80Al/
. *  EXECUTION TERMINATED )
END
R R R R R AR AR A R L] INTERGS R R L o
[
< SUBROUTINE INTERP READS COMMANDS AND PARAMETERS

<
R Y

kA

a

CALL SKIP{l,l.560)

NIDaNID+L

IDENT (NTD} "CARD{ [COL,)

{COLaICOL*1

IF(ICOL.GT.30) GO TO 6§
[F(CARD(ICOL) .EQ.SCOLAN) GO TO 700
I[F{NID.LT.2} 30 TO 110

CALL 3KIP(5.0,560)

SUBROUTINE INTERP(CMNOD,NCMND,NMX, [CMND)
CHARACTER*. CARD, CMND, BLA
DIMENSION CMND(NCMND ,NMX)
COMMON /C2000/ CARD(80), ICOL
/€31000/ BLANK
L[COL PQINTS TO FIRST CHARACTER OF FARAMETER OR COMMAND
{CMND=)

Covunn MATCH FIRST CHARACTER OF PARAMETEAR, THEN MATCH TME REST

<

CessashsessaTTRRY R R RRRRRY SKIP -

[+
<
a

P T e T R T T Y

10
s

0

o

OF THE PARAMETER
DO 30 Iwl NCMND

[P(CARD{ICOL) .NE, CMND(I,l}} GO TO )¢
TF(NmMX.20.1) GO 1O 1%

ICOLO=TC0L

DO L0 Ju2,NMR

IF(CMND(5.J) .EQ,BLANK) GO TO 10
I[COL=ICOL+L

IF({ICOL,GT.0) GO T3 20
[F(CARD(ICOL} .NE CMND(L,])) GO TO 24
CONTINUE

.WORD HAS AEEN MATCHED
ICMND»I
RETURN

.WORD HAS NOT BEEN MATCHED
1C0L=ICOLO

CONTINUE
RETURN
END

SUBROUTINE SKIP SKIPS BLANKS AND/OR CHARACTERS TO LOCATE THE

NEXT CHARACTER TO BE READ.

SUBROUTINE SKIP(ISKIP,IADDL,*)

CAARACTER*L CARD, LBRACK, ABRACK, ALANK, TQUALS, COMMA, SCOLAN -

COMMON /C2000/ CARD(80), 1COL

M /C3000/ BLARK
* /C3100/ COMMA, SCOLAN

eraveesuservRenEnv

Q
EITT IR T2 T AT ]

. /C1200/ LBRACK, RAAACK
DATA EQUALS/ lH=/

TSKIP DETERMINES THE CHECKING PROCEDURE FOR SUBROUTINE SKIP
[5KIp=l S5KIP BLANKS TO FIRST NON~3LANK
[SXIP=] SKIP BLANKS AND COMMAS TO FIAST NOM-3LANK
ISKIp=} SKIP ANY CHARACTER TO A LEFT BRACKET
[SKIP=4 SKIP ANY CHARACTER TO AN EQUAL 3IGN
ISKIpaS SKIP ANY CHARACTER TO A SEMICOLAN

..... tg?ﬂl (0 QR 1) MOVES 20QINTER ICOL [a{nD) COLUMNS TD A STARTING
POINT
ICOLalCOL+TADDL

QOO ornoan

GOTO (100, 200,100,400,330)  ISKIP

100 CONTINUE
IF(ICOL.GT.80) GO TO LQ00
1P (CARD(ICOL) .NE.BLANK) SO TO 900
I1COL=ICOLeL
GO TO 100

=

CONTINUE

IF(ICOL.GT.A30) o0 70 1000

IF(CARD(ICOL) .NE.BLANK AND.CARD([COL) . NE, IOMMA) GO TO 900
ICOL=ICOL+1

GQ TO 200

0

o

100 CONTINUE

IF(ICOL,.aT._9Q) S0 70 1400

{F (CARD(ICOL) .EQ,LBRACK) SO TQ 900
[COLeICOL+]

G2 M0 00

40

a

CONTINUE

1 (ICOL.GT. 8y GO 10 000
IF(CARD(ICOL) .EQ.EQUALS) 30 TO 900
ICOL=ICOL+]

GO TO 400

30

=3

CONTINUE

TF(ICOL.GT.A0) GO TO 1400
IF(CARD(ICOL) EQ,5COLAN) 3D TO %040
{COLalCOL+L

G0 1O 300

900 RETURN

C,,..,END OF DATA ENCOUNTERED
L300 RETURN L
END

Crvasburbsnes evusr R DT I T L NSEEE RS R R ekt ere e b vae o hED
c z
c SUBROUTINE RDTITL READS TITLE OF DATA TABLES I
Cll'l'l"ll'lllllll'l.'l"!ll|l||Ill.II!Ihll'lQ'0.!'0'!!"1!!1'!!!!""6
SUBROUTINE RDTITL
CMARAGCTER®. CARD, TITLE, RBRACK, LBRACK, 3LANK
COmMON /CL000/ IN, [OUT, [TAIN, [AQUT, INTER
. /€2000/ CARD(30), [20L
. /C3000/ BLANK
M /C3200/ LARACK, RBRACK
. /C4300/ TITLE(72), NTITL, NWTITL
c
[P QLEAR TITLE VECTOR
0O 10 TeL1,72
L0 TITLE(I) =BLANK
NTITL=0
c
C....,5KIP TO FIRST CHARACTER OF TITLE
CALL $KIP(),1,5100)
[«
[=p—— READ TITLE
10 IF(ICOL.3T.30.0R.CARD(ICOL) .EQ,RBRACK) GO TO 100
NTITLaNTITL+L
IR (NTITL.GT.?72) GO TO 50
TITLE (NTITL) =CARD (ICOL)
{COLaICOL~L
30 TC 20
4
C.uv. JNARNING MESSAGE
50 WRITE[INTER,60)
60 FORMAT(® v WARMING * TITLE HAS BEEN TRUNCATEID TO 72 CHARACTERS”)
NTITLaT2
<
100 RETURN
END
cull||||l'Il"'Il"tIQt"'l. ROVAL IR AR AR RS AR SRR AR adlv
c c
c SUBROUTINE ROVAL READS ODATA FROM DATA SOURCE FILE <

L L L R T e T T PR R PR R AL R e

SUBROUTINE RDVAL (REALY, [ERR)

{NTEGER RSIGN,ESIGN, ERSW

CHARAGTER®), CARD, LBRACK, RBRACK, BLANK, COMMA, 3COLAN,
. PLUS, MINUS, CVEC

COMMON /C200qQ/ CARDIBOY, [COU

. /C10Q0/ BLANK
* /CIL00/ COMMA, SCOLAN
. /C1200/ LARAGK, RBRACK
' /G3300/ CVEC(12), PLUS, MINUS
[ERR=Q
[gWe=l
EXP=0.0
ICT=0
REAL#=).Q
REIGN=Q
ESIGNwD
[«
[P (CARD(ICOL) .EQ.PLUS) GO TO %
IPICARD(ICOL) .NE,.MINUS) GO TO L0
RS IGN=-1
5 (CQLaICOL+1
IF(ICOL.GT.80) GO TO Ll0
[«
10 ICTaICT+L
4
Do 20 I=l,l2
RE=I
IF(CARD(ICOL) .EQ.CVEC(I)) GO TO 39
20 CONTINUE
¢ G0 1o Loo
30 IF(RP.EQ.11.0) GO TO 70
IF({RP.2Q,12.0} GO TO d¢
[

GOTO (49, 5%0,60) ,15W
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40 REAL*REAL*10,0+RpP-1.0
GO TO 30

50 REALAREAL+(RP=-1.3)/10.0°%IP
Ipa[pP+]
co TQ 30

50 EXP2EXPY10.0+RP-1.72
S0 TO %0

79 IF(ISW.GT.L) G0 TO 1l
15Ww2
[Pe)
TG0 TO sa

o

40 I#(ISW.EQ.3) 20 TO Lig
I3w=]
ICOLaICOL+1
IF(ICOL.GT, 90 30 TO 110
IF(CARDIICOL, .20, 2LU5) 0 T0 99
[F{CARD(ICOL, ,NE.MINUS) 30 *0 10
TSIGNw-]

12

90 ICOL=ICOL+1
IF(ISOL.GT.30) 30 TO L0S
GO TO L0

1490 IF(ICT.EQ.L.QR.CARD(TCOL) .NE.ZOMMA AND,CARD{ICOL) .NE. BLANK.
. AND,.CARD[ICOL) ,NE.RBRACK,AND.CARD(ICOL) .NE,FCOLAN) GO TO 110
10% IF(RSIGN.EQ.-1) REALa=-REAL
[F(ESIGN.EQ.~1) 2XPw=EXP
[EXPwEXP
REAL®REAL*10.2"*IEXP
REALF=REAL
ICOL=ICOL-L
HAETURN

[~ ERROR MESSAGES
110 [ERRwL
AETURAN
END

Geerrreniunrnneren
¢ ¢
< SURROUTINE ZHEAD CALCULATES HORIZIONTAL HYDRAULIC CONDUCTIVITY [
[+ JYING THE CONSTANT HEAD METHOD [

ananen CHEAD R T Y Y YT

T R ey
SUBROUTINE ZHEAD
CHARACTER*1 [DENT, TITLE
COMMOM /CL000/ IN, IOQUT, [AIN, [AQUT, INTER

. /C4000/ IDENT(8), DATPAR{LL, 101, NVAL(LL)
* /C4200/ IMETH, IAOFLG, [OFLG
. #C4300/ TITLE{T2), NTITL, NWTITL
* /C4400/ NLINE, NLINEX

¢
PIw), 141593
I5KIp=l
IF{IAOFLG,.EQ.L.OR. IOFLG.EQ. L) CALL PRTITL(7))

[+

[N PERMEABILITY CALCULATION
20 00 2=1,NVAL(D)
IF(L2.EQ.1.AND . NVAL(Q) ,GT. 1) ISKIP=ISKIP+1
D0 200 13a),NVALIY)
IF(II.EQ. L. AND NVAL(D) ,GT. 1} [SKIPISKIP+l
DO 200 [4=1,NVALI4)
IFIT4.2Q, L.AND NVAL{4) ,GT. 1} [SKIP=ISKIP+l
20 190 ILosl.NVAL(IG)
IF(ILO.8Q. L AND NVAL (10} ,GT, 1) [SKIP=ISKIfe1
IF(ISKIP.LE.D) GO 7O 17%
IF([OUT.GT,.7) ARITE(IOUT,1l43)
IFIIAQUT GT.0) WRITEIIAGUT,18%)

165 FORMAT( LX)

NLINEsNLINE+L
15KTpe0
IP(NLINE.LT NLINEX.OR.IOUT.Z2Q.0) GO TO 17%
IOFPLG=1
IALL PRTITL{79:

c

Covinn AVOID DIVISION 3Y ZERD

17§ SONTINUE
IF!DATPARI2,I2} .LE.O,OR,DATPAR(3, I3 . LE.%. .OR.DATPARILO, 110} .LE. D)
v GO TO 2%
Q=OATPAR(LL,IL0)*.000001
D=DATRAR(Z,I2) *. 0L
AM=DATPAR(4,I4) *%.§
RLD=RM*DATPAR(), 13) /D
SERMM»Q*ALOG (RLD+ (1. «(RLD*"2.)) **.5} /(2. *PLDATPAR(Y, 1D
" DATPAR(10,1l0Y)

PERMCMwPERMM® 100,
[
ol PRINT REZULTS
IF(IQUT.GT.0) WRITE(IOUT,300) (TOENT(I),Is=l,8),DATPAR(2,I2),
* DATPAR(3,!1) ,DATPAR(4,I4) ,DATPAR(LL,IL0) ,DATPAR(1O, ILO),
*  PERMM, PERMCM
HLINEHLINE+L
IF(TAQUT.CT.O) WRITE(LAOGUT,I00) (IDENT(I), Iel,3),0ATPAR(Z.I2),
*  DATPAR(3.I)) ,DATPAR(4,T4) ,DATPAR(LL,ILD) ,OATPAR(LD,LLOY,
*  PERMM, PEAMCM
160 PQWT(XX BAL,IX,F5. 2, 4X,F5,2, 3%, P83, 2K, 76, 1,228,807,
X, lPES. 2, 4X,1PER, ])
e GO 10 200
C..,..DENOMINATOR ZQUALS ZERQ, CALCULATION DISCONTINUED
250 CONTINUE
IF(IOUT,GT.0) WRITE(IOUT,350) (IDENT(I),I=1,8),0ATFAR{Z.ID),
* DATPAR(1,I3) ,DATPAR(4,I4),DATPAR(LL,IL0) ,DATPAR{LD.ILD)
NLINEaMLINE+L
IF(IAQUT.GT.0) WRITE(IAOUT,150) (IDENT(I),I=L.%) .DATPAR(2, 1),
* DATPAR(Y,L3) ,DATPAR{4,I4) ,DATPAR(LY,I10) ,DATPAR(1D,I10}
150 FORMAT(1X,BAL, X, P9.2,4%,P5.2,1%, PY,2,2%,P6.1,2X, 17,1,
"9X, - ) - o
200 CONT!NU!
RETURN
END
Cresnsssveanihnhanvobhbvhbn VHEAD T L I I T T TR R e R LT
[ <
< SUBROUTINE VHEAD CALCULATES PERMEABILITY USING THE VARIABLE <
[ HEAD METHOO <

L L L T R AL L LI L L ol
SUBROUTING VHEAD
CHARACTER*) [DENT, TITLE

COMMON /C1000/ IN, IOUT, IAIN, IAOUT, INTER
. /C4000/ IDENT(8), DATPAR(L1,10), NVAL(LlL)
b /G4200/ IMETH, TAQPLG, 1QFLG
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" /C4300/ TITLE(72), NTITL, WWTITL
. /C4400/ NLINE, NLINEX
c
ISRIP=L
IP(LAOFLG,EQ.L.OR.IOFLG.EQ. 11 TALL BPRTITL(97}
~
C....,PERMEABILITY CALCULATION
00 200 [l1=Ll,NVALIL)
+ IF({1.ZQ, LLAND . NVAL(1} ,GT. 1) [SKIP~ISKIPsl

DO 200 f2=1,NVALI2)
IF(12.2Q.1,AND.NVAL(2),GT.1) (SKIP=ISKIP+L
00 200 [}=l,NVAL(})
IF(I3.EQ.L.AND,NVAL({1) . 3T.]) ISKIPw(SKIP+L
00 200 I4wl,NVAL(4)
IF(14.2Q.L.AND.NVAL{4) 3T, 1) [SKIP=ISKIp+]
00 200 I§sL,NVAL{S)
[F(I4.2Q.L.AND.NVAL(6) .GT. L) [SKIP~ISK[P+l
IF(ISRIP.LE.0) GO TO 175
IF (LT, 3T.0) WRITE(IOUT.L45)
LF(IAQUT.GT.0) WRITE(IAOUT,!4%)

165 FOBMATIIX)
SLINEANLINE+]
ISKIpa0
T8 INLINE,LT.NLINEX OR, 1OUT.ZQ. %) GO TO 173
TOPLG=1
CALL PRTITL(97}

C,....AVQID DIVISION AaY IERQ
175 CONTINUE

1F(DATPAR(2,.12) ,LE,D. .QR.DATPAR(],{3) .LE. 7, . OR.DATPAR(%,[6) .LE.],
* LQR.{DATPAR(7,16)-DATPAR(S,16)}.LE.0.) GO TO 250
OPIPE~DATPAR(L, IL)*.0L
O=DATPAR({2,L2}*.01
RM*DATPAR(4,14)4*.5
RLO®RM*DATPAR(1, 1) /0
IF{RLD.GT.4} 3Q 70 1a0

[
C.....RL/D LESS THAN OR EQUAL TO 4
PERMM= (DPIPE**2 ) TALOG (RLD+ (1 +RLD*¥7,)*" . 5) /(8. *DATPARI), Iy
. (DATPAR (7, [6) ~DATPAA(S,[45) ) ) “ALOG (DATPAR (S, 16) /DATPAR(S, (61
G TO 190
c
C.....RL/D GREATER THAN 4
180 PERMMa=(DPIPE®*2,) *ALOG(2,*RLD)/ (8. *DATPARIY, [ 1) *(DATPAR(Y, [6) -
*  DATPAR(G,I6))) *ALOG (DATPAR(8.14) /DATPAR(3,16))
~
C.,.,,PRINT RESULTS
190 PEAMCM=PERMM*100.
TP(IOUT.GT.0) WRITE(IOUT,I00) (IDENT((),I=l,3), DATPAR(L,IL)
" DATPAR(2,12) ,OATPAR(3,13) ,DATPAR(4, 141 ,JATPAR(S. £4) ,
* DATPAR!7,L14) ,OATRAR(S, 1h) ,DATPARLS, 1K), RLD , PERMM, PERMCM
NLINE=NLINE+]
IF(1AQUT.GT.N) WRITE(IAOUT,300) (IDENT(I),[w!,3! DATPAR{L,IL),
* OATPAR(2,12),DATPAR(3,13) ,DATPAR(4, 14} ,DATRAR(S, IS},
* DATPAR(?,L16) ,DATPAR(S, ts),m'!‘ruw 16) , ALY, PERMM, PERMCN
Joo PORMAT (LX ,8AL, LX,F5,2,2%,P5.2,1X,F5.3, 2,75, 3, \X,PB.2,1X,79.2,
1K, F6.2,1%,F6.2,1X,F7, 3, x, 1PER. 2, 2X. LPES. 2y
GU ™ 200
c
C.....DENOMINATOR EQUALS IERO, CALCULATION DISIONTINUED

2%0 CONTINUE
IF{IQUT.GT.0) WRITE(IOUT, 350) (IDENTIL),Ix1,3) . DATPAREL, IV,
* DATPAR(2,I2) ,CATPAR(), L)) ,DATPAR(4, T4} ,DATPAR(E, K],
* DATPAR(7,[6) ,DATPAR({E,[5) DATPAR(3,I&)
NLINEsNLINE+)
IF{TAQUT.ST,0) WRITE{IAQUT, 3507 TIDENT(1V,I=l,9) ,DATPAR{L, 1LY,
* DATPAR(2,12),DATPAR({3, I3}, JATPAR(4,14) ,DATPAR(E,I6),
* DATPAR(7,I6) ,DATPAR(S,L[6) ,DATPAR(Y,I8)
JSO?OIH.AT(KBM. LXPSZZK!'SZJX?SZZXFSZIXF!ZLXFSI
1R, F6.2.P5.2,9%,° -- -
200 CONTINCE

ALTURN
aNe

Ceatdesdyyrweve A3TLATG LRI R A AR A AR AR AR R AL A ) Lol

c ¢

c SUBROUTINE BTLAG CALCULATES HORTZONTAL WYDRAULIC COMRUCTIVITY ¢

c USING THE BASIC TIME LAG METMOD 2
p

L L L R R L A AR e AR el

SUBROUTINE BTLAG

CHARACTZIA*L [DENT, TITLE

COMMON 'T1400/ IN, TOUT, [AIN, IAQUT, INTER
‘240007 IDENT(8), DATPAR(LL,.0), NVAL(Ll)
/241007 IMETH, [AOFLG, TOFLG
‘243007 TITLE(72), NTITL, NWTITL
JGa400/ NLINE, NLINEX

“amw

ISKIP=L
IF{IAOPLG.EQ.1.OR.IOFLG EQ. 1) TALL PRTITL(32}

[

C.... . PERMEABRILITY CALCULATION

20 200 [lLel NVAL(L)
IF{IL.EQ.L.AND.NVAL(L) .GT. 1) [SKIP=ISKIP+~l
00 208 IZ=l,NVAL{2)

IF(12,2Q.1.AND.NVAL(2) ,GT.1) LSKIP=ISKIP+]1
00 204 [ial,NVAL(

IF(13.E9,1.ARD. NVAL(J) GT.1) ISKIP=ISKIP+]
DO 200 Iywl NVAL(4

IF{14.2Q,1.AND, NVA&(H LGP 1) [SKIPwI3KIPs}
00 20Q I3l MVAL(S)
TF(I5.EQ.) . AND.NVAL(%) .GT.1) ISKIP=ISKIP+l
IF(ISRI#.LE.O) GO TO 17%

IF(IQUT,.ST.0) WRITE(IOUT,L16S)

¥ {LAQUT.GT.Q) WRITE(IAOUT.L65)

FORMAT { LX)

NLINEwMLINE+L

ISKIP=E

I#(NLINE.LT.NLINEX.OR.IOUT.EQ.0) GO TO 17%
IOFLGe1

CALL PRTITL(83)

w

16

[+
Q... .. AVOLID DIVISION 3Y IERC
17% CONTINUE

IF(DATPAR(2,12) .LE, 0. . OR. DATPAR{], 1) .LE. 0. .OR, DATPAR(S, %) .LE.O,)
* GO TO 2580

DPIPE=QOATPAR(L,11)*,01

DwOATPAR(Z,12)* .01

AM=DATPAR (4,14) %%, %

RLDOwRMYQATPAR(], 1) /0

TF(NLD.GT. 4.} GO TO 180

[+

€.....2L/D LESS THAN OR RQUAL TO 4
PERMMS (JPIPE®*2. ) *ALOG (RLD+ (1, +RLO® 2.} *¥ 8) /(8 "DATPAR(],[)) "
*  DATPAR(S,19)}
GO TO 1%0

LRL/D GREATER THAN ¢
PRRMM=(DPIPE**2, ) *ALOG (2, *RLD) /(B. *OATPAR(], I 1) *DATPAR(S, [%))

i
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c 00 80 [=NX1,NX2
[ I PHINT RESULTS NIaNT+)
190 PERMCM=PERMM® 100, 80 ATITLE(L) »TITLE(NT)
IF{LOUT. ST, 0) WRITE(LOUT,100) (IDENT(I),Iwl,d) ,DATPAR(L, L), IF(IOFLG,EQ.L) WRITE(IOUT,90) (ATITLE(I),Iel,NX2)
" DATPAR(2,12},DATPAR(1,I3) ,DATBAR(4, {4} DATPAR(S,I5) ,RLD, IF(IAQFLG,EQ. 1) WRITE(LAOUT,30) (ATITLE(I),[el,NX2)
*  PERMM,PERMCM NLINE=NLINE+4
NLINEaNLINE+L 90 FORMAT(//1X,112AL/)
IF(IAQUT.GT.J) WRITE(IAOUT,1001 (IDENTI(I).[al,d),0ATPAR(L,I1), ¢
* DATPAR(2,12).DATPAR(3,13).0ATPAR(4,14) DATPAR(S,I%) ALD, C.....PRINT CALCULATION METHOD AND APPROPRIATE COLUMN HEADINGS
*  PERMM,PERMCM 3% CONTINUE
100 TORMAT(LX,3AL.3X,F%.2,3X,6%.2,4X,65.2,2¢,F6.2, LK, F7.2,2%,87.2,1%, GOTT(104, 200, 300) , INRTH
. LX,1PES,2,4X,1PE3.2) [
GO TQ 200 €,, ... "CONSTANT HEAD METHOD"
c 100 CONTINUE
C.....OENOMINATOR EQUALS ZERO, CALCULATION DISCONTINUED IF(IOFLG.EQ.1) WRITE(IOUT,IlQ)
250 CONTINUE IF (TAOFLG,EQ, 1) WRITE(IAOUT,LLD)
IF{IOUT.GT. 2} WRITE(IOUT,350) (IDENT(L),I=1,3) DATPAR(1,IV), GO TO %0Q
* DATPAR(2,12),DATPAR(),IY) ,DATPAR(4,[4) ,DATPAR(S,I%) 110 FORMAT{/ 6X%,68HHORIZONTAL HYDRAULIC COMOUCTIVITY (HVORSLEV'S CONS
NLINEsNLINE+L *TANT HEAD METHODY //
IP(IAQUT.GT.0) WRITE(IAQUT,)50) (IDENTII}, l={,8) OATPAR(L,IL), *1X, "PLIE207, 5%, "OSCREEN", IX, “LSCREEN", 2K,
* DATPAR(2,I2) ,DATPAR({Y, 1) ,DATPAR(4, 141 ,OATPAR(S,1Y} M “RATIO®,SX, Q" ,8%X,"HC® 84X,  ===r=s+n PEAM ======== "/
350 FORMAT(LX,8AL, )X, F%,2,3%,F5.2,4X,P5.2,2%,P6.2,1X,F7.2, 11X, . XLONG, T, TKLT(CM) L ER, (M T K, TR Y,
. ) - T, - “y . I, (CC/%) 7,5, T (MY 7L 9X, C(M/8) L TR, T (a/s)
200 CONTINUE * 1X,79¢°-")
RETURN ¢
END C....."VARIABLE HEAD METHOD"
200 CONTINUE
(P (1OPLG . EQ. L) WRLTE(IOUT,ZL0)
R L L T ) BRT I T L seessssvenrisvbbaybovsbbrssnl IP{IAOFLG.EQ.1) WRITE([AQUT,210)
[ [ GO TO 500
< SUBROUTINE FRTITL PRINTZ THE TITLE OF TABLES < 210 FORMAT(/L5X,6MHORIZONTAL HYDRAULIC CONDUCTIVITY (HVORSLEV™S VART
< *ABLE HEAD METHOD) //

e L Ty T
SUBROUTINE 7RTITL (NLTOT)
CHARACTER* L TITLE, ATLTLE{112). BLANK

*L1X,"PIZZO", X, “OPIPE", LX, "DSCREEN", 1X, "LSCREEN®, IX,
M TRATION, AX, “TLY,6X,TT27,7X,HL T, 5K, "H2",4X, "ML/D7, 2X,

. Tmmm=== PERM wmme-=-"/
COMMON /C1000/ IN, [OQUT, [AIM, IAOUT, INTER . 2X,°NO, 7L 5K, T ICMY YL 3K, TICMY T L 8K, T (MY YL 4X, T (H/V) T Lk,
* /€3000/ BLANK . T8 5K, T(S) TLER, TN AX, UMY T LK, T M/ T,
. /CA200/ IMETH, TAOFLG, IOFLG . 3%, (CM/S) T/
M /C4300/ TITLE(72), NTITL, NWTITL . 97(°=") )
. /C4400/ NLINE, NLINEX 4
¢ C....."BASIC TIME LAG METHOD®
[F{IOFLG.2Z0. 7 GO TO 29 300 CONTINUX
NLINEaQ [F{IOFLS.RQ. 1) WRITE(IOUT,3LD)
WRITE(LOUT,40) IF(IAQFLG,EQ. 1) WRITE(IAOUT.ILD)
60 FORMAT(LlHL) GO 10 390
@ 110 FORMAT(/7X,69HMORIZONTAL HYDRAULIC CONDUCTIVITY (HVOASLEV'S BASIC
C.....PRINT MAIN TITLE * TIME LAG METHOD) //
20 CONTINUE ) “1X%, PIZZOY,6X, “DPIPE", 2X, "DSCREEN", IX, "LECREEN", 2X,
IF(IAOFLG.EQ.1) WRITE(IAOQUT,LD} . “RATIO", 31X, "TLAG™, 35X, "ML/D", 4X, " ==m==mnn PERM ----- =/
10 FORMAT(/) * X, TNOL T, T, T CM T AR, T(EMY T L6, MY L ax, (R T,
e * %, {8V, LEX, T (M/S) T EX, T (CM/BY T/
IF(NTITL.EQ.O) GO TO 95 . LX,82(%=") )
00 79 I=1,132 [
70 ATITLE(I) =BLANK [ RESET FLAGS
NXlw (NLTOT-HTITL) /2 500 CONTINUYE
IF(NXL.LE,0) NXl=g IAOPLGm
NT=0O LOFLE=Q
NX2wHXL+NTITL RETURN
MALaNXL1+] END




Analysis of Leaky Aquifer Pumping Test Data:
An Automated Numerical Solution

Using Sensitivity Analysis

by P. M. Cobb, C. D. McElwee, and M. A, Butt®

ABSTRACT

The Kansas Geological Survey is pursuing an effort to
automate some of the more common methods of aquifer
pumping-test analysis. This paper discusses the results of
work done on the leaky artesian aquifer as defined by
Hantush and Jacob (1955). The paper covers the basic -
theory of the aquifer type, the numerical solution of the
leaky artesian-well function, and the methodology of
achieving the “best fit"" parameters in the least squares’
sense. Several data sers are used to demonstrate the applica-
bility of the proposed technique. These examples indicate
the generally satisfactory results produced by the automarted
analysis documented here.

The algorithm has good convergence properties. [nitial
estimates for the aquifer parameters may vary by about
three orders of magnitude above or below the correct values.
For typical data sets the rms fitting error should be less
than a few tenths of a foot. If this is not the case, one is
probably not dealing with a simple leaky aquifer. This
method of pumping-test analysis does not ¢liminate the
role of an experienced hydrologist to define the local
hydrogeology and aquifer type. However, once the decision
is made as to which aquifer configuraton is being observed,
this program will, in a quick and unbiased fashion, give an
accurate assessment of the leaky-aquifer parameters
within the limits of the theoretical approximacions and the
data quality.
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INTRODUCTION

The Kansas Geological Survey is in the process
of fabricating a series of computer programs designed
to analyze pumping-test data. The program discussed
in this paper solves the inverse problem for a leaky-
artesian aquifer system proposed by Hantush and
Jacob (1955). The leaky-artesian aquifer problem
considered here is not the most general configura-
tion (see Hantush, 1960; Neuman and Witherspoon,
19692a); however, the limited number of data sets
available for analysis tend to be for this simple case.
The limits of the theory used in this paper are
outlined by Neumnan and Witherspoon (1969b).
The automated analysis of the simple confined-
aquifer pumping test has been published previously
by the Survey (McElwee, 1980a). The methodology
used in the present study involves sensitivity
analysis and a least-squares’ fitting technique to
analyze the time-drawdown data while satisfying
the equations developed by Hantush and Jacob
(1955). These techniques will be outlined in the
text, More information may be found in McElwee
(1980a, 1980b), McElwee and Yukler (1978), and
Cobb, McElwee and Butt (1978).

Because of the limited number of available
data sets for this aquifer configuration, this tech-
nique is being published after extensive but not
exhaustive testing. However, we have tested it for
several hypothetical data sets and for seven real
data sets readily available to us. At this point, we
feel quite confident in the algorithm’s capabilities.
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It is hoped that, by setting this algorithm out for
public scrutiny, new data sets will be tested and
the program more thoroughly verified. A more
detailed report with program listings is available
from the authors. Using the available data sets, we
have been able to establish that, for fairly smooth
darta sets (those that conform generally to the
shape of the leaky type curves), the model has
excellent convergence properties. Initial estimates
of the storage coefficient, transmissivity, and
leakage coefficient may be in the range of plus

or minus three orders of magnitude of the
correct value and still obtain successful
convergence.

This method of pumping-test analysis does
not remove the requirement of having an
experienced hydrologist evaluate the local hydro-
geology and pumping-test data to identify the
aquifer type. However, once the decision is rmade
as to which aquifer configuration is being observed,
this program will, in a quick and unbiased fashion,
give an accurate assessment of the leaky-aquifer
parameters within the limits of the theoretical
approximations. After using this model for the
pumping-test analysis, the hydrologist should
always look at the root-mean-square (rms) deviation
in drawdown and the “best fit”” drawdowns calcu-
lated by the program. The experimental and
theoretical drawdowns should not differ greatly
anywhere and the rms deviation should be less
than a few tenths of a foot in order to have
confidence in the analysis. If this is not the case,
one is probably not dealing with a simple leaky
aquifer,

THEORY AND ANALYTICAL SOLUTION FOR
THE LEAKY CONFINED AQUIFER PROBLEM
The aquifer system defined by Hantush and
Jacob (1955), as depicted in Figure 1, is composed
of a level, isotropic, homogeneous, porous medium
of infinite areal extent. The lower aquifer boundary
is assumed to be impervious, while the upper bound-
ary is assumed to be a leaky confining bed. A source
bed overlies the leaky confining bed. Water is
derived from the aquifer by elastic expansion of
the water and compression of the aquifer matix as
pumping occurs. Leakage through the semiconfining
bed is assumed to be proportional to the drawdown
in the semiconfined aquifer. It is assumed that no
water is removed from storage in the semiconfining
unit and that no drawdown occurs in the source
bed.
These assumptions lead to the following
differential equation (Jacob, 1946)
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where

s(r,t) is the drawdown at any distance from the
well at any time,

r is the radial distance measured from the well,

$ is the storage coefficient of the artesian aquifer,
T = Km is the transmissivity of the artesian aquifer,
B?=T/(K'/m'); and

K and K' are the respective permeabilities of the
artesian aquifer and the semiconfining bed,

m and m’ are the respective thicknesses of the
artesian aquifer and the semiconfining bed,

K'/m'’ is the leakance or specific leakage of the
semiconfining bed (Hantush, 1949); and

Q is the well discharge.

With appropriate boundary conditions, an
analytical solution is obtainable.

s = (Q/4T) - ? exp(-y=-z)/y dy
u (2)
u =r?5/4Tt, z =r*/4B%

NUMERICAL SOLUTION PROCEDURE

Our first attempt at evaluating equation (2)
involved the Laguerre Quadrature formula. Integral
functions of the form

}o f(x)e™ dx
0

may be approximated by the method of Laguerre
integration:

— o ————— —

u--—J—_-1

cone of deap. 4

\
— e — e — B
IQF\_‘/‘(— Aquitard

radial flow——;

-— —

1!

Aquifer! | m
[ ]
Li

Aquiciude (from Walton, 1970)
Fig. 1. Diagram of ideal leaky aquifer.
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2’ f(x) e X dx> B wif (x;) (3)

1=

where the wy's are weighting factors, and the x;’s
correspond to zeros of the n® order Laguerre
polynomials. The values of w; and x; are catalogued
in Abramowitz and Stegun (1968).

To perform the integration in equation (2), a
transformation of variables must occur in order to
make the limjts of integration compatible with the
Laguerre Quadrature formula, equation (3). This
transformation is a straightforward substitution of
the form y = x + u. The integral takes the form

G(r/B,u) = T exp {-—u-r’/[4B2(x+u)] }/(x+u) .
. (o]

exp(-x) + dx

and is solved numerically by the appropriate substi-
tutions in the Laguerre integration formula. The
function G(r/B,u) was evaluated by Laguerre inte-
gration of order 15. We found that evaluating
equation (2) with Laguerre integration did not give
the desired accuracy for small values of u, There-
fore, an alternate evaluation scheme had to be
developed.

Hantush and Jacob (1955) give several forms
of the solution to equation (1) for different ranges
of u and r/B. The alternate evaluation scheme we
use involves three equations, which are solved
numerically in order to cover the complete range
of u and r/B. The equations are listed here, along
with the appropriate ranges of u and 1/B.

$=Q/(4#T) - G(t/B,u)

4)
u=r25/4Tt,

u> 1.0, any value of r/B

s=Q/(47T) » [2Ko(r/B) — G(r/B,p)]
p=Tt/SB*> 1, (/B> u<1.0

s=Q/41T + {2Ko(t/B) + 1o(r/B) + Ei(-r*/4B%u)
+exp (~r*/4B%u) - [0.5772 + In(u) - Ei(=u)
~u+u- (Io(r/B) ~ 1)/(r*/4B?)

1 (=1)"*® (n-m+1)!

—wr oz r3/4g3)m yn-m
W e T T I

(6)
(/B u=x1

Ei(x) is the exponential integral; I, and K, are the
zero order modified Bessel functions of the first and
second kind.

The numerical solution of the exponential
integral, Ei(x), is described in detail by McElwee

(1980Db, p. 3). Solutions for the zero-order modi-
fied Bessel functions of the first and second kinds,
Io(x) and K, (x), were obrained by polynomial
approximations. Abramowitz and Stegun (1968)
catalog several forms for each function. Each form
is suitable for a particular range of x. The double
sumrmation in equation (6) is solved numerically
by a truncated summation, since only a finite
number of terms is required to approximate a
convergent series. G (r/B,u) and G(r/B,p) were
evaluated using the Laguerre integration procedure
described earlier. The numerical computational
routines involving these functions were checked by
generating the table published in Walton (1970),
page 146. This table could be produced accurately
to the fourth decimal place.

SENSITIVITY ANALYSIS

Parametric sensitivity analysis is a method of
examining the stability of a mathematical repre-
sentation of a dynamic system with respect to
variations in the values of the system’s physical
parameters. The theoretical basis of this technique
1s outlined by Tomovic (1962), while the applica-
tion to hydrologic problems has been examined by
Vemuri, et al. (1969), McCuen (1973), Yukler
(1976), and McElwee and Yukler (1978).

In formulating the sensitivity analysis of the
leaky confined aquifer problem, the following
mathematical model was used:

F(hXXahyyrh[,h;S.T,L,Q) =0 (7)
2%h a%h oh
where hxx=ﬁ, yy =373 htz_a.g
= hydraulic head,

B

storage coefficient,

transmissivity,

/]

inverse leakage coefficient (L = 1/B), and

O C H wun o=
I

pumpage.
The solution may be written as
h=h(x,y,t;S,T,L,Q

Variation of any single parameter such as T
produces a new solution

F(h¥x,hyy, he,h*; S T+AT,L,Q) =0 (8)

where AT is the incremental change in T and h* is
the perturbed head. The solution to this expression
is of the form h* = h*(x,y,t; S,T+AT,L,Q). The
stability of the system to small changes in the
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parameter T may be expressed by
Ah _h*-h
AT AT

If the limir to this expression exists as AT approaches
zero, it may be written as

3h Ah
UT (styt; S,T,L,Q) = —=

m — (9N
aT AT-0AT
Also
oh Ah
Us(x,y,t; S, T,L,Q) === lim — 10
s(x,y Q) 55 Aum o33 (10)
and
dh Ah
U X, ,I;S,T,L,Q = —— lim _ (11)
L(x.y )= L A AL

which are, respectively, the sensitivity coefficients
with respect to changes in S and the sensitivity
coefficient with respect to changesin L.

The solution to the flow equation is assumed
to depend analytically upon the independent
parameters, S, T, L, and Q. The function
h*(x,y,t; $,T+AT, L,Q), which is perturbed in the
parameter T, may be expanded in a Taylor’s series
(Tomovic, 1962). If AT is small, all nonlinear terms
can be neglected as follows:

h*(x,y,t;S,T+AT,L,Q) = h(x,y,t;5,T,L,Q) + UtAT
(12)

where Ut = (3h)/(3T). Thus, new hydraulic heads,
resulting from incremental changes in T, can be
computed directly if the unperturbed head is

known and Ut can be computed. Similar expressions
may be derived for perturbation with respect to
Sand L:

h*(x,y,t;$+AS,T,L,Q) = h(x,y,t:5,T,L,Q) + Us AS
...... (13)

h*(x,y,tS,T,L+AL,Q) = h(x,y,t;S,T,L,Q) + ULAL
(14)

------

These are correct to first order in AS and AL,
respectively.

For this technique to be useful, it is only neces-
sary to be able to compute Us, Ut, and Uy, since
h(x,y,t; $,T,L,Q) may be computed by previously
discussed techniques. This computation may be
done by analytical or numerical techniques. In this
work, it was found to be convenient to obtain
Us and U by direct analytical means and U, by a
numerical method.
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Recall that the basic equation describing the
solution to the leaky confined aquifer is

Q °°1 2r2
- Zexp-y- — )d
SEhTd PO
2
5 _ (2)
us=s—, = B!
4Tt

By applying Leibnitz’s rule for differentiating an
integral (Hildebrand, 1962), it is easy to obtain the
sensitivity coefficients with respect to § and T:

3s Qr? 1 L2

S=5§=—16ﬂrzt[aexp(—u—7u—)] (15)
s Q =1 Lir?
U = e o e _— Yy = m—— d
T o yexP( Y 4}’) -
Qr’s 1 Lr? s S
T A O

These equations may be evaluated easily by standard
numerical functions on a high-speed computer once
s is known,

Uy was computed by a direct numerical tech-
nique, rather than by formulating an analytical
solution, to conserve program simplicity while
retaining computational accuracy. Note that the
argument of the exponential within the integral of
equation (2) contains the parameter L. Hence,
differentiation will transform the entire function
within the integral and will define

UL = exp(~y~- L*r?/4y)/y }dy

Ctﬁa

T |

{-Lr?/2y* | exp(-y=L*r*/4y)dy (17)

i
C-‘.s

Note that both Us and U in equations (15)
and (16) can be expressed in such a manner that,
after the drawdown s is computed, no further
numerical integration is required. The sensitivity
with respect to leakage, Uy in equation (17), can
be computed only by additional numerical integra-
tion that would involve the formulation of a more
complex subroutine. Therefore, the decision was
made to generate Up, by a finite difference

approximation. The approximation
as/dL > {s(L+AL)~-s(L-AL)}/2aL  (18)

where

S(LFALY=Q/4nT | exp |-y~ (LFAL) 4y} fy- dy
- u
: (19)

|
|
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Fig. 2. Radial dependence of Ut.

becomes increasingly accurate as AL approaches
zero. Satisfactory evaluation of Uy, occurred for
AL set equal to .01 L. The methodology for com-
puting the sensitivity coefficients is now complete.

DISCUSSION OF THE LEAKY AQUIFER
SENSITIVITY COEFFICIENTS

The radial dependence of Ut is shown in
Figure 2. The function diverges logarithmically
near the well. Ut changes sign at some finite value
of radius. This demonstrates the fact that when T
is changed, the cone of depression deepens in
some areas and shallows in others. (Note that
radial distances in the figures are measured in
thousands of feet. The radius r has been multiplied
by 107 to give small integers.)

Figure 3 depicts the time dependence of
positive values of Ut for variations inr and T.
Note that Ut is inversely proportional to T. The
curves represent a transmissivity of 24,331 ft*/day
and +20% of that value ar a radius of 100 feet and
a T of 24,331 ft*/day at a radius of 1,000 feet.
Note that all curves flatten after three to four days.
This describes the steady condition caused by
deriving the discharge Q totally from leakage.,

= 102p Q = 195979 #3/day

2 B S = 002

T L = 0004 ft~?

£ 10-3

= R

3 T -20% FET00R

= ).

g 1074r T = 24331 112/day

) 5 T*V Nr = 1000 ft

}_

D 10-5 i i - L 1 i 1 i
1001 o1 R 1.0 100 1000

t (time), in days

Fig. 3. Effect of radius and transmissivity on the time
dependence of Ut.

The radial dependence of Ug is shown in
Figure 4. This coefficient does not diverge at
the well, nor does its sign change. It is inversely
proportional to S. The constancy of algebraic sign
indicates that as § changes there is a general
raising or lowering of the cone of depression.

The time dependence of Ug is presented in
Figure 5. Radial variation is indicated by the
presence of three curves. Each curve reaches its
maximum value for Ug at a time directly propor-
tional to its radial value. At some finite value of
time each curve approaches zero in value, indi-
cating that a steady state is achieved. Until steady

400

300

£

>

3

Z 200

n

c

[

A

o Q = 195979 #3/day

2 T = 24331 #t2/day
100 | L = .0004 ft-1

1 day

o 1
o 3 6

r (radial distance), X 10°° ft

Fig. 4. Effect of changes in S on tha radial dependence of
Us.

329



300~ @ = 195979 #t3/day
T = 24331 ft2/day

s L = .0004 ft-1
£ S = .002 _
= 200k = 1000 ft
2
>
= = 2000 ft
[
[}
& 100 r = 3000 ft
0
o)

O J

001 01 1 1.0 10.0

t (time), in days
Fig. 5. Effect of radius on the time dependence of Ug.

state is attained, there is a dual source supplying
the pumpage, namely water released from storage
and leakage. The curves roll over as leakage starts
to dominate the source mechanism. Ug is zero
outside the cone of depression and at any time
after steady state is attained. _

Figure 6 shows the radial dependence of Uy,.
The sensitivity coefficient UL does not diverge at
the well and approaches zero for large values of r.
These are similar to the curves for Ug.

The time dependence of Uy, is shown in
Figure 7 for two values of r. All curves grow with
time until a steady stare is achieved where leakage
is supplying the entire discharge Q. The set of
curves labeled L = .0004 ft™! and £20% of that
value are of interest. Observe that at t less than
.6 days, Uy is directly proportional to L; while for
t greater than .6 days, Uy, is inversely proportional
to L. As indicated before, Q is supplied by a dual
source in the leaky artesian aquifer—water taken

700

600
L+ 20%

L =.0004 ft-1
L~ 20%

S00

400

U (sensitivity), in ft2

300 - t = 0.1 day
200 S=o002
T = 24331 ft“/ day
100 Q= 195979 #3/day
0 i L
o 1 2 3 4 5

r (radial distance ), in ft X 103

Fig. 6. Effect of changes in L on the radial dependence of
U
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from storage in the aquifer and warter supplied by
leakage through the aquitard. This dual source
mechanism results in the changing dependence
on L. '

THE FITTING PROCEDURE

The objective of any curve-fitting technique,
whether performed manually or by computer, is to
fit a theoretical type curve to an experimental data
set as accurately as possible, evaluating in the
process a corresponding set of physical paramerers.
To perform this task successfully, a mechanism is
required for judging the error in the fit. Classical
manual curve-ficting relies basically on the best
“eye ball” fit. The compurter method described
here allows the fitting error to be accurately and
meaningfully determined as the rms error.

In order to apply the parametric sensitivity
method to the fitting problem, it is necessary to
define an error function

E=Z [se(t)-s*(t)]?
i

where E is the summation over i discrete samples
of the squared difference between the experi-
mental drawdown (s.) and the updated drawdown
(s*), which is computed from the truncated
Taylor's Series

s* =g+ UpAT + UgAS + Up AL

The argument t; represents the ith value of time.
Expansion of the squared error function, taking
partial derivatives with respect to the perturbed
paramerers, and setting the partial derivatives
equal to zero, yields a set of three simultaneous
linear equations that must be satisfied to obtain
the best fit.



More specifically, for minimizing E, it is
required that

3E  9E  9E
= = =0 (20)
aAT 9AS 3AL
The linear system of equations that results is
— - - et —
UL  TUUs TULUg| ALl [ZUL(s-s,)
1 1 - 4 1
Z U5UL E U_zg' E UsuT AS = E US(S“SC)
1 1 i 1
£ UpUL ZUpUg T U AT| |Z Up(s—se)
1 1
, ‘ JL 1L -
..... (21)

and can be solved explicitly for AL, AS, and AY.
The quantity s is the theoretical drawdown at time
t calculated from the previous values of L, S, and
T. The new values of the paramerers are simply

Li.1 =Li+aL
Siv1 =8 + 45 (22)
Tis1 =Ti + &Ti

This process continues until the values of AL;, AS;,
and AT; simultaneously satisfy a specified conver-
gence criteria. The goodness of fit obtained at the
termination of the last iteration is indicated by the
value of the rms error

Z (s=se)
/i

n

where n is the number of discrete samples of s.

The success of this methodology is dependent
to a degree upon the initial estimates of the param-
eters S, T, and L. However, numerical experiments
conducted with the most recent version of the
computer program indicate that the initial esti-
mates may be as much as three orders of magnitude
above or below the final solution values and con-
vergence will still be obrained.

In order to maintain physical reality and
improve numerical stability, the algorithm requires
that the parameters S, T, and L must always be
positive. Furthermore, the relative increments
AT/T, AS/S, and AL/L are never allowed to exceed
0.5 or be less than ~0.2 in any one iteration. This
subterfuge insures that the algorithm proceeds in
an orderly fashion to the minimum error. In the
tests we have run the algorithm converges to the
global minimum; however, it is possible that only a

Tabla 1. Comparison of Aquifer Pararﬁeters for
Typical Data Sets Obtained by Graphical Analysis
and by Automated Analysis

Data Graphical Automated Auto-
Source Analysis Analysis mated
Code Values Values rms Error
T = 182000 gpd/ft 202000 gpd/ft
1 $ =.002 .002 .007 fr
B = 2500 ft 3300 ft
99000
a 000097 038
2000
T = 99400 100000
2* b §=.0001 000097 .016
B = 2000 1980
97800
c .0001 .010
1950
T=1500 1800
3 S =.00020 .00017 125
B =430 650
T = 49000 44000
a § =.000090 .000086 378
A B =4100 3900
T =41000 46000
b $ =.000080 .000084 .030
B = 4000 4800

T = Transmissivity

$ = Storage coefficient
B = Leakage coefficient
»

The values obtained by graphical analysis repreésent an
average of three sets of data taken for different values
of radius. Each data set was independently analyzed and
tabulated for the automated analysis.

local minimum will be found. By trying several
initial guesses, it should be possible to find the
global minimum, if there is any doubt.

APPLICATION TO TYPICAL DATA -

Table 1 lists the best-fit aquifer parameter
values for several data sets analyzed by firting
leaky artesian type curves, both graphically and
using the technique discussed here. The data sources
are listed by number in the Appendix. The lower
case letters indicate that data was taken for
different observation wells at the same pumping
test, or that several independent pumping tests
were listed in the same source. The principal feature
of this table is the quite good agreement between
the automated-analysis values and the graphical-
analysis values. All values are well within the
same order of magnitude; in fact the differences
are not over 35% and most of them are in the
10-20% range. The largest rms error is abour .4 feet
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for set 4a. The smallest rms error is .007 feet for
data set 1. Note that data sets with the lowest
rms error do not necessarily have the closest
agreement between sets of parameters. This fact
is related to the sensitivities of the various
parameters and the subjectivity of a graphical fit.
Table 2 is a comparison of parameter values
derived from data sets analyzed by a confined
aquifer model and by a leaky artesian model.
Although the rms errors are satisfactory, there is a
discrepancy of several orders of magnitude in the
storage value for example 6. These examples
demonstrate the fact that imperfect data can still
lead to convergence in this algorithm. This points
out that in addition to analyzing the drawdown
curve from an aquifer test one must carefully
examine the hydrogeology of a site because of
the ambiguity of analyzing real data by theoretical
curves. A compilation of the data sources referenced
in Tables 1 and 2 is contained in the Appendix.

DISCUSSION AND SUMMARY

This paper has set forth a methodology for
analyzing the leaky artesian-aquifer pumping test
by using a numerical regression algorithm built on
sensitivity analysis. A by-product is the solution to
the drawdown equation.

The algorithm presented in this paper has
proven consistently its ability to converge to the
“correct” set of aquifer parameters for a typical
data set. In this case “correct” means the values
obtained by manual curve matching methods for
real data, or the values used in generating the
hypothetical data. These best-fit values are achieved
over a range of initial estimates ranging from three
orders of magnitude above to three orders of
magnitude below the converged values. The number
of iterations is reduced as the estimated parameter
values approach the true values. For typical data
sets the rms error tends to be only a few tenths of
a foot, while for fairly idealized sets of data, the

Table 2. Comparison of Data Analyzed
Two Ways (Nonleaky and Leaky)

Data
Source Confined Aguifer Leaky Aquifer  Leaky rms
Code Values " Values Error
T = 44000 gpd/ft T = 42000 gpd/ft
5 S =.00046 S = 00044 0.240 fr
B=0ft B = 8600 fr
T = 42000 T = 9800
6 S =.00004 S =.0045 .036
B=0 B =65
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rms error is a few hundredths of a foot. Iterations
can be reduced by increasing the size of the
acceptable error criteria, but only at the cost of
increased rms error. Memory size and computing
time are relatively small for this algorithm. The
typical analysis costs only a few dollars or less.

If the data diverges too much from ideal data,
convergence may not occur. In this case, if conver-
gence does occur, the rms error may be unaccep-
table. Although this algorithm gives a unique
solution to any data set for which it can achieve
a converged set of values, it cannot distinguish
absolutely between different types of aquifers.
Since the three degrees of freedom (three aquifer
parameters) give the algorithm considerable latitude
in achieving convergence, an imperfect data set may
be run successfully and a set of values for transmis-
sivity, storage, and leakage produced. This fact
points to severa] cautions. First, only the best data
available should be analyzed. Second, the geohy-
drology should be examined carefully by experi-
enced personnel to aid in classifying the aquifer
type. Third, if doubt exists about the validity of
the converged values, the rms error value should be
noted and individual best-fit drawdowns should be
compared to the field dara for gross deviations.
While this rype of automated analysis can ease the
burden of the hydrologist, it does not appear that
it will reduce his role.
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NUMERICAL METHOD OF PUMPING TEST
ANALYSIS USING MICROCOMPUTERS

by K. S. Rathod and K. R. Rushton®

Abstract. This paper describes how a numerical method of
pumping test analysis, which has proved to be useful in
many practical situations, can be run on microcomputers.
Full derails of a program in BASIC and a test problem are
provided. The need to perform all the calculations to a
sufficient accuracy is stressed, and che choice of suitable
mesh spacings and time steps is discussed.

Introduction

A numerical technique of representing the
radial flow towards a pumped well (Rushton and
Redshaw, 1979) has proved to be valuable in
analysing and interpreting pumping test data.
Feacures that can be included in this approach
include well storage, boundary effects, variable
saturated depth, leakage, delayed yield, variations
in hydraulic conductivity and storage coefficient
with depth or radius, and variable abstraction rates.
Examples of particular studies include gravel
aquifers (Rushton and Booth, 1976), sandstone
aquifers with delayed yield (Rushton and Chan,
1977), artesian overflowing boreholes (Rushton
and Rathod. 1980), test in which data are only
available in the pumped well (Rushton, 1978),
long-term tests lasting up to 70 days (Gonzalez
and Rushton, 1981), and pumping tests in large-
diameter wells (Rushton and Holt, 1981).

The basis of the numerical approach is to
solve the time-variant differential equation using
a finite difference approach in which the radial
dimension is divided into discrete intervals which
increase logarithmically from small values near the
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well to large values towards the boundary. The
time dimension is also divided into discrete steps
which increase logarithmically. This leads to a set
of simultaneous equations for each time step; these
equations can be solved using an elimination
routine. Derails of the rechnique including a
program in FORTRAN can be found in Rushton
and Redshaw (1979).

With the increasing availability of inexpensive
microcomputer systems, it is advantageous to
transfer this program to run on these compurers.
There are, however, certain limitations of these
microcomputers when they are used for complex
scientific calculations. The authors have been in
correspondence with a number of workers who
have attempted to prepare microcomputer
programs for this numerical model, and several
have encountered major difficulities.

This paper presents a version of the numerical
model program written in BASIC. It has been
tested thoroughly on a Radio Shack TRS 80
system but, because there are crucial differences
between the accuracy of working and operation
of the various systems, sufficient information
about a typical problem is presented to enable
independent checks to be made. Possible diffi-
culties in computation are highlighted, and the
importance of small radial mesh spacings and time
increments is discussed.

Numerical Model

In this section a brief summary of the formu-
lation of the numerical model is given; full details
including a derivation from the differential equa-
tion are given by Rushton and Redshaw (1979).
The symbols used in this section are chosen to
coincide with those used in the BASIC program
(Figure 1).
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Q300
Q303

ong
0315

0320
325

0330
0335
0340
Q345

Q350
0355

Q360
0165
9370
037%
Q380
0185
0390
395
0400
04038
0410
Q415
Q0420
Q623

0430

0433
0440
044s
1000
1003
1010
1013
1020
[{:F3]
1030
1035
1040
1043
1050
1053
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REM:  NUMERICAL MODEL FOR RADIAL FLOW TO A WELL .
REM: K.R. RUSHTON. .
REM:FOR GIVEN TRIAL PARAMETERS FOR AN AQULFER,TME MODEL *
REM:CALCULATES DRAWDOWNS IN THE AQUIFER.WITH THESE .
REM: DRAWDOWNS AND FIELD OBSERVATIONS SUCCESSIVELY BETTER*
REM:ESTIMATES OF THE AQUIFER PARAMETERS CAN BE MADE AND *
REM:SENSITIVITY ANALYSIS CARRIED OUT. VARLOUS FEATURES ¢
REM:SUCH A5 WELL LOSSES,WELL STORAGE,LEAKAGE ETC. CAN 8L
REM:EASILY INCLUDED [N THE MODEL.

Rg".t.t'.lﬁ"'..iﬁ.lllt.l..ﬁﬁ'ﬁ'ﬁﬁi.lllil."ll.ll-ll't'l.
REM: ***  THIS VERSION IS CONFIGURED 10 SUITE  #ve
REM: “*% RADIO SHACK YRS+80 MICROCOMPUTER SYSTEM we#
REMI!

REM! 1! INPUT INITIAL CONDITIONS ‘*"“'

REM: P PE&H SLeCONFINED STORACE AND S2=UNCONFINED STORAGE
REM:AL=WELL RADIUS,R9=RADIUS TO OUTER BOUNDARY

DEFINT I,J,K .M ,N ; DEFQ8L A-H,L,0-2

INPUT “PERM,SCON ,5UNC,RW,RMAX" ;P ,51,52,R1,R9

LPRINT USING"PERMw### . ##F COUF-STOR=VI® ¥009V™ ;P 51,
LEKINT USING” UNCONF~STOR=##9. ¢ 084" ;52

LPRIWT USING RWELL=##.#E#P  RMAXe# 2447~ "" Rl R9
REM:LOGARITHMIC MESM. FIVE MESK INTERVALS PER
REM:TENFOLD INCREASE IN RADIAL DLISTALCE,

C=].5848932000
R3wRL
Nlw2
NluN]+l
RIwR3I*C
LF R3<R9 THEN GOTO 0145
REM:DECLARE DIMENSIONS FOR THE VARIABLES,
DIM R(NL),R2(NL),D(N1),DL(NL),S(NL} H(NL),Q(N1)
BIM U(NL),V(NL),0L(4),02(4)
REMIR*RADTAL DISTANCE, R2I=R*R, OvORAWDOWN
REM:D1#DRAWDOWN FROM PREVIOUS TIME STEP.
REM: S#TIME/STORAGE COEFF. H=EQUIV. HYD. RESISTANCE.
REM:QI»RECHARCE. Uf AND V COEFF. USED [N CAUSSIAN
REM:ELIMINATION ROUTINE. Ol AND 02 LOCATION OF FOUR
REM:QBK™S AND DRAWDOWNS AT THESE BOREHOLES,
REM:CALCULATE RADIAL DLSTANCES FOR THE MESH POINTS
R(1)=R1/C
R2(L)=R{1IMR(1)
FOR Nw2 TO N1
R(N)=COR(N=1}
RI(HJ=R(N)*R{N)
NEXT N
R(N1)=RY
R2(N1)=R9*RY
N2wNi-1
MmNyl
REM: A I3 NATURAL LOG OF THE RATIO OF
REM: TWD SUCCESSIVE RADIL. A2=A*aA
A%4, 60317001
AZmATA
REM:UL=TOP AND L12BASE OF AQUIFER;WWATER LEVEL;Ql~RECH
INPUT “TOP,BASE,IWR,RECH";UL,LL,W,QL
REM: INITIALIZE ARRAYS
FOR N=L TO Nl
QUNI=QL
D(N)=W
DL(N)wW
NEXT N
LERINT USING TOP OF AQUIFER= ~FéF.##" U1,
LPRINT USING™ BASE OF AQUIFER= ~##4.4¢";LL
LPRINT USLNG“INITIAL WATER LEVEL= «###.007 ;W
LPRINT USLNG™ RECHARGE= r#f.v#r";Ql
REM: READ 1 FOR RECHARGE BOUNDARY OR 2 FOR [MPERMEABLE.
INPUT "RECHARCE BOUNDARY=L , IMPERMEABLE=2";J1
IF Ji=! TREN LPRINT "#%w*® RECUARGE BOUNDARY #wswa™
IF J1<>L THEN LPRINT “es%% [MPERMEABLE BOUNDARY #wwwe”
REM: INPUT LODE NOS. OF FOUR OBSERVATIUN WELLS.
INPUT "FOUR OBSERVATION NODES~™;01{1},00(2},00{3),0L(4)
REM: PL=PUMP ING RATE, T9=0PERATION TIME FOR THE PHASE
REM: DATA FOR NEXT PUMPING PHASE CAN BE PROVIDED HERE
INPUT "GLVE PUMPING RATE AND DURATION™;PL .19
COSUB 7000
LF P1<0.0DOO THEN $5TOP
REM:CONVERT PL TO P2 FOR USE IN CALCULATIONS
REM: P2aPl/(2%P1®A)
P2=0),125000%P)/ (CDBL{ATN(O.1D01))*A)
Cos5us 8000
REM: TaQURRENT TIME,T9=TIME FOR YHICH PHASE OPERATES
REM:[1~i00 FPOR THE LAST TIME STEP, OTHERWISE 2ZRO.
11=0
T=0.0000
REM:SEY INITIAL TIME STEP SUCH THAT U<1.0 AT WELL FACE.
TOw2, SD=01*R2(2)*S1/ (P (L1-UL))
LF TO>1.00-06 THEN TO=1.0D=06
REM:
REM! PIRABRAE) (R IIamawRRl J T nmaRdy T H
REM! 1181} CALCULATIONS FOR EACH TIME STEP '
REMI PP Iy 0wy h ) k) Ry
REM:
TeT + TO
LF T{T9 THEN COTO 2000
REM:TIME STEP JUST BEFQRE TUE END OF THE PHASE L5 REACHED.
REM:LAST TIME STEP FOR THE CURRENT PHASE.
T0=T9=(T-T0)
=19
11=100

Fig. 1. Program in BASIC.

1060
1063
1070
1078
2000
2005
010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
208%
2090
2098
2100
2103
2110
2115
2120
1125
Jooo
010
1015
3020
3023
3030
1033
3040
10465
3046
1050
JosL
3035
3056
3060
joro
3075
3980
Joas
3090
1093
Moo
3105
o
3115
M0
E 3]
10
1135
3500
1508
is5to
1514
3520
31523
3530
3535
3540
31545
3550
3555
3360
35635
3570
3575
4000
4005
«010
4015
4020
7060
7010
7020
71030
8000
8010
8020
8030
8040
8050
8060
2000
9010
9020
9030
9040
9950
9060
9070
9080
90%0

REM: LOOP K, K2 TIMES FOR CONVERGENCE .
REM: FOR UNCONFINED CONDITION K2 SHOULD EQUAL FOUR BUT
REM:TO ECONOMISE, K2 L5 SET TO ONE .
gn:z = AVERAGE SATURATED THICKNESS FOR A NODE.
-1
FOR K*l 0 K2
FOR N=l TO N2
REM: SELECT APPROPRIATE STORAGE COEFF, DEPENDING
REM:ON WHETHER THE CONDITION IS CONF. OR UNCONF.
z+Ll = 0.50DO0*(D(NI+D(N+1))
§352
IF & ¢ (L1-Ul) THEN GOTO 2050
ZwLleul
33=51
H(N)=A2/ (2%P)
$(N)=TO/(53*RI(N))
NEXT N
REM:MODIFY COEFFLCIENTS TO TAKE [NTO ACCOUNT
REM:WELL STORAGE AND CONDLTION NEAR WELL FACE.
H(1)=1.00-04 * K(1)
S(1)=2.0D00*TO%A/R2(2)
S{27=2.0000%5(2)
REM:MODUFY COEFF.S FOR CONDITION ON OUTER SOUNDARY
H(NZ)=(LOGC(R(NL) /R(NZ)) )*(LOGCK(NLI/R(N2) ) )/ (Z*P)
H(NL)=1.0D+10
S{N2)=2.0D0%TO%A/((R(NL)-R{NZ=1))*SI*R(N2))
S(NL)=2,0D0*TO¥A/ ((R(NL)~R(N2))*SI**R(NL))
REM:LARGE STORAGE ON LAST NODE IF IT 1§ RECH. BOUNDARY
IF Jlwl THEN S(N1)=1,00-10 * 5({N1)
REM:
REM: GAUSSLAN ELIMINATION
UC1)=1.0D00/H(L) + 1.0D0G/S(L)
v(1)=01(1)/8(1) + P2
FOR Ne2 10O N2
UCK)*1.0DO/H(N=1)+1,000/H(N)+1.0D0/$(N)
U(N)=U(N)=(1 .ODO/H{N=1))*(1.QDO/H¢N~1) )/U(N=1)
VEN)@DLIN) /SCN)=RZ(NI*QE) +( 1.ODO/HIN=1Y*V(H=1) )/U(N~1)
MNEXT N
V(N2)=DL(N2)/5(N2)-0.5D00%R({N2 )M (R{NL)-R{N3))"Q(N2)/A
V{N2)=V(N2)+(V(NI)/H[NDI))/U(N3)
U(NL)wL,0000/H(N2Z) + L.000O0/S(NL)
UCNL)=UCNL) = (L.0DOO/H(NZ) )*(L.0DO0/K(N2) )/U(NZ)
VONLI®DL(NL)/5(0L)=0. 5000 R(NLIA(RENLY=R(N21)*Q(NL)/A
VENL)=Y(NLYR(VONRI/UON2) D/U(H2)
REM:
REM:
D(NL)*V(NL)/U(NL)
FOR Jwl TO N2
NeN2=J#l
DENI=(VONY+L . ODO/H{N)*DCNFL) ) /ULN)
NEXT J
REM:1F DRAWDOWN IN THE WELL BELOW THE TOP OF AQUIFER
REM: REACHES MONE THAN 90% OF AQUIFER THICKNESS THEN
REM:TME WELL RUNS DRY AND THE PROCRAM STOPS.
IF DCLIC (9.00=-01%L1 + 1.0D=01%Yl) THEN GOTO 3138
LPRINT "¥%% EXCESSIVE ORAWDOWN ###™
COSUR 9000
sTOP
NEXT K
REM: ORAWDOWNS AT FOUR OBSERVATION BOREHOLES
FOR M=l TO 4
kl=ol (M)
QZ(M)=0(KL)
NEXT M

LPRINT USING™#.008%-%° “;T,D(2),02(1),02(2),02(3),02(4),d(NL)

REM: TRANSFER VALUES OF DRAHDOHNS TO OLD DRAWDOWNS.
FOR %=l TO NI

DL(N)=U(N)
NEXT N
REM!
REM!!
REM!!

REM:
REM: CALCULATE NEW TIME STEP
TO=T*0.53489)2000
IF 1l=0 THEN GOTD 1023
GOSLE 9000
coto 0380
LPRINT
LPRINT USLNG™PUMPING RATE= #.048°°“" CU.METRES/DAY ":PL,
LPRINT USING™ FOR #.008°"" DAYS ";T9
RETURN
FOR M=l TO 4
Ki=OL(M)}
02(M)=R(K1)
NEXT M
LPRIST "TIME(DAYS) ~;
LPRINT USING 28882 204
RETURS
LPRINT
LPRINT "NODE RADIUS RADIUS
LPRINT ~ TIME/STORAGE DRAWDOWN”™
LERLLT 7 LO SQUARED
LERINT "COEFFLCLENTT
FOR l=} TQ nl
LPRINT USINGTI#P“;H,
LPRINT USING™ #.4000""""
NEXT N
RETURN

"IR(2),02(1),02(2),02(3),02(4) R(NL)

HORLZ .HYD";

RESISTANCE b

“RON) R2(N) L HEND, SIN) L DL(N)



Discrete Space Mesh

As water is pumped from a well, the water
level in the well falls and the intluence within the
aquifer is reflected by reductions in the ground-
water heads. Consequently, in a pumping test,
ground-water heads change with radial distance
from the pumped well and with time.

It is convenient to define ground-water heads
at a series of radial distances from the pumped well
axis. Since rapid changes occur close to the
pumped well with slower changes at larger radii,
the spacing between the mesh (or nodal) points,
where the heads are defined, increases logarith-
mically.

If the radius of the well is 0.15 m, it is
possible to have five mesh intervals between the
well face and 1.5 m. Thus the nodal positions are
0.15m, 0.2377 m, 0.3768 m, 0.5972 m, 0.946+ m,
and 1.5 m. Between 1.5 m and 15 m there are a
further five intervals, and the same pattern is
repeated between 15 m and 150 m, and between
150 m and 1500 m. If the outer boundary is at
2000 m, this is taken as the last nodal point.

In the mesh, each radius is 109 times the
preceding one. This mesh can be generated by
statement number 225 of the program

R(N) = C*R(N-1)

where C = 1092, [n the example to be described -
in detail later, the final nodal pointis N = 23,

R = 2000 m. Node N = 1 represents the water
within the well and can be used to simulate the
well storage.

Discrete Time Steps

Just as drawdowns are calculatred at a series
of increasing radii from the well, the times at
which the drawdowns are calculated also increase
logarithmically. A very small time increment, TO,
is used initially so thar at the well face the standard
parameter u = r2$/4Tt = 1.0. In several of the
examples quored in this paper, five time intervals
for a tenfold increase in time are used.

Lumping Model

It is helpful to introduce a lumping model
which summarizes the numerical technique, Figure
2(a) indicates how the area is divided into a
discrete mesh, and three typical nodes N-1, N and
N+1 are drawn schematically in Figure 2(b). The
radial distances from the pumped well to these
nodes are R(N-1), R(N), and R(N+1), respectively.

The resistance to flow caused by the trans-
missivity of the aquifer is represented by equiva-
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lent hydraulic resistances H(N-1) and H(N). These
hydraulic resistances can represent both changes in
the saturated depth and vartations in hydraulic
conductivities with saturated depth.

In addition to the horizontal flow of water,
another component of the flow balance is the
recharge. This can be simulated as a lumped inflow
with the quantity at node N depending on the
square of the radius.

A further inflow, similar to the recharge, is
the water released from storage. During a time step
from time T to time T + TO where TO is the time
increment (usually written as At), the drawdown at
node N increases from D1(N) to D(N). The
quantity of water released from storage depends on
the change in head, the area represented by the
node, the time increment, and the storage coeffi-
cient. Consequently, a time/storage coetficient can
be introduced with S(N) = TO/(S$3*R2(N)) where
R2(N) signifies the square of the radius. S3 is the
appropriate storage coefficient, either confined or
unconfined. Since the radii can vary from 0.15 to
2000 m in a typical problem, the factor S(N) varies

water relaased

mesh t t
subdivisiang (e cl“: I V Harage
N4 o
N 7 AT = Thi
T -‘K ‘ ~ i:rioun’:i‘watzr head
- ) uring time step
i hariznntal\{ horizantal |
| flow | “"_ |
o= - 1
| _ |
i TEyd LA Tr ’ e
(a)
racharge
time T — 0(N) DI{N) drawdawn at
previous time step
,I:n;izon‘t.al
raulic i
rl’:istg{u | S e
H(N-1 N
time T.T0 _J._,il "()_j__l._
DIN-1) D(N) /DIN*U
l l unknowa
drawdewns
radivg R(K-1) R(N) R(N+1)
(b)

Fig. 2. Derivation of numerical model (a) section showing
hydraulie problem with mesh subdivisions and (b) equivalent
hydraulic parameters for the discrete model.



Table 1. Main Sections of the Program

Statement

numbers Section of program

10- 200  Description of program; input of aquifer
dimensions and parameters.

205- 365  Set up radial mesh: specify initial drawdowns
and condition on outer boundary. Select
observation well positions.

370- 345 Input pumping rate and duration of phase;
calculate initial time step.

1000-2125 Calculation for time increment; determine
saturated depth and equivalent hydraulic
parameters,

3000-3575  Gaussian elimination; stop if drawdown is
excessive; output heads at observation wells.

$000-+020  Either perform calculation for another time
step ot at the e¢nd of cthe phase print full
output. Read in data for next phase,

7000-9090 Printing subroutines.

by about eight orders of magnitude. This can lead
to computational difficulties.

Further Features

There are many other features that can be
represented in the model including well storage,
well losses, varying abstraction rates, changes
between the confined and unconfined states, leaky
aquifer behaviour, delayed yield, and different
conditions on the outer boundaries. The inclusion
of these features in the numerical model is
described by Rushton and Redshaw (1979).

Solution of Equations

Referring to Figure 2(b), the drawdowns
D(N-1), D(N), and D(N+1) are unknowns, but the
drawdowns D 1(N) were calculated at the previous
time step. Consequently, when a flow balance is
written for node N, there are three unknowns. This
is repeated at each nodal point; therefore, a set of
simultaneous equartions result. These equations can
be solved using a simple elimination routine.

The only drawback of this elimination routine
is that errors can occur if the arithmetic is not
carried out to a sufficient accuracy. Consequently,
double precision arithmetic is used which, for this
particular computer, means that variables are
handled in the computer to accuracy of 16
significant figures, whereas single precision only
uses 6 significant figures.

Computer Program

Detailed comments and explanations are
made within the program listing (Figure 1). How-
ever, Table 1 has been prepared to identify the
main sections of the program. The accuracy of the
program will be discussed later.

Particular Example

When ascertaining whether a program is
correct, it is helpful to have an example against
which checks can be made. This section describes
an example which tests most aspects of the
program. Figure 3 sketches the problem.

An aquifer, which is initially confined, has a
well of 0.15 m radius and extends to an outer
recharge boundary at 2000 m. The inirial position
of the ground-water head is chosen as datum, and
all depths and drawdowns are measured vertically
downwards. Thus, the confining layer is at 2 m
below the initial ground-water head, and the base
of the aquifer is at 12 m. The hydraulic conductiv-
ity is 65 m/d giving an initial transmissivity of
650 m¥d. Due to an abstraction rate of 2500 m?¥d,
the ground-water heads fall, and the region in the
vicinity of the well becomes unconfined with the
storage coefficients changing from confined values
of 0.0001 to the specific yield of 0.01.

2500 m*1d '
——— [ wwwww :__3t_“‘.|.__..=,._.,__._:__
el '-"]l l"""‘"‘""‘"’ﬁ’ Lk Recharge
L K=85m/d boundary
: : S¢=0.0001 $y=0.01
1]l = 0.15m
Ve
i :Not to scale: .
//'/'/flA//// T - raras ra
Mrax = 20000 oo
0
L
8
]
H |
s |
P10 [ —radius(m) — '
,,,,””,,,IM”’,IOJO‘",,lloﬁ‘ﬁ
(b)

Fig. 3. Typical problem (a) with change from confined to
unconfinad conditions and (b} drawdown results for 1 min
and 7.2 hours plotted against logarithm of radius,
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Table 2. Input Data for Computer Program

6.50D01,0.10D-03,0.10D=01,1,50-01,2.0D04
2.0D00,1.2D01,0.0D00,0.0D00

1

7,12,17,22

2.50D03,3.0D~01

0.00D00,1.0D00

~1.0D00,2.0D00

Input data to the program is listed in Table 2,
and this is repeated as the first seven lines of the
output in Table 3. Referring to Table 2, the third
and fourth numbers of line two indicate that the
initial drawdown is zero and thart there is no
recharge. The third line records that there is a
constant head on the outer boundary which will
provide a varying recharge depending on conditions
within the aquifer. An impermeable boundary is
indicated by J1=2. The abstraction rate of 2500
m?*d for 0.3 days is followed by a recovery phase
of 1.0 day; this is indicated by lines five and six.
The last line with negartive abstraction rate signifies
the end of the calculations. Full details of the
drawdown variation with time are provided at
nodes 7, 12, 17, and 22 which correspond to the
radial distances of 1.5 m, 15 m, 150 m, and 1500
m from the pumped well.

A complete outpur of the first phase is
presented as Table 3. The first part of the printout
records the inpurt data; the main section records
ume-drawdown data at the well, four observation
wells, and the outer boundary. At the end of the
printout is a detailed record of the coefficients
used in the calculation for the final time step.
Cerrain important features should be noted.

a. As the drawdown in the well exceeds 2.0 m
after a time of 0.865 X 10™ day, the storage coeffi-
cient at that node changes from 10™ to 107

b. After a time of 0.3 day, the unconfined
region spreads beyond 37.68 m (see the section at
the bottom of Figure 3). This is reflected by a
discontinuity in the values of the time/storage
coefficient.

c. A consequence of the aquifer becoming

. unconfined is that the saturated depth decreases.

This results in increases in the horizontal hydraulic
resistances for nodes 2 to 14. The nonstandard
values at nodes 22 and 23 occur because of the
modification of the mesh mtervals at the
boundary.

d. At the outer boundary the condition is zero
drawdown. The drawdown according to the
computer program is 0.146 X 10™ which, com-
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pared to a drawdown of 0.0967 m at the next node
into the aquifer, is effectively zero.

e. As indicated in the sketch of Figure 3, the
well-water level coincides with the level within the
aquifer; therefore, the seepage face is ignored.
However, the effect of the seepage face could be
included by increasing the horizontal hydraulic
resistance between nodes 2 and 3 by a factor of
about five. This can be achieved by including an
extra statement in the program

2077 H(2) = 5.0DO0*H(2)

Table 3. Part of Qutput from the Program
Using Data of Tabie 2

PERMz 65.000 CONF-3TOR=_ 0.00010 UMCONF-STOR= 0.0120
HeLL: 0.1500  RMAXa0.2000e0k

TOP OF AQUIFERe  +2.00 BASE OF AQUIFER= +12.20
INITIAL WATRR LEVEL:  #0.00 RECHARGE: 9.000
vesss RECHARGE SOUNDARY %=

PUMPING RATE:= 0.250D+0H mm/mv POR O, 300D+ CAYS
TDE(DAYS) 0.150 1,500 15.200 150.900 500,000 2000.200
0.365D-09 0. J06D=04 02200-10 0.492D-26 Q.Q0CD+C0 O,000D+00  2.00CC+Q0
0.1370-08 o.uBSD-ou 0.5000=10 0.1180=35 0.0000+C0 C.000D+0  0.0CCDQ0
0.2170=08 0.769D-0b  0.2150-09 0.338D-25 0.C00DHN  0.200D+00  0.300D+0

0.345Dn08 0.1220-03 0.144D-08 ©.3000-23 0.000D+C0 =.700D+00 0.000D+00
0.546D-08 0.1930-03 0.108D-07 0.202D-21 0.000D+C0 3.300D+00 2.000D+0
0.365D-08  0.306D~03 0.7530-07 0.139D-19 Q.000D0 0.000HD  0.2000+C0
Q.137D-07 0.4850-03 (Q.4STD=05 0.3620~18 0.0000+C0 0.000D«0 0.200D+00
0.2170-07 0.768D-03 0.235D-05 0.U3D-16 0.708D-37 0.C000-00 0.00CD-C0
0.345D-Q7 Q.1220-C2 ©0.102D-04 0.1830D=14 0,295D-34 0.000D-00 0.XCD+0
0.5460-07 2.1930=02 0.371D-08 0.635D-13 0.103-~31 0,0000+00 0.0OGD+00
0.3650-07 0.X%L=02 0.1160-03 ©.179D-11 0.2960=29 0.0000+00 0.000D+0
Q.137D-06 O.4BUD-02 0.316D-03 0.8110-10 0.678D~27 O.000DH0 O.000D+0
0.217D-06 0Q.7660-02 0.766D-03 0.7580-09 0,127D-2¢ O.000D+G0  Q.00C0+00
0.345D=06 0,121L-01 0.170D-02 0.1130-07 0.190D=22 3.000D+0 0.000D+00
0.546D-06 0.192D-01L 0.351D-02 0.138D-08 0.229D=20 0.0OCDW0 2.000D«<0
0.3650-06 0.303D=-01 0.586D-02 0,128D0-05 0.2220~18 0.200Ds0 0.20CC+00
Q.1370=05 2.47T0=CL 0.1290-0L Q.3830-05 0.1710=18 3.000D«00 Q.XCS+00
0.217D-05 ©.75CI-OL 0.233D=01 0.407D-04 0.106D=14 O,2210-35 O.J00D+0
0.345D-05 Q.1170+0C Q.41iD=0l 0.304D-03 0.5190-13 2.190-32 2.2000+0
0.5U60-05 0.183L+00 0.705D-0L 0.1240-02 0,203D-11 0.4200=%0 0.2000+0
0.3650=05 0.28T2400 Q.118D+00 0Q.424D-02 0.6270-1Q 0,134D=27 0.00CC+0
0.137D-08  O.4315+00 O.1340+00 0,1220-01 0.15W=08 2,330D-35 ©.2000+X
0.217D-04 Q.3470+00 0.3090+00 0,3BD-0L 0.20UD=07 3.042D=23 0,373~ 38
0.3450=04 Q.UEC+N Q. UTTDH00 0.672D-0L Q.HH3D-06 0.780D-2] O.3¢5D-%
0.5460-08  0.134DeJ1 0.709D+00 0.1330+00 0.5180-05 2.118D-13 Q.171D-31
0.985D-04 0.1820+01 O.1000+01 0.236D+00 0.469D-04  0.10T9=16 0.249D=29
0.137D-03 0.234C+0L  O.134D+0L 0,3B1D+00 0.3250-03 O,736D=15 0.279D-27
Q.217D-03 0.28LT+CL O.168D+0L 0.558D+00 0.1720=02 G0.-C7D-13 0.2130-25
0.345D-03 0.3280eCL 0.198D+0L O.7USD+00 0,694D=32 O.186D-11 0.153D-23
0.3460-03 (0.26AZ+0L 0.2230+01 0.9280+C0 0,216D-51 2.3120-1Q 0.762D=22
0.8630-03 0.394C+CL  0.243D«01 J.1100+01 0.533D-01 2.1200-C8 0.2960~20
0.1370-02 Q.41BC+0L 0.260B+0L 0.125D+01 0.107T+00 C.2150=07 0.8210=13
0.2170=02 0.44ALCL  0.280D+0L 0.141D40L O.185De00 0.2990=06 J.188D-i7
Q.345D=02 Q.463CCl 0.296D+01 O.156D40% 0.281+0 £.3200~05 2.3110-16
0.S46D-02 0.485D+0L 0.314D+0L O.17LMOL 0.3930+00 Q.265D-04 O.413D-15
0.865D-02 0.505Dw01 Q.320D+01 Q.184Dw0L 0.512D«00 &.1700-03 O.435D-i4
0.137D-01 0.527D+CL 0.347D+0L Q.200D+0L Q.541D+00 0.846D-03 0.353D-13
0.2170=01 0O.SMEC+CL  O.363+01 0.2120+01 0.77C0+00 2.325D-02 9.224D-12
0.3450=0L 0.5700+01 0.381De01 ©.228D+0L 0.9060+00 ©.9710=02 Q.112D=11
0.546D=01 0.5920+01 0.397D+0L 0.240D+01 O.1040+0L 0.227D=0l 0. 443D-11
0.365D-01 0.615D+CL 0.415D+0) 0.256D+0L O.1L170+QL 0.4260-01 Q.143D=10
0.137D+00 0.6370+CL  O.4310+0L 0.268D+0L 0.1290+01 0.6550=0L 0. 382D-10
0.217D+00 Q.658D+01 O.4460+0L 0.2800+0L 0.1390+01 0.557D=-0L 0.8800-10
0.300D+) 0.672040) 0.455D401 0.2870+QL 0.144D+QL 0.G67D-01 O.L4ED-09
NODE  PADIUS 220108 HORIZ . HYD TDE/STCRASE  DFAWDOWN
NO SQUARED RESISTANCE COEFFICTRNT
L 0,9464D=0L 9.59570-02 0.60450-07 0. 335825+l 0.4724D+01
2 0.1500D0+00 2. 22500=01 0.57600=03 0.7346D+Q3 2.6724D+0L
3 0.23770+0 2, 2652001 2.5324D-03 0.10620+03 0.6225D+01
I 0,3768D+Q0 2. 15200400 0.49730-03 0.58200+02 0.5766D+0L
5 0.59720+00 2. 35660400 0.4683D=03 0.23170+02 0.5337D+01
§ Q. U600 2. 99570+00 Q.44370=03 0,92240+01 0.4932D+01
7 0.18000+0L 2.22500+01 0,422TD=03 0.36720+0L Q. 45400+01
8 0.23770+01 2.56820+0] 0,404 5D=03 0.15620+01 0.,4184D+0L
9 0,3768D+01 2.1h200+02 0. 3881D-0% 0.5820D+00 0. 38340+01L
10 0.59720+0L 3. 3566D+02 0.3737D-03 0.2317D+00 0. 34990401
11 C.7464D+0L 2.39570+02 . 3608003 0.9224p-01 0. 3177D+0L1
12 0.15000+02 2.22500+03 0. 3492003 0.36720-01 0.2865D+01
13 0.2377D+02 3.36520403 0.338T0-03 0.1462D-C1 0. 2565D+01
1 0. 37680402 3. 14200+04 0, 12910=03 0.58200=02 0.2274D+01
15 0.39720w02 3. 3566004 0.32630-03 0,23170%0 0.15950+01
16 0.946HD02 2. 899 D04 0.32630=03 0.92240=01 0.17180+01
17 0.15000+03 2. 2250005 0. 32630=03 0. 3672D=01 3.14420+01
18 0,23770+03 2,5652D+05 0.32630~03 0. 1462D=01 2.1166D+01
19 0.3768D+03 2. 14200406 0. 3263D-03 0.58200-02 0.9906D+C0
20 0.59720+03 2. 3566D+06 0.32630-03 0.2317D-02 0.6182D+00
21 0.5464D+03 3,395 706 0.32630=03 0.92240-03 0.35170+0
22 0.15000+04 2. 22900407 0.12730-03 0,48150=03 0,9666D-91
23 8. 2000004 2, -4000D«07 0. 10000411 0.76400-13 Q. 1458009




Accuracy

As with all numerical solutions, errors do arise
and it is not always clear whether the errors are
acceptable. Errors can arise because the numerical
method is unreliable, because the size of the mesh
intervals or time steps is too large, or because of
limitations due to the computer.

Microcomputer Errors

Microcomputers do not usually have the same
arithmetic accuracy as large computer systems. For
instance, the accuracy of the TRS 80 on single and
double precision is illustrated by the numbers
1.123456 and 1.123456789012345. However, the
accuracy to which arithmertic is performed can vary
from one computer to another. [n most micro-
computers the arithmetic is performed by soft-
ware, and information is not usually available
about the accuracy of the software arithmetic. In
particular, it is advisable to avoid the routine which
raises a variable to a power.

Certain problems were solved using single and
double precision. For some of the problems there
was little difference between single and double
precision but for other problems, single precision
produced drawdowns which were only one-third of
those for double precision. Such errors could be
anticipated when note is taken of the wide range
of magnitudes of the time/storage coefficients of
Table 3.

Theis Solution

The exact Theis solution is a good check on
the accuracy of the computer simulation. By
taking a small well radius of, say 0.0001 m, and a
large outer radius of 100 km and ensuring that
confined conditions apply, the assumptions of the
Theis solution can be met in the numerical model.
Comparisons can then be made with the analyrical
results. Particular atrention should be paid to the
earlier times when the Jacob approximation is not
valid. Errors in W (u) should all be less than 0.1
when there are five mesh intervals for a tenfold
increase in radius and five time steps for a tenfold
increase in time. In practical problems the number
of mesh and time intervals can be crucial.

Mesh and Time Intervals

Certain workers using this numerical model
for pumping test analysis have obtained inadequate
results because they have used radial increments or
time increments that are too large. The increments
used in the program presented here are the maxi-
mum acceptable. For certain problems such as

Table 4. Selected Results for a Leaky Aquifer,
Transmissivity 650 m%/d, Storage Coefficient 107, Wall
Radius 0.15 m, Leakage Coefficient 60 m,
Abstraction Rate 2500 m¥d

No. of mesh intervals
per decade 20 5 2.

w

No, of time steps
per decade 20 5 2.5

Drawdown (m) at 15 m from

Time (days) pumped well

8.65 X 107 0.2317 0.2296 0.2275
5.46 X 10™ 0.8231 0.8166 0.8188
1.37 X 107 0.9326 0.9407 0.9609*
3.44 X107 0.9438 0.9457*  0.9307°
8.65 X 107 0.9438 0.9435*  0.9436*
5.46 X 107 0.9444* 0.7256"* 1.664°
.37 X 107 1.698* 0.5255*  0.5211°

* Values exhibiting instabilities.

large-diameter wells, significant decreases in
saturated depth, leaky aquifers, and delayed yield,
particular care needs to be taken.

Table 4 contains results for a leaky aquifer
solution with a variety of mesh and time intervals.
Before the steady drawdown of 0.9438 is reached
adequate results were obtained, but when there are
only 2.5 intervals per decade in time and space,
instabilities occur quickly. Even with 20 intervals
per decade in time and space, instabilities eventu-
ally arise. These instabilities occur because of the
sensitive balance between the water leaking
through the overlying strata and the abstraction.

For delayed yield problems a response similar
to that of a leaky aquifer occurs with the draw-
down increasing only slightly with time. Using the
approach suggested by Rushton and Redshaw
(1979) for the inclusion of delayed yield, adequate
results can be obtained provided that five mesh
intervals and five time increments are used for each
tenfold increase in radius and time.

To summarize the requirements for adequate
accuracy, the computer program should use double
precision throughout, even for constants such as
1.0. The minimum number of intervals for a
tenfold increase in both space and time should be
five. Only three statements need to be changed to
modify the size of intervals.

1. If n is the number of mesh intervals per
tenfold increase in radius

Statement 130 C = 10¢1/™
Statement 270 A =¢n(10)/n

2. If there are t time intervals per tenfold
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increase in time, the facror in statement 4005 is
modified to 1019 - 1.0,

Conclusions

Provided that sufficient care is taken, it is
possible to carry out a pumping test analysis using
numerical methods on microcomputers. It is
essential, however, to check the program
thoroughly since the accuracy of computation
varies for different microcomputer systems. A
typical problem which is designed to test the
accuracy of the compurtation is presented.

Details are presented in the references listed
at the end of this paper. The use of this numerical
model is both for the analysis of pumping tests
which are difficult to interpret using conventional
methods, and for the prediction of the likely
response due o extensive pumping from an
aquifer.
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GROUND
WATER

FIELD REPORTS

COMPUTING DRAWDOWN DISTRIBUTIONS
USING MICROCOMPUTERS

by James M. King®

Abstract, Using known or estimated values of trans-
missivity and storativity, the distribution of drawdowns at
any time within a discretized flow field can be generated by
applying simple trigonometry and numerical approxima-
tions of the exponential integral to the Theis equation.
Single- and multiple-well systems, as well as image
boundaries, are readily simulated with this method. A
program employing this technique is presented in BASIC
for use with microcomputers. The availability, low cost,
and computational power of many small computers makes
them ideat for this type of application. Their user-oriented
features allow many possible combinations of wetls,
boundaries, and hydraulic properties to be analyzed in a
short time. '

Introduction

Microcomputers are rapidly filling the void
between programmable hand-held calculators and
main-frame systems for many hydrologic applica-
tions. Attractive features of these small compurters
are their remarkable computational power, their
use of the BASIC language which facilitates inter-
active programming, and instant screen graphics. In
terms of hydrologic studies, these features
cooperate to allow a large number of analyses to be
made in a short time.

This paper describes an interactive BASIC
program with a grear deal of utility for examining
pumping and boundary effects in studies which do
not warrant a more complex numerical model. The
program uses known or estimated aquifer
parameters to compute the drawdown at every
point in a grid representing the area of influence
in a confined aquifer. It determines the drawdown

2Staff Hydrogeologist, GAI Consultants, Inc,,
570 Beatty Rd., Monroeville, Pennsylvania 15146.
Received August 1983, revised June 1984, accepted
July 1984,
Discussion open until May 1, 1985,
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distribution resulting from a single well or the
combined effects of several interfering wells and (s
capable of simulating moderately complex
combinations of recharge and discharge boundaries
using image-well theory. The version of the code
listed in the Appendix is efficient, has minimal
memory requirements, and is fully compatible with
TRS-80 Model I1I and Model 4 microcomputers. It
is useable with many other small computers in its
present form or can be made so with only slight
modifications.

Computational Scheme

The model algorithm is based on the non-
equilibrium equation of Theis (1935) for radial
flow to and from wells that fully penetrate
homogeneous and isotropic confined aquifers:

_114.59Q
T

where s is the drawdown in the potentiometric
surface (ft), Q is the constant rate of well discharge
(gpm), and T is the aquifer transmissivity (gpd/ft).
A negative Q may be used in (1) for recharging
wells. W(u) is the exponential integral, the
argument of which is given by

_1.87 )
Y

W (u) (1)

S

(2)

where r is the radial distance from the pumping
well to a point at which drawdown is measured
(ft), S is the aquifer storativity, and t is the
pumping time (days). There are other forms of
(1) and (2) for use with different units of length,
volume, and time (see, for example, Freeze and
Cherry, 1979, p. 344). The above forms were
chosen because of their compatibility with
practical field units, but the program can be easily
modified to accommadate any set of units.
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Examples of applications using (1) and (2) are
abundant in the literature and are found in most
ground-water hydrology texts.

The solution method requires discretizing the
area of influence into a mesh-centered grid with
either a uniform or variable node spacing. All wells
and observation points are located at the grid
nodes, and the ability to use nonuniform node
spacings permits more flexibility in locating wells
and boundaries. This feature also allows the nodal
density to be increased or decreased in parts of the
discretized area where differing degrees of
resolution are desired.

The algorithm first determines the argument
u for a given node using (2) in line 350 (see
Appendix). To do this, the radius from the
pumping well to the node is computed using the
Pythagorean theorem (line 330). When the compu-
tational process reaches the node at which the
* pumping well is located, the well radius is used.
W(u) is then calculated numerically (lines 1800
to 1870) using polynomial approximations which
are given in Gaurtschi and Cahill (1964) in
algebraic form. These approximations are also
presented in Huntoon (1980). The determination
of W(u) is expedited for long pumping times
and/or small radii by invoking the approximation
of Cooper and Jacob (1946), plus an additional
term of the infinite series for u € 0.01 (lines 1820
and 1830). The computed W(u) value is then used
in (1) to compute the drawdown at the node (line
370). The algorithm is applied successively until
the drawdown is computed at each node in the
grid.

For multiple wells, including image wells, a
separate solution is compurted for each well and
superposed at every node to simulate additive
interference effects. The total drawdown at each
node is thus given by

114.59 n
$ij,n = Z QmW)ijm (3)
) T m=1 )

where s; ; n is the drawdown at the node in row i
and column j of the grid due to n wells, and m is
the well index. The pumping rate Q is well-specific,
and the value of W(u) is dependent on the location
of each node with respect to each well.

The polynomial approximations of W(u) used
in the program are efficient and accumulate less
roundoff error than methods which compute
successive terms of the infinite series within the
exponential integral. The series methods (see, for
example, Picking, 1979; Dumble and Cullen, 1983)
are theoretically capable of unlimited precision but

Table 1. Comparison of Published and
Computed Values of W (u)

u Publ W(u)* Computed W(u)
613757 X 1070 20.6342 20.63421
3.12209 X 1077 14,4025 14.40238
8.83810 X 10™ 6.4549 6.454937
5,79278 X 107 2.3285 2.328442
3.59957 X 107 7.746 X 107! 7.745455 X 107!
2.87965 1.524 X107 1.521546 X 107

* Interpolated from Ferris and others (1962).

are burdened with a large number of muitiplications
and divisions which are the slowest arithmetic
operations in most computers. The approximations
used here owe their efficiency to their nested-
multiplication form which requires fewer multipli-
cations and divisions. Even so, the calculation of

W (u) is the slowest part of the algorithm.

The approximating routine for W{(u) was
tested over a wide range of function arguments by
comparing computed values with corresponding
interpolated values from Ferris and others (1962,
p. 96). Table 1 shows that the model approxima-
tions compare quite favorably and fall well within
the range of accuracy needed for most hydrologic
applications.

Exampie Application of the Program

The input and units required by the program
are listed in Table 2 in order of entry. The grid
dimensions, node spacings, hydraulic parameters,
and well information are specified by the user in
response to prompts by the program. Row and
column spacings are entered beginning at the upper
left corner of the grid. As written, the code permirts
up to 20 wells and a primary matrix of up to 25
rows and columns (line 40). The dimensions of the
main matrix may be increased or reduced accord-
ing to the problem size and amount of available
memory. The output is a matrix composed of
drawdowns at 2ll nodes within the discretized
region and may be used to generate contour maps.

Table 2. Required Program Inputs in Order of Their Entry

Data, umits

1. Title

2. Grid dimensions

3. Node spacings, ft

4, Storativity

5. Transmissivity, gpd/ft

6. Duration of pumping, days
7. Number of weils
8. Well coordinates
9. Pumping rates, gpm
10. Well radii, ft
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Fig. 2, Variable grid representing Figure 1. Numbers at the
top and left are the grid spacings. OW = observ, well.
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To demonstrate simultaneously the simula-
tion of multiple-well systems and the treatment of
boundaries, a hypothetical test situation is
presented in Figure 1. The test scheme consists of
a 12-inch diamerer well discharging for 0.5 days at
250 gpm from a confined aquifer with a storativity
of 2.5 X 10™ and a transmissivity of 7.8 X 10*
gpd/ft. Two mutually perpendicular boundaries are
located within the area of influence—a flow barrier
2,000 ft north of the rest well and a fully penetrat-
ing stream 750 ft to the west.

The problem area is represented by the
variable 5 X 5 grid in Figure 2 with the grid
spacings as shown. Each boundary is represented
by a grid line so that drawdowns at the boundaries
are computed. Three image wells at nodes (1,1),
(1,3), and (4,1) are used to simulate the effects of
the boundaries. The discharge well is at node (4,3).
Note that the number of nodes outside the
problem domain is minimized by extending the
grid only to the image wells and by using a single
large row spacing north of the flow barrier.

The test scheme yields a manually computed
Theis drawdown of 0.56 ft at the observation well
1,600 ft northeast of the pumping site. Simulating
the same scheme using the grid in Figure 2 and the
program results in an identical drawdown at the
observation point (OW) and also provides the draw-
downs art all other nodes south and east of the
boundary intersection. The determination of the
areal distribution of drawdown allowed the map in
Figure 3 to be constructed. Map preparation may
be facilitated by coupling the program to a plotting
routine.

Figure 4 is the model output for the above
example problem from which Figure 3 was
constructed. Drawdowns at nodes corresponding to
wells and boundaries may be noted by comparing
Figures 4 and 2. Note that the drawdown along the
recharge boundary in column 2 is zero. The output
statements in the program may be modified to
route the results to a printer for more flexibility in
formatting. Some tab statements (e.g., line 210)
may also require modification for monitor screens
with 80 columns (the code is based on 2 monitor
width of 64 columns).

Closing Remarks

If appropriate aquifer conditions exist and
boundaries are adequately representable with
image wells, the program presented here permits
the entire drawdown distribution due to pumping
to be reproduced or predicted. Many possible
combinations of conditions can be examined in a
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FROJECT: EXAMFLE FROBLEM

DATE: 11 JUNE 84

STORATIVITY = 2.SE-04
TRANSMISSIVITY = 78000

NO. OF WELLS = 4
TOTAL DRAWDOWN AFTER .5 DAYS
1 -5.91 Q.00 J5.91 0.64 .43
2 =0.31 0,00 0.3t 0.4%9 0.43
I =0.30 0.00 0.30 0.56 0.44
4 -5.91 0. 00 5.91 0. 64 0.43
S =0.45 Q.00 0.43 0.47 0.6

Fig. 4. Qutput from the example problem,

short time since the code allows the number and
locations of wells and boundaries and the hydraulic
properties of the aquifer to be varied easily. The
availability, low cost, and computational
capabilities of microcomputers makes them well
suited for this type of application and the rapid
performance of multiple simulations is enhanced
by interactive BASIC programming.

Regarding practical applications, the program
has been used to define optimal well spacings for
multiple-well dewatering schemes and to delineate
the drawdown distributions of pumping centers
under varying boundary conditions. Using other
simple numerical techniques and function
approximations, the program can be modified to
generate drawdown distributions in leaky and
unconfined aquifers.
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Appendix. Program Listing

10 REM DRAWDOWN DISTRIBUTION FROGRAM

20 REM By James M, king

30 REM

40 DIM A(25,2%),Z(4,20) ,ROI(24),CE(24): DE
FINT I,J,L,N

%) CLS: INFUT "ENTER THE TITLE OF THE SIM
ULATION";A%: PRINT

&0 INFUT "ENTER THE CURRENT DATE (NO COMM
AS) "1 DATE: FRINT

70 INFUT "ENTER THE NUMEBER OF ROWS IN THE
GRID";R: FRINT

80 INFUT "ENTER THE NUMBER OF COLUMNS":CL
: FRINT

90 FRINT “"ENTER EACH ROW SFACING (FT):*"
100 FOR I=1 TQ R-1: INPUT RQ(I): NEXT I:
FRINT

110 FRINT "ENTER EACH COLUMN SFACING (FT)

120 FOR I=1 TO CL-1: INFUT CQ(I): NEXT I:
FRINT

130 INFUT “ENTER THE STORATIVITY % TRANSM
1SSIVITY (GFD/FT) (S,T)";S,T: FRINT

140 PRINT "ENTER THE LENGTH OF THE FUMFIN
G FERIOD (DAYS) AND THE NUMBER OF"

150 INPUT "WELLS (TIME,NO.)";TM,NW: FRINT
160 FRINT “ENTER THE GRID COORDINATES, FU
MFING RATES (GFM), AND RADIUS": FRINT "(F
T) OF EACH WELL (R,C,Q,RAD):"

170 FOR C={ TO NW

180 INFUT 2(1,C),2¢(2,C),Z(3,C),2(4,C): NE
XT C :

160 ST=1.87#S/(TM*T): TO=114.59/T

200 CLS: FRINT: PRINT: FRINT: FRINT

210 PRINT TAB(1&) "#—%~# COMPUTATIONS IN

FROGRESS #-»—%"

220 FOR C=1 TO NW

2Z0 FOR I=1 TO R: DR=0

240 IF I=Z(1,C) THEN 280

250 IF I < Z(1,C) THEN Q1=Z(1,C)~1: MI=I:
BaTQ 270

260 MI=Z(1,0): Ql=I-1

270 FOR L=MI TO Q1: DR=DR+RE@(L): NEXT L

280 FOR J=t TO CL: DC=0

290 IF J=Z(2,C) THEN 330

Z00 IF J < 2(2,C) THEN Q@2=2(2,C)—1: NI=J:
GOTO 320

10 NI=Z(2,0): @2=J-1

I20 FOR L=NI TO Q2: DC=DC+CRI(L): NEXT L
330 RD=SER(DRLZ+DCC2)

Z40 IF RD=0O THEN RD=Z(3,C)

350 U=sST=RDL2

60 GOSUR 1810

I70 DD=TOQ*Z (Z,C) *WU

380 AL, =A(I,J)+DDy NEXT J: NEXT I: NEX
TC

I90 REM ==— PRINT ROUTINE -=--

400 CLS: FRINT "FROJECT: "j;AF: FPRINT °
DATE: ":DAT#: FRINT

410 FRINT TAB(1Q) "STORATIVITY =";:8

420 FRINT TABR(7) "TRANSMISSIVITY ="3:T

470 FRINT TAB(?) "NO. OF WELLS ="i;NW: PRI
NT: PFRINT

440 FRINT "FRESS ANY KEY TO CONTINUE . .
"

450 D#¥#=INKEY$: IF D$="" GOTO 450 ELSE CLS

460 PRINT "TOTAL DRAWDOWN AFTER ":TM; "DAY

S“

470 FOR I=1 TO R

480 PRINT: FRINT USING "##":1:

490 FOR J=1 TO CL

SO0 FRINT TAB(J*8-8) USING "“H#H#H4#&. 4%":A(I,

J);

S10 NEXT J: PRINT: NEXT I

20 FRINT: PRINT “ANOTHER SIMULATION WITH
THE SAME T % 87 (Y/N):"™

25 FOR I=1 TO R: FOR J=1 TO CL: A(l,J)=0
1 NEXT J: NEXT I

ST0 DF=INKEY¥: IF D&="" GOTO S30

540 CLS: IF Ds="y" THEN 140

S%0 FRINT "RUN TERMINATED."

S60 END

1800 REM —---~ COMFUTE EXFONENTIAL INTEGRAL
1810 IF U » 10 OR U £ O THEN WU=0: RETURN
1820 TY==,57721544649-L0G (U) +U*. 99999193
183¢ IF U <= ,Q1 THEN WU=TY: RETURN

1850 IF U « 1.0 THEN 1870

1855 E=2.718281828

1860 WU=(.267772734Z+U% (8, 63747608920+U* (1

B.0S9016973+U* (8. 5737287401 +U)) ) ) / (UXELU*
(2.9584969228+U» (21, 0996230827 +U* (25, 6329

SH1486+U* (9, 573IT22T454+U) ) ) ) )2 RETURN
1870 WUSTY+ULZ#* (~, 24991055+U* (, 05519968+U

*(—. O09765004+U*, 00107837))): RETURN

NOTE: "{" indicates exponentiation.

784



GROUND

Red COMPUTER
NOTES

A COMPUTERIZED TECHNIQUE FOR
ESTIMATING THE HYDRAULIC
CONDUCTIVITY OF AQUIFERS FROM
SPECIFIC CAPACITY DATA

by Kenneth R. Bradbury® and Edward R. Rothschild®

Abstract. Specific capacity data obtained from well
construction reports can provide useful estimates of
hydraulic conductivity (K). A simple compurer program has
been developed which can correct specific capacity data for
partial penetration and well loss and, using an iterative tech-
nique, provide rapid estimates of K ar hundreds of data
points. The program allows easy data handling and is easily
linked with existing statistical programs or contour
mapping routines. The method was tested at two field sites
in Wisconsin, one underlain by a sandy outwash aquifer, the
other by fractured dolomire. In both areas, estimates of K
from corrected specific capacity data agree reasonably well
with data from pumping tests. :

Introduction

Hydrogeologists continually seek and test
simple, quick, and inexpensive methods for deter-
mining aquifer characteristics. The use of specific
capacity tests to determine transmissivity (T), and
ultimately hydraulic conductivity (K), is one such
tool. Aithough the use of specific capacity data in
estimating aquifer parameters is certainly not new
(Theis et al., 1963; Lohman, 1972), commonly
used estimation techniques (described below) are
somewhat slow and cumbersome. In this paper we
describe a computer program which rapidly and
accurately provides estimates of aquifer transmis-
sivity at hundreds of points where specific capacity
data are available, and we demonstrate that the
technique gives excellent results at two tield sites
in Wisconsin. Because the solution is performed
with the use of a computer, data can be manipulat-
ed easily and linked with available graphical and
statistical packages.

dwisconsin Geological and Natural History Survey,
1815 University Avenue, Madison, Wisconsin 33705.

bCH2M Hill, 310 Wisconsin Avenue, Suite 700,
Milwaukee, Wisconsin 53201.

Received December 1983, revised October 1984,
accepted November 1984.
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A specific capacity test involves pumping a
well (of known construction) at a known rate and
period of time, and measuring the drawdown
within the well at the end of the test period. The
length of the test is determined by how long it
takes for the water level in the well to reach a state
of apparent equilibrium, that is, when the change
in drawdown is minimal with time. Specific
capacity is defined as the discharge divided by the
drawdown in the well, and the units generally used
are gallons per minute per foot of drawdown
(GPM/FT).

Theis et al. (1963 ) present a method of esti-
mating transmissivity from specific capacity. They
treat a specific capacity test as a short nonequilibri-
um pumping test, and utilize a graphical solution
to estimate transmissivity. Several other workers,
including Walton (1970), Lohman (1972), and
Gabrysch (1968) have applied Theis’ method to
field problems. In this study, we replace the
graphical approach with a short computer program
utilizing an iterative procedure.

Estimating T from specific capacity involves a
series of assumptions. These assumptions include a
known storage coefficient (S), minimal well loss,
full penertration, and a nonleaky, homogeneous and
isotropic, artesian aquifer of infinite areal extent.
(These assumptions are essential to use of the Theis
equation, and are described tn many basic texts.)
Fortunarely, because specific capacity varies with
the logarithm of 1/S, the solution is not very
sensitive to variations in S, which can be estimated
with sufficient accuracy from previous studies in
an area, or by using representative values for a
given aquifer type. If appropriate dara are avail-
able, well loss corrections can be made. Corrections
for partial penetration may be very important
because few wells fully penerrate an aquiter. A
method adopted from Brons and Marting (1961) is
used in this study to correct for partial penetration.

To demonstrate the method, specific capacity
data were used to estimate hydraulic conductivities
for aquifers in two large field areas in Wisconsin
(see Figure 1). One aquifer is a confined, fractured
dolomite (area A), and the other consists of uncon-
fined, unconsolidated sands and gravels (area B). In
Wisconsin, specific capacity tests are generally
performed by drillers at the time of well installa-
tion. Reports of the tests, as well as geologic logs
and well construction reports for most wells are
available at the Wisconsin Geological and Natural
History Survey. In this study, we usc available
information to determine aquifer transmissivity,
corrected for partial penetration of the wells, and
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Fig. 1. Map of Wisconsin showing locations of field areas A
(fractured dolomite) and B (sand and gravel).

then produce maps of hydraulic conductivity. The
maps agree well with the more limired data
available from pumping tests.

There are many advantages of using specific
capacity information to compute hydraulic con-
ductivity. The data are generally readily available
and abundant: for area A, 224 specific capacity
tests were available versus 5 pumping tests; for area
B, 268 specific capacity tests were available versus
11 pumping tests. Estimates of hydraulic conduc-
tivity, based on specific capacity data, are quick,
easy, and inexpensive, and when used in conjunc-
tion wich limited pumping test data, may be the
best method for mapping aquifer characteristics
over large areas.

Computer Program Development
Theis et al. (1963) describe a method for
estimating the transmissivity of an aquifer from the
“specific capacity of wells. Their analysis is based on
the Jacob equation, given in consistent units as:
Q 2.25Te

= \ 1
T 411-sn( rw'S ) ()

where
T = transmissivity (L¥t),

Q = discharge (L¥t),

drawdown in the well (L),

w
&}

-
1}

pumping time (t),

w
]

storage coefficient (dimensionless), and

radius of the well (L).

1}

Tw

Because T appears twice, this formula cannot be
solved directly, and Theis et al. (1963) and Walton
(1970) (among others) propose graphical solutions
involving matching the specific capacity data to a
family of curves. The graphical methods have the
disadvantage of requiring a different set of curves
for every possible combination of well radius,
pumping period, and storage coefficient. [n addi-
tion, any corrections for partial penetration or well
loss require additional calculations.

Well loss is an increase in drawdown in the
well bore over drawdown in the aquifer adjacent to
the well. It is due to turbulent flow as water enters
the well bore and pump, and depends on the
pumping rate, construction of the well, and
hydraulic properties of the tested aquifer. It is
possible to correct specific capacity data for well
loss using the equation (Csallany and Walton,
1963):

Sw = CQ? (2)
where
Sw = well loss (L),
C = well loss constant (t¥L?), and
Q = discharge (L¥t).

Csallany and Walton present an equation with
which to evaluate C from step-drawdown data.

Most private wells penetrate less than the full
thickness of aquifers. During a specific capacity
test, partially penetrating wells may yield anoma-
lously low values of specific capacity, depending
on the ratio of penetration (L) to aquifer thickness
(b). In Wisconsin, the L/b ratio is sometimes as low
as 0.1. Thus, a correction for partial penetration is
necessary before estimarting transmissivity from
specific capacity. For unsteady drawdown in 2
partially penetrating well, Sternberg (1973 ) shows
that

Q 2.25 Tt

= In
=7t (=3

)+2 Sp] (3)

where sy is a “partial penetration factor” given by
Brons and Marting (1961) as

1-L/b b
= — -G{L/B (+)
= g, TG B
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where

b = aquifer thickness (L),

L = length of open interval (L), and
G = a function of the L/b ratio.

Brons and Marting evaluate G(L/b) for various
values of (b/ry). In the present study the poly-
nomial equation

G (L/b}=2.948-(7.363 L/b)+
11.447 {L/b}* - 4.675 {L/b}? (5)

was fitted to the data of Brons and Marting by
multiple regression, with a correlation coefficient
of 0.992. Rewriting equation (3) to incorporate
equation (2), we have

Q 2.25 Tt

TTeoa M) il O

The solution of equation (6) yields an estimate of
T which is corrected for well loss and partial pene-
tration, and incorporates t, S, and ry,.

Figure 2 shows a flow chart for a computer
program which solves equation (6). The program
first reads the data in the inconsistent units
(gallons per minute, inches, feet, etc.) which are
customarily used on driller’s logs. Afrer converting

input Q, ¢, r, 3, s, C

Fram Orilier's Log

v

Canvert to Consistent Units
(Fewt, Becondas)

\d

Correct for Well Loss (Eq. 2)

A4

Correct for ’l"'l‘ Fon.lndon |

(Eqa. 4 & &)

\

Salve Eqg. 8 for TCALC Using

l > | Taugss
Bubatitute TCALG
TCALC xTQUESS
?

YES
|

Print Resuits

for TQUESS

Fig. 2, Computer program flow chart.
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to consistent units (feet, seconds), the program
solves equations (2), (4), and (5) directly. It then
solves equarion (6) iteratively, using an initial
estimate of T (TGUESS) to calculate an updated
estimate (TCALC). The program then substitutes
the updated estimate for the original guess, and
repeats the process until TGUESS and TCALC
agree within a small error criterion (ERR). Finally
the program prints the results.

Appendix A is a simple BASIC computer
code written for an Apple lle computer illustrating
the estimation technique for a single well. A
sample output is included in Appendix B. In
practice, we expand this program to do several
hundred estimartions. The program is easily modi-
fied to change the types and methods of input and
output. Currently it is designed to accept input
either interactively or via a data file that has been
merged with the program file. By including well
coordinates in the input data, the output can be
used directly in graphics plotting packages, as well
as in statistical routines. The variables ERR and
TGUESS have been assigned values of 0.1E-5 and
0.1, respectively. These can be altered by changing
lines 300 and 320 of the program. The program
also has been written in FORTRAN and is available
from the authors.

Description of Field Sites

The aquifer analysis method described above
was utilized for the two study areas in Wisconsin
shown in Figure 1. The first (area A), called the
Peninsula site, is in Door County, northeastern
Wisconsin, and encompasses 17.8 mi® (46.1 km?).
The aquifer at the Peninsula site is a highly

. fractured Silurian dolomite. Studies of the inter-

actions of ground water at the site with surface
water in adjacent Green Bay used computer
modeling (Bradbury, 1982). The computer models
required extensive data on transmissivity and
hydraulic conductivity of the dolomite aquifer.
Because the results of five available pumping rests
in the area (Sherrill, 1978) might not adequarely
describe spatial variability of the fractured
dolomite aquifer, the transmissivity estimation
technique was applied to specific capacity data
from 224 local wells. The use of specific capacity
tests increased the average density of hydraulic
conductivity data from 0.3 to 12.6 points/mi?
(0.78 to 32.6 points/km?).

The second site (area B) encompasses a large
portion of the Central Sand Plain of Wisconsin,
which is underlain by an aquifer of sandy glacial
outwash, and has an arca of approximately 612
mi? (1585 km?). The sand and gravel aquifer in the



Table 1. Statistical Results of Estimates of Hydraulic
Conductivity {(K) from Specific Capacity for Two Areas in
Wisconsin. Geometric Means, Standard Deviations (o),
and 95 Percent Confidence Limits Are Given

K (ft/sec)
AREA A: Fractured dolomite (N = 223)
Geometric mean 78X%X107°
g 0.61
95% C.I. 6.5X10%-93X10°
AREA B: Sandy outwash (N = 266)
Geometric mean 2.1%107
g . 0.25

95% C.I. 1.6 X102 -2.2X 107

area is widely urilized for spray irrigation of crops,
especially potatoes. Recent indications of ground-
water contamination by pesticides in the area
(Rothschild et al., 1982) promprted further study
of the aquifer, including computer modeling
(Rothschild, 1982). Specific capacity data for the
area are abundant (268 points) in comparison to
the number of pumping tests (11), and the trans-
missivity estimation technique was used to help
describe the hydraulic characteristics of the
aquifer. By utilizing specific capacity data the
density of data points for transmissivity was
increased from 0.018 points/mi* (pumping tests)
to 0.44 points per mi? (0.045 to 1.14 points/km?).

Results
Reliability of Estimates

Results of the computer estimation of
hydraulic conducrivities from specific capacity
data agree well with values calculated using full-
scale pumping tests. Table 1 gives a statistical
summary of hvdraulic conductivity estimates for
223 wells in fractured dolomite (area A) and 266
wells in sandy outwash (area B). Because hydraulic
conductivity dara are generally log-normally
- distributed (Freeze, 1975), the geometric mean
gives a good measure of the central tendency of the
data, and sigma (o) represents the standard devia-
tion of the log-transformed data. Table 1 shows
that, using many data points, the specific capacity
estimates give a lower mean hydraulic conductivity
for fractured dolomite (7.8 X 107 ft/sec) than for
sandy outwash (2.1 X 107 ft/sec). Standard devia-
tion values show that the fra¢tured dolomite has
statistically more variation in hydraulic conductiv-
ity than does the sandy outwash, and that the
range of variation in both materials is small enough
to make the results useful. Freeze (1975) reports
that computer models can give meaningful esti-
mates of hydraulic head when hydraulic conductiv-

ity “o of K" values are less than 0.5, bur that
meaningful head predictions are impossible when ¢
is greater than 2.0. Thus the o values of 0.61 and
0.25 reported here give confidence of reasonable
results when using the data in computer simula-
tions to predict hydraulic heads.

In spite of the well-known difficulties in
estimating hydraulic conductivities from specific
capacity data, the range of values predicted by our
method is relatively small. Figure 3 presents
average hydraulic conductivities for various
materials, and shows the range of values obtained
from our compurter estimates. As noted by Winter
(1981) the standard error in estimating values of
hydraulic conductivity is often close to 100
percent or even higher. Thus the ranges of values
shown on Figure 3 are quite narrow when com-
pared to the possible ranges of hydraulic conduc-
tivity values, and the variation in K is less than one
order of magnitude for the sandy outwash and just
over an order of magnitude for the fractured
dolomire.

Comparing estimates from individual wells,
the results of the computer program are surprising-
ly close to data derermined by pumping tests (Table
2). In the fractured dolomite of area A (wells 1-3),
specific capacity data give hydraulic conducrivity
estimates which are slightly smaller than but of the

Fy, M
Material Rengs Sec ,S.‘g
-
~1
- 16‘ '-'0-'
TN =d
3
[ S it Area B Range
., (sand & gravel)
. 19
F,
';' i L —— Area A Rang
* [ 15* 10 (dolomite)
=8
L1
vg®
& Ty
. L16'
8 Lve
5 Lig®
16'° 18"
‘6" '-‘a"
10t 16"
-‘6'. _‘o-il

Fig. 3. Ranges of hydraulie conductivity (K) for various
geologic materials, showing ranges determined from specific
capacity astimates in this study (after Freeze and Cherry,
1979),
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Table 2. Comparison of Values of Hydraulic Conductivity
(K} Obtained from Pumping Tests with Valuas Estimated
from Specific Capacities for Wells in
Two Different Areag in Wisconsin

Specific capacity
Pumping test estimate
Well K (ft/sec) K (ft/sec)
AREA A: Fracrured dolomite
1 2.8 X 107 7.3%X107
2 1.7 X 10™ 1.0X 107
3 3.0%X10™ 50X 10™
4 88X%X10™ 28x10™
5 3.9%x10™ 1.0X10™
Geomertric mean 35X 10 1.6 X 10™
o 0.26 0.75
AREA B: Sandy outwash
6 2.9%107 1.5 X107
7 3.4%10° 1.5 X107
8 2.7X107 2.8%X 107
9 22X 107 1.8X107?
10 2.8 %107 1.8 X107
11 2.4x107° 20x107
12 2.1%X107 1.8 107
13 3.3%X107 27X 107
14 1.5 X 107 1.9X107
15 2.4X%X107 2.2%x107
16 1.5 X107 2.8X107
Geometric mean 2.4% 107 2.0X 107

a 0.12 0.10

same order of magnitude as values derived from
full-scale pumping tests using identical wells. In the
sandy outwash of area B (wells 6-16), slight varia-
tions in K were aiso detected by specific capacity
tests. Wells 9-12 in area B are radial collector wells.
These wells are larger in diamerter and are more
efficient than the high capacity wells used for
other specific capacity tests (Karnauskas, 1977).
This efficiency difference is evident in consistently
lower K values as determined by specific capacity
tests, and highlights the importance of knowledge
of well construction when interpreting such data.
One of the poorer comparisons is for well 16. Due
to the nature of outwash in this area the observa-
tion wells for the pumping test may not have been
in full hydraulic connection with the pumping
well. Much of the variation in values for the
Central Sand Plain (area B) is explained by poor
depth-to-bedrock control. Due to the high trans-
missivity of the overlying sands and gravels, few
area wells are drilled to bedrock. In general, com-
parisons are poorer for the fractured dolomite of
area A than for the sandy outwash of area B. The
fractured dolomirte is less homogeneous than the
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outwash, and the fracture system there may not
truly approximate a porous media.

Contour Mapping

Contour maps of hydraulic conductivity for
the two study areas are a valuable product of the
computer program (Figures 4 and 5). The maps are
produced by estimating T from specific capacity,
then calculating K from aquifer thickness. Because
all data are computerized, it is relatively simple to
plot and contour the data using standard software
packages. [nterpolation, graphing, and smoothing
packages were used to produce the maps in
Figures 4 and 5 for the two study areas.

Distinct trends and differences are discernible
in both areas. Figure 4 shows the hydraulic con-
ductivity distribution in the fractured dolomire of
the Peninsula area (area A). Because of the log-
arithmic distribution of K in the fractured dolo-
mite the data are contoured by base 10 logs. As
would be expected for a fractured dolomite
aquifer, the areal distribution of K appears almost
random with the exception of an area of higher K
near the center of the area. The likelihood of this
area having a higher K was confirmed by additional
modeling efforts using a parameter estimation
model (Bradbury, 1982).

In the sandy outwash of area B (Figure 5) the
areal variation in K is less, and arithmetic contours
are plotted. Variations in K shown on the map may
be related to known depositional outwash facies in
the area (Rothschild, 1982). The statistical inter-

Fig. 4. Contour plot of hydraulic copductivity in study area
A basaed on specific capacity and aquifer thickness data.
Base 10 logs are plotted; contour interval is 0.5 log unit.
Locations and log hydraulic conductivity values are shown
for three weils where pumping tests were conducted.
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Fig. 5. Map of hydraulic conductivity based on spacific
capacity data for area B.

pretations of Figures 4 and 5 might be aided by
advanced statistical techniques such as kriging
which are beyond the scope of the present study.

Conclusions

Although the use of specific capacity data for
estimating aquifer characteristics is not new, com-
puter techniques can produce reliable estimates at
more points and with less effort than in the past.
Computers allow the rapid evaluation and manipu-
lation of specific capacity data from large numbers
of dara points. The ability to use such data to
describe the transmissivity and hydraulic conduc-
tivity of aquifers statistically or graphically is an
important tool. The method described here has
been successfully tested for sandy outwash and
fractured dolomite aquifers at two field areas in
Wisconsin.
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Tis ERR w 0L |E = %

*OUNT = 1

TGUESS & u, ¢

REM  EEZaaasE iRt st s i RS as kAN AR ERRARARIRARR AR RRARRRaNERE R ANS
REM READ [N RAW DATA UN
REM  sadddsiusdnsansgsgansansd BEEERETITERRCRITTEINZARAY
FRINT DO vUU woNT T ENTER DATA [NTERACTIVELY OR FROM A FILE™"
FEINT “"ENTER + IF [NTERACTIVELY QR 1 IF FROM FILE"

INFUT A

IF A a { THEN GOTO 3T0

FOR I = 1} TO x¥

FRINT “WwELL NUMBER="; [MPUT NUR(I)

Ea Ll

FRINT “"WELL DIAMETER (IMi» “: [NPUT DIAMII)

FRINT "3TATIC wATER LEVEL (FTre ": INFUT LVL(D)

FRINT “DEPTW TOQ #aTER DURING TEST (FTra 1 [NFUT FuMP(l

FRINT "THE LENGTH OF THE TEST (M= ~: {NEUT LN¢])

FRENT “FUMFING RATE (GFMi= "1 [NPUT GRM(I)

FRINT “THICENESS QF AQUIFER FTre ¢ INFUT RQTHIC. )

FRINT "OFEN [NTERVAL (FTra *: [NPUT LGTHID!

FRINT “STORAGE COEFFICIENTw INFUT Sy

FRINT “WELL LOSS COEFFICIENT® “: [NEUT Gt

NEXT I

GOTQ Zau

FOR I w y TQ tK

READ NUMIZ)Y  DIAMIIY LV A2 FUMP (T LNTT)  GPMCI  AQTRIC (T LGTHD Y, 51
JR-1% 2]

NEXT 7

FEM  an st kN R e a A ANV NN RE A AR R R AR AU N AR R R RN R AR
170 REM DO ANALYSIS FOR Ealk wELL

S0 REM R r AR RN AR AR RIS NN R AR IR AN R ARG ORI
TR FOR v om | TO XX

s FLUBCY) » o3 [TER(Y)Y = 0

Bl REM SIS IIIIR IR AN RN R NI E RN AR AR AR FN RN R R RN RS AR
420 BEM  CHANGE ') CONSISTENT UNITS AND SALCULATE ORAWDON
4l RER rxamzzaedes ARAKKRAREERNEV IS YAITS

ARpEASEENETER

adi) B 3 pramoy) 24
&% TIME = umnivy & ]
adl @ = GEmyl S 149,
&700 DD = = (LYY = FUMF Y)Y
48 IF (DD = L0 GOTO 10
@+ OUNT = » DUNT « 1

Ty REM seREBIARERNRSLRREN SARRRARREARARRRRRAENY
7 REM  CORRECT DRAMOOWN FOR wEhLL 05§ UdiNG THE EGUAT
REM  SEE wal TON, BULL. 4%, FAGE 27

REM & IS EST{mMATED FRUM STEF DRAWDOWN MESTS.

SEM  r v IR R AN AR RS IR R AR AN R AR RN R AR RANARERA RN
D SW 8 Civy ¢ 3 % Q

b 00 = DR - Sw

 GCY) w GEmoyr . DD

SEM  IXEAERAASA AR AARRRAS AR RN ERANERR RN RRARS PELERETERR TS
BEA  CALLULATE A0UIFER TRAMBMISSIVITY USING M€ JACOB EQUATION
AEM USING A CORKECTION FOR FART(AL PENETRATION 28 FIVEN BY

REM  STERNBUKG (197T)

REM s an s n st N AN SRR RN AR AN AR TN AR R N IRR R AR AR
REM FIRST CALCULATE SF FORAMETERS FOR USE [N TWE SEOLATION

REM IR AR IR ANV R TR RN RN RN R IR S u e SRR ANk
1B ow LGTH(Y) 7 AQATHIC(Y)

» IF (B L. GOTY 10%0

O HRW = SQTHIC(Y) / ®

0GB ox D.9480 - (7.TAS € B) + (11,4471 B A @) - 4 LTS A B X Bt B
PSP w (L, = B/ B O LOG (AW - GO

AEM AR R E gy SRR RN RN RS ARA R NI NN AU NRRRATARREARARY
REN  NOw SOLVE FOR T USING |TERATIONS

REM  snmaga g st st p A RN SRR A RSN R R AR RN ARG AR E N O N
TOUKSS = o,y

FOR W = | TO 28

2 F1l = 0/ (4.0 % T, 1414 & DOY

0 A2 w (2.25 v TGUESE F TIME) / (R K R £ FUV))

TCALL = F1 & 1 LOG (F2) + (2,0 T SP1)

TEST =  ApS (TCALL - TGUESS)

TGUESS = ABS (TCALL)

100 IF  TEST = GRK) THEN GQOTO LOMG

1010 kQUNT (V) = W

1020 MEXT W

1930 [F xOUNT(Y) = I3) AND (TEST ERR) THEN GOTD 1030

SAVRZIRERRARNY
[ON SwwCud
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Loda 30TQ Loal)

LUSo [TERtY) = i1 GATAQ Vim0

e Tivr = TCALL

LO70 kivy = TIiYy , aQTHIG(Y)

1oy GOTE 1to0

1090 FLUB(Y) & 4

L1 MEXT ¥

1110 FEM S0 e N R A RN R R AR AR R AR NN NN R AR RN RN AN R RN A AL
1120 REM  FRINT OQUTPUT

L1T0 REM SRR AR B Z N RN ST A AN IR AN AR RTINS IR IR IR NN
tLa0  PRW |
LISO FRINT o s R A AV RN RN T R R I PR n RN RN AR
1lei  PRINT “GOUIFER FROFERTIES o5 DETERMINED bY dNALYSIS JF

1170 RRINT ¢ SFECIFIC CAFACITY TESTS™

1180 FRINT R R st S RN R N A N MRS RN AR A SR AR AR N T A AR aa"
1190 FRINT "

1300 FOR Vv o= 1 O XX

1210 IF FLUBV) = | GOTa 1770
{220 (F ITERMYY = | FOTO 1290

127G ERINT ¢

1280 PRINT “"WELL NUMBER *:mNUM(V)

1250 ERINT TSPECIFIC CAPACITY (GFM/FT) = ':sccw
L3k FRINT “TRANSPISS[VITY (FTRFT/SEC) » ";Toh

1270 FRINT - USING A STQRAGE COEFFICIENT = “i5(v)
ERINT NUMBER OF [TERATIONS = it DUNT (V)
FRINT "HYDRAULIC CONDUCTIVITY (FT/SEC) = it (vy
NEXT ¥
FRINT "THE NUMBER OF WELLS [N THIS RECORD (S ";xx
5070 1470
ERINT

FRINT “WELL NUMBER “inNUM(Y)
FRINT "{MPUT ERROR. EfTHER: "

FRINT ¢ L. WATER LEVEL wAS HIGHER DURING TEST THAN BEFORE, OR;"
L3700 FRINT ¢ 2. THE SCREEM LENGTA [5 LOMGES TWAN THE AQUIFER THICHNE
85

180 GOTO 1300

LI%0 FRINT

LA FEINT “WELL NURBER “"INUM(V)

1410 FRIMT QLUTION DID MOT CONVERGE WITHIM 2% ITERATIONS™
1400 GRTO |
1470 ZND

Appendix B

As an example of compurter program input and output, the
following data from area A were inpurt into the interactive
compurter program (Appendix A).

Number of welis to be analyzed = 2

Interactive dara entry

Well number 1

Well diamezer = 6 in.

Static water level = 42 ft

Depth t0 water during test = 57 ft

Length of test = 8 hr

Pumping rate = 10 gpm

Aquifer thickness = 205 ft

Open interval = 47 ft

Storage coefficient = 0.0002

Well loss coefficient = 32.7

Well number 2

Well diameter = 6 in.

Static water level = 132 ft

Depth to water during test = 141 fr

Length of test = 8 hr

Pumping rate = 10 gpm

Aquifer thickness = 115 ft

Open interval = 68 ft

Storage coefficient = 0.0002

Well loss coefficient = 32.7
Figure Al is the computer output generated by these dara.

TR AR AN N TS NN RN RN AR EE NN CT R AR RR KRR NNS
AQUIFER FROPERTIES AF DETERMINED BY ANALYSIS OF

SFECIFIC CAPRCITY TESTS
RN AR AR RN RN R R E R R R KN AR RN AN NN AN AR NSRS EE NS SRRRARERE

WEL.L NUMPER |

SPECIFIC CAFACITY (GPM/FT) = [ 464688717

TRANSMISSIVITY (FTRFT/SEC) = T, 7TTL710ZE=-03
USING A STORAGE COEFFLCIENT = IE-04
NUMBER OF ITERATIONG = 2

HYDRAULIC CONDUCTIVITY (FT/SEC) = 12.894II1977E-03

WELL NUMBER 2

SPECIFIC CAFACITY (GPM/FT) = 1.1111723

TRANSMISSIVITY (FTEFT/SEC) = 4,54944791E-03
USING A STORAGE COEFFICIENT = TE«04
NUMBER OF ITERATIONS = 3

HYDRAUL IC CONDUCTIVITY (FT/SEC) = 3,9774I949€-0%

THE NUMBER OF WELLS IN THIS RECORD 1§ 2

Fig. A-1. Example of computer printout.
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NOTES

A GENERAL PURPOSE MICROCOMPUTER
AQUIFER TEST EVALUATION TECHNIQUE

by C. J. Hemker?

Abstract. Although determination of aquifer characteristics
from pumping test dara is generally carried out using type
curves or other graphical techniques, a number of computer
methods have been developed recently for this purpose.
Based on the principle of least squares, these methods of
nonlinear regression analysis can be applied to any flow
system for which analytical expressions of the drawdown
distribution are known. In view of the growing general
interest in the application of microcomputers in ground-
water hydrology, a BASIC routine has been developed

for estimating any number of aquifer paramerers. The least
squares solution is calculated by Marquardt's algorithm,
using the singular-value decomposition of the Jacobian
matrix. The robust computing method obtained can be
applied to all kinds of pumping tests. Aquifer character-
istics as well as their standard deviations are computed with
optimal speed and accuracy. The technique is demonstrated
by a simple application to steady flow in a leaky aquifer
and an example is provided. Other applications are easily
implemented and programs for unsteady-state aquifer

tests, recovery tests and mulciple aquifer tests are available.

Introduction

Conventional methods of aquifer test analysis
cannot cope with complicating circumstances, as
often encountered in field situations. More sophis-
ticated techniques have to be used in these cases to
obtain reliable results. Since computer methods for
aquifer evaluation, based on the principle of least
squares, can be applied to any flow system for
which analytical expressions for the drawdown
distribution are known (Saleem, 1970), this type
of solution has a large potential.

Superposition of any number of pumping
(injection) wells and pumping schemes, less
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common drawdown formulae, ¢.g. solutions for
systems with storage in semipervious layers
(Hantush, 1964) and multiple aquifer solutions
(Hemker, 1984), all come within reach of practical
aquifer test analysis. Not only the wide range of
possible applications, but also the speed and
accuracy and the possibility to calculate the
reliability of the resulting values are advantages

that contribute to the increasing use of computer

techniques for the identification of aquifer
characteristics.

Positive experiences with parameter estima-
tion from aquifer tests using a main-frame com-
purer, together with the increasing availability of a
spectrum of microcomputer types, raised the
question whether some well-tested algorithms
could be implemented in BASIC to obtain similar
results with relatively inexpensive equipment. In
the Autumn of 1983 the Acorn-BBC microcom-
puter was chosen for this purpose.

In this paper the resulting computing tech-
nique is described and the related complete BASIC
code is presented. The method is demonstrated by
a simple application to steady flow in a leaky
aquifer.

Estimation of Aquifer Parameters

The procedure for computer determination of
numerical values of aquifer characteristics from
pumping test data is in many ways comparable
with the well-known type curve technique. Five
steps may be distinguished:

1. An appropriate drawdown formula (model)
must be selected which considers the type of
aquifer, the kind of flow and other simplifying
assumptions.

2. Starting from some arbitrary position, an
iterative procedure is used to improve the fit
berween observed drawdown and theoretical (type
curve) values by adjusting, directly or indirectly,
the values for the unknown aquifer parameters.

3. When adjustments have become sufficiently
small to not influence the corresponding parame-
ters in a sensible way, the iterative process is
stopped. It is possible, however, that many
combinations of parameter values can be found
which result in an equally good fit.

4. Depending on the goodness of fit an
impression of the accuracy of calculated parameter
values is obtained.

5. A decision needs to be made with respect
to how far the calculated values may be regarded as
realistic representations of actual aquifer character-
istics; this depends on a comparison between
results obtained by the fitting procedure and the
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physical reality of model assumptions.

Only steps 2, 3, and 4 can be carried out by
computer, leaving both model selection and
interpretation of results to the experience of the
hydrologist.

An important difference between the two
techniques is that in contrast with the judgement
by eye in traditional curve fitting, the computer
method needs a well-defined criterion for goodness
of fit. In similar problems on nonlinear regression
analysis, the sum of squares of differences between
observed and cajculated values is generally used. {f
a hydrogeologic situation can be represented by an
appropriate drawdown formula and the errors in
measured drawdown values are not influenced by
systemaric disturbances, the parameter values
obtained by minimizing this sum of squares may
be regarded as the best estimates.

Several computer methods have been devel-
oped to estimate aquifer characteristics from
pumping test data, based on essentially the same
least squares technique (Saleem, 1970; Labadie and
Helweg, 1975a; Leijnse, 1980, 1982; McElwee,
1980; Chander et al., 1981). The problem of how
the best estimates are derermined is very important
in relation to the efficiency and robustness of the
computing method, but the principle of minimiz-
ing least squares should always yield the same
results when the same data are processed.

Another difference between graphical curve
fitting and the least squares technique is the trans-
formation to logarithmic drawdowns, which makes
the type curve method less sensitive to the deeper
measurements (Labadie and Helweg, 1975b).

Minimization Method

The theory of methods available for finding a
least squares fit of experimental data to a nonlinear
function of several variables has been discussed
extensively in the literature (e.g. Luenberger, 1973;
Bard, 1974; Gill ez al., 1981). The algorithm used
for the Microcomputer Aquifer Test Evaluation
(MATE) programs is a derivative of the ALGOL 60
procedure MARQUARDT from the numerical
program library NUMAL (Hemker, 1981). As the
name of this procedure indicates, it is based on the
method proposed by Marquardt (1963).

By starting with some initial estimate for all
the unknown parameter valuésx; (j=1,..., n),
the sum of m (m 3 n) squares F(x) is minimized in
an iterative way. During the k-th iteration step, a
vector dy is defined as the solution of the
equations

OF T * N D dy ==J¢ (1)
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where

d = step vector by which the new vector of
parameters is calculated: xy4; = xg + di;

f = mvector of differences between calculated

and observed drawdowns, termed the
residual vector;

[ = unit matrix;

J = Jacobian matrix, an m X n matrix, whose
(1,])-th element is the partial derivative of f;
with respect to xpi=1,..., m); JT is the
transpose of J;

A = non-negative scalar for which an appropri-
ate value must be chosen during iteration;

m = number of observations;

n = number of parameters.

The starting value for X is fixed at 1% of the

sum of eigenvalues of 3T} and this is halved in each
iteration if

-2 4T T

[f this condition is not satisfied, X is multiplied by
a factor of 10, more than once if necessary.

Using this strategy, it is possible that equation
(1) has to be solved for more than one value of A.
To do this in an easy way, the singular-value
decomposition of the Jacobian is calculated:

= U £ Vg (3)
where
U = m-th order orthonormal matrix;
z = them X n diagonal matrix of singular
values;
V = n-th order orthonormal matrix.

Substituting equation (3) into (1) and rearranging
leads to

- T
d ==V (T +N\ D" Z, U £y (4)

which shows that once the singular-value decom-
position has been performed, d is easily calculated
for different values of A. The decomposition can be
further used to derive information about the
statistics of the problem.

The iterative procedure is terminated when
the absolute and relative improvement in sum of
squares is less than a given tolerance,

A detailed description of the ALGOL 60 pro-
cedure MARQUARDT is given by Bus ez al.
(1975).

---‘----_---



Application

In this paper only a single application of the
described parameter estimation method for aquifer
test evaluation is presented. The relatively simple
De Glee-Hantush formula has been selected. This
drawdown equation for steady-state well flow in a
semiconfined aquifer can be expressed as

§ =

T

where the steady-state drawdown s is a function of
two independent variables: Q (discharge) and

r (distance from the pumped well), and two
aquifer characteristics: KD (transmissivity) and

L (leakage factor). According to the definition of

the leakage factor, L = VKDc, the hydraulic resis-
tance of the semipervious layer (¢) and the trans-
missivity of the aquifer (KD) can be chosen as
unknown parameters.

Implementation

The microcomputer program presented
(MATE-DEGLEE) has been written in extended
BASIC and can be run on an Acorn-BBC computer
with 32 K memory. As the complete listing (see
Appendix) contains only few REMark statements,
to keep its length within bounds, additional
information about the program structure and the
algorithms used will be helpful to explain its
operation and allow any required adaprations. No
explanation will be given for specific statements
and other commands available with the BBC-
BASIC language. The user is referred to the BBC
User Guide (Coll, 1982) or other books on this
subject.

The program has been split into a main body
and several separately defined functions and
procedures. The purpose of the main part (lines
100-280) is the interactive input of data and the
dimensioning of arrays, while all computation and
output of results are left to the procedure
PROCCAL. A subroutine is added (300-330) to
enable the user to go back to the start by pressing
the Escape-key, retaining the present values of all
variables. By means of a flexible interactive data
input (500-640) and three successive pages of
information concerning the values requested, all
necessary aquifer test data can be supplied to the
computer with ample possibilities to correct typing
errors. The contents of these pages are shown in
Figures 1 to 3. To find values for the required
starting estimate (page 3), default values are calcu-
lated from the first and last given values of distance

QD K, (/L) 5)

e w

PUMPING TEST ANALYSIS DATA INPUT 1

For a leaky aquifer and steady-state
drawdown data, using De Glee's formula

Two parameters (aguifer characteristics)
will be calculated
- KD : aquifer transmissivity (m2/day)
- ¢ : hydraulic resistance of semi-
pervious layer (day)

Pumping rate (m3/day) = 761

Number of piezometers 8

Type C (Change data) or SPACE (continue)

\ J

Fig. 1. Screen display, Data pumping test “Dalem,’’ page 1.

a \

PUMPING TEST ANALYSIS DATA INPUT 2

Type for each piezometer
- distance to pumping well (m)
- steady state drawdown (cm)

1 distance = 10 drawdown = 31

2 distance = 10 drawdown = 25,2
3 distance = 30 drawdown = 23.5
4 distance = 30 drawdown = 21,13
5 distance = 60 drawdown = 17

6 distance = 90 drawdown = 14,7
7 distance = 120 drawdown = 13.2
8 distance = 400 drawdown = 5.9

khType C (Change data) or SPACE (continue)

_J

Fig. 2. Screen display. Data pumping test “Dalem,’” page 2.

—

PUMPING TEST ANALYSIS DATA INPUT 3

Give an estimate for both unknown
parameters

KD-~value =~ 1758

c=-valua = 367

Type C (Change data) or SPACE (continue)

\ J

Fig. 3. Screen display. Calculated initial estimate for both
parameters,
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and drawdown using approximations based on the
well-known equations given by Thiem and
Cooper-Jacob.

Procedure PROCCAL (2000-2170) prints the
input data, calculates the least squares solution
(PROCMARQ) and the standard deviation of the
parameters (PROCS) and finally prints the results
by calling PROCRES and PROCOUT. Five
elements of array ““I” are to control the iterative
curve fitring process. 1(1) is a starting value, used
for the relation between the gradient and the
Gauss-Newton direction and [(2) is the maximum
number of calls of PROCFUN by PROCMARQ.
The iterative process is stopped if the improvement
in the sum of squares is sufficiently small [1.e. less
than I(3) X (sum of squares) + 1{4) X [(4)]. A fifth
control parameter is the machine precision, set at
5 107 at the start of PROCMARQ.

The De Glee-Hanrush formula is implemented
in PROCFUN (3000-3080). To prevent either
parameter from becoming negative in any iteration,
minimum values are chosen: KD > 1 m¥day and
¢ 1 day. The Bessel function K, is evaluated in
function FNK (9000-9160) by means of either a
Taylor series approximation (argument < 4) or a
finite Chebyshev series expansion.

The procedure PROCJAC (7000-7100) yields
the Jacobian matrix obtained using current
estimates of the unknown parameters. Although all
derivatives can be computed analytically in this
case, a forward finite-difference approximation is
applied using intervals of 107 of the parameter
value. In this way the procedure is applicable to all
kinds of aquifer tests, provided that the draw-
downs can be computed with sufficient accuracy.

To calculate the singular-value decomposition
of the Jacobian, the marrix is first reduced to
bidiagonal form by Householder's transformation
in PROCHSH (6000-6430). The corresponding
postmultiplying and premultiplying matrices are
subsequently computed in the same procedure.
From these intermediate results the complerte
decomposition is calculated by PROCQR (6500-
6880). The algorithms used are derived from the
NUMAL procedure QRISNGVALDEC (Hemker,
1981).

When, according to the given stopping
criterion, iterations are complered by
PROCMARQ, the resulting estimated parameters,
together with their standard deviations as deter-
mined by PROCS (8000-8050), are displayed on
the screen by procedure PROCRES (2200-2300).
The same procedure also presents a table with all
calculared, observed and residual drawdowns. A
separate procedure, called PROCOUT (2400-
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2500), is used to give additional information on
the iterative process: viz., the sum of squares and
its improvement from the last iteration, the
number of iterations performed and the running
time. The condition number, also shown at this
tme, is defined as the ratio of the largest to the

smallest eigenvalue of the matrix JTJ. This number
gives an impression of how well-defined the least
squares solution is. Very large values (> 107)
indicate useless results, such as may be obtained
when the data provided do not contain sufficient
information to determine the parameters required.

The resulting observed and calculated draw-
downs can easily be presented graphically on the
monitor screen, but since several plotting
techniques can be selected, this is left to the user’s
preference and no such procedure is included in
the program listing.

Example

Dara from the pumping test “Dalem,”
presented by Kruseman and de Ridder (1970) to
illustrate the method of type curves, are used here
as an example of the MATE-program. Figures 1
to 3 show the data input pages as they appear on
the screen and all computer results are given in
Figure 4. A comparison of the computed param-
eters with those obtained by the graphical method
(KD = 2114 m?¥day and ¢ = 572 days), shows a
moderate difference, within the calculated
standard deviations. The reason for the rather high
calculated standard deviations can be found in the
heterogeneity of the aquifer, demonstrated by the
difference in drawdown between both piezometers
at 10-meter distance. Apparently only three itera-
tions are required, while the running time is less
than half a minute. Starting with much worse
initial estimates the calculation is almost as quick,
while the results are the same.

Conclusions

Marquardt’s algorithm has been successfully
implemented on a microcomputer. The resulting
least squares method can be applied to find aquifer
characteristics and their individual standard
deviations from pumping test data. The micro-
computer appears to be well suited for this
purpose: accurate results may be obtained within a
few minutes depending on the drawdown equation
used and the number of data. The BASIC routine
presented in this paper is applicable to a large
number of aquifer test problems, all of which may
be solved in the same way as long as the
appropriate drawdown formula can be evaluated
with sufficient accuracy.

- GE . i E .



Distance Drawdown
(m) {cm)
10.0 31.0
10.0 25,2
30.0 23.5
30.0 21,3
60.0 17.0
90.0 14.7
120.0 13.2
400.0 5.9
Discharge rate 761.0 m3/day
Results of successive iterations
KD-value c-value
(m2/4d) (day)
1758.0 367.0
1910.7 363.2
1941.8 380.9
1945.8 385.6
THE CALCULATED LEAST SQUARES SOLUTION
Parameter value + Standard deviation
KD-value 1945 + 197 {( 10% )
¢c-value 385 + 222 ( 57% )
Calculated Observed Cal-Obs
28.49 31.00 -2.51
28.49 25.20 3.29
21,66 23.50 -1.84
21.66 21.30 0.386
17.37 17.00 0.37
14.87 14,70 0.17
13,12 13,20 -0.08
6.17 5.90 0.27
The sum of squares is 20.9
Improvement last iteration 4.1E-8
Number of iterations 3
Condition number 27.3
Running time 0.279 minutes
K _/

Fig. 4. Results pumping test “Dalem,” as obtsined by the
computer program MATE-DEGLEE.
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Note

Considerable effort has been expended in an
attempt to provide an error-free program, but the
author, being a ground-water hydrologist rather
than a programmer, does not accept responsibility
for the consequences of any errors that may have
been overlooked.

A floppy disk for the BBC-compurter (+0/80
tracks), containing programs for the analysis of
steady and unsteady-state aquifer tests, recovery
tests, and multiple aquifer tests is available from
the author at duplication and mailing costs.
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Appendix. Program Listing MATE-DEGLEE

10 REM Microcomputer Aquifer Test Evaluation *x MATE ** 1620 PS(1)=""KD=value' :PDS(1)="(m2/d)"

20 REM for steady-state semi-confined flow * DEGLEE * 1630 P$(2)=" c-value":PD$(2)="(day)"

30 REM by Christiaan J.Hemker 1983 1640 T=1+LN(R(M%)/R{1))*50*Q/(1+PI*(5(1)-5(M%)))
40 REM last update 6-5-1984 1650 L=R{1)*EXP(PI*T*S/1)/(50%Q)}/1.123

50 1660 P{1)=INT(T):P(2)=1+INT(L*L/T)

100 MODE7:0%=0:N%2:0N ERROR (OTO 250 1670 PRINT''''"Give an estimate for both unknown"
110 M%=15:MX%=20:0=B00:REM Default values 1680 PRINT''parameters"

120 @%=&40A:K%=0:REPEAT PROCH(1):PROCPAGE! :K¥=1:UNTIL FNEND 1690 P(1)=FNP(K%,2,11,P$(1),P(1))
130 IF My<N$ THEN PRINT"Insufficient data Try again'':END 1700 P(2)=FNP(K%,2,13,P5(2),P(2))

140 IF D%>0 THEN GQOTO 160 ELSE D%=!? 1710 ENDPROC

150 DIM P(2),P$(2),PD$(2) ,R(MX%),S(MXS) 1720

160 Ha=(M%-1)DIV1Q:FOR L%=0 TO H% 2000 CEF PROCCAL:REM write ingut, calculate and write cutput
170 K%=0:REPEAT PROCH(L%+2):PROCPAGEZ2(L%):K%=1:UNTIL ENEND 2010 LOCAL I%,A$:CLS:@%=42010B

180 NEXT:K%=0:REPEAT PROCH(H%+3):PROCPAGE3:K%s1:UNTIL ENEND 2020 PRINT'" Distarwe Dra "

190 IF D%>3 THEN GOID 220 ELSE D¥=4 2030 PRINT" (m) (cm)"’

200 DIM A(MX%,N%),B(N®),C(N%),D(N%) ,E(7),F (M%)} ,G(MX%) 2040 FOR Ti=1 TO MW:PRINT R(I%),5(I%)

210 DIM I(4),0(7),Q(N%),V(N%,N%),Z(N%) 2050 IF IWMOD10=0 THEN A$=INKEY3(500):PRINT

220 PROCCAL:REM Calculation and output 2060  MEXT:PRxTRUE:TIME=0

230 2070 PRINT'" Discharge rate ";Q;" m3/day"''
250 IF ERR=17 OR ERR=( THEN GUTO 300 ELSE REPORT 2080 PRINT" Results of successive iterations''
260 END 2090 PRINTTAR(3)PS(1)TAB(14)P%5(2) 'TAB(5)PDS(1)SEC(6)PDE(2)’
290 2100 I(1)20,01:REM value used for the calculation of labda
300 REM Subroutine to re-start by pressing ESCAPE 2110 I(2)#50: REM max number of iterations

310 PRINT'" Stop or Repeat? (S/R)" 2120 I(3)=1E-4:REM relative stopping criterion

320 A$zGET$:IF A$="'S" THEN PRINT:END 2130 I{4)=1E-4:REM absolute stopping criterion

330 IF AS="R" THEN GOUTO 120 ELSE GOTO 320 2140 PROCMARQ: PROCS

350 2150 TM=TIME:;SOUND 1,-14,200,10

500 REM Function for interactive data input 2160 IF O(1)=0 THEN PROCRES:PROCOUT ELSE PROCOUT:PROCRES
510 DEF FNP'(M%,LL%,L%,P3,V):LOCAL P%,Va,VS 2170 ENDEROC

520 PRINTTAB(LLY,L%);P%;" = ";V; 2180

530 IF M%>0 THEN PRINT' ? ";:P%=POS:ViaVPOS 2200 DEF PROCRES:REM write solution

540 PRINT SPC(40);:IF M¥a( THEN =V 2210 PRINT' *“THE CALCULATED LEAST SQUARES SOLUTION"
550 INPUT TABR(PS,V%) V§ 2220 PRINT'“Parameter value Standard deviation''
560 IF LEN(V3)»0 THEN V=VAL{(V%) ELSE M¥=0 2230 FOR I%s1 TO N%:_@;‘h&B:PRINI'PS(I%),INT(P(I!));
370 GUIO 520 2240  @%=&3:PRINT" ~ ", INT(Z(I%))TAB(27)"(";

590 2250 PRINT INT(Z(I%)*100/ABS(P(I%)))"s )" :NEXT
600 REM Function end page 2260 *FX 15,1

610 DEF FNEND:LOCAL AS$S 2270 AS=GET$:PRINT''"Calculated Obsarved Cal-Obs''
620 FRINTTAB(0,23)"Type C (Change data) or SPACE (continue)'; 2280 @%a%2020A:FOR I%=1 TO My

630 A$=GET$:IF A$=" " THEN =TRUE : 2290  PRINT(S(I%)+G(I%)),S(I%),G(I%):NEXT:A$=GETS
640 IF A$a"C" THEN =FALSE ELSE GUTO 630 2300 ENDPROC

560 2310

700 DEF FNMAX({A,B):IF B>A THEN =B ELSE =A 2400 DEF PROCOUT:REM write additional information
720 2410 28%=4308:1F O(1)=0 THEN GOTO 2440

900 DEF PROCH(I%):REM heading 2420 PRINT'''"Nonlinear regression calculation”

910 CLS:PRINT''"PUMPING TEST ANALYSIS DATA DNEUT "; 1% 2430 FRINT"'has been BROKEN OFF"

920 ENDFROC 2440 PRINT''The sum of squares is ";0(2)*0(2)

230 2450 PRINT'Improvement last iteration ";0(6)*Q(6)
1000 DEF PROCPAGE! :REM Read data page 1 2460 PRINT"Number of itarations ";0(5)

1010 BRINT'''"For a leaky aquifer and steady-state" 2470 PRINT'Cordition rumber ";0(7)
1020 PRINT"drawdown data, using De Glee's formula" 2480 PRINT"Running time '";TM/6000;" minutes"

1030 PRINT''"Two parameters (aquifer characteristics)”; 2490 ASGETS
1040 PRINT"will be calculaced" 2500 ENDPROC

1050 PRINT" - KD : aquifer transmissivity (m2/day)” 2510
1060 PRINT” - ¢ : hydraulic resistance of semi-" 3000 DEF PROCFUN:REM DaGlee's formula

1070 PRINT" perviocus layer (day)" 3010 LOCAL I%,B

1080 QuFNP(K%,0,15,"Purping rate (m3/day)”,Q) 3020 IF P(1)<1 THEN P(1)=1:REM transmisgivity

1090 MR«FNP{K%,0,18, Number of piezometers', M%) 3030 IF P(2)¢1 THEN P(2)=1:REM hydraulic resistance
1100 IF D%=0 THEN MXY=FNMAX (MM, M%) 3040 IF PR THEN FOR IS=1 TO NR:PRINT P(I%);:NEXT:FRINT
1110 IF M¥<=MX% THEN ENDPROC 3050 FOR I%=1 TO M$
1120 PRINTTAB(O,17)"If mumber>";MX%;" stop and start again” 3060  B=R(I%)/SQR(P(21*P(1))
1130 GOTO 1090 3070 G(I%)=Q*FNK(B)*S0/(PI*P(1))-5(I%):NEXT
1140 3080 ENDPROC
1300 DEF PROCPAGE2(L%):REM Read data page 2+ 3090
1310 IF K$+L3+D%>1 THEN GOTO 1330 S000 CEF PROCMARQ:REM Marcuardt's algorithm
1320 FOR I%x1 TO MW:R(IX)=10*I%:5(I%)=1 :NEXT:D=2 5010 LOCAL E%,F%,G%,I%,J%,K%,P%,08,5%
1330 PRINT'''"lype for each piezameter" 5015 LOCAL A,B,E,F,L,M/R,5,V,¥,X,¥,2

1340 PRINT'- distance to pumping well (m)" 5020 Vs=10:W=0,5:Mx0.01

1350 FRINT- steady state drawdown (cm)® 5025 I(0)+5E-9:REM machine precision

1360 J%a0:REPEAT J%=J%+1:I%=L8*10+J% $030 IF T(1)<1E-7 THEN Y=1E-8 ELSE Y=I(1)/10

1370  PRINTTAB(O,9+J%);I% 5040 E(0)=T(0):E(2)=I{0):E(6)aL1(0)E(4)=10*NY
1380 R(I%)=FNP(K%,4,9+J%,"distance" ,R(IV)) 5050 B=I(3):A=I(4)*I(4)

1390  S{I%)«FNP(K%,27,9+J%, " "drawdown”,5({I%)) 5060 GAsI{2):E%=D:Ftal:S%x0:P%=0

1400 UNTIL J%210 CR I%=M% 5070 Q8=-INT(LOG(Y*1(0}))

1410 ENDPROC . 5080 FOR I%=1 TO N8:Q(I%)=P{I%):NEXT

1600 DEF PROCPASEI;LOCAL T,L:REM Read starting guess 5090 PROCFUN

1610 IF Kes1 (R D%2 THEN GUIO 1670 ELSE D%e3 5100 QOSUB 5500:F=2:0(3)«5CR(F)
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5110 5%=S%+1 6445 NEXT .
5120 PROCJAC:REM calculate jacobian $450 FOR J%=I% TO M:A(JS,I%)=A(J%,I%)/C:NEXT:GOTO 6470
5125 PROCHSH:PROCCR:REM singular-value decomposition 6460 FOR J%=I% TO M¥:A(J%,I1%)=0:1NEXT

3130 IF S%s! THEN GOSUB 5510:LaI(71)*Z:GOTO 5140 6470  A{I%,I%)=A{1%,I%)+1 :NEXT

$135 IF P%=0 THEN L=L*W ELSE P%=0 $480 ENDPROC

5140 FOR I%=1 TO N$:2=0:FOR Ki=1 TO M% 6500 DEF PROCCR

5150 2xA (K%, I%)*G(K%) +Z: NEXT 6510 LOCAL C%,I%,J%,K%,L%,R%,T%,U%,Vs, X3

5160  C(I%)=D(I%)*Z:NEXT 6515 LOoCAL B,C,F,G,H,M,5,T,V,W,X,Y,Z

S170 FOR I%=1 TO N%:2(I%)=C{I%)/{D(I%)*D(I%)+L):NEXT 6320 T=E(2)%E(1):C%=0:B=0:X%=E£(4) :M=E(6) :R¥=N%:U%=N%
S180 FOR I%=1 TO N%:2=0:FOR K¥=1 TO N% 6530 Ke=U%:VeaU%-1

5190 2=V(I%,K%)*Z(K%)+2:NEXT 6540 Ka=K%-1:IF K%=0 THEN GOTO 6650

5200 P(I%)=Q(I%)-Z:NEXT 6550 IF ABS(B(K%)}»T THEN GOTO 6580

5210 F%=F%+1:IF Fa>=G% THEN E%=1:G0TO 5300 6560 IF ABS(B(K%))>B THEN B=ABS(B(K%))

5220 PROCFUN 6570 GUTO 6650

5230 GOSUB 5500:S=Z:R=F-2 6580 IF ABS(D{(K%))>T THEN GOTO 6540

5240 GOSUB 5520:IF RyM*Z THEN GOTO 5280 §590 C=0:S=1

5250 Pw=P%+1:LaV*L 6600 FOR I%=K% TO V&:F=8*B(I%):B(I%)=C*B(1%):J3=1%+1
5260 IF P%=1 THEN COSUB 5510:E=Y*Z:IF L<E THEN L=E 6610 IF ABS(F)<T THEN I%=V%:GOTO 6640

5270 IF P%<Q% THEN GOTO 5170 ELSE E%=4:GOTO 5300 6620  G=D(J%) :H=SQR(F*F+G*G) :D(J%) =H:C=G/H:$=-F/H
5280 FOR I%=1 TO N%:Q(1%)=P(I%):NEXT:F=5 6630 FOR Th=1 TO M&:V=A(T%,K%) :W=A(T%,J%)
5290 IF F>A AND R-B*F+A THEN GOTO 5110 6635 A(TS,K%) =V*C+W*S 1A T%,J% ) 2WXC-V*S INEXT
5300 FOR I%=1 TO N%:X=D(I%)+I(Q) 6640 NEXT

3310 FOR K¥=1 TO N®:A(K%,I%)aV(K%,I%)/X:NEXT:NEXT 6650 IF K%<>VE THEN GUTO 6690

5320 FOR I%=1 TO N%:FOR J%=! TO I%:2=0 6660 IF D(U%)<0 THEN D(U%)=-D(U%) ELSE GOTO 6670
5330 FOR Kw=1 TO N%:Z=A(I%,K%)*A(J%,K%)+2;NEXT 6665 FOR I%=1 TO N%:V(I%,U%)=-V(I3%,U%) :NEXT
5340 V(T%,J%)=2:V{J%,I%)=Z ::NEXT:NEXT 6670 IF D(U%)<M THEN R%=R%~1

3350 E=D(1):L=E:IF N%=1} THEN GOTO 5380 6680 Us=V%:GOTO 6860

5360 FOR I%=2 TO N% 6690 C3=C%+1:IF C%¥>X% THEN GOTO 6870

5370 IF D(I%)>L THEN L=D(I%) ELSE IF D(I%)<E THEN E=D(I%) 6700 L#=K%+1:2=D(U%):X=D(L%):Y=D(V3)

5375  NEXT 6710 IF V%=1 THEN G=0 ELSE G=B(V%-1)

5380 Zz=L/(E+I1(0)):0(7)=2*2 6720 H=B(VS):F=((Y-Z)*(Y+Z)+(G-H)*(G+H) )/ (2*H*Y)
5390 O(2)=SQR(F):ZaR+F:IF 2Z>0 THEN O(6)=SQR(2)-0{2) 6730 G=SOR(F*F+1)

5400 O(4)=F%:0(5)=5%:0(1)=E% 6740 IF F<Q THEN C=F-G ELSE C=F+G

5420 ENDPROC 6750 Fa{(X-2)*(X+Z)+H*{Y/C-H))/X:C=T1:8=1

5500 Z=0:FOR K¥=1 TO M%:X=G(K%):Z=X*X+2 :NEXT :RETURN 6760 FOR I%=2L%+1 TO U%:J%=T%-1:G=B(J%)

5510 Z=0:FOR K%=1 TO N%:XaD(K%):2=X*X+Z:NEXT :REIURN 6770  Y=D(I%):HaS*G:G=C*G

5520 2=0:FOR K%=1 TO N%:Z=C(K%)*Z(K%)+Z:NEXT:RETURN 6780  Z=SQR(F*F+H*H) :C=F/2:5=H/Z

5530 6790 IF J%<>L% THEN B(J%-1)=Z

6000 DEF PROCHSH 6800 F=X*C+G¥S:G=G*C-X*S:HaY*S:Yay*C

6010 LOCAL I%,J%,Hs,T%,C,F,G,H,R,S5,V,W 6810 FOR T#=1 TO N®:V=V(T%,J%) :WsV(T%,I%)
6020 R=0:FCR I%s1 TO M¥:W=0 6815 VITS,J%)aV*CeW*S 1 V(TH, [ ) =W*C-V*S: NEXT
6030 FOR J¥=1 TO N%:WsABS(A(I%,J%))+W:NEXT 6820  Z=SQRIF*F+H*H) :D(J%)22:C=F/2:5=H/Z

6040  IF W>R THEN R=W 6830 F=C*G+S*Y:X=C*Y-5*G

6050  NEXT:C2E(0Q)*R:E(1)}=R 6840 FOR T#=1 TO M%:V=A(T%,J%) :WzA(T%,I3%)
6060 FCR I%=1 TO N%:H%=I%+1:5=0 6845 A(TS,J%) =V*C+W*S :A(TH, 1% ) aW*C-V*S : NEXT s NEXT
5070  IF H%»>M% THEN GOTO 6090 6850 B(VR)=F:D(U%)=X

6080 FCR T%=H% TO MB:V=A(T%,I%):5=S+V*V:iNEXT 6860 IF U%>0 THEN COTO 6530

6090 IF S<C THEN D(I%)=A(I%,I%):GOTO 6170 6870 E(3)+B:E(5)aC%:E(7)=R%

6100  F=A{I%,I%):5aF*F+8 $880 ENDPROC

6110 IF F<Q THEN GaSQR(S) ELSE G=-5QR(S) 6890

6120 © D(I%)aG:HaF*G-S:A(I%,I%)=F-G 7000 DEF PROCIAC:REM calculate jacobian

6130 IF H%>N% THEN QUTO 6170 7010 LOCAL I%,J%,D,P:PR=FALSE

6140 FOR J%aH% TO N%:5=0 7020 FOR I%=1 TO MB:F(I%)=G(I%):NEXT

6150 FOR T%=I% TO M%:5=5+A(T%,I%)*A{T%,J%) :NEXT:3=S/H 7030 FOR J%=1 TO N%:D=P(J%)*1,001:P=P(J%)

6160 FOR T%21% TO M% 7040  P(J%)=D:PROCFUN:P(J%)=P

6165 AITS,J%)=A(T%,J%) +A(T%, I%) =5 :NEXT : NEXT 7050 FOR I%=1 TO M%

6170 IF I%=N% THEN GOTO 6270 7060 A{I%,J%)=(G{I%)-F(I%))/(DP):NEXT

6180  S=0:IF H%=N% THEN GUIO 6200 7070  NEXT

5190 FOR TWzH&+1 TO N%:S5=5+A(I1%,TH)*A(I%,T%) :NEXT 7080 FOR I%a! TO M%:G(I%)=F(I%):NEXT

6200 IF S<C THEN B(I%)=A(I%, H¥%):GOT0 6270 7090 PR«TRUE

6210  F=A(L%,H%):5=F*F+5 7100 ENDPROC

§220 IF F<0 THEN G=SQR(S) ELSE G=-5QR(S) 7110

6230  B(I%)aG:H=zF*G-S:A(I%,H¥)aF-G 8000 DEF PROCS:REM statistics

6240  FOR J%aH% TO M¥:S=0 8010 LOCAL Z:IF M%aN% THEN Z=0:G0TO 8030

6250 FOR ThaH% TO N&:SxS+A(I%,T%)*A(J%,T%) iNEXT:5=5/H 8020 ZaSQR((O(2)%0(2))/(M8-N%))

6260 FOR T&zH% TO N%:A(J%,T%)=A{J%,TS)+A(I%,TH)*S:NEXT 8030 FOR I3=l TO NY:Z(I%)=Z*SQR(V{I%,I%))

6265 NEXT 8040 NEXT

6270  NEXT 8050 ENDPROC

6280 H¥=NR:V(N%,N%)=? 8060

§290 FOR I%=N%-1 TO 1 STEP -1 9000 DEF FNK(B):REM Bessel function K0

6300  H=B(I%)*A(1%,HS):IF Hr=0 THEN GOTO 6350 9010 LOCAL K%,U,V,W,X,Y,2

6310 FOR J¥aH% TO N%:V(J%,1%)=A(I%,J%)/H:NEXT 9020 IF B>4 THEN GOTO 9100

6320 FOR Jhatis TO N%:S=0:FOR Th=zH% TO N% 9030 IF B<1E-37 THEN B=1E-37

6330 S#5+A(1%, TH)*V(TH,J%) :NEXT 9040 ¥=LN(2/B)-.57721566%:U=sX

6340 FOR Th=H% TO N¥:V(T%,J%)=V(T%,J%) +V(T%, I%)*S:NEXT 9050 Va1:Wal:Y=B*B/4;:K¥=0

6345 NEXT . 9060 KEziKW+) : WaWy*V*V: (Jal+V

6350 FOR J%=H®% TO N#:V(I%,J%)=0:V(JI%,I%)=0:NEXT 9070 Val/(K%+1) :1ZaW*U:X=X+2

6360  V(I%,I8)s):HSal%:NEXT 9080 IF ABS({Z/X)>SE-8 THEN GOTO 9060

$370 FOR I%aN% TO 1 STEP -1 9090 ax

6380  H¥aI%+1:GaD(I%):H=G*A(I%,I%) 9100 Y=10/B=1:2ZaY+Y:Uz-4,5E-8

6390  IF H%<aN% THEN FOR J%=H% TO N%:A{I%,J%)=0:NEXT 9110 W=Z2*Usb,I2575E-7:V=U):U=W

6400 IF H>=0 THEN GOTO 6460 9120 WxZ*U-V-1.1106685E-5:Val:U=W

6410 IF H%>N% THEN GOTO 6450 9130 W=Z*J-V+2.6953261E~4:VaU:U=W

£420 FOR J¥=H% TO N8:S=0:FCR T%=H% TO M} 9140 WaZ*U-V-1.1310504E-2:Val:UaW

6430 SuS+A (TS, I%)*A(TS,J%) :NEXT:S25/H 9150 X=SQR(PI/(2*B))*EXP(-B)

6440 FOR T%2I% TO M%:A(T%,J%)=A(T%,J%)+A(T%, I%)*S:NEXT 9160 =X*({Y*U-V+0,988408174)
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SPEEDING IT UP IN BASIC
by John Logan?

Abstract. Execution time of many programs can be
markedly shortened by (a) defining frequently used
constants in assignment statements or placing them in
arrays and by (b) avoiding or minimizing the use of
exponentials.

Microcomputers work so rapidly that it is
often of little concern whether a problem is solved
in two seconds or in one. However, there may be
hundreds of calls to lengthy algorithms in cerrain
programs, and shortening of execution time can
become important. Examples include the develop-
ment of drawdown distributions around a well
field, sensitivity analyses, regional flow models and
investigations of optimization. In such problems, a
well function—particularly our old friends W (u)
and W(u, r/B)—may be solved by polynomial
approximation, and attention to a few simple
programing procedures can have a material effect
upon execution time.

Consider the following example of a polyno-
mial contrived to represent the type we often use:

x=.0011u +.0022 u? +.0033 u’ + .0044 u*

Let us do this 1000 times with different values of u
and accumulate the total:

10 $X=0

20 FOR U=1 TO 1000

30 X=.0011*U+.0022*Ut2+.0033*U13+.0044*Ut4
40 SX=5X+X

S0 NEXTU

60 PRINT SX

70 END (1)

Line 30 directly tracks the equation, and this style
appears in many published programs. My micro
requires 244 seconds to run this example.

Exponentiation is rather slow. By eliminating
that operation and rewriting line 30 to

aConsulting Geologist, P.O. Box 2096, Carmel,
California 93921.
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30 X=.0011*U+.0022*U*U+.0033*U*U*U
+.0044*U*U*U*U . co(2)

execution lowers to 92 seconds.

As the program cycles through the
FOR/NEXT loop, each of the four constants must
be “translated” to machine language 1000 times. It
is much faster that this be done only once through
the use of assignment statement. We may add line
15 and modify line 30 as follows:

15 C1=.0011:C2=.0022:C3=.0033:C4=.0044

30 X=C1*U+C2*U*U+C3*U*U*U+C4*U*U*U*U
(3

Execution time reduces to 39 seconds, a dramatic

improvement over the original 244.

Sample program (1) above is simplified almost
to the point of absurdity: our usual problems are
much more complex. My program for determining
W(u, r/B) uses 38 constants and exponentiations to
the power of 12. In such conditions, the methods
of example (3)—although rapid—require tortuous
programing. The constants should be placed in an
array that is loaded with READ/DATA statements
and the repetitive multiplications can best be
handled by assignments as in line 25 below. With
those modifications, the program of the example
becomes: :

10 DIM C(4): $X=0

15 FOR J=1 TO 4: READ C(J): NEXT

20 FOR U=1 TO 1000

25 U1=U:U2=U*U:U3=U2*U:U4=U3*U

30 X=C(1)*U1+C(2)*U2+C(3)*U3+C(4)* U4
40 SX=SX+X

50 NEXT

60 PRINT SX

70 END

80 DATA .0011,.0022,.0033,.0044

This version runs in 54 seconds and is an acceptable
compromise between minimum execution time and
practical programing.

These suggestions may not work on all micros
nor will the stated running times be the same.
However, persons interested in shortening the
execution of complex programs might try placing
frequently used constants in arrays (or in assign-
ment statements) and eliminating (or at least
minimizing) exponentiations.

- - - L] -

Jobn Logan began working in the ground-water
specialty in the Upper Neolithic. Following employment
with the Bureau of Reclamation, the Agency for Inter-
national Development, the United Nations, UNESCO, and
county government, be decided to make an honest living
and bas been a consulting geologist for the last ten years.
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An Automated Numerical Evaluation

of Slug Test Data

by M. W. Kemblowski and C. L. Klein®

ABSTRACT

Development of a numerical algorichm to analyze slug
test dara is described. This type of test is very popular for
aquifer testing, primarily because of its simplicity. Many
such tests are performed to estimate the hydraulic conduc-
tivity values of ground-water-bearing formarions. Those
values in turn are used to calculate pore-water velocities.
The algorithm was coded and successfully tested fora
hypothetical data set. It has also been applied at a number
of field locations. One such application is presented.

INTRODUCTION

This paper is a summary of the development
and testing of a numerical algorithm designed to
analyze slug test data. This type of test is very
popular for aquifer testing, primarily because of its
simplicity. Many such tests are performed as part
of hydrogeologic assessments. The algorithm utilizes
the slug test analysis presented by Bouwer and Rice
(1976) and uses a sensitivity analysis for parameter
estimation (McElwee, 1985).

THEORY AND ANALYTICAL SOLUTION
OF THE SLUG TEST PROBLEM
The theory of the slug test problem is based
on the Thiem equation which describes the
relationship between the inflow into the borehole
and the drawdown.

2Shell Development Company, Westhollow Research
Center, P.O. Box 1380, Houston, Texas 77001.

Received June 1987, revised November 1987,
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_ 2nKLe(h - hy)

In(r/rw) )

where hy, = piezometric head in the well (ft);
h = piezometric head at distance r (ft);
rw = effective radius of the well, including the
gravel pack (ft); r = distance from the well center
(ft); K = hydraulic conductivity (ft/day);
Q = inflow into the borehole (ft¥/day); and
L. = effective aquifer thickness, in this case, height
of open section of well (ft).

The rate at which the well-warter level will rise
depends on the inflow into the well and may be
expressed as:
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where r. = internal radius of the well; and

y = drawdown at the well. Assuming that at some
distance R (radius of influence), the drawdown is
dissipated (h = 0), one can substitute equation (1)
into equation (2) and solve the resulting equation
for y to obtain:
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where R = effective radial distance at which the
drawdown is dissipated; y, = drawdown in well at
time zero; y, = drawdown in well at time t; and

t = time since y,.
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Fig. 1. Geometry and symbols of slug test.

~ Values of R were experimentally determined
(Bouwer and Rice, 1976) for different values of
T'w, Le, Lw, and H (see Figure 1). For a partially
penetrating well, the following empirical equation
was developed:
1.1 A+Bln{(H-Ly)/rw)

R
In—=
. Iy e In(Lw/rw) ¥ (Le/tw) b

where A and B are dimensionless parameters shown
in Figure 2 as functions of L./r,,. The experiments
indicated the effective upper limit of
In((H - Ly )/ry) is 6. This upper limit is included in
the program.

For a fully penetrating well (H=Ly), R is
calculated using the following relation:

R 1.1 C
In—=1/[

o mars ey ] )

where C is 2 dimensionless coefficient shown in
Figure 2 as a function of Le/ryw.

PARAMETER ESTIMATION BY
SENSITIVITY ANALYSIS
For simplicity, equation (3) is rewritten as
follows: .

D
==|In Yo (6a)
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2In(R/r
where D= fen(R/ry) : (6b)
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D is 2 known constant for a given test. Using
equation (6a), we can express drawdown y as a
function of time and hydraulic conductivity.

Yt(K) = YO c-Kt/D (7)

The basic idea of parameter estimation technique is
to calculate a value of K that would minimize the

" difference between observed and calculated values

of drawdown. This is done by iterations. After
each iteration, the “old” value of K is updated.

K*=K+aK (8)

The sensitivity analysis provides a tool to calculate
AK.

Using the Taylor expansion and neglecting the
terms of the order higher than one, we can estimate
the value of drawdown y(K + AK) as a function of
ye(K).
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ye(K + ) yt( )"’aK
) t.. t
yoe KDy ¢ 5 e K/DAK =y (K)(1 - 5 AK) (9)

Using equation (9), we may now develop an
expression for the total square error between the
observed drawdown y? and the drawdown calcu-
lated by equation, y* =y (K + AK) (subscript i
refers to time).

N N i
=2 (47 -y =T -y +y 5 oK)=
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Fig. 2. Curves relating coefficients A, B, and C to L,/r,
{after Bouwer and Rice, 1978).



where N is the number of observations.
This total square error may be minimized with
respect to AK.
3E :
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Equation (11) is used to estimate the conductivity
correction,
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The numerical algorithm consists of the following
SthS:

1. Read the input data.

2. Calculate the effective radius using
equation (4) (partially penetrating well) or (5)
(fully penetrating well).

3. Calculate D [equation (6b)).

4. Calculate simulated drawdown {y;}
[equation (7)].

5. Calculate the conductivity correction
[equation (12)].

6. Calculate “new’” conductivity [equation
&l

7. Calculate total square error [equation
(10)].

8. Estimate the standard deviation o using the
following expression:

. 4
o-[N_ 7 B)] (13)

9. If the number of iterations <NITER, go
back to step 4 (NITER = maximum number of
iterations).

10. Print out the results.

11. Stop.

This algorithm was coded in FORTRAN for
IBM PC. In order to use it, the user has to provide
the test geometry and drawdown data, and estimate
parameters A and B or parameter C using Figure 2.
The program does not have a weighing system that
would consider early data more important than the
late ones (Bouwer, 1978). However, the user can
limit the number of data points.

MODEL TESTING

The numerical solution was tested using a
computer-generated data set. This set of drawdown
data was calculated for a fully penetrating, partially
screened well of the internal radius r, = 0.05 m,
and the external radius ry = .1 m. The initial
saturated thickness of the aquifer was Ly = 15 m,
and the screen height was L. = 10 m. For these
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Fig. 3. Modal testing.

conditions, dimensionless parameter C was esti-
mated from Figure 2 to be C = 1.5. To generate the
drawdown data using equation (7), the value of the
hydraulic conductivity was assumed to be K = .288
m/day (.0002 m/min). The initial drawdown was
¥o = 1 m. The drawdown values were calculated for
10 minutes, with a one-minute interval (Figure 3).
This data set was then used to calculate the
hydraulic conductivity of the system using the
developed numerical procedure. The initial
estimated value of hydraulic conductivity was
.0144 m/day (0.00001 m/min). It took the
program five iterations to calculate the correct
value of hydraulic conductivity (Figure 3). Table 1
shows the results for the five iterations.

MODEL APPLICATION
The automated evaluation procedure has been
used successfully at a number of locations to inter-
pret slug test data. One recent application was
done to estimate the hydraulic conductivity at a

Tabla 1. Modsl Application and Rasuits

Iteration ( m/!rfxin) a(m)
0 0.100E-04 0.79
1 0.779E-04 0.031
2 0.144E-03 0.01
3 0.138E-03 0.0018
4 0.199E-03 0.0007
5 0.200E-03 0.00003
6 0.200E-03 0.09903




site in Kalkaska, Michigan. The field test was per-
formed using a partially penetrating well with inner
radius re = 0.104 ft and external radius ry, = 0.281
ft. The well penetration depth L,, was equal to
3.115 fr. The length of the screen under the water
table Le was equal to Ly, . The total saturated
thickness was estimated to be 100 ft. The dimen-
sionless parameters A and B, estimated from Figure
2, were 1.8 and 0.25, respectively. The test was
performed by submerging a closed bailer into the
well, thus creating a negative drawdown. The initial
value of the negative drawdown was 0.68 ft. Figure
4 shows the field data and the simulated drawdown
for the estimated hydraulic conductivity

K =0.000611 ft/sec which was obtained after five
iterations. It can be seen that the simulated results
fit the field data quite well.

SUMMARY

An automated numerical procedure was
developed to analyze slug test data. The procedure
is based on the sensitivity analysis for parameter
estimation. The solution was validated using
computer-generated data. It also has been used
successfully at a number of locations. One such
application at a Kalkaska, Michigan site is
described.
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A Method to Determine the Formation Constants of Leaky Aquifers,

and Its Application to Pumping Test Data

by F. Kohlbeck® and A, Alvarez”

Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test
data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the
sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and
Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given.
Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River

Introduction

A great number of computer programs exist for the
calculation of aquifer parameters from pumping test data.
The parameters are found by fitting theoretical drawdowns
as a function of time to measured values. Most of the
programs use the Theis (1935) equation for confined aqui-
fers. An overview can be taken from Yeh (1987). Only a few
methods use the more general equation of Hantush and
Jacob (1955) for leaky aquifers.

The first program for this purpose was published by
Saleem (1970). He used standard routines of a FORTRAN
library on an IBM mainframe to perform a nonlinear least-
squares approach. These routines are not available for per-
sonal computers. The methods used within these subrou-
tines are not described in the publication. The program does
not contain special features for treating the specific shape of
Hantush equation, Cobb et al. (1982) used the gradient
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' Valley, Colombia.

(Newtonian) method for the optimization. This methaod fails
if the normal equations are ill-conditioned. Chander et al.
(1981a) fit an approximation of the well function for leaky
aquifers to experimental data. The approximation was first
published by Hantush (1956) and does not match well at
early time values to the exact solution. The optimization is
performed by a quasi-Newtonian method (Marquardt algo-
rithm) for solving with nonlinear least squares. This method
is superior to the simple Newtonian approach. The same
authors (1981b) also used Kalman filtering with success.
Another method has been given by Sen (1986) who used the
slopes of successive data points to calculate the parameters
directly from Hantush approximation.

The result of a nonlinear least-squares procedure fre-
quently is not the optimum solution of the problem. It may
happen that the calculation terminates at a local minimum.
In this case, another starting point can lead to another
solution. However, a good program should aiways resuit in
the best solution one can obtain from the data. Therefore,
one has to test extensively with real and with perturbed data
to determine whether the final solution depends on the
starting point or not.

The method presented in this paper is based on the
Hantush and Jacob (1955) equation for leaky aquifers. This
equation does not account for storage in the leaking unit
as was treated later by Hantush (1960) and Neuman and
Witherspoon (1969a), The method uses special techniques of
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Table 1, Comparison of Results from Exampies of Yeh (1988), Walton (1962), and Saleem (1970) with the Presented Method

Transmiss. Stor. coeff. Vert. perm. Stand. dev.

Author T S K a
md E-04 E-03 m/d m

Yeh original 1139 1.93 — 0.00547

present 1134 £ 2 1.94 £ 0.02 0.27 £0.20 0.00557
gal/d/ft E-04 E-02 g/d/ft’ St
Waliton onig. 1510 2 11.0 0.200
Saleem 1801 1.8 6.6 0.156
present 1856 * 16 1.66 = 0.1 60 04 0.147

nonlinear least-squares fitting to obtain the best fit inde-
pendent of the starting point. The case of a nonleaky aquifer
is considered a special case of a leaky aquifer with leakage
trending towards zero.

Computer Program

The program is written in FORTRAN 77 and contains
more than 3600 lines of source code. The majority of the
subroutines are taken from CERNLIB and are described in
detail by James and Roos (1971). The tests were performed
on an AT-compatible personal computer with math copro-
cessor. The computation time increases approximately lin-
early with the number of data pairs and takes less than two
minutes on AT-compatible computer with 8 MHz clock and
60 data pairs. The input data consist of a text line, aline with
the code for the units, and a line that contains the distancerr,
the pumping rate Q, and the thickness of the semiconfining
bed b’. Further lines contain the observation times and
drawdowns. No starting values for the parameters are
needed. A further option calculates the theoretical draw-
downs for given values of storage coefficient S, transmissiv-
ity T, and permeability K’ at given times.

The output contains the input data, the calculated
values for S, T, and K’, with their standard errors and a table
of calculated and observed drawdowns.

The errors of the parameters S, T, and K’ are calculated
with the assumption that the differences between calculated
and observed drawdowns are random errors with normal
distribution. In practical cases the assumptions for the valid-
ity of the well function for leaky aquifers [see equation (1)
later in this context] are not fulfilled exactly, and the errors
consist of a systematic and a random part. Therefore, the
calculated standard errors of the parameterscan be seenasa
lower limit. The real errors will be much higher in most of
the cases.

Examples
Pubiished Data

The program was tested with already published data
for the purpose of comparison with known methods and
with unpublished data to demonstrate the practical
application.

The published data of well 19 from Walton (1962) and
from Yeh (1987) who used Todd (1980) values were used to
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test the program. The results are compared in Table 1. The
calculations of Yeh are based on nonleaky aquifers.

For reasons of compatibility, the thickness of the semi-
confining bed b’ has been set to 10 m, so vertical permeabil-
ity K’ could be calculated. The standard deviation o in Table
1 is defined by:

= /G/(N = n)

with G the sum of squares of the differences between calcu-
lated and measured values of drawdown (), the number of
observations (N), and the number of parameters (n). Forthe
leaky aquifer n = 3, while for the nonleaky case n = 2.
Therefore, o is less for the calculation of Yeh than with the
present calculation because n is smaller for Yeh’s method.

Data from Cauca River Valley

Practical examples were taken from measurements at
the Cauca River Valley, Colombia, which covers an area of
4,600 km®. The tests were performed in the southern part of
the valley and are reported by Alvarez and Tenjo (1971).
Data are presented here (Table 2) to provide published data
from a leaky system that other researchers can use when

' comparing computer programs,

The Cauca River Valley has a tectonic origin and is
underlain with alluvial sediments that have become the
richest aquifers of the Colombian Andean zone. The total
thickness of the alluvium is unknown. However, it has been
classified in three hydrogeological units with the following
characteristics:

Unit A is from the surface to 110 m depth. Its upper 70
m are largely clay and silt, individual lenses of which can
reach 36 m of thickness. The lower 40 m are composed of
sand and gravel with some lenses of clay, This lower part
contains several types of aquifers, i.e., free, confined, and
leaky aquifers. The yields range from [0 to 264 /s, with a
median yield of 130 1/s. The measured specific capacities
range from 4 to 13 1/(sm), with a median value of 8 1/(sm).
The transmissivities range from 300 to 2800 m’ per day,
whﬂe the storage coefficients range from 7 X 10™ to 1.05 X
102, For the leaky aqunfers the leaky coefficients range
from 5.03 X 107 to 3.9 X 107 per day.

Unit B underlies unit A. It is mainly composed of clay
with a thickness of about 80 m, and is considered as the
confining bed.



l Table 2a. Computer Evaluation of Colombian Pumping Table 2b. Computer Evaluation of Colombian Pumping
Test Data: Pumping Test No. 1 Test Data: Pumping Test No. 2
Input parameters: Input parameters:
l r(m) Q(l/s) b'(m) r(m) Q(/s) b'(m)
Value 105.0 145.0 1.000 Value 109.0 123.0 1.000
' Calculated parameters; Calculated parameters:
Trmd) s K(m/d) Tmd) S K'(m/d)
Value 1994, 0.1379E-02 0.2913E-02 Value 1086. 0.3571E-02 0.7116E-02
l Error 2.538 0.1073E-04 0.3134E-04 Error 3.257 0.4137E-04 0.1166E-03
Observed (5,) and calcuiated (s;) drawdowns: Observed (s,) and calculated (s;) drawdowns:
Time So Se So = Sc Time So Se So = S¢
min, m m m min. m m m
-l 1.000 0.1000E-01 0.9013E-02 0.9870E-03 1.000 0.1000E-01 0.0000 0.1000E-01
2000 0.5000E-01 0.6041E-01 ~0.1041E-01 1.500 0.1500E-01 0.0000 0.1500E-01
3.000 0.1100 0.1263 —~0.1631E-01 2.000 0.2000E-01 0.6206E-04 0.1994E-0}
. 4.000 0.1800 0.1910 —0.1104E-01 2.500 0.3000E-01 0.4054E-03 0.2959E-01
owowe gwn o e Gk e ohen e
. 0.2900 0.3057 ~0.1575E-01 . : . :
-6/ % 0.3500 0.3557 —0.5708E-02 4.000 0.6000E-01 0.5269E-02 0.5473E-01
8.000 0.3900 0.4014 —0.1145E01 4.500 0.7000E-0! 0.8596E-02 0.6140E-01
’ | ’ —0 5.000 0.8000E-01 0.1281E-01 0.6719E-01
9000 0.4400 0.4435 0.3522E-02 §.000 0.1000 0.2367E-01 0.7633E-01
10.00 0.4800 0.4824 ~0.2410E-02 3000 01150 0372901 0.7 1E01
16.00 0.6500 0.6677 —0.1772E-01 8.000 0.1300 0.5302E-01 0.7698E-0!
. 20.00 0.7700 0.7609 0.9101E-02 9.000 0.1500 0.7031E-01 0.7969E-01
! 25.00 0.8600 0.8564 0.3646E-02 10.00 0.1500 0.8870E-01 0.6130E-01
§ 30.00 0.9500 09355 0.1445E-01 15.00 0.2500 0.1872 0.6275E-01
33-83 {823 _ :-ggg g-}gg:gg; 20.00 o.sggg 0.2843 0.3570E-01
X : . ~0. 25.00 0.3 0.3741 0.1592E-01
i 43,00 1.100 1.094 0.6384E-02 30.00 0.4500 0.4559 —0.5857E-02
' 45.00 1.140 1114 . 0.2637E-0! 35.00 0.5200 0.5302 —0.1021E-0!
50.00 1.170 1.160 0.9997E-02 40.00 0.5800 0.5980 —0.1802E01
55.00 1.220 1.202 0.1813E-01 45.00 0.6350 0.6601 —0.2511E01
: 60.00 1.260 1.240 0.2001E-01 50.00 0.6900 0.7172 —0.2723E-01
70.00 1.320 1.307 0.1285E-01 35.00 0.7400 0.7700 —0.3003E-01
80.00 1.380 1.365 0.1519E-01 60.00 0.7900 0.8190 —0.2903E-01
90.00 1.420 1.415 0.4855E-02 70.00 0.8750 0.9074 ~0.3236E-01
: 100.0 1.470 1.460 0.1033E-01 80.00 0.9500 0.9851 —0.3506E-01
1100 1510 1499 0.1034E-01 90.00 1.025 1.0s4 —0.2917E-01
) : ) —0 100.0 1,090 1116 —0.2622E01
120.0 1.520 1.535 0.1535E-01 -
110.0 1.150 1172 0.2236E-01
150.0 1.620 1.625 ~0.5092E-02 120.0 1210 1224 0 13SIE0!
210.0 1.740 1.733 ~0.1264E-01 180.0 1.460 1.457 0.2757E-02
240.0 1.780 1.800 =0.2008E-01 210.0 1.545 1.543 0.2438E-02
_ 270.0 1.820 1.840 —0.2017E-01 240.0 1.620 1614 0.5848E-02
I 300.0 1.860 1.875 —(0.1454E-01 270.0 1.680 1.675 0.4822E-02
330.0 1.890 1.904 —0.1431E01 300.0 1.740 1.728 0.1215E-01
347.0 1.880 1.919 —(.3947E-01 330.0 1.785 1.774 0.1122E-01
P 360.0 1,920 1.930 —0.1034E-01 360.0 1.820 1.814 0.5843E-02
. 420.0 1.970 1.974 —0.3594E-02 4200 1.890 1.882 0.8252E-02
454.0 1.970 1.994 —0.2398E-01 480.0 1.950 1.936 0.1411E01
480.0 2.000 2.008 ~0.7933E-02 540.0 1.995 1.980 0.1501E-01
510.0 2.010 2.023 ~ —0.1252E01 600.0 2.040 2,016 0.2359E-01
540.0 2.030 2036 —0.5689E-02 660.0 2.070 2.047 0.2321E-01
560.0 2.040 2.044 —0.3765E-02 720.0 2.100 2072 . 0.2763E-01
600.0 2.070 2.058 0.1156E-01 780.0 2130 2.094 0.3594E-01
- 615.0 2.060 2.063 —0.3479E-02 840.0 2.145 2113 0.3244E-01
- 660.0 2.090 2.077 0.1271E-01 900.0 2.160 2.128 0.3156E-01
) 960.0 2.170 2.142 0.2788E-01
7200 2.110 2.093 0.1695E-01 oo gL 21 o I0SE0l
780.0 2.130 2.106 0.2366E-01 1830' - > O lorTE o1
840.0 2.150 2.118 0.3239E-01 1140, 5178 21 0 1817602
, 900.0 2.140 2127 0.1279E-01 1200, 5 180 181 —0 1006E03
2.150 2.129 0.2133E-01 y : : —
210.0 1260. 2.185 2.188 0.2857E-02
960.0 2.160 2.135 0.2456E-0L 1390, 2.185 2194 —0.8872E-02
1020. 2.160 2.143 0.1747E-01 1380. 2.190 2.199 —0.9165E-02
1080. 2.160 2.149 0.1136E-01 1440. 2,190 2204 —0.1382E-0!
1140, 2.150 2.154 —0.3941E-02 1500. 2.190 2.208 —0.1795E-01
1260. 2.150 2.163 =0.1255E)1 1560. 2.185 2212 —0.2659E-01
' 1320. 2.150 2.166 —0.1606E-01 1620. . 2.180 2.215 —0.3482E-01
1380. 2.150 2.169 —0.1912E01 - 1680. 2.180 2218 —0.3769E-01
. 1410, 2.150 2171 —0.2051E-01 1681. 2.180 2.218 —0.3773E-01
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Unit C underlies unit B. It is composed of sand, gravel,
and some clay of unknown thickness. It is a confined aquifer
tapped by several flowing artesian wells. Below unit C follow
sedimentary, metamorphic, and igneous rocks.

In the pumping tests presented in this paper, leakage
was obtained from unit A.

The constants of five different pumping tests are pre-
sented in Table 3. The calculation of hydraulic parameters
was carried out with the type curve method, with the inflec-
tion point method after Hantush (1956) and with the com-
puter program. The results are listed in Table 3.

It can be seen that the computer method compares well
with the conventional methods and that the standard devia-
tion is always lowest with the computer’s least-squares
approximation. Furthermore, the computer method has
incorporated an error estimation for the parameters. As
already mentioned, these error estimates have little practical
relevance because they assume that the data are distributed
normally around the well function, However, the agsump-
tions for a leaky aquifer made by Hantush and Jacob(1955)
are not fulfilled completely in any one of the examples. This
can be gathered from the Tables 2a and 2b which show a
partial output of the computer program for two pumping
tests of the Cauca Valley. One recognizes that the differences
between measured and calculated drawdowns (last column)
are not randomly distributed over the time scale: one can

divide the series of measurements into sections that contain
exclusively positive or negative differences. The series of
pumping test No. 1 (Table 2a) consists of five and that of No.
2 (Table 2b) consists of four such sections. This bias cannot
be removed by selecting other aquifer parameters but only
by applying another, more realistic well function as dis-
cussed by Neuman and Witherspoon (1969b).

Method

The drawdown, s, in an observation well caused by a
constant pumping rate Q in a production well can be written
as (Hantush and Jacob, 1955);

se(t) = z1" F(t; 22, 73) (la)
with
F(t; 22, 3) = j/go(l/x) rexp[—x —0.25 (z;)z/x]dx (1b)
2/t

The constants z;, zz, ; are related to the transmissivity
T, the aquifer storage coefficient S, and the vertical perme-
ability of the semiconfined bed K’ by:

z1=a-Q/T
2,=S-8-¢YT (2
@) =K /(b T)

in which r = distance between the observation well and the
pumping well; b’ = saturated thickness of the semiconfin-
ing bed; and « and B are constants whose values are depen-
dent on the units used. For metric units, & = 1./(4), and
" B = 0.25, This formula holds only for certain restrictions on
the parameters (see Walton, 1979).
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Table 3. Comparison of Results from Type Curve
Interpretation (T), Hantush (1956)
Inflection Point Evaluation (1), and Least-Squares
Calculation (C) with Examples of Field Measurements

Pumping  Transmiss. Stor. coeff.  Leakance  Stand. dev.
test T S Kb 0!
no. mYd E-03 E-03/d E-03m

T 1847 1.54 in 26

1 I 1900 1.44 3.88 28

C 199413 [138£000 291+003 16
T 1302 3.62 7.82 38
2 I 1037 3.76 5.78 111
C 10863 357+004 7.42%£0.12 35
T 1408 2.35 LRV 24
3 [ 1400 2.27 1.69 50
C 132014 236+004 400£0.13 20
4 T 2807 1.47 0.169 56
C 3088 +8 1274001 0.00£0.00 35
5 T 893 2.53 1.03 3%
C 907%x2 237+002 104003 28

If one has a series of observed drawdowns so(t;) at
observation times t;, optimal estimates %, Z;, 2; for the
parameters 2, to z; can be determined by minimizing the
sum of squares

G=3¢’ (3a)

of the differences
& = So(ti) — sc(ti) (3b)

between calculated and measured values of s. From equa-
tion (2), T and S can be calculated from z, and z;. With a
known value for b’ also, K’ can be calculated from z;.
Because equation (1) obviously is not a linear combination
of z; to 23, a simple linear least-squares technique cannot be
used for obtaining the optimum values. The program uses a
nonlinear optimization procedure as follows:

Starting with arbitrary estimates for z; and z; and
substituting equations (1) into equation (3b) one obtains:

¥i = ziai + & (4)

with known values of ai = F(ti; z2, ;); and ¥i = so (ti).
From equation (4), one obtains the normal equation

Z(yi—na)a=0
i

and the optimal estimate 2, (22, z3) for z1:
Yyiai
Zajai
i

(5)

il (Zla 23) =

Equation (5) reduces the three-dimensional nonlinear
optimization problem to a two-dimensional one, whereby
computation effort is considerably shortened.

The nonlinear optimization searches for the minimum
of G from equation (3a) with respect to z; and z;, and uses

i
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1
|
1
I
1
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71 = 2, fromequation (5). It is first carried out witha Monte
Carlo method to give rough estimates of z; and z; and then
continues with the simplex method of Nelder and Mead
(1965). Both methods are described by James (1972). They
offer some advantages compared with the conventional
Newtonian and variable metric methods that are most fre-
quently used for function minimization. The matrix of nor-
mal equations that is used with the Newtonian methods
frequently is ill-conditioned, and the algorithm will diverge

in this case (Marquardt, 1963). The presented method will -

find the best solution also when the Newtonian ends at a
local minimum.

The integral of equation (1b) is solved numerically by a
modified Romberg algorithm. The direct application of
numerical integration to the integral is not favorable,
because the intermediate values which are necessary for
integration are not selected properly by usual methods.
With the substitution of x = exp (v), equation (1b) can be
written:

o0

F(t; 2, z3) =
(t 22, 1) ln(z{/t)

exp{~exp(y) —0.25 - (z:) exp(—=y)ldy  (6)

which is integrated much faster and with higher accuracy
than expression (1b). The upper bound for x in equation
(1b) can be taken from Hantush (1956) to be 8 instead of
infinite with sufficient accuracy. The lower bound is taken to
be u = 0.5 (z3)%/ [b + | In(z2/t)|] where b denotes a con-
stant (a proper value is 4) which depends on the accuracy of
the calculations. The lower boundary u is selected only when
u < z3/t.

The speed of calculation of the whole number of inte-
grations for different time values t; can be increased further
if the areas beyond the integral overlap each other for differ-
ent time values. Tt follows that equation (6) can also be
written:

In(z2/1:)
Faw)=Ft)+ [
In (22/ti+1)

+ exp[—exp(y) ~ 0.25 * (z3)** exp(—y)ldy

The second part of the right side is computed much faster
than the whole integral equation (6). The first part, F (1), is
already known from the previous calculation.

Errors
The basic statistical formula for calculating the random
errors of the parameters z; can be taken from Linnik (1961).

8z; = vii VG/(N — n)

where 6z; = standard error of z;; N = number of observa-
tions; n = number of parameters (n = 3); G = sum of
squared differences between calculated and measured draw-
downs (from equation (3a)]; vi; = diagonal element of vari-
ance matrix V; V= W™ and wy, = (3*G)/(9zi dzx), ele-
ment of matrix W. The derivatives are caiculated by finite
differences of function values,

Availability

Authorized users of CERNLIB may obtain a copy of
the program by request to one of the authors. Permission for
using CERNLIB can be obtained by writing to Program
Library Division DD, CERN, CH-1211, Geneve 23,
Switzerland with reference to program package D506
Minuit.
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A Computer Program for a Trilinear Diagram Plot
and Analysis of Water Mixing Systems’

by Michael D. Morris, Jeffrey A. Berk,
Joseph W. Krulik, and Yoram Eckstein®

ABSTRACT

The Piper (1953) trilinear diagram has been widely
used to graphically represent the dissolved constituents of
natural waters and to test for apparent mixtures of warers
from different sources. Because of the time required to plot
points and calculare the proportional values of mixing, this
treatment of data was often quite tedious, particularly in
studies involving large numbers of chemical analyses. The
PIPER program was written in BASIC to berunona
Hewlett-Packard desktop computer with an X-Y plotter.
Data input is in ppm units. The program plots points in all
three fields of the trilinear diagram, draws ar each point
within the central diamond field a circle with a radius
correspondent to the concentrations expressed in meg/l,
checks for points thar fall on a straight line (or within a
predetermined tolerance of a straight line) representing
postulated mixtures with two end members, and/or within
a triangle representing mixtures of three end members.
Finally, the program does a numerical analysis of the
mixing ratios of the constituents for postulated mixing
systems according to the methodology as presented by
Piper (1953).
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INTRODUCTION

In a graphical treatment of chemical analyses
of ground water developed by Piper (1953), the
character of a ground water can be expressed by
three points located in three different fields. The
points represent: (1) percentage-reacting equiva-
lents of three major cation constituents (Mg"™”, Na*
and Ca"") in a cation triangular field; (2) percent-
age-reacting equivalents of three major anion
constituents (Cl°, SO:” and HCO3) in an anion
triangular field; and (3) the point in the diamond-
shaped field representing the overall chemical
character of the solution. The last point is plotted
at the intersection of rays projected from the
points in the anion and cation triangular fields into
the diamond field (Figure 1).

Piper’s graphical treatment of the chemical
analysis allows for an easy discrimination of
distinct water types by their plottings in various
subareas of the diamond field (Figure 2). Piper
(1953) also suggested that water analysis repre-
senred by points aligning along a straight line in
all three fields should be tested for the possibility
that they represent a part of a mixing system. A
solution produced by a mixture of two end
members is represented in each of the three fields
as a point which is located on a straight line in
between the points representing the two end
members. Moreover, the individual ionic constitu-
ents in the mixture will all have been mixed in the
same proportions. Similarly, in the case of a
mixture from three sources, the solution will be
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Fig, 1. Piper's {1953) trilinear diagram,

represented in each of the three fields by a point
located inside a triangle defined by the three

end members. Again, all the ionic constituents will
have been mixed in the same proportions.

When only a few points are plotted on a tri-
linear diagram, it is rather easy to discern and con-
firm a binary mixing by “eyeballing” of three
points aligned on a straight line in all three fields
and to make the appropriate computarions (Piper,
1953). To discern and confirm a ternary mixing
system is more complex. When the number of
chemical analyses involved is large, the task of

)

Fig. 2, Water types on a trilinear diagram:

area 1 — (Ca™ +Mg'?) > (Na" + K*);

area 2 - (Ca"? + Mg™?) < (Na" + K*);

area 3 ~ (HCO; + CO3?) > (CI7 + 5032);

area 4 ~ (HCO; + CO3?) < (CI +803%);

arsa 5 — carbonate hardness (secondary alkalinity) > 50%;

area 6 — noncarbonate hardness (secondary salinity) > 50%;
area 7 ~ noncarbonate alkali (primary salinity) > S0%;

araa 8 - carbonate alkali {primary alkalinity) >> 50%;

area 9 — no dominant cation-anion pair.
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singling out all possible mixing systems and testing
each for validity is extremely tedious, as well as

is the mere task of production of a trilinear
diagram for a large number of analyses. The follow-
ing computer program is designed to plot up to

100 chemical analyses on a trilinear diagram and
then scan simultaneously all the analyses, testing
for all the possible combinations in binary and
ternary mixing systems.

The program was designed to place points in
all three fields and to calculate and test the pro-
portions needed to postulate possible mixing
relationships. Although this program produces
reliable calculations for a wide variety of chemical
compositions, the user is cautioned that the
results can be significantly affected by the selec-
tion of input values and certain user-specified
options. The user is further cautioned that
interpretations must reflect the specific field
conditions and locations from which the water
samples were collected.

Our computer program is based on Piper’s
(1953) original assumptions:

1. All of the major constituents have been
included in the calculations.

2. All ions are assumed to remain in solution. -

3. All the Fe, Al, and Si are present in the
water in a colloidal state as oxides and are not in
chemical equilibrium with the ionized constituents.
Therefore, these elements are not included in
calculations of total concentration.

4. Minor constituents of ground water are

. summed with the six major constituents to which

they are respectively related in chemical properties.

5. Water consisting of substantial quantities
of free acid cannot be fully represented on the
diagram,

The program was written in Hewlert-Packard
enhanced BASIC for use on a HP 9845A desktop
computer with an optional 9872B X-Y plotter.
Options within the program allow graphics to be
produced on the cathode-ray-tube (CRT) display,
the thermal printer, or the X-Y plotter. Minor
variations should allow this program to be adapted
to other computers using BASIC. Due to memory
limitations on the HP 9845A, the program is
actually subdivided into two smaller routines
linked together. “PIPER,” the first portion of the
program, is used to input and store data, compurte
unit conversions and to plot the resulting percent-
age values on the trilinear diagram. The mixing
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calculations may then be performed by the second
portion of the program named “MIXING.” The
transfer of control to the second routine is accom-
plished in line 3680 of “PIPER” utilizing the LINK
command in order to conserve all variables defined
earlier. Depending on the computer capabilities
that the program is going to be adapted to, it may
be stored as one long program or several smaller
routines. A flow diagram of the program is shown
in Figure 3.

PIPER

CALCULATE
AMALYT ICAL
ERASR

INTER TITLR OF
THE PROJECT And
AURBER OF ANALTIES

2R (AT
T-REACT IS VALUES

KEYIOARD AND AWALYT({CAL SARGR

DATA FILY

ENTER
CHO1CK OF SYMBOLS,
HOOE OF D1SPLAY,

COLoR ?'ll 113
FOR FOINTE 4HD LINES

CALCULATE
iRy
COORD [NATES

L
COMCENTRATION
CIRCLEY AmD L FGEND

JALLULATE
S-REALT ING
vaLusE FoR
ALL ARIONE
AND CAT (0N

SELICT nEXT
CORBINAT [OR
oF FOUR FQINTS

SELELY wExT
CORBIRATION
of THREE POINTS

COMPYTE COMPOSITION
FOR AN (ATERMEDIATE
SLXTURE

COMMUTE THEQRET

[
COMPOSITION OF Tl
A1 xTURE

OMPUTE THEQRETICAL
1ok oF TME
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=5

conmurd 1-0irrEnences
SETREEN THECRET
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(N A POSTILATED AiXTURE

COMPUTE X+piRFERENCES

T o
ACTUAL C

”(?u A POSTULATED WIXTURR

R INT ThHGRETICAL
AND AL COMCERTRAT 1083,
anp L-0iFrERbREs

AT eI ot
AND AL TUAL CI
m-mnumu

Fig. 3. Flow chart of “PIPER” and “MIXING."”

INPUT OF RAW DATA

Input concentrations of various constituents
must be in units of parts per million (ppm). The
program will convert these units to meq/l, and
further to percentage of total dissolved solids.

The program asks for the six major constitu-
ents: (Ca*", Mg**, Na*, Cl", SO;” and HCO3) and
only K*, CO3” and NOj as second-rank constitu-
ents. Other second-rank constituents can be added
with only minor changes in the program. In a
single run of the program, data from a maximum
of 100 sources may be entered, stored, plotted and
tested for mixing trends.

Data input can come from keyboard or data
previously stored on a data file. Creation of a data
file after input from the keyboard is a user’s option.

PLOTTING AND COMPUTATIONAL
PROCEDURES

The plotting of points and the drawing of the
outline of the triangles and diamond both are done
in cartesian coordinates on the H-P graphics system.
All trilinear coordinates must be converted to X-Y
coordinates. The units used are millimeters for the
CRT and will vary on the X-Y plotter depending
on the size of the plot. The plotting field is 184.47
by 149.82 units. The primary trilinear diagram is
an equilateral triangle with sides divided into 100
units. For ease in reading, cation and anion sub-
triangles are offset from the upper diamond. The
subtriangles are equilateral with sides of 50 units
representing a range of 0 to 100% of a specified
constituent.

The height of a triangle (Figure 4) is calcu-
lated in the following manner:

100% <=~ Ca 0%

T
28 units 25 units

Fig. 4. Dimensional relationship in a triangular field of a
trilinaar diagram.
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tan 60° = AY/(50/2)
AY = 25(tan 60°%)
AY = 43.30 units A

In similar fashion, the dimensions of the Y
diamond field are found to be 50 units wide and
86.60 units in height.

Points within the cation triangle, if plotted by
hand, are based on the percentage-reacting values
of Ca’?, Mg"?, Na’ and K"; if plotted by this
program, the points (Figure 5) are based on the
percentage of Ca’? and Mg"? compared to the total
cations. Points within the anion triangle are calcu-
lated and plotted in a similar fashion based on the
percentages of SO3? and HCO3. The relevant
equations are as follows:

Fig. 5. Coordinate systern in the triangular fields of a
trilinear diagram,

Y Mgt (%) Y" SO (%)
25 (tan 60°) 100 25(tan 60°) 100
100 Y' = 25 tan 60° Mg+2 (%) 100 Y" = 25 tan 60° SO (%)
Mg"? (% SO (%
Y' = ran 60° __3'4_(22 Y" = tan 60° —9.3—.(_0).
tan 60° = Y7X' tan 60° = Y/X"
X' = Y'tan 60° X" = Y"/tan 60°

Recalling the conversion: 2% ion concentration = 1 unit on the plotting field

1 unit 1 unit
Xk = Xg - Ca"* (% -X XL = Xg - HCO3 (% - X"
K qQ a ( ) 2% L XR HCO;( o) 7% X
Ca** (%) Y’ HCO3 (%) Y”
Xy = Xg - - X, = Xg - -
K Q 2 tan 60° L R 2 tan 60°
Ko = X - Ca'*(%) tan 60° Mg"? (%)/4 % =X = HCO5 (%) tan 60° SO (%)/4
K=7Q 2 tan 60° L™"R 2 tan 60°
Ca*z (%) Mg*2 (%) HCO; (%) SO;2 (%)
X =Xgo — - X, =Xp - -
K=2Q 2 4 L™7R 2 4
YK=YQ'+Y' YL=YR+Y"
Mg’ (%) SO (%)

Yk = Yq + tan 60° Y, = Yg + tan 60°

4

The location of points in the diamond is at the intersection of rays projected from points in the anion
and cation triangles. In the computer program it is calculated and plotted based on the reacting percentages
of HCOj and (Na") + (K") (Figure 6). .

To plot the point in the diamond field as shown in Figure 6, the following equations were derived:

Xgr' — Xp’ = 100 units

1 unit
2%

Xg - Xp' = (Na* + K*)(%)
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1 unit
2%

Xg - Xy = HCO; (%)

(XU - XT) = (XT - Xs) = [(XR' - Xp’) - (XR' - XU) - (xs - XP’)]
HCO3 (%) _ (Na* + K" (%)

(XT - XS)= SO—

4 4
Xy =Xr =Xp + (Xp = Xp') - (Xg' = Xy) - (X7 - Xg)
HCO- (y - (y - + Cy
XJ=Xl-_.'*-100—--——-—-3(0)‘.[5()_“(303(")__(NEL + K)( 0)]
2 4 4
= {0 N-b +* 0/
Xy = Xor + 50— €05 (%) (Na” + K7)(%)
% TSJ = 60°
Yi-Y
can60°--—-J—-I
Xy = Xg

Y_] - Y-r = tan 60° (XT - Xs) \
HCO3 (%) (Na"+ K")(%)
4 4

= tan 60° [50 ~ 1

tan 60°

[200 - HCOj3 (%) = (Na" + K")(%)]

= 86.60 - .4330 [HCO; (%) + (Na" + K")(%)]
Yy =Yg + 86.60 - 4330 [HCO; (%) + (Na" + K")(%)]

Analyses may be plotted with a point, an symbols. There has not been a provision for over-
identification number, or by choice of five other prints.
Piper proposed using circles, whose areas are
proportional to the absolute concentrations of the
A sources, plotted around points in the central
v diamond field. Our program plots circles whose
radii are based on the sum of meq/l and are propor-
tionally represented with either an arithmetic scale
at a user-defined proportion or a logarithmic scale.

DETERMINATION OF MIXING BETWEEN
TWO END MEMBERS
Primary criterion for ground-water mixing is

that the flow directions must physically bring
waters from two sources together. This criterion
cannot be judged by the computer program and
must not be overlooked by the operator. The
second criterion for determination of a binary
mixing system is based on the assumption that
when two waters mix in any proportion and all
products remain in solution, the mixture will plot
somewhere on a straight line between the two end
Fig. 6. Coordinate system in the diamond field of a trilinear members in all three fields of the trilinear diagram.
diagram, The total concentration for the mixture in the
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diamond field must be intermediate between the
total concentration of the two end members,
whereas the concentration of the mixture (the
absolute concentration and the concentration of
the specific constituents) must all be in equal
proportionate volumes (Figure 7; Piper, 1953). Our
computer program analyzes all the elements of this
criterion and either confirms or disproves apparent
mixtures.

One of the most important decisions required
from the user of this program is to determine the
acceptable tolerance away from a straight line
for a group of any three points being considered
as a possible mixing combination. A user-specified

“—Ca

Fig. 7. Binary mixing system in the diamond field of the
trilinear diagram.

a/b = (V, X Ep)/(V,; X E,)
V,/Vp = (b X Ep)/(a X E,)
Em = [Eq X Ep X {2+ b)]/[(aX E,) + (b X Ep))
V, = (b X Ep)/[(a X Eg) + (b X Ey)]
Vy = (aX Eq)/{(a X E,) + (b X Eg)l
Cm = (Cq X V) + (Cyy X V)
whare:

ab — distancas measured on the diagram;

Ea.Eb, Em — concentrations of respective waters having
compositions A, B and M;

Va -~ proportionate volume in mixture M of water
having composition A;

Vi — proportionate volume in mixture M of water
having composition B;

Cm ~ calculated concentration of the mixtura M,
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tolerance away from a true straight line is incorpo-
rated. Based on an acceptable analytical error, a
five percent tolerance is normally used. Deviation
allowed away from a straight line is a function of
the length of that line and the user-specified
tolerance. Possible mixing points must fit inside a
tolerance window. If a point falls more than the
preset percentage away from the straight line, the
tested combination of three points is rejected as
not a mixing system, For example, when a five
percent tolerance has been specified, a2 mixing
point on a line seven units long would be con-
sidered if the point was within .35 units off the
line. In clusters of points (i.c., very short lines)
even very small analytical errors would cause mix-
tures to be disqualified. All points representing a
postulated mixing system may deviate from their
plotted positions. The maximum amount they may
deviate is assumed to be the same as the user-de-
fined percent tolerance. If both end points in a
binary mixing system have maximum variance in
opposing directions, the line is either lengthened or
shortened. The length of the line is compared to
the maximum possible variation. If that amount of
possible variance is greater than the length of the
line, the program considers these points a cluster.
The allowed tolerance away from the cluster of
points, representing similar percentage of reacting
concentrations, is equal to the user-specified
percentage.

To test for possible mixtures, all points are
considered in all combinations of pairs as end
members, and the remaining points are tested to
see if they fit within a “tolerance window’’ around
the line. The limits of the window are the maxi-
mum plus the tolerance, and the minimum minus
the tolerance for both the X and Y values of the
end points (Figure 8). The window is further
limited within two parallel lines on either side of,
and at the specified tolerance away from the line
under consideration.

The user should be cautioned that the mixing
systems identified by the computer program con-
form with the mathematical criteria only (Piper,
1953).

THREE-WAY MIXING

Piper also suggested a method to check for a
ternary mixture resulting from three end members.
This technique treats the three end-member com-
positions, when plotted, as apexes of a hypo-
thetical triangle in each plotting field. The first
criterion for a hypothetical mixture point for the
program to consider is that it must plot within the
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wiangles in all three fields. The second criterion is
that its total concentration must be less than the
total concentration of the most saline end member
and more than the least saline end member. Any
source that meets the above criteria has its
individual ions compared then to a theoretical
mixture based on the correct proportions for its
location.

The theoretical perfect mixture is calculated
in the following manner. A line is drawn from one
of the end members (Point A, Figure 9) through
the point of the hypothetical mixture (point M).
The point (M') where this line intersects the
opposite side of the triangle on the line CB is con-
sidered an intermediate mixing point between end

R I

tm= Ca Q] -

Fig. 9, Ternary mixing system,

members C and B. The program calculates the
theoretical concentrations for this intermediate
point M’ based on its proportional distance from
points B and C in the same manner as used in the
two-end-member mixing. The calculated concentra-
tions for M’ and the concenrtrations for point A are
used as end points for the calculations of values for
a theoretical mixture located at point M. These
calculated values of a theoretical mixing point for
the three end members are then compared to the.
actual values of M. If the calculations demonstrate
that mixing between the three end members may
produce the mixing point examined, the results are
included in the output. If this point fails to meet
the graphical or analytical criteria, the program
proceeds to another set of end points.

OuUTPUT

The Piper trilinear diagram can be produced
on the CRT, thermal printer, or the X-Y plotter.
Plotting on the CRT is the fastest and can be used
in preliminary work where no hard copy is
required. If a hard copy is required, a thermal
printer copy may be produced after using the CRT.
The thermal printer copy is limited in size, clarity
and accuracy of point locations. These are merely
limits on the display of the diagram and do not
affect the accuracy of the mixing tests. Plotting on
the X-Y plotter may produce diagrams in a wide
variety of sizes and colors with high accuracy of
point locations. Qverhead projection transparencies
may also be produced with an optional pen set.
Overprints of several different sets of data may be
run with different symbols or colors. Concentra-
tion circles are optional and may be left off some
copies for simplification and clarity.

Hard copies of the input data along with
percentage-reacting values, absolute concentrations
and analytical error may be obtained as an output.
Binary mixing systems are represented in an output
as a series of tables listing the points lying on
straight lines in all three fields, the preset per-
centage tolerance and a percentage error computed
from the difference between the concentrations
(total and of individual constituents) in the water
plotted as the intermediate poinc and a theoretical
perfect mixture for that point.

The output of a ternary mixing system is also
given as a table, listing all the points representing
all the mixing systems. The tables display the com-
parisons for absolute and individual constituent
concentrations. A complete listing of the program
is given in Appendix I, and an example of input
and output is shown in Appendix II.

73



1 opr
Ty
o,
VA
vrn

q;o( 100), ’qnc{ 19507,

0
40
ALY

AV TET L TARI YA AR
%) PP""‘ agimi,
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TR0 SRINT 2aGY
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azo "NEW ** Hea(I)

A40 "HEW TR ]
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3R0 T UNEW JELIETYE )
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ARG un-\O Ay TNPUT NRW VALUE "',’-.lr\

2an Iammt1 “HPR TNPUT NEW VALUR 27 Ball)

A0 Tons!? THEN INPH™ HEW VALOR " X1}

314 SRIATER I3 Ausprincer

320 PATAT LIN{Y,"Source is #7;I;LINGY)

a1 BRINT " a0MACE Za L7 ] LY X Hen% =0
T

40 PRINT TRING ’A"I'Z.un(") wg(l) ST, K(ﬁ Hcefn Call)

A0 3RINT T SCURC 4 EL Fa"
260 FRINT USING Ja0:7 ’u(H 2100),9a(1), pu(t‘ q”r\ ol T)

37 PRINTER I3 14

G9Ag  IMPUT 'ANY WNRE ""RR!?"O\N a ITER/ADY Q%

A0) TP QR VEST THEY 720

1000 INPUT “Ta printour of the 1“- required” (YR3/NOI" QX

TNMO IR IRt YEI" THIN S03UB Lia

1020 INPUT "DO YO wANT® ¥YOUR "A‘M ITORED IN A NA®A PILR % (YEZ/NOI, Q8

1630 TP JRa"YRA" THEN GORUE Detm

0T PAR Ikt TO Imax

104D Pqea(I)-PARUNDICA(IV® N499, 2) ' CONPUTES MEQ FROW PPM
*A50  Eqma( D) PRCUND(Ma(T)*.7R226,2)

to80  Pana(I)+PROUNNINal[}%,047%0,=2)

YT Bk TV aPROUNDOK( 7Y 4.02587, =3}

1080 Tqhca( ) =PROMND(Heal 1), A14%0,_2)

1000 ®qoolIV«PROUNDICOlI)*. 8772 3}

1IN0 2qel(IYaPRONND(CL(T)* D2R2! ,-2)

10 Egmol{ T)aPROUKD So(1)e A20m2 -2)

120 Zqno(T)wPROUNDINa( T I®. 0181% 2} .

t12s Pqpa(l)nROUﬁD(Fa(I)' oTiIRG .2}

1126 ;fll 1) PROUND{ Fa( ) *.075AY ,=2)

EAE)

1128 [NPUT "Are <ns aeq/l valuma o be printed? {(YER/NO)",7ueetd

1129 IF QuestSs™¥0" THEN GOTO 1145

REWIND '

QPTION

COM Imax,Jutprinne-,” n¢_guemtS,

APPENDIX |, PROGRAM LISTING*

<PIPER> update: 9-22-820
PAZE
Trr_extrens, Seves

PRINTER I3 '4

PRINT PAGE “THIZ PROGRAM WAR DW!LOP'D IR K5U DEPT. 4P SEOLOGY"
PRINT "THIZ PROGRAM (2 OESIGNRD TO

PRINT * (1} SALCULATE WILL"'OI”‘V'L!N"E AND PPROENTAGER™

PRTNT = (2) BLOT SACH 3NRCE ON A PTPER JIAGRAM™

PRINT * %) CHECK FOR 20Q33IALF MIXTuURES™

wAl?T 000

SRINT PARE

THPUT "Ta +png PIDER ave-uy an the Keya"™" Jueats

iF uuv!(s"v" SHEN 1

PRIV

lﬂ'flf'"

SRINT
e
ey
PRINT
INPIT
PPINT
PRINT
IvAGE

IMAGE

BNt
PRINT
2ETNT
LEG

"ta the atrinted sutput Fro@ LAls prosrsw to he nrinted on *he iaterna
LIN{*):%ar *he sxve®nal srinter [AGILE' «grainal}?"
TINCO) TAEON), UTHTCRNALY AR PN LIN1 ) TARIIN)  TEXUFRNAL"  TAR(T

Qutprinter

PAGE

“YEAT TS THR TTTLE QP YQUR PROJECT 7 (MAX 16 LETTIRS 1" T{rlef
PR 5 tutprinter

RTNG 220

an{ e

2%,70,407X,5D.0D)

TAR(TO) ;T s leF

TRING 220

R 5 '8

DIM Pma( 100, 0au(100), Paak{190), Paa 100}, el (100), Pheai 1)

AL B¢

oI 2
34ORT

2p( 100 -qcalvom.';':uu(!OO).EqnulVHO).qu{|OO),!qn:a<"m),
EZapgl 10N, Zgeal tnn

at00), "g('oo‘ 'nuom i nm JHge! 100, 0101000, 20190} Mai100) ,%a( 130)
Xd{'00), "dHOO) Yr‘('OO\ ‘frt(!OO) Xl{('ﬂo‘ f1eiin 00)

Bgelfinnl, g

DIM Po(100) . ‘?rrIVOOi Paticol nicl1a0), =i A0

aimr

atnak(100),Toeal (100}, Tarnaa( 100), Trat( 180) , Taniol 100), Tas( 100)

DIN 24801001, Taual190), nt! 100}

TNPUT
N D
2aTwt

“DATA "l""?" MODE:¥EYBIARDt) OR DATA PILE:™1472)",3
G0T0 210 ,1

"HPROP’R R"SPDN!R ==n®ry again"

wal? 2000

PRINT

PAGP

MASS STORAGE 9 " Tidv

M2 4k

"WRAT (2 DATA FTLE YAME?* Pile_names

N ERROR .:f“'“ 24
AZBIGN #1 T File numel
APF ZRROR

READ ‘! Tmax

Az
:\,."_r’!).lu‘ﬂ,?_(!'.ch’l’).Tof').’?‘.(U.ﬁa"".!’le’!)‘?n(?‘.h([‘

INPU'!’ * PROM 9CW MANY SCURCP3 120 YA HAVY RAMPLFA™™, Tmax
PRINT “NUMAER 0% JOURCEF o ":lmax
POR I TO fmax

PRINTER 5 &

PRINT
SHBHT "UALY
INPUT “YALUR OF dx 7%

4178 YOUR VALUES POR SOUBCR #7:f
TALUR OF 2a 77 Eall)

THRUT "VALUE 2P N "'.‘h(")
INPUT “VALPE OPF K V¢ K(TY
THPYT CVALUR 2P ‘U‘Q""'.'Lal 19
[PUT “YALUE OF 20% 2~ “oif)
INPI'T *YALUR OF 3nd 7™, Ral{)
INPUT ~7ALUE AP 21 % 2LTT)
NO® " Nall)

INPUT “YALYE OF
[aoe fYALUR 2
THPUT “VALLE 2
APUD "TALE

o
yprer

Lxl"

"ARE YAUR TALUTS ALL TORAKOTTT A% Tortwers walaes

T eYEET THEN GOTD 1800
peTYtER T2 ‘&

" f‘orrecc
mn

INPUT “UHTeH SOURCE 18 1T PROM ", 1
“wH ! (A AN ™0 CHANRE AT LTNEP)  TARIOY TTONT ORB(IY R

"'AB"OI Ry ”!rm) .-"‘-01-.‘":;1

* Copies of the program may be obtained on disc
(single, or double density) or tape-cassetre for a nominal

fee by contacting Dr. Yoram Eckstein, Department of

Ge

ology, Kent State University, Kent, Qhio 44242,
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10 PRINTER '8 ~nspringe
1172 PRINT "H(;’)-"!OUTVAL"!‘H r
R
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t1%a M.
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1135 NEXYT
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t1ay NEX*

t142 TAGE 2!."0 $7E,40.30}

1143 ANt BRNee)

1145 NPUT "Are the percent values %o be princed? (YRE/NO)", 28
1195 TF 73x"YES* THEN PRINTEIR (7 Outprinter

1184 TP DXL>"YER® THEN PRIN®ER I3 15

1157 PRINT LIN(2);"PERCENT 1P TD3:¥EC,*;LIN(1}

1’1‘75‘?5:11 "SOURCE %Ca %Mz
1160 MR 2t TO Tmax

11680 Totnak(D)eBqna(l)eTqr( )
1970 Total{!)aBqel{l)«Egnall)
1RO "utncnvT\-"thafl\-!qpulI\-quul')
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2750 mOVE 77 27 -
2%R0 LABEL " CO7;
2%70 C3I2E 2

2%80 LABEL "%7:

2%a0 23128 3

2400 MOVE 40,70

2410 LABRL "30":

2450 "!OV' 12 13

2450 LABEL * . L =wd®:

2470 10‘4'! 19,20

2480 LTABEL “vwg -—»";

2490 LDIR 2

2500 MOY® g, as 'oPrint title of plav.

3510 CRILE 3

2830 LORG 2

25%C LABEL TSING "¥U:Titlael

2540 PEN Penn

2550 Plat=Plat+)

25A0 IF Plots! THEN 7070 2530 T A1l peta. nust be plotted *he firac time
2541 DRINT PaGl

2679 INPUT "Ara all data po:iaza to be plotted on the dingrem®T 018
1830 TP 2M1a0Na" THER 30T0 IE2D

2590 fain=!

2600 Tmaxteimax

2610 3370 2640

2R20 INPUT "At what sbAervation snould the plotting heain®".lin

2621 FEN Fana

260 TNPUT "At whe* obaervation should an nlottiag avop?™. Taax)

2640 POR Iximin ™7 Tmex! 2LOT3 POINTR LEPT IRIANGLE
2650 YIf(I)aPag{i}*. 4770« AALCULATES v FaAM wug o OPwg
2hG0  XLEIT)afO=Pral Z)/Z-Pm‘(t!/d FALLULATER X 'Q"" LY \.li - JF!"W'"
36T MOVE X12(I).Y18(T)

2680  QB[IF 2

2690 GOIUe 20

PLOTS SOINTY 74 ATIuT TRY AHGLP
TALGULAMES ROM 2044« JPPIEY
ZALCNLATES X FROM ROd - HCOIKGPPERT

)
)
]

=1
‘i
e
»n

AT
2730 Lre(Dl=120 lo(")/d-?hcu(l"?
740 MOVE XrelT) ¥re(l)

2750 608UB 372N

3769 NEXT T

2713 POR [=Tmin T fmax!

2790 X2{1)wg5-Pheoi ) /a+Prak{l)/4
2T 7d(T1248.6-.4110%(Pheo( i« Pnak(l})
2300  MOVE Xa(I),Ye(1)

10 GOSUB 120

2820 YEXT

2870 PE¥ O

2940 DEEP

2850 PAUSE

2A60 Duspia"¥0"

2970 [P Plotsypest THEN TNPYT =DC VO JANT A IDPY DR PYR [NTYRWAL PRINTER?" Duamp

PLOTE 2OTNTY IV QTANOND
ZALCULATRES X FBOM HOO+Mp«K& « “POIET
TALCULATPR ¥ FROM HCO«Na+{¥ « 1PFRET

]

2980 IF DumpS="YES" TEEN JUMP GRAPHICS

2890 [P Dump§a"YEE~ IHEN PRINT LIN(S)

2600 PRINTER I3 16

2910 PRINT PAGE

2920 TNPUT "nO YOU WANT O DRAW CORCENTRATION CIROLER P,
2770 1P CirSe"N0T TYEN TRI0G

2040 TP CicRC> VEST THEN 2920

2960 TP Plottypes2 THEN TMPUT "WHAT PFY NUMBER DD YOU WIFE T2 DAA¥ TH® CTRCLES *

L1
2970 PEN Quey
”359 INPUT "70 ¥OU WISH THE S{RCLES STOTPED ARITAMATICALLY!') OR LOGRITHMATICALL
¥I2Y T Ans
1040 IF Anma! *4EN Y200
n00 208 falain 70 Taagt

eu;""'sun(t)\n
kvl "OVE AEERANE SR
TR) FOR Analesg TO ‘50 3TEP '
can BTV H{I‘--‘xr:'.a'stnllmn-\.‘f'!(!Y-Circle-cosun(;q\
R0 T dngle
higl-l) M
IPAG MO 108 8%
004 LORT 4
100 LABEL “SCALT Df TINCENTRATION JIRCLE RADLI(MEQ)"
TV MQYT 10§ A4
1M LINE TYoE O
T DRAY '10S5.4%T3T(Y) A4
1A% TRAW vouu "'"0‘ aa
TieA BRAW 1D8earIGR 1808 ag
V30 3PAY 1084e 427 1000Y, 8
T LINE TYRE Y
A LORG 2
xap LDIR 270
TN MOVE Y05 A2
TAt LABEL "'
1220 WOVE 106+4L5T(10),92
270 LABEL Q0
240 NOVE 106.L4%L370 1000 ,92
1250 LABEL “r007
TIEN MOVE TORLA*L3H 1000Y, 82
1270 LABEL ~'000"
2RO GOTH TRAO
290 INPOT CVHAT IR THE «Ty, gmg, "wr-x'v*u'rnn(m) TG I® USEDT . AmLn
TTnG [NSOT WHAT S8 THE WAX. ABS. “ONCEMTRATINN(NEG) #0 BZ 73%D% duex
1T IF ABLRwA T2e0
IR20 POR Telaln
1) Janval0Y

Inax?
um{ 1)/ (Amax-Amin’

LD MOVE xa(I),Ya(l)

0 MR anglesd 0 TEQ STEF 10

TEQ ORAW X4(T)+Conv*3IN{Angle! , Yd! 1) «CanvetOS{ Angle)
3T MEXT Anale

IR0 NEXT I

1400 MOVE 175,46

*410 LORG 4

1420 TAREL “9CALE CF “ONCENTRATINN CIRCLE RADLI(MFQ)"
T440 MOVE 9% ,9Y

450 LINE TYPE @

tag0 FOR [=Q 7O 0 SPEP &

g DNA' 9%-1,8%

*a80

NEXT
© 490 u!H! "YP! 1
LORG 2

510 PITED O

1520 MR [=0 10 S

3630 MOVE 9%. %6 .m0

540  LABEL "'(An:-usn)/ﬁ)cntn

1560 PEN O

570 PAUSE

1540 [P Plotcypew! THEN INPOT “Da you need & Mrd copy ™ YER/NOL. Y Quest®
%550 [P ‘Quemt¥<>"YES®) OR (Plottypedd!) TREN 1620

RO0 DUMP GRAPHICR

607 PRINTER I3 O

610 PRINT LIN(3)

%520 INPYT "Ig another plot of “hiy sase data nesded? (YES/¥O)", flocs
630 [P PlotS<a7N0" TREN GOTO 1400

1640 EX]T SRAPNICH

TH50 PLOTTER '3 12 OPP

3560 PLOTTER 7 5 IS ore

*570 PRINTER I3
IRTY PRINT HG! h-t vould you like %0 do now?";LIN{2}:TAB{10);"Pind aixina lin
#8" 1 TAB(4A0} ;71" PAN{10) ;"Correct & dmta value ¥ replot":;TAB{40);2"

1672 PRINT TAB( 10} ;"3tare data”; ‘AI(JO)-""‘HHHO ;"Beaw 340f7 disarasa”: TAB(40
Vim4;TAB(10) ;"End program® ;TAB(40) ;"

A eal THpT 3

IET4 2N ] 0T IHHRG Corcect,3%arw 3tif, 2nd
1675 3+ tLINK “STIPP:Pi18= 10 '0

580 Rixine:LINK "MIKING: P14+ {0,

%530 Store:GOSTB DJata

TRIT G070 TETY

0 End:3TOR

0 2

a0

R I LABEL UZING *¥";T
0 IN LABRL TIBTRG “¥*;"ev
150 Tharcypesd LABEL ’H"VG KT

TTRO

770 I

80 LIRT

g P

1800 RETY

860 DICI !VP'.H.' “DATA WILL BE STORED IN T:14,13 THERE A TAPE TN ":!'4", Ans}

IR [P Ang¥="YES™ THEN %200

I890 MASS 3TORAGE T3 "iTiAn

7900 INPUT "PILE NAME 7O 3TQRE DATAT",Pila_naned

910 CREATE Pile name$, INT( Imax*.i+1)

1920 ASS'GN ¥t 0 Mle_names

1a%y (] =

0% PRINT

1940 P8 [st T3 Tamx

‘@‘Ff{) ‘=R!‘IT 1 A(I).Hg( D), Na{T), K1), H20( 1) . 0ofT),T2(1),50({ 1) Nai{ ). 7a{ T}  Pas I}

BT

040 HEXT I

965 ’WH" “20URCE cL 304 nox PO4 EL) E3

1970 MR Ter TO {omx

7390 PRINT USING 2!01! S, 3a() . Nl 1Y, 2ol ) Pel{ D). 84( ]}

4000 YEXT I

4010 PRTYTER I3 Cutprinter

4040 PAINT Tiyled;" DATA ITORED A3" Pile raued:”--contatning ":lmaz:" souraew”

4070 PRINTER I3 16

4040 TISP "Presa coatlnue %o procesd. ZONTT

40%Q PAgSE

4060 bETURN

4070 Lias:! THIS SUBROUTINE LIRT 7w¥ 80w vaLURS

4980 INPUT "Ig tne dats "0 Se nrinted Of “ne printer?? Juestd

4090 [P dyuspt®2"YES" THEN PRINTER 3 Qurprintar

14100 T? QueatfetdO* THEN PRINTIR I3 15
?

artypess 7 LABEL G TN Ee
nncno-ﬁ THEN LABRL 03TnG LRl L

,hlrtypgﬂZ THEN LABEL USING "K7iv "

4101 PRINT LIN(!):"PARTS PER MILLION:":LIN(1)
410% PATN? " ZOURCE Ca “r Na b4 gnav o
+n
4119 3
4110 "‘§,.§, ugtﬂd 740:1,Ca(1) . Me(I) Ral?) . €( 1), Heo( D), CalD)
yr

h T " 3°UBC! @1 304 NO% 04 e 3
3180 PR Tat 0 Izax
4190 ""11’ USING 240:7,8101).%0(1), Yol 1), Poil) PalI) 3107

35

LIN( )
v

~vg way
Three _way

0 I )
190 T4o_uay: IMFTT “MHAT $TOLERANCE AUAY PRON A STRAIGHT LIVE 1R "0 28 AlizeEner

"0 PIATEA TE Susprinter,dINTH(1 TN
utprintecsl! THEN 9T R TR OCurprinter WIDTROIIZY  ADJUS™E TOR AGTLE

CHECW PNR MTYTURIR PRCM 2 SCURCPATILIM 2:pTUIRT IMURIE
2 TN ALL THREP FITLDI FIMHIN 2":Tolpve”

10/_\ =
200 aTal/170
217 Aal 0 Tzax
0 2
230 Tet T Toax
40 ]
350 ' Tad} TUEN GAn
260 1i%a] X404y YR(9) A8, tOCHROKS DLaNcND
273 L1+
240 Fol YLEM8Y Ylrie A, 5.7 tHPCKE Lre telawalry
290 560
e 201, (Pl e Yreley A8 0y t CHECKS 93 “PTANALE
e TN 5RO
120 QRO XA 4)FATC) AZL(TA(AY YAl TV )A2Y URIANS g 1N NTAMSNA
hhe] QRO L4 3V XA(C ) IAZe T40B VA TV )AYY 1oAY B
40 RECTZ2OAYLXLE/ 2 )AZR/YIEOATLVIL(N1)A2) ! PINDS 3
hid 'tSQR (X2 D) T1L(EN A2 Y IFIBVLYYIF())A2) v ORNDE b
b TeR0BLTenfA)-XpE (T2 120 YanlA) Y relB)1A2) tOPTHRE o
T aSQR( Xr3{B)=Xre(7))AZ( Yre(B)-Yre (21 A2) voRTdpE -
80 LA *¥guz 3) " oyngywe 9P 4 TN 7
Tan Ad*Hgupm )) vOYGLTWY Op g iY
ane ahalaeVt " CAMBINED YOLUWER
1410 fVeoomk toEA QP MIX 7
49 /Veany T ORE 0P MTY T
43 IROIND! ;4m(A)'*8ult!l”Llﬂ~Lhd)/(LM"nul(AhLbﬂ"laul(‘1\'.-"' eTang T
449 2-Ngua () )/ Nuuaig)e1nn Xps 4 Frare
450 L oup{d)/(Lalf*Taun({A)+Lbl2*¥gun(B)) ' "'ﬂw YA TN LR T
460 Lnl.“‘ls'u“\/”.l feNgupiA)+Lb1¢*Ygum(B)) ' OPINDZ VB TN P TRY
amn i sum(A)+LbreeNgun(B)) ! PINNA Va
480 wum{B)) ! FTAPZ VP 2T
100 UM PatnAK (AT YRLEMarnaKk D) V1L, -2} 'OPINDR Tm OF Masg
200 AaPRATR( TotellA) *VarteTotcl (B Vhet 22) ' °"4M [t Tl
20 f*aeneo(A)*VaresTothcol B+ Vher,=2) 'UPTHDR Cm 1P HI2%WCQ
+
%20 ™ Tacal{A)*Valf+PacalBYevnIf, .2) ' PINDR Ca °F Ta
270 AIROCYE Rqmg{A) YRl S ePrag(BivynlF -2) ' PTNDE g P Ve

lad3 ' ?r!aﬂ Bq NP 7Y

‘."vaoo(A)'V:r"uvquu(u)'vbn L=2)

*atnak®,Totclt, ?otzox, Bgons, Yomar , Rgnot, On, Perrornaic, Perrorea
,onlk(o\ daenegl ), ’q!‘! 2 pql'(n quo(“ ALE,F,82 Fa, 3h, 8]
417 and 18

TR ':-w' ‘5
'V"' PA""‘V‘\M would you like *o 4o now?™;LIN(2):"AB(10):"2-Way 71x11g"
TiPAR/ Y T YaWay olxine” ;TAR(4C) 2" 'IH(YO)."S’GFQ ApeatmARIAnY

b :'.‘A!(IO\' ;nd program® ;TAB(40) ;¥4 ;TAR(10) ;"ThAangs gutput Jprions”

GRO W D cn"'c “wo_wny,"hres vay 3tare, fnd,Turput
¢ Tad: -

330 #earey sn:u Jata

620
3 222;’.‘3'.'! futpuz_opciona

75



RE SNt LT
2] "meas vay: PINED A
]

~40

“e0 T2 Jutprinfar WIDTR{1%2)

“60 0 Imax-2 ! THRRE oarNT MITING

*T0 0 POR Bakel *T Taaxs! ' Paines 4,3 and D sske-up
7eg POR DaPst TN Imax ! the *~ianale. Poinsn I
Tag TP ‘DaA) OB (0x3) THEN 1250 ' i3 being "eated.

00 POR Tal "0 Taax

10 TP /%x4) "R (ZaB) SR {7ap) THEN ‘27D

329 Taata)

a1g TenraPNNLXT VMY CA(EY 04 B AT TR Y A0RY w4t D), Ya/0))

A40 TP “mgrat TYEN 1470

agp SALL tacmrasntioniA,3,0,7,Yav_x Nev_y, Td/ %) Ya(*))¢ “he ‘New_' vartanle
B0 Newd TavVew x

a9 Yevd yadav

aan Adl’éi((45¥l‘ Nevd _x)A2+/ ¥4 A aNewd 7)n2) ! dmnates tha zcard.
240 Lbd= s"P(’x:'s».\--u A2 T4 (RlaNewd 7)n2) ' of *he projected It.
a0 Tamr MR X 4l Tes{8) Xrei D), CoeTT) Yru(A) , YonfB), Yre(D), 'fr“("‘?
10 IF Teata! THEN 1%

320 FYa=lbd *N¥aum(3d)

g Thmlad*NaumiA)

240 TALL Intersectiania 3,0, 7.New_x Vew_y Xpel*), Trn(=})

50 Newr=_gaVev x

%0 Nawr+ suliev_y

aTn LarteSOR(IXTE(A - Nnwre x\nz-fV--’A‘-\v-vr-_y)Az)

480 LereaiQR{ T Cre/ A aNewrs xiADR Yre ' 3lalawps Ad)

3890 '.uurwnu*(n",\) l’l‘*!‘ X1giny, xieie), "TF’A\ AATI0 PIR SV 48 AR AR A LA D]
'000 TP Testa' THEM &1,

010 CALL Inversection(a,3,0.0 Mevw x New_y Y1r(%) y1e/ieny

1020 Newlf xeVaw_x -

1230 Nawlt gaNay™

+340 Lalfed0 P“(l';!"’A,-‘hvu’ xinZe ""A‘-’lwlf_;rrﬂ?‘

1050 'bl’-SQR('Kl”!‘-‘hv‘f x)A2« YIE(B) 147yA7)

1060 128

1070 Yalfalplf*Naun{B)/(Lalt*Taual i) «Lbl{*Nyun(B))

1080 VhlfalalZ*¥sum(A)/(lal{=Ygun(A} «Lblr*Haum({N))

1090 fllf‘-Lbr +Waue(3) /7 InrteNaunl Al +LhrsvNaun())

1100 hre -hr—'nun(nI(r..rv'uumfa\-r.br-"uuu(!)

10 ZnaPPOIND (NaumiA) *Waup(B)*/ Lad+Lod )/ { Laa*¥aun(A) «Lhd*Npua( ), -2}
AR-v} TatnmkTa PROUND! :'or.nak(k"‘l'\l'-'otnnk’ﬂ)“ﬂ! £,<2)! THESE ARE THF TONC,
130 mareltaPROUNDI Totnl/ A)evarseTotcl{B *Vhet, =0) ' AT "HE PRAJPITED
1140 #5230t xPROUNDI TatRAGIA) *TRETeT o'hco(!\'vbrr =2) FND POINTE

1180 TqeataDROTND! ToealA) v/ alfeEqeai D P TN 42)

11560 Tqmat=PROUND( Eqag A *Valf-Zamg{B)*/b12, =2}

170 TauatzPROUND! TgaalA) *Vart+TqaoiB1sVhes 22)

1190 Ladn30R((Xd{P)= (d(”Hf’-("d'D‘-X’H")\AZ) ' OPTNDS YEW OIYPANMER
1190 Lhdw3CR((XA{ I Nowd _x1a2ei Y1(2)-Newd_yiA2) ! "RING PROJEQPED PT
1200 YHalbd=Tp ML AR N OTXC
1219 VTnewsLad *¥sum({D)

1220 Yopmalney«Ia

1270 PasVnew/Veom*/ Va/l Ta=Vh))

1240 FhaVnaw/Veom* Y/ Yauvb))

1250 PaVd/Voom €Y ING

V2RO Lll!-ﬁQR(f!1!(D)-Xl!(c)M?—"f‘.f(nh‘!‘.f'ﬂ\h?\

1270 LolZaRQRIIXIFICI-Nawlf 2)A2«I V112 -Nawll y1a2)

Temo LartudQR({Xre(D)-Xe4{aT)AZe{ Tra(D)=Tre (1 TA2)

1290 LRt adR( (Xre () =Newry_x)a2e(Tre(C)=Nowrt_yin2)

1300 Valfalble*te/(Lalf*Yaul(D)+Lb1f*Tm)

1310 YElfwlalz*Yaun(D)/({Lalf *Noun(D)+Lbl*Bn)

1720 VartsLbre*in/(Lare*Noun{D}«Lort*"n)

1330 Vortalart*Naun(D}// Lart*Xeun(D)+Lhrs+tu}

1340 EuwPROUND( Noum{D) *En®( Lad+Lbd )/ ( Lad *¥eun(D)+Lba*2u), -2}

1350 Parrorews( Zm-Nauu{C))/Neua(c)*100

1360 Totnal ROUND( Totnak(D) *Valf+Totnakt*Vhle,-2) ! TWEIE ARE MR CONC.
1370 TotoltsPROMUB( Totcl{D}*Varvetoral t4¥hry, -2} ' EXPECTED AT M. C
1380 "ataataPROUND( fotheo(D) *Tart+Totcot*Vore, =2}

1390 Eqcoat=PROUND( Pqea{D) *Valf+Baont*Vhrt,-2)

1400 Zqaqt « PROUND( Fqug(D) *Valf+Eqagt *Vhis, -2)

1419 Eqaot=PROUND !q-a(D)*Vtrtv!qlot'Vhrt.-E)

at,%n, Perrornak, Parroren

1420 CALL Jalec_mix{Totamkt,” avelt.?o:no: Eqoat. Bqmgt
ee{*Y A, 8,C,0,%,Pa,. 0, P)

.H:ul(').‘etclr'\ Zotaak(®) . Totheo( ), Bqca( "), Tqugl(*),
1430 NEXT ©

1440 D!S! "Sonrchinq complated on points;®:A, 3.0
1460 NEXT D

1460 NEXT 2

TATO NEXT A

1480 9REP

1490 GOTH 510

1500 END

1519 ¢ rhutanry m‘!c“’-"'g LXET AL lLd
1520 Dutput_options:PRIND PAGE;"Do you vant :hose tabl *he nongentration
of “ma mixTure noint is too nigh 2t *og lov wo be 4 & mixture 7;
1570 PRINT "ramulting Zrow the and sesbera in the printed output? (YER/NO)*

1540 INPUT Zome questd

1590 BRINT PAGETYDo you want individual lon concentrations printed along with th
e total cancencrations” [YEI/NOI®

1560 INPUT Savay

1570 PRINT PAGE:"Vhat should the cutof? value be for saximum concentration error

1SA0 TNPUT Trr_sxtreae

1530 PRIN? PAGE:“What cutput device ghould be umed for printed outpuc. (AGILE tt
iR -nnl Erln:er "

tRO0 I U Wu:prtntcr

1610 R..
1420 gTQP
1630 Dmta: [NPUY "DATA VILL 3! STORED IY T:14,13 THERE A TAPE IW T:14" . AnsS
1640 TP Anaf«"YER" TYEN

1650 TF AnpS$d>"YEIN 'W!N "!O

1H60 MASI STORAOE 13 ":7¢ar

"670 TNPUT “PILRE NAME TO STORE DATA®" . Fils_nemed

1680 CRPATE ile named,I¥?' Toaz®.4et) =

1690 ASZIGN & "'U File _naged

1700 PRINTER I3 18

1710 PRINT #t:laax

1120 PRINT * 30URCE ‘a bt ] Na X HCOS [=+]

3
1730 POR ix) T0 lomr
1740 PRINT #1:Ca(!) Mef1),¥a(1),€(1), Hea(1). 2ol 1)},CL(T),80( 1), Na( 1), %a({I} PalT)

4]
PRINT JRING t1Q:1,7al 01 . 4g( 1}, Xal 1) X1} Hea(l), 20(1)

NEXT T
1770 FRINT = SOURCE <1 an4 03 P04 Pe LT
1730 MR Tat O ‘max
1790 PRINT usxno 1403 1,810 1), B0 1), Nal 1), el 1), Pe(1) ,30( D)

WEXT
1810 PRIH*SR I3 Qutorinter
120 PRIN® "DATA *:"9TORED A3, Pile _naned:t-—scontaining ";Imaxisources®
1830 PRINTER 13 Y
1840 DT3% "Prems contlinue to praceed. SONT®

1990 r.-aon(?x(n)-m))az‘(r'n-mmz)
2000 Anglez=a0-ABS(Angley)
2010 IP Angley=90 "HEN TholaTol+*Ll

1850 PADSE
1960 ARTORN .
1870 DEF PNCE2ptl{T01,3HORT X(+),Y1*) AAL A, P, C) ' Natermines if point C
+AA0 DRG ' 14 lozated on line AB
1890 Tented
1900 ¥ul
1910 IP X{A)=X(A) “4EN AngleyssO ! EXCEPTION POR 90 ALOPE
1920 IF X{A}aX(B) "HER n--:q“ﬂq%‘nw t FECEPTION PR 90 SLOCE
1930 [P X(A)ak{B) THEN t FICEFPION FOR 90 JLOPP
1940 [P Y(A)=Y|B} -uu uy-o ! TXCEFTION POR O 3L0PR
1950 1P Y{A)a¥!B) 7 iugo ! OBICRFTION BOR O SLOPE
1960 Ma{YT{B)a Y’A))/(!(l) xlA)) ! SALTULATES ALOPE
1970 AngleyuA?N(N) ' FINDE ANGLE OF 3L0P%
1990 NatiA)-42Y(4) ! PINDS INTERCERT

'

'

'

AVOIDS

2020 ¥ Angleys2Q “HEN 2040
9% Trala®al*L/CO8(Angley) tOPIN0S ¥ TOLRRARCY
2040 IP Angleys) THEN {«glatal*l TAVOTDS /0
2050 e Anney-o THEN 2070

2060 Ytol=Tel*L/COB(Anglex) T FINDR U TNLPRANCE
36~n ¥ ’<'al"6 50 'ﬂ?‘ Tenlatoleed. %0 + THFCXR TLUETER
2080 I[P Letol*ab, GO "“ ¥ Xtolalal=4®, 10 ' CHECKS CLITRTER
2000 [P !"%>WAX ts 2&1!01 THE rO3ETS Y MAY SF AINDOY
2100 12 XiZjemrnix( A ~Xral *HE! + 3TPR f MTV AP 4INDAY
2090 IF YOSIOMAXIT(AY.YB) V4T r0l THEN Tagter ' ¥OWAL IR WTNDOW
2020 [F YICTCMIN{Y(A),Y(B))~Ytal THEN Yageat v OgETE Y MTN AR 4TDOW
2110 1P Anglay=30 THRN 2140 AVRIDE 0
2120 1P Y(Z)>MOY(C)eNeYtol THEN Tagrat Y DTATANCE TRCM Live
2150 ¥ (w"‘x(c)-'-r.at THEN Testal ¥ DIETANCE FRAM LINE
2150 I? An “Y'o THEN 2tA &
2179 [P X(Ii> Y(cy-x)/w-x:ez THAEN Taats) 2 € STRTANGE TRoM LINE
2190 TP X(C)<(Y(Q)=N}/M-Xtal THEY Tagtm! }OOHBCKS Y DIZTANCE PROM LTVE
2150 RETURN Teat
2290 FITND
2200 3UB .n:eruc-xan(A 9.0,C,Nev_x.New_y SHORT X(*), Y(*))' 3ubroutine finds che
2220 GPTIIN BaASE interanction of 2 Lines,
220 DenonabwDanomcdsNusabeNumed » . 2000
2240 1P X/AIOXIEY THER Dancaab=X{A)-X(3) ' Avoids dtviaian by zers
2250 IR XICIOOX(D) RN Denomed=X(C)-X(D1 ' and afinite alopes.
2250 IP T(AY¢>Y(B) TUPY Jumaba¥!A)aY(3}
2270 [P {CYOT(D) THEN NumedaY(C)-YID}
2290 M{1)zNugab/Denomad
2290 M(2)sYumed/Dedomed
2100 B(H--lmn-v?n-y(n
2310 802)a-/%/2)9(DY=T(D)
2720 New_x=!3(1)-8(2)1//8(2)m(1)) ! Yaw Y-Y coordinwtas
2TTN Naw gaN{2)4Nav_x+8(2)
2740 3UTSEND
2390 DRP P¥MixI(SMORT X{, X)Xk, X1.¥g, 78, 7R, Y1) t Detergzinag if 1 point 7
2360 Jlopeensex(!'aX1-X] !t i3 loested withia a
2370 Slopechack(2)=T{-Y) ' triansle farsed hy aes
2780 3lapecheck(3)aXj-Tk t A8 80
2780 319pccna=k(¢)-¥j—'¥
2400 Slapecheck(5)aXiwXi
0 4‘:pachnck(5)-¥k~!i
2420 FOR Net M) 5 3TEP 2
2430 Zapped=0
2440 Ty Blopae‘uaek('l)om ANT [21opecheck(N+1)¢20) THER G0SUD 2og
2450 Zappadwt THEN 2510 " lappad 3 st "3 one {9
2460 Sloplchlck{ﬂ)to 'HEV GOSUR Vert ' the gubrouting (¥ -ee
24™) iP Zappeds ' point I (s Jutyide “he
2480 N S‘apnch-ck(?tI\-O THEN QO32UD Hor { “ttangle AdD.
2890 IF Iappedat THYY 2510
2500 NEXT
2510 REMISY fapped

coM

! “omparag paint 7 With o

' llme »f slope ¥ and an
3074 28A0 ! &nd potnv ‘Alige’ by
X1l ) ! sxaminiag *h tnt
BEUIDI-(“XJ-[j) & *me¢ ¥ intercepta
HTQ 26

wdlapsahack (el /S1apacheck! Y]
THEN 307D 2610

X1-v1)
. t>B1ine) AND {Boomp<Aling) *
I? (Steat<Bline) AND (Beowp>Bling) °¥
RETTRN
Ver! P Xt THEZN BlinewXi
=1 " MHEN BeompaXk
1 THEN 3linewX}
THEN JeompaXi

Zappadst
Zappeds!

¢ Bame, but with vartiaal lines

¥ Nx 3
iy f"<!11n0) “A¥D {3eompydline) THIN Zappeds
IF (X1>81{ne) AND (Becmp<Bline) PHEN Zappeds!:

' Fame., but with Rorizontal lines

1P Nad a
IF fal ‘:-:2 v

IF (T1o8ltne) A% f!uo-y(!xtno\ Y “appedat
1P IYiCALing) AND (Beomp>Bline) THEX Zapoeds)
aseuay

3 Princts she mrcors of sre sixing -ast
k*,Totele. Totzor qc!'.!qul...qlo'
(o), Takngal*), 'qcnv-‘, nc(".!qnu(" A
ater,7one_queety Ser_sxrreme, Taves

rarnak. Yercorem,
v *.Pa.Py, P

: Jut
INAGE A0 ")
TP A9/ PerTore='y2rr_sxvreay THEW 3070 TTIO ! ICRERNS QUM CYMVANTER nrrpie
Cane _shacks0
17 ¥Euzmill>wa

Saum(A) Naua(B) Jgua(D' “Y¥¥ Zonc_checks

Nsup(A) Neua(R), Nauni D*) N Cone checka2

/2 k32 AND (Cone jusgefe¥om) THEN GOTH ¥rig

.'RW' sm 29an -

17 Cc"e';hoek-' SUEN PRINT "CONCENTBATION OF MIXTURE I3 TOC 4104 PR TFF NE
" by

ahecked TUEN MRIN® YCORCENTRATIOA AP MITIIRE TR TOQ LOW PAR THR O URY
g

ka{ TotRARS -TotmAR(C)) /Motaaki 14100 FINOR £ TRAOR Vaek
={ Tata PINDS ERROR 21
=( "0t BINDS 4 IRROR HCOT- c"

L
€
L]
2 ¥qe 21NDa & TRAOR "
£

Perrorags( Bqa. PINDS € POROR %2
Pereossqgn{ Tamo=~2qm0(C))/Bquo(C)*100 PTNDR 4 ZRROR 3M4
PRINT "S!NU ETIA0,0,C

IMAGE “ton Point #%,2p,"  Potnt #%,2b." Potnt 4,20, Zaleula
Poiny #%,20,"  CErpge”

sRIN® - 3iz
Eqmgcd=VALE( =g 3))

Eqonc®=VALI( Faeai M)

TotaskeSsVALR( T2=nnk{D))

TatnestaTALE( T2 .‘mu(B) 3

PaeoctuVALE( Sage’ D))

*ataledaVALE(Tz421(D))

NsumcEuVALR( Naua( D))

1P T2 TREN ’!-TAL}(?‘\OO?&‘ L

g ei-chnet-?e!nukel-?athuae!-!qlouI-Totclcﬂ-ilunc]-‘1/A'
IMAGE 34, SD 22,4X,%D.DD.4X. SASAX.SD.DD.AX.WH.DD,AX.lﬂ.DD

080
3190 PRINT ey “BO:‘"OIC. Hlul(l ¥aum{3) ,¥ouncd ,2a, NouniC),Perrorem
3200 [P Ravele"NO" ITIN GoTQ K!‘Q
& WE" . Fqug(A), Pqug(¥) Ramgcs,Romet. Tang(C) . Perrorag
: ca”, !qcl(k LPaca(n),Bqoncs Bqeat, Bqea(C), Perroroa
3230 PRINT USING 3130:" NaeK™,Totnak(A),?otnak(B), Tatnake®, Totnakt, TotAak(c), Pe
rrornak
1240 PRINT TAING Xr80: HCOY+CO%",Tathcol(A),%othea({B),Tatheocs . Toteos, Yotheo(C},?
arrares
%250 PRIAT TIING T1&%:" 804" Eqao(A), !glo(l).!qoue!.!;.ot JEqeo(C), Perrorse
1360 PRIN® UTNG $180:"  C1". %otel(A},fotel(B),Tatelcs.®otalt,Total(C}, Perrarsl
*400
1250 Poafbti100
1290 PRINT "Mixing "
300 ERINT “Pastora R IAL] "Pte L
1110 SUBEND”



APPENDIX 11, INPUT AND QUTPUT

The data analyzed by Piper (1953) was
chosen as a test problem to evaluate the validity of
the computer program. Both graphical and compu-
tational results were compared. Table 1 lists cthe
water chemistry of the eight water samples as
presented by Piper (1953). The sample notation
used in Piper (1953) and the computer program
sample numbers are both listed.

We could not discern any difference in loca-
tions of points on the manually produced graph by
Piper (1953) and the computer plotted graph
(Figure 10). Comparison of percent-reacting values
tabulated by Piper (Table 2) with the values ob-
tained as an output of the computer program
(Table 3) shows very minor discrepancies, caused
by difference between the values of atomic weight
used by Piper in 1953 and more accurate values

== Ca

Fig. 10. Graphic output, Numbers correspond with

“Source’” in Table 3.

Table 1, Chemical Constituents Analyzed by Piper {1953) ~ Input

e
(=

Constituent (ppm)

Piper identifier: Al Bl bl A2 a2 B2 b2 C
Program identifier: 1 2 3 4 5 ) 7 8
Calcium (Ca) 39 40 39 102 42 466 65 393
Magnesium (Mg) 10 10 11 19 22 77 28 1228
Sodium (Na) ' 54 ‘ 10220
Potassium (K) 47 52 56 3.6 152 255 808 353
Bicarbonate (HCO;) 204 207 204 203 203 166 199 139
Sulfate (504) 24 21 26 6.7 49 0 207 2560
Chloride (Cl) 16 32 32 199 199 1346 1346 18360
Table 2. Percent-Reacting Values Computed by Piper (1953)

Constituent Al Bl bl A2 a2 B2 b2 C
Calcium 40.4 39.3 36.8 56.0 19.9 57.2 7.0 34
Magnesium 17.1 16.2 17.1 17.2 17.2 15.6 17.3 17.6
Sodium + Potassium 42.5 44.5 46.1 26.8 62.9 27.2 75.7 79.0

TOTALS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bicarbonate 77.9 71.7 69.9 36.7 33 4 6.7 7.1 0.4
Sulfate 11.6 9.2 11.3 1.3 10.2 4] 9.5 9.3
Chloride 10.5 19.1 18.8 61.8 56.4 933 33,4 90.3

TOTALS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3. Parcant-Reacting Values Computed by the PIPER Program
Absolute
Source % Ca” %Mg™  %(Na"+K" % CI° %S$0; % HCO, Conc, (TDS, mg/l) % Error
1 40.54 17.08 42.41 1049 11,66 77.86 9.10 5.71
2 39.37 16.14 44.49 19.03 9.30 71.67 9.81 3.57
3 36.86 17.01 46.12 18.83 11.30 69.87 10.07 5.06
4 56.00 17.16 26.84 61.78 1.54 36.67 18.17 .06
5 19.96 17.21 62.83 56.33 10.24 33.43 20.48 2.73
6 57.17 15.56 27.27 93.32 0.00 6.68 81.36 .02
7 6.98 17.35 75.67 83.38 9.46 7.16 21.99 .59
8 3.42 17.59 78.99 90.31 9.29 .40 1147.75 .06
77



Table 4. A Portion of the Computer Output of the'Test for Mixing Systemns

CHECK FOR MIXTURES FROM 2 SOURCES

THESE SOURCES FORM STRAIGHT LINES IN ALL THREE FIELDS WITHIN £2%

Calculated
Ion Point #1 Point #8 Point #1 mix Point #3 % Error
CONC. 9.10 1147.75 N/A 10.14 10.07 .70
Mg 82 101.02 N/A 91 90 1.11
Ca 1.95 19.61 N/A 1.97 1.95 1.03
Na+K 2.04 453.60 N/A 2.44 2.44 0.00
HCO3+CO3 3.34 2.28 N/A 3.34 3.34 0.00
S04 .50 53.30 N/A 55 .54 1.85
Cl A5 517.94 N/A 92 .90 2.22
Mixing Factors 99.91% .09%
Calculated :
fon Point #1 Point #8 Point #1 mix Point #5 % Error
CONC. 2.10 1147.75 N/A 21.12 20.48 3.13
Mg .82 101.02 N/A 1.81 1.81 Q.00
Ca 1.95 19.61 N/A 2.12 2.10 95
Na+K 2.04 453.60 N/A 6.48 6.61 -1.97
HCO3+CO3 3.34 2.28 N/A 3.33 3.33 0.00
S04 .50 53.30 N/A 1.06 1.02 3.92
Cl 45 517.94 N/A 5.92 5.61 5.53
Mixing Factors 98.94% 1.06%
Calculated
{on Point #1 Paint #8 Paint #1 mix Paint 77 % Error
CONC. 9.10 1147.75 N/A 96.32 91.99 471
Mg 82 ' 101.02 N/A 7.97 8.06 =1.12
Ca 1.95 19.61 N/A 3.21 3.24 -93
Na+K 2.04 © 453.60 N/A 34.27 35.15 -2.50
HC03+CO3 3.34 2.28 N/A 3.26 3.26 0.00
504 .50 53.30 N/A 4.55 4.31 5.57
Cl 45 517.94 N/A 40.18 37.97 5.82
Mixing Factors 92.34% 7.66%

N/A = Not applicable to two component mixing
SEARCH IS COMPLETED

used in present computations. These discrepancies
are also due to differences in precision of calcula-
tions of the percentage-reaction values. Table 4
shows an output example of evaluation of a
mixing system.
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TRILINEAR DIAGRAM REVISITED:
APPLICATION, LIMITATION, AND AN
ELECTRONIC SPREADSHEET PROGRAM

by Songlin Cheng®

Abstract. The trilinear diagram has been used extensively
in hydrochemical studies. The concepr of hydrochemical
facies based on the trilinear diagram can effectively charac-
terize the chemical composition of water in a qualitative
manner. However, its application is rather limited for
quantitative and precise study, because it is difficult, if
not impossible, to distinguish various mechanisms that may
cause similar change in water chemistry by this diagram
alone. This limitation is illustrated with various hypotheti-
cal water-rock interactions and mixing trends plotred on
the trilinear diagram.

Introduction

The trilinear diagram (Hill, 1940; Piper, 1944)
has been used extensively in hydrochemical studies.
It effectively delineates the change of water types
as the water migrates from one region of an aquifer
to the other. [n case of mixing between waters, the
data distribution on the diagram may reveal the
end members of the intermediate mixtures. Simple
mixing between two end members should result in
a straight line in all three fields of the trilinear dia-
gram, provided all ions remain in the solution.
However, the assumption that all ions remain in
the solution may not be valid in most ground-water
systems. For example, dissolution and precipita-
tion of minerals are rather common in ground-

3 Laboratory of Isotope Geochemistry, Deparument of
Geosciences, University of Arizona, Tucson, Arizona 85721.

Received April 1987, revised December 1987,
accepted January 1988,

Discussion open until January 1, 1989.

COMPUTER

water systems. Any post-mixing reaction may
cause deviation from a straight mixing line. Besides,
a straight line may be caused by reaction, rather
than mixing. Therefore, identifying a mixing situa-
tion from straight alignment on a trilinear diagram
is not an accurate approach. In this paper, the data
distribution on the trilinear diagram as a result of
water-rock interactions and mixing will be
illustrated.

The speed and accuracy of computer plotting
can relieve the tedium and remove the chance of
error of hand plotting. Morris et al. (1983) pub-
lished a2 BASIC program for plotting data on the
trilinear diagram. This program also checks for the
possibility of mixing. They applied the tangent
function to convert a tertiary system to X-Y
coordinates. In this paper, a sine and cosine
function set for coordinate conversion are pre-
sented. This approach has the advantage of
assigning 100 units to the side length of triangles of
the trilinear diagram and easily scaling the diagram
on the X-Y coordinate system.

As it is becoming increasingly common to
maintain chemical databases on electronic spread-
sheets, it is desirable to be able to use the same
database for various applications and manipula-
tions. Based on these considerations and available
programs on our computer the LOTUS 1-2-3 (TM)
is ideal for trilinear application, as it has the
spreadsheet, plotting routines, and capability for
programming. The macros on a floppy diskette and
users’ instructions are available from the author
upon request.
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SO4+Cl  Ca+Mg

Ca Na+K HCO3+CO3 =]

Fig. 1. The trilinear diagram. Thae cation and anion ratios of
each sample are plotted in the cation (lower left) and anion
{lower right) triangles (points a and b, respectively). The
data point in the center diamond field is the intersection of
the lines extended from the ion ratios and parallel to the
sides of the triangles,

The Geometry of Trilinear Diagram

Hill and Piper’s trilinear diagram (Figure 1)
consists of a cation triangle on the lower left, an
anion triangle on the lower right, and a diamond
field in the center. The equivalent percentage of
cations and anions are plotted first on the corre-
spondent triangles (points a and b, respectively).
Lines parallel to the sides of the triangles are drawn
through these percentage points and extended into
the diamond field. The intersection (point ¢)
represents the sample in the diamond field.

190 -

140 -

120 ~

100 =
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Fig. 2. The tertiary plot of trilinear diagram can be converted
to X-Y plot by trigonometric function (see text for detail),

Referring to Figure 2, if the triangles of the
trilinear diagram are drawn as equilateral, the '
mathematics of computation will be simple. If a,

b, and c on Figure 2 are sample points on the tri-
linear diagram, then the triangle cde is equilateral. l
The tertiary system can be converted easily to two-
dimensional X-Y coordination. The data points in
cation and anion triangles, and in the diamond .
field are then located by correspondent (Xi,Yi)

pairs. If the lower left apex of the cation triangle,

f, is located on (20,20), the X-axis runs parallel to '
the base of the triangle, and the Y-axis is perpen-
dicular to the X-axis; then, ion ratios and (Xi,Yi)'s
on the new X-Y coordination system have the
following mathematical relationship (assuming side
length equals 100 units and spacing between
triangles is 10 units):

Cation wiangle:

X1=20+fg=20+fd+dg=20+fd+ad X sin30°
= 20+ fd + fh X sin30° | '
= 20+ (Na + K%) + (Mg%) X sin30°

Y1 = 20+ag=20+ad X cos30° =20+ fhX cos30°

L]

20 + (Mg%) X cos30°

Anion triangle:

X2 = 20 + (side length) + (spacing) + ij + bj X sin30°
= 20 + (side length) + (spacing) + ij + ik X sin30°

20 + 100 + 10 + (Cl%) + (SO, %) X sin30°

20 + bj X cos30°

20 + ki X cos30°

20 + (50,%) X cos30°

Diamond field:
cd = de (equilateral triangle)
= [(side length) — fd] + (spacing) + ie
[100 - (Na + K%)] + 10
+[100 - (HCO; + CO;%)]
{100 - (Na + K%)]) + 10 + [SO,% + Cl%]

Y2

[ I |

X3 = 20+ fd + ¢d X sin30°
= 20+ (Na+ K%) +¢d X sin30°
Y3 = 20 +cd X cos30°

The apex, f, can be any convenient location
on the X-Y coordinate system. The trilinear
diagram macro locates this apex on (20,20), and
therefore, 20 units is included in each of the above
equations for calculating (Xi,Yi). The spacing
between triangles can be other than the 10 units
selected here.

Application of Trilinear Diagram

Many graphic methods are commonly used
for representing hydrochemical data, such as the
Schoeller diagram, Stiff diagram, and Hill and
Piper’s milinear diagram. The trilinear diagram has
the advantage of representing multiple parameters




Tabie 1. Chemical Compositions of Water Generated from Computer Simulation with the Program PHREEQE

[See text section ““Application of Trilinear Diagram: 1. Gypsum Dissolution” for detail. lon congentrations are in meq/I.
This table also includes tha column designation (alphabatic) and row numbar (numeric) of the worksheet.]

A ¢ D E F

1: SAMPLE # TEMP(®C) pH ALKAL. 5102
2:

3:

4: .

S: END MEMBER 22,50 7.40 2.82 0.55
6: A+GYP!L 22,50 7.46 2.88 0.55
7: A+GYP2 22.50 7,42 2.85 0.55
8: A+GYP3 22,50 7.39 2.82 0.53
9: END MEMBER 22,50 7.36 2.79 0.55
10:

Il: END MEMBER 22,50 7.40 2.82 0.55
12: MIX1 22.50 7.39 2.81 0.55
13: MIX2 22.50 7.38 2,81 0.55
14: MIX3 22,50 7.38 2.80 0.55
15: MIX4 22.50 7.37 2.80 0.55
16: MIXS 22.50 7.37 2.80 0.55
17: END MEMBER 22.50 7.36 2,79 0.55

G H I J K L M
Ca Mg Na K Ccl 504 NO3
2,564 0,34 1.16 0.04 0.23 0.86 0.11
3,10 0.34 l.t6 0.04 0.23 1l.16 O0.11
3.57 0.34 1.16 0,06 0.23 1l.66 0.11
4,04 0.34 1l.16 0.04 0,23 2,16 0.1l
4,51 0.34 1.16 0.04 0.23 2.66 0.11
2.54 0.34 1.16 0,04 0.23 0.66 0.11
2,94 0.34 1,16 0.04 0.23 1.06 0.11
3.33 0.34 1.16 0,06 0.23 1.46 0,11
3.53 0.34 1.16 0,04 0.23 1.66 0.11
3.73 0.34 1.16 0,04 0.23 1.86 0.11
4,12 0.34 1.16 0.04 0.23 2.26 0,11
4,51 0,34 1,16 0.04 0.23 2.66 0.11

of a quantity of data on the same graph without
losing clarity of data points; therefore, it is the
most frequently used graphic method for hydro-
chemical study.

Because the locations of the data points in the
trilinear diagram reflect the chemical characreristics
of the water, the concept of hydrochemical facies
is frequently used to describe the chemical
property of water. This concept has been discussed
in many hydrogeology textbooks. The concept of
hydrochemical facies is very useful to illustrate the
change in chemical characteristics as water migrates
down the hydraulic gradient. The trend observed
on the trilinear diagram would give an indication of
the type of reactions that are responsible for the
change in a qualitative way. For example, dissolu-
tion of gypsum (CaSQO,-2H,0) may change a
Ca-HCO; type water to a Ca-SO, water. However,
it is dangerous to define the mechanism responsible
for the change of water type solely by the trend
observed on the trilinear diagram. Alternative
mechanisms should be considered and tested by
other means.

In addition to the concept of hydrochemical
facies, a straight line on the trilinear diagram may
indicate a mixing system. Recently, Morris et al.
(1983) published a program in BASIC which plots
a trilinear diagram and tests for the possibility of
mixing. The two end-members mixing line bears
the assumption that all the ions remain in the solu-
tion after mixing. Therefore, a mixing line conclu-
sion hinges on the validity of this assumption. Pre-
cipitation, dissolution of minerals, and ion
exchange reaction are very common in natural

water, and they may cause deviation from a
straight line. Therefore, it is risky to base a mixing
conclusion on a straight line on the trilinear dia-
gram. Besides, pure mineral dissolution can also
result in a straight line on the trilinear diagram, i.e. -
a straight line on the trilinear diagram may not
definitely indicate mixing. Therefore, this
approach should be used with great care when
searching for mixing in a ground-water system.

In order to illustrate the above generalized
statements, we used the computer program
PHREEQE (Parkhurst, Thorstenson, and Plummer,

~ 1980) to generate a series of water compositions

along mixing and/or reaction trends. Two mixing/
reaction paths will be examined in the next two
sections.

I. Gypsum Dissolution

Gypsum (CaSO,: 2H,0) is a common mineral
in most ground-water systems and dissolution of
gypsum may cause calcite to precipitate. For
example, Back et al. (1983) found that dolomite
dissolution and concurrent precipitation of calcite
in the Mississippian Pahasapa Limestone aquifer is
driven by gypsum dissolution, Table 1 lists the
results of computer simulation with PHREEQE.
One mmole/liter of gypsum is added to end
member A in four equal steps to generate end
member B. Calcite equilibrium is maintained at
each step. Intermediate waters are designated
A+GYP1, A+GYP2, and A+GYP3. Table 1 also
lists intermediate mixtures (MIX1 through MIX5)
between end members A and B. Both products of
gypsum dissolution (IJ) and mixtures (+) between
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Fig. 3. (A): Trilinear diagram of water A with progressive gypsum dissolution to B (symbol (J). Intermediate mixtures

between A and B are also plotted (symbol +),

(B): Same as Figure 3(A), Mixing trend is shown as a line by redefining the plotting format, The X-Y coordination was
eliminated by specifying different colors for grid and by not loading the pen dyring plotting. However, this trick cannot be

used if a dot matrix printer is used rather than a pen plotter,

end members A and B as listed in Table 1 are
plotted on Figure 3. Figure 3(A) is the trilinear
diagram generated from LOTUS 1-2-3 macros.
Figure 3(B) is generated by redefining the plotting
format of Figure 3 (A). The mixing trend between
end members A and B is plotted as a line on

Figure 3(B). It is clear from this figure thata
straight line on the trilinear diagram does not prove
“mixing.” The mixing line is indistinguishable from
the gypsum-dissolution-calcite equilibrium trend.

/1. Ca-Na /on Exchange Reaction

Ca-Na ion exchange reaction is a common and
important reaction in many aquifers. In che central
San Juan Basin, New Mexico, dissolution of calcite
driven by Ca-Na ion exchange explain the high Na,
low Ca, high alkalinity, and high pH of the water
(Phillips et al., 1987). Similar reaction has been
observed in Maryland (Chapelle and Knobel,
1983).

Table 2 lists a computer-simulated chemical

Table 2, Chemical Compositions of Water Generatad from Computer Simulation with the Program PHREEQE
[See taxt section ‘“Application of Trilinear Diagram: {1. Ca-Na lon Exchange Reaction” for detail. lon concentrations are
in meq/l. This table also inciudes column designation (alphabetic) and row number {numaeric) of the worksheet.]

A B C D E

1: SAMPLE # TEMP(OC) pH  ALKAL. 5102
2:

3:

4

S: END MEMBER A 22,50 7.40 2.82 0.55
6: A+EXCHI 22.50 8.32 3.33 0.55
7: A+EXCH2 22.50 8.72 3.54 0.55
8: A+EXCH3 22.50 9.12 3.98 0.55
9: A+EXCH4 22.50 9.46 4.87 0.55
10: END MEMBER B 22.50 9.76 6.47 0.355
l1:

12: END MEMBER A 22.50 7.40 2.82 0.55
13: MIX1+CALC.=-EQ 22.50 7.71 3,06 0.55
14: MIX2+CALC.~EQ .22.50 8.17 3.27 0.55
15: MIX3+CALC.-EQ 22,50 8.69 3.52 0.55
16: MIX4+CALC.~EQ 22,50 9.15 4,04 0.55
17: MIX5+CALC.-EQ 22.50 9.55 5.24 0.55
18; END MEMBER B 22.50 9.76 6.47 Q.55
19:
20: END MEMBER A 22.50 7,40 2,82 0.55
21: MIX! 22.50 8.60 3.55 0.35
22: MIX2 22.50 9.16 4.28 0.55
23: MIX3 22.50 9.3t 4.64 0.55
24: MIX4 22.50 9.43 5,01 0.55
25: MIXS 22.50 9.62 5.74 0,55
26: END MEMBER B 22,50 9.76 6.47 0.55

G H L J K L ]

Ca Mg Na K Cc1 504 NO3
2,54 0.34 1.16 0,04 0.23 0.66 0.11
0.37 0.34 3.84 0,06 0.23 0.66 0.11
0.15 0.34 4.27 0.04 0.23 0.66 0.11
0.07 0.34 4,80 0.04 0.23 0.66 0.1l
0.03 0.34 35.72 0.046 0.23 0.66 O0.11
0.02 0.34 7.33 0.04 0.23 0.66 0.11
2.54 0.34 1.16 0.04 0.23 0.66 0.1l
1.5% 0.34 2.39 0.04 0.23 0.66 0.11
0.52 0.34% 3.63 0.04 0.23 0.66 0.11
0.16 0.34 4.24 0.04 0.23 0.66 0.11
0.06 0.34 4.86 0.04 0.23 0.66 0.11
0.03 0.34 6.10 0.04 0.23 0.66 0.11
0.02 0.34 7.33 0.04 0.23 0.66 0.11
2.54 0.34 1.16 0.04 0.23 0.66 O0.11
2.04 0,34 2.39 0.04 0.23 0.66 0.11
1.54 0.34 3.63 0.04 0.23 0.66 0,11
1.28 0.34 4.24 0.04 0.23 0,66 0.11
1.03 0.34 4.86 0.04 0.23 0.66 0.11
0.53 0.34 6,10 0,04 0.23 0.66 0.11
0.02 0.34 7.33 0.04 0.23 0.66 0.11

]
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Fig. 4. (A): Trilinear diagram of water A with progressive
Ca-Na ion exchange reaction (symbol (). Various mixtures
between A and B are represented by symbol . Post-mixing
equilibration with calcite (symbol +) would deviate the
mixing trend from the original straight line and become
indistinguishabla from the Ca-Na ion exchange reaction.
Calcite equilibrium is maintained during the Ca-Na ion
exchange reaction,

(B): Same as Figure 4(A). The Ca-Na ion exchange
trend is represented as a line by redefining the graph format.

composition of water. End member B is generated
by progressive Ca-Na ion exchange while main-
taining calcite-equilibrium (rows 5 through 10,
Table 2). Also listed in Table 2 are chemical com-
position of mixtures between end members A and
B. Calcite-equilibrium is maintained for the waters
on rows 13 through 17.

Figure 4 is a trilinear diagram of the three

. groups of water listed in Table 2. Although simple

mixing (symbol ¢) is distinguishable from a Ca-Na
ion exchange trend (symbol O), post-mixing equil-

.ibration with calcite deviates from a simple mixing

line (symbol +). Therefore, mixing may also take
place in a series of waters plotted on a curved line
on the trilinear diagram.

In this example, the similarity in chemical
composition between a Ca-Na ion exchange trend
(first group, Table 2) and post-mixing calcite-
equilibration trend (second group, Table 2) does
not mean that it is impossible to identify the
correct mechanism. Other parameters, such as
stable isotopes of hydrogen, oxygen, carbon, and
sulfur, should help solve the puzzle.

Summary and Conclusions

Hill and Piper’s trilinear diagram is a valuable
graphic tool for representing hydrochemical data.
It effectively illustrates the chemical characteristics
of a ground-water system from recharge to the
deeper portion of the aquifer. The tedious plotting
task can be greatly reduced if one takes advantage
of the speed and accuracy of a computer. A set of
simple equations is presented to transfer the tertiary
system of the trilinear diagram to X-Y coordination
and electronic spreadsheet macros for plotting a
trilinear diagram.

The concept of hydrochemical facies is useful
in characterization of the chemical nature of water.
However, it can be misleading to define hydrogeo-
chemical reactions based on changes in hydro-
chemical facies.

Although mixing may be a common phenom-
enon, post-mixing reactions may obscure the
mixing trend on a trilinear diagram. Reactions such
as dissolution, precipitation, ion exchange reaction,
and even CO,; outgassing, are common in natural
waters. The assumption that all ions remain in
solution after mixing for a linear mixing line on a
trilinear diagram cannot be adopted uncondition-
ally. On the other hand, simple mineral dissolution
may result in a straight line on a trilinear diagram,
and therefore, a straight line on the diagram does
not necessarily indicate mixing. In reality, due to
the heterogeneity of most ground-water systems,
the chemical composition of the end member may
not be well defined. Analytical errors may introduce
additional uncertainty. All of these would make it
difficult to recognize a mixing line on a trilinear
diagram.

Based on the above considerations, the
trilinear diagram is a useful tool to characterize the
chemical composition of a ground-water system,
that is, hydrochemical study. However, for detailed
hydrogeochemical investigations, such as water-rock
interaction, quantitative hydrogeochemical study,
one should include efforts such as consideration of
the isotopic composition, mineralogy, and reaction



path simulation for screening hypotheses. The real
mechanism (s) that is (are) operating in a ground-
water system may elude the researcher if these
hydrogeochemical approaches are ignored.
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Contaminant Transport




An Idealized Ground-Water Flow and
Chemical Transport Model (S-PATHS)

by Phil L. Oberlander and R. W. Nelson®

ABSTRACT

The number of studies on the actual and potential
environmental consequences of concaminated ground water
is growing. One means of studying these consequences is
through an idealized flow and transport model, S-PATHS,
which allows the hydrologist to determine the salient
features of contaminant migration with a minimum of dara.

The transport of contaminants by ground warer from
many waste disposal sites can be geomerrically idealized as
flow berween a line and a circle. The flow system adjacent
to the disposal site can be represented as a contaminant line
source, and a downgradient pumping well as a circular sink.
To study waste disposal sites on a larger scale the model
geomerry is reversed and the disposal site is represented as
a circular source, and a river or other convenient line of
evaluation is represented as a line sink. This idealization
allows S-PATHS to describe the flow and transport process
directly by a single partial differential expression. S-PATHS
considers transmissivity, effective porosity, sorption, source
strength, source concentration, decay, potentiometric
gradient, circle size, and distance to the line. Coding for the
model 15 not lengthy and can be run on a large-capacity,
hand-held calcularor.

INTRODUCTION

The environmental consequences of ground-
water contamination are being studied more often
today as actual and potential waste sites are
identified. To assess the environmental conse-
quences art a disposal site, we must identify the
time- and location-dependent flow rate of the
contiaminant into the biosphere. We can determine
these values approximately, without using a
complex digital model, by considering an idealized
flow system and by using analytical expressions.
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Batrelle-Northwest Laboritories, P.O: Box 999, Richland,
Washingron 99352,
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An evaluation of contaminant transport by
ground water can often be geometrically simplified
by considering the transport as migration between
a circle and a line. For example, the regional
movement of contaminant from a leaking tank or
landfill to a nearby river can be conceptualized as
flow from a circular source to a line sink. Likewise,
the local movement of contaminant from a linear
disposal pit to 2 pumping well can be considered as
flow from a line source to a circular sink. This
idealization of the ground-water flow system
allows the hydrologist to perform preliminary
calculations that describe the location of the
contaminant plume and to determine quantities of
contaminant reaching the biosphere. This approach
is also useful for parameter sensitivity studies and
when a lack of field data does not justify a more
complex model. :

We idealize the transport process by assuming
that a uniform potentiometric gradient normal to
the line (source-sink) exists before pumping or
injection, as well as steady-state, two-dimensional
flow. The hydrologic zone receiving the contami-
nant is characterized as a medium of a constant
thickness that is isotropic and homogeneous. Con-
taminant retardation along the flow path by
sorption is assumed to take place under chemical
equilibrium conditions. The contaminant is
assumed to be vertically mixed in the hydrologic
unit receiving the waste material. We also use the
diameter of the circle, distance between the line
and the circle, head ar the circle, initial concentra-
tion, and decay to describe the contaminant
migration. The hydrologic unit is assumed to be
infinite in the direction normal to the gradient.
The given boundary conditions result in a simple
mathemartical description of the flow system. The
flow description also provides a maximum contam-
inant arrival flux because contaminant spreading
by inhomogeneous, anisotropic media and
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dispersion is not considered. In unfractured and
nonkarstic aquifers, this level of analysis can often
be used to determine the environmental severity of
a liquid release and the need for further modeling.

In this article we present the analytical
expressions for flow and transport, but do not
necessarily detail the numerous intermediate steps.
These expressions define the contaminant plume
and answer the three essential questions concerning
contaminants entering the biosphere: where, when,
and how much. Model results are plotted as
location-, time-, and quantity-dependent graphs
that characterize the contaminant arrival at the
discharge location (Nelson, 1978). S-PATHS
performs the necessary calculations on a hand-held
calculator which allows simple use and rapid access
to the model.

TWO-DIMENSIONAL FLOW EQUATIONS
The beginning point for this development is a
reduced form of equation (A-1) found in Nelson
and Schur (1980). The dimensional potential, ¢', is
given as:

Ho V(x')? + (y')?

In(R/rp) ro Y

¢>’ = Ho_ on, -

where

’

¢’ = ¢'(x',y') is the potential energy head
function that satisfies Laplace’s equation,

H, = the head in the circular source-sink of
approximate radius ro with center at the
origin,

U, = the uniform lateral flow gradient in the
positive x direction,

R = the distance from the center of the circle
to the line boundary,

ro = the dimensional approximate radius of the
circular source-sink located at the origin,
and

x',y’ = the dimensional Cartesian coordinates of
an arbitrary point with the origin at the
center of the circular source-sink.

Equation (1) is based on the boundary conditions
presented in the introduction. Conceptually,
equation (1) describes a two-dimensional potential
surface by combining the potential formed by the
regional gradient and the potential formed by
injection or withdrawal at the circle. The geometry
of the flow system is illustrated in Figure 1 as flow
from a circular source to a line sink.
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A convenient set of dimensionless variables
for this flow system is:

' ’ '

ng., y_—,X. ' ro:r_;,, ¢,=_?_ , C=K°H°t' (2)
R R H, R?

where

x,y = the dimensionless Cartesian coordinates,

t'" = the dimensional time,

t = the dimensionless time, and

Ko = the hydraulic conductivity of the confined

porous stratum.

Use of the expressions from equations (1) and (2)
gives the dimensionless potential, ¢, as:

UsR 1 Vx? +y?
- X - n{
H, In(1/rq) to

¢ =1 (3
The expression for potential given in equation (3)
was derived by making two approximations. The
circle and the line are used as equipotentials, which
under some circumstances require that limits be
imposed on model use, In most field studies,
however, the limits do not preclude the use of the
model. '

The first approximation for which a limit is
needed involves the circular equipotential at the
origin. Equation (3) introduces some distortion to
the potentiometric surface in that the equipo-
tential at approximate radius, o, is not always a
circle. We describe the amount of distortion at the
circle by considering the shape of the actual
equipotential as compared to a circle with radius,

CONTAMINANT

UNIFORM
GRADIENT = U,
Ho= HEAD
ABOVE/BELQOW
REGIONAL GRADIENT

MATERIAL OF
HYDRAULIC CONDUCTIVITY, K,
POROSITY, P (EFFECTIVE)
BULK DENSITY = 84
EQUILIBRIUM DISTRIBUTION
COEFFICIENT = Kd

Fig. 1. lllustration of model gsometry and example stream-
lines, Shown as flow from a circular source to a line sink.
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Fig. 2. Distortion of circle as a function of parameter scale
factors, The shape is considered essentially circular when
alpha is 0.2,

ro. If we let ¢ = 1 and allow Xg0, Yoo to denote the
coordinates defining the approximate equipotential
representing the circle, then:

Voo/to = £V exp [~a(Xeo/rs)] ~ (Xoo/ro)?  (4)

2 Uoto In(R/ry)
= i

where a (3
which expresses the shape of the equipotential
boundary only as a function of a.

Figure 2 shows the shape of the equipotential
boundary for different values of a. The results in
the figure show that when a < 0.2 the boundary 1s
essentially circular, but the center is displaced
upgradient or to the left from the « = 0 or exact
boundary. The displacement upgradient effectively
provides slightly longer flow paths to a discharge
location and hence slightly longer calculated travel
times than pathlines originating at @ = 0. For this
reason, equation (3) is 2 good approximation of 9
for all « < 0.2. The distortion at the circle
increases with large values of U, (gradient) and 1o
(circle size) and with small values of H, (head).

The second approximation occurs along the
line boundary because the line is not precisely an
equipotential. We describe the relative distortion
by dividing the model-predicted potential along the
y axis by the exact potential at x = R, y = 0, using

equation (3). The distortion factor increases
exponentially with distance along the y axis under
conditions of small R (distance to line), Hy, U,,
and large ro. However, as long as the relative
distortion is less than 1.10, the effect to calculared
travel times and outflow locations is negligible.
-Setting the relative distortion limir at 1.10 and
solving for y; with equation (3) gives:

_ ~T.10U,R UoR . Uy . ;_
yn—ﬂc[( R (R )

which is the maximum distance (dimensionless)
along the line boundary for which the model will
produce reliable results. Our model checks for
potentiometric distortion at the circle and the line,
and prints a message to the user when the limita-
tions are exceeded.

THE STREAM FUNCTION
We use the stream function to obtain path-
lines and travel times tor this flow system. The
stream function describes steady-state flow, and is
available as the complex conjugate of the previous-
ly defined potential in equation (3), specifically:

£ = UoR
Ho

! ctan ( Y ) (7)
n(l/rg) X

y —
The terms on the right-hand side of the equation
are the imaginary parts of the complex potential
& = ¢ + i§, which satisfies the Laplace equation.
Furthermore, the Cauchy-Riemann condition:
G 3 9 0
§ o nd £ _0¢

ax ay
is satistied. This verifies that equation (7) is
analvtic (Boas, 1966).

The stream function is conveniently expressed
as the fraction of the total outflow from the
discharge location. This is possible because the
idealized flow system is symmertric about the x
axis. Half of the flow will occur in the positive y
quadrants and the other half will occur in the
negative y quadrants with the x axis functioning
as the line of symmetry. The contaminant plume is
bounded by the outermost streamlines (¢ max)
which surround the entire flow between the source
and the sink. The flow problem is simplified when
we consider the flow only in the positive y
quadrants, with the remainder of the solution
available as the mirror image. This allows the
substitution of £m = §max/2. Expressing the ratio
of the positive y source outflow flux in dimension-
less form as the ratio ¥ = §/f, gives:
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1
¥ o= y +—arctan(—x) (9
2y 27 X

H,

where Y E —————
UsR In(1/1y)

(10)

The stream function ¥ defines a steady pathline
location, and also provides the ratio of the outflow
flux as:

Q.
W= — (11)
Qr
where
VWi = aparticular streamline,
Q; = cumulartive flow from Y = 0 to a particular
" streamline ¥, and
Qr = total flow at circular source-sink.

The flow at the circle is defined as:

- 21r DoKoHo

= 2
T In(1/ry) (12)

where D, = thickness of contaminated zone,

K, = hydraulic conductivity, and other terms are as
previously defined. A revised form of equation (12)
which solves for H, can be used when the flow rate
(Q) is known. Our model uses either a known
flow rate or a known head at the circle as input
and then calculates and displays the remaining
parameter. The zero relative head occurs on the
regional gradient at the circle before a hydraulic
source-sink is imposed.

A discussion of the physical significance of
equation (9) may be helpful. Physically, ¥ is the
curnulative fraction of the entire source flux
obtained by integrating all of the flow crossing
any line connecting a point on the positive x axis,
with the specific point having coordinates (x,y)
appearing in the right-hand side of equation (9).

At any point, ¥ equals a constant, is perpendicular
to the potential function, and traces out the entire
streamline. By selecting a range of X9 and yoo
values on the circle and calculating corresponding
values of ¥;, the steady-state pathlines are defined
for the entire flow field.

STREAMLINE LOCATION AT THE
LINE BOUNDARY
The streamline terminates at two locations: a
point on the circle and at the line boundary. The
maximum value of y for any streamline ¥; occurs
at the line boundary. Substitution of y = y,,, and
x = 1 into equation (9) yields:
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1
\I,i=2y_7‘:‘7 +2—"—arctan(ym) (13)

Equation (13) does not algebraically solve for yiy ;

therefore, the ym roo is extracted using a simple

iterative method. We obtain an initial estimate for
¥m by setting the tangent of a small angle approxi-
mately equal to the angle in radians; therefore:
Y
y+1

Ym "~ 27 ( ) i (14)

and the improvement expression is:

\P.
A .

} Ym,k  (13)

Ym

1
™ + o arctan(Vm, k)

The hydraulic flux for a streamline can be
computed once we know yn,, and is defined as:

y

q=DoKo U (1 +(1+Ym2

)] (16)

The hydraulic flux (L*/T) is used to compute
the conraminant outflow flux (M/LT), which is
given as:

m = qCo(2''3) (17)
where
C, = contaminant concentration or radionuclide
activity at source,
t = contaminant travel time to discharge
location, and
§ = radioactive half life.

The cumulative contaminant outflow rate
(M/T) is given as:

Mc = ¥{QGC,(2'V3) (18)

The concentration of contaminant at the source

can be expressed as either a mass per volume or a
radiological activity per volume. For nonradioactive
sources the half-life is assumed to be large (1 X 10%?),
and decay is essentially zero. The mass outflow

flux provides the basis for computing the mass of
contaminant being discharged to the biosphere. We
can determine the outflow mass by integrating the
mass outflow flux over the length of the line.

TRAVEL TIME FROM SOURCE TO SINK
To determine travel time we integrate the x
and v components of velocity with time. By

expressing as a ratio the shortest travel time (t)



where y = 0, to the travel time for streamlines (t;),
we determine the dimensionless travel time. The
resultant equation is presented without develop-
ment as:

T 1
€1.= 1 Vmi cot(2m; - L2
Y
S [1-r1~vin( ) Y
o +7Y
= yoi cot (2mb; — Xo—l)

isin (27w - 28 ),

+yIn[ LA (19)

{sin (2m¥; — % )]

where y,; = v position on circle boundary for
streamline (¥;), and ym; = y position on line
boundary for streamline (\;).

Equation (19) is used to calculate the fluid
trave] time for varying values of y for each stream-
line. A reduced form of this equation can also be
used to locate contaminant position between the
circle and the line boundaries. By choosing a time
t and solving for x and y, the position of the con-
taminant plume is defined with time. This allows
us to observe the advance of contaminant and
illustrates the time-dependence of contaminant
quantity at the discharge boundary. The time that
contaminant will arrive at 2 known point between
the source and the sink can be determined by
successive estimations of t. A reduced form of
equation (19) is solved for y by the Regula Falsi
Method (Rektorys, 1969) of successive iteration
given as:

Zy f(Zge1) = (Zger) F(Zy)

yA = (20)
k2 £(ZieD) - £(Z1)

where

Zk+2 = Oataroot(y),

Zx = root estimates, and
y . y

f(Zx) = ycot (2a¥i—=) +In[|sin (2a¥;==)/
v Y

UoR:
sin (2m¥; - Yﬂ )]~ == gy cot(2rwi- 1),

HoP Y

When Zy,» # 0, Zk.; is used to replace either Zy or
Zy+1, depending on whether the sign of f(Zy) or
f(Zx+2) is respectively positive or negative. Con-

vergence is usually slow with this method. Solving
equation (9) for x gives:

xmycot(Zn\Pg—%) 2n
T y m

h -=< (2r¥;-L) <=,

where 5 (2m¥; 7) 5

The restriction on equation (21) is needed to allow
the cotangent to be defined.

CHEMICAL RETARDATION
Contaminants that are in chemical equilibrium
and sorbed on the porous media are retarded with
respect to water travel time. The retardation factor
(S) is defined in Freeze and Cherry (1979) as:

B4K
§=1+(=224) (22)
where
Bd = mass bulk density,
K4 = equilibrium distribution coefficient, and
P = effective porosity.

The retardation factor is a constant multiplier
to the kinematic equations already presented. The
contaminant travel time is defined as:

te = Stw (23)

where t¢ = travel time for a particular contaminant,
and ty = water travel time as defined by equation
(18). If the contaminant transport is water-coinci-
denr and not solute-sorbed, then K4 = 0, and the
problem reduces to equation (18).

MODEL S-PATHS

The equations presented above have been
combined to form the ground-water model
S-PATHS. As noted previously the analytical
expressions are symmetrical about the x axis. The
coding for the model S-PATHS calculates the
positive y portion of the problem. The negative y
resules are available as the mirror image. Flow
quantities and fluxes are therefore given with
respect to the positive y axis and are not the total
flow from the source. The program has a user-
interactive format that allows several input and
output options. Table 1 details the options and
also serves as an input worksheet and model
illustration. '

Upon final data input, the program generates
14 representative streamlines and calculates the
time, location, and quantity of contaminant reach-
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Table 1, Two-Dimensional Steady-State Analytical Flow and Transport Modei

LOCATION

REMARKS

CASE USER

Parameters must be in consistent units. Flow is either from circular source to line sink, or from line source to circular sink.
Program generates streamlines and calculates flow paths, travel times, and discharge quantities. Enter values, then press R/S.

Memory size = 033, and calculator is in radians mode.

1. lor0Q = Flow is from 0 = line to well, I = well to line.
2 — . DIA = Well diameter (L).
3 e Uy = Uniform regional gradient (L/L).
4 o R = Distance between well and line boundary (L).
5, —— P = Effective porosity of aquifer (L¥L%).
6. Ko = Hydraulic conductivity (L/T).
7. Dy = Thickness of contaminant zone (L).
8. 1ord = Known flow rate Q(L¥T) enter 1, known head at circle Ho(L) enter 0. Program calculates
and prints nonentered value.
9. (K4)(Bp) = Equilibrium distribution coefficient times bulk mass density. For zero sorption enter 0.
10. Co = Contaminant concentration at soutce (M/L?).
11. Decay = Radioactive half life (T), enter O for nonradioactive contaminants.
12. l1or0Q = Contaminant position 1 = Yes, ® = No, At times , .
enter O for unwated times.
13, lorO = Potentiomerric heads at times from No. 12 above? To initiate next model run enter

GTO QO, then R/S.

CONTAMINANT

UNIFORM
GRADIENT =U,

MATERIAL OF
HYORAULIC CONDUCTIVITY, K,
PORQSITY, P (EFFECTIVE)
BULK DENSITY = Bd
EAUILIBRIUM DISTRIBUTION
COEFFICIENT = Kd

ing the biosphere. Program running time ranges
from 5 to 25 minures depending on the complexity
of the output options. The coding presented in
Appendix A is written for a Hewlett-Packard
41-CV hand calculator and a peripheral printer
(product brand name is used for purposes of
identification only; it does not represent endorse-
ment by Battelle-Northwest Laboratories.) A set of
test data and results are provided in Tables 2 and 3
to help the user verify keypunch accuracy.

As with all ground-water models, the accuracy
of the predictions is directly related to the quality
of inpur data and the validity of the simplifying

446

assumptions. Areal two-dimensional contaminant
transport models, such as S-PATHS, are sensitive to
the thickness of the hydrologic unit. Ideally, the
thickness of the contaminant zone (Dy) is the same
as that of a distinct hydrologic unit. In cases where
D, is a fraction of the total aquifer thickness, the
computed values may not be representative. For
example, assuming all of the water being dis-
charged from a well comes from a thin contami-
nated layer may result in an unrealistic value of
drawdown. Model results should be interpreted by
the hydrologist as an approximate solution to 2
complex real-world situation.



Table 2. Input Verification Data

Waorksheetr
line no. Input parameters Input data
1 Flow direction (flow is toward line) 1
2 DIA (circle diamerer) 0.5
3 Ug (gradient) 0.005
4 R (distance to line) 1850
5 P (effective porosity) 0.2
6 K¢ (hydraulic conductivity) 1425
7 Dg (contaminated zone thickness) 200
At well (known flow rate) 1
8 QT (discharge rate) 1.4063 X 108
9 (K4 Bd) (Distribution coef bulk density) 0.93
10 Co (concentration) 500
11 Half life 30.23
12 Contaminant position? (Yes) 1
T1 210
T2 400
T3 0
13 Potential at time T? (Yes) 1

INTERPRETATION OF MODEL RESULTS
The combination of model output parameters

allows a variety of interpretive graphs to be
constructed. A complete description of these tech-
niques using the output available from S-PATHS is
presented in Nelson (1978). One analysis useful to
the hydrologist is the determination of time and
quantity of peak contaminant outflow. Thisis .
accomplished by plotting the cumulative contami-
nated outflow rate versus arrival time as shown in

Figure 3. The figure shows the cumnulative arrival
of a contaminant of constant concentration at the
discharge location. Of importance are the delay
time, which is the time from contaminant release
to the first contamninant outtlow, and the spread
time, which is the time period over which the
leading edge of the plume is discharged. The maxi-
mum outflow rate occurs at 25 years in Figure 3.
A contaminant source often enters the
ground-water flow system for a time period (Ty)

Table 3. Model Output

Calculated value

Streamline | Streamline 14

X art circle 0.250 -0.250
Y at circle 1.118 X 10° 1.118 X 10™
Y at line 1850 1850
Y at line 0.063 455 454
Time to discharge location 234.008 457.885
Q/QT (from Y =0to Y) = ¥, 7.127 X107 0.500
SQ(fromY=0to Y)L**3/T 100.223 703050.096
T contaminant {from ¥ = 0 to Y)M/T 234.254 9690.38
Hydraulic flux (at Y)L**2/T 1545.984 1539.070
Contaminane flux (at Y)M/TL 3613.481 21.214
At ume 210.000 210.000
Y= 0.06+ 296.524
X= 1688.031 97.457
Head equals ~8.368 0.910
At time 400.000 400.000
Y= “Point beyond 446.718
discharge location”
X = 1459.569
Head equals No output —7.137
447
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Fig. 3. Cumulative contaminant outflow versus time for an
instantaneous source. The contaminant arrives over a period
of time due ta hydraulic spreading,

which is less than the spread time. These cases are
analyzed by replotting the contaminant outflow
rate versus time curve shifted along the x-axis a
positive distance of T. This procedure is shown in
Figure 4 in which the left-most curve represents
the arrival of the leading edge of the contaminant
plume and the shifted curve (solid line) represents
the trailing edge. The time of contaminant flow at
any point is limited to the time Tx. Therefore, the
contaminant outflow rate becomes the difference
between the first arrival curve and the last arrival
curve. The resultant contaminant outflow rate is
shown as the dashed line in Figure 4. The maxi-
mum discharge rate now occurs at the delay time
plus Ty and then attenuates as shown. When radio-
nuclides are modeled, the peak outflow rate is
affected by decay, and the curve representing the
trailing edge of the contaminant plume must be
modified to account for decay during time Ty.
Knowing the contaminant outflow rate with time
allows the calculation of contaminant mass out-
flow by graphically determining the area under the
curve (shaded area) in Figure 4. The mass outflow
with time is particularly useful when evaluating
concentration of contaminant in a downgradient
surface-water body.

The above example is based on the contami-
nant outflow rate and time variables. The analysis
could be continued by examining contaminant
outflow flux with respect to location. It becomes
obvious that by combining the linking variables of
time, location, cumulative relative water-discharge
rate (Q/QT), cumulative water-flow rate (ZQ),
location-dependent water-discharge flux (Q flux),
cumulative contaminant outflow rate (Z Contam),
and location-dependent contaminant outflow flux
(Contam Flux), a suite of analyses can be per-
formed that will provide a technical description of
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contaminants entering the environment, Qur
experience in the application of this technique has
demonstrated its flexibility, simplicity, and ability
to facilitate communication between the technical
evaluator and the decision maker.
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GROUND

WATER COMPUTER
NOTES

MOC SOLUTIONS OF
CONVECTIVE-DISPERSION PROBLEMS

by Raz Khaleel® and Donald L. Reddell®

Abstract. The method of characteristics is used to solve the
one- and two-dimensional convective-dispersion equations
in steady, uniform flow fields. Fully documented listings of
the FORTRAN programs ace presented, Comparison of
numerical results with existing analytical solutions show
excellent agreement.

Introduction

When convection and dispersion are considered
simultaneously, conventional finite-difference tech-
niques introduce artificial numerical dispersion
(Peaceman and Rachford, 1962). The artificial
dispersion may dominate low physical dispersion
especially if dispersivities are small. Garder et al.
(1964) developed the method of characteristics
(MOC) to overcome the numerical dispersion
problem. The MOC does not introduce numerical
dispersion and has been widely used for solving
miscible displacement problems (e.g., Reddell and
Sunada, 1970, Bredehoeft and Pinder, 1973;
Konikow and Bredehoeft, 1974, 1978). On the
other hand, a number of researchers (e.g., Lam,
1977; van Genuchten, 1977; Huyakorn and Taylor,
1977) have shown that in cerrain convection-
dominated flow systems, the standard Galerkin
finite-element formulation will produce excessive
numerical dispersion and/or oscillation even if
higher order elements are used.

In this paper, MOC solutions of one- and two-
dimensional convective-dispersion equations for a
conservative tracer are presented for steady,
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uniform flow fields. Fully documented listings of
the FORTRAN prograins are presented and
numerical examples are included to illustrate the
basic use of the MOC. The accuracy of the
computer codes is tested by comparison with
available analytical solutions.

Numerical Model
The convective-dispersion equation for a
conservative tracer in fluid flow through a saturated
porous medium is given as (Scheidegger, 1961):
X2 vio-~ (Djj %) ictand3 (1
at  ax 3 Xi dX;
where C = tracer concentration (ML™);
Vi = components of velocity vector (LT™') ina
Cartesian coordinate system of x;; Djj = coefficient
of hydrodynamic dispersion, a second rank tensor
(L*T™); and t = time (T). The double summation
convention of tensor notation is implied in the use
of equation (1). The coefficient of hydrodynamic
dispersion, Djj, depends on the flow partern and
medium characteristics. It is formed from the
contraction of a fourth rank tensor and a second
rank tensor which is a function of flow (Bear, 1972):

VmVn
V|

where ajjmn = dispersivity of the medium, a fourth
rank tensor (L); Vi, Vy = velocity components in
the m and n directions, respectively (LT !); and
IVl = magnitude of velocity (LT™).

Scheidegger (1961) showed that for an
isotropic medium, the longitudinal and lateral
dispersion coefficients (D, and D, respectively)
are related to the dispersivities by

Dy =ag |V (3a)
and DT sat |VI. (3b)

Dij = aijmn (2)
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Combining equations (2) and (3), the tensorial
forms of the dispersion coefficient for two-dimen-
sional flow in an isotropic aquifer are (Konikow
and Bredehoeft, 1978):

V1V1 V3V3

D“ = DL V2 + DT vz (43)
V.V, V,V,

Dy = D1~ + DL — (4b)
V.V,

Dy =Dy, -(DL‘DT)_""' (4c)

The MOC algorithm is not described here in
detail because it has already been discussed in the
literature (Garder et al., 1964). Briefly, equation
(1) approaches a hyperbolic equation as the second-
order dispersion term becomes small with respect
to the convective term. According to the MOC, we
can associate with a given hyperbolic equation a
simplified system of equations in terms of an
arbitrary curve parameter, the solutions of which
are called the characreristic curves of the differ-
ential equation. Detailed derivations of character-
istic curves for a homogeneous, linear partial
differential equation and for a nonlinear,
nonhomogeneous partial differential equation were
given by Garder et al. (1964).

In the MOC, in addition to the usual division
of the flow region into a grid system, a set of
moving points is introduced into the numerical
solution. The location of each moving point is
specified by its coordinates in the finire-difference
grid. Initially, the moving points are uniformly
distributed throughout the grid system. The initial
concentration assigned to each point is the initial
concentration associated with the stationary node
of the grid block containing the point. At each
time interval, the moving points in a two-dimen-
stonal system are relocated using:

(A0 = xf) + At virae (5a)
and x';;m = x,E + At v';gm (5b)

where t + At = new time level; t = old time level;
At = time increment; X g and X3 = coordinates of
the 2-th moving point in thc X, and x; directions;
and V i and V3Q = velocities of the 2-th moving
point in the x, and x; directions. When all the
moving points have been relocated, each block in
the grid system is temporarily assigned a concen-

Cc+A

tration, , which is the average of the concen-

trations C;*A of all the moving points lying inside
the grid block at time t + At. Next, the change in
concentration due to dispersion, AC, is calculated
using an explicit, centered-in-space finite-difference
approximation to the dispersive term on the rlght
hand side of equation (1). Each moving point is
then assigned a concentration according to:

crht=chtt v ac (6)

To complete the step from time t to t + At, the
solute concentration at the stationary grid nodes
is calculated according to

Ct+At Cr-f-& AC. (7)

Computer Programs

Listings of the MOC programs for solving one-
dimensional and two-dimensional tracer flow
problems are given in Appendices A and B,
respectively. The following steps in the MOC
procedure are valid for both one- and two-
dimensional problems.

Step 1: In addition to assigning nodal coordi-
nates and concentrations, initial coordinates and
concentrations are assigned to the moving points in
each grid block.

Step 2: Determine which grid block the
moving point is located in, and relocate the point
using the assigned flow velocity. Also, if during a
time step, any point moves out of the system, it is
reentered at an inflow boundary with the appropri-
ate boundary concentration and coordinates.
Minor changes in the programs must be made when
boundary conditions are changed to allow tor the
proper removal and reintroduction of the moving
points. After the moving points have been
relocated, a count is made of the number of
moving points in each grid block.

Step 3: A temporary concentration equal to
the average of the concentrations of moving points
inside the grid block is assigned to each grid block.

Step 4: A change in grid block concentration
due to dispersion is calculated based on the tempo-
rary grid block concentration calculared in Step 3.

Step 5: Each grid block concentration is
updated based on the change in concentration
calculated in Step 4.

Step 6: Each moving point concentration is
also updarted based on the change in concentration
calculated in Step 4.

Steps 2 through 6 are repeated for each simu-
lated time step. Each step is clearly identified in
both programs in Appendices A and B.
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Fig. 1. Comparison of analytical and numerical solutions to
the longitudinal dispersion problem in one-dimensional
flow.

Numerical Testing
Longitudinal Dispersion in One-Dimensional Flow
Numerical simulation results based on the
computer code in Appendix A were compared with
those obtained from the solution of the following
form of the convective-dispersion equation:
aC 9*C aC
—=Dp —=-V;, —. (8)
3t “axdCax,
The appropriate initial and boundary conditions
for the problem considered are:

C(XJ,Q)=O; XJ?O
C,t)=Cq; t=0 (9)
Ceo,t)=0; t20.

Ogata and Banks (1961) used Laplace transforms
with equation (8) to obrain the solution

C Xy -V
...-:%[crfc{i?._ﬂ:}q.
Co 2(DL)%
VX, Xy + V,t
fe { —————}]. 10
exp { D }erC{Z(DLt)‘/z }] (10)

A numerical solution was obtained using the
following data for the one-dimensional program
(Appendix A):

number of grid blocks (NR) = 49.

total number of moving points (NP1) = 196.
number of moving points per grid block (NPZ) = 4,
maximum number of time steps (MAXST) = 18.

simulation finish time (FINTIM) = 1710 sec.
time increment, At (DELT) = 100 sec.
spatial increment, Ax; (DELZ) = 3.81 cm,
total depth of model, 2, (TZ) = 182.88 ¢m.
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longitudinal dispersion coefficient,
Dy (DL)=2.94 X 107 cm?s™,
seepage velocity, V,; (VEL) = 0.01411 cms™.
dimensionless concentration (C/Cy ) at input
boundary (CO) = 1.0.
dimensionless initial concentration,
C/Cqo (CINTL) = 0.0.

Note that the required number of grid blocks for a
total length of 182.88 c¢m is 48. However, in the
input data, NR has been increased by one to
accommodate the upper boundary condition. This
also resulted in an increase in the total number of
moving points. The results shown in Figure 1
indicate excellent agreement between the
numerical and analytical solutions.

Longitudinal Dispersion in Two-0Dimensional Flow
To check the numerical solution using the
tensorial form of the dispersion coefficient
[equation (4)], a coordinate transformation was
performed (Figure 2). The coordinate axes were
rotated so thar an angle of 45° existed between
the velocity vector and the transformed coordinate
axes, The problem was solved numerically in the
rotated coordinate system (x;, x3). This forced the
numerical model to use the tensor transformation
for the dispersion coefficient. However, the physics
of the problem was not changed, and equation (10)
still provides an analytical solution to the problem
in the (x,, x;) coordinate system.

N

! A

1
—_— X

N
f— l'x)/ ) .

Fig. 2. Schematic diagram of coordinate axes rotation used
for comparing numerical and analytical solutions of the
longitudinal dispersion problem in two-dimensional flow,



A rectangular region, 0 € x; < ¢; and
0 < x, < 2,, was considered in which the flow is
along the x; axis with a steady, uniform seepage
velocity, V; (Figure 2). With the coordinates rotated
45 degrees with respect to the velocity vector Vi,
the numerical solution was carried out in the
rectangular region defined by 0 < x; < ¢; and
0 < x| € ¢). A steady, uniform seepage velocity
with components Vi = 0.707 V; and V] =0.707 V,
existed in the transformed region. A fluid with a
relative concentration of C/C, = 1.0 was injected
across the entire interface 0 < x, < £,. Data used
to numerically solve the problem (Figure 2) were:
Ax; =0.4 cm, Ax| = 0.4 cm, At = 2 sec,

V4 =0.071 cm sec™, V| =0.071 cm sec™,

V; = 0.10 cm sec™, grid dimensions = 20 X 20,
Dp =0.01 cm? sec™, Dt = 0.001 cm? sec™,

2y =5.66 cm, £, = 5.66 cm, and the number of
moving points per grid block = 4. Some modifica-
tions to the code listed in Appendix A were
necessary to run the longitudinal dispersion
problem with and without the tensor transforma-
tion in two-dimensional flow. The modified code
is not listed because the modifications are minor.
It is available on request from the authors.

Two solutions were obtained for this problem;
one solution used the tensorial transformations for
the dispersion coefficients, Dy and D, given by
equations (4), and the other solution used no
rensor transformation. With the tensor transforma-
tion, the longitudinal dispersion coefficient (D3;) is
oriented parallel to the velocity vector (V;) and
the lateral dispersion coefficient (D,,) is oriented
perpendicular to the velocity vector (V,). For the
case with no tensor rransformation, the longitudinal
dispersion coefficient (D,;) is oriented parallel to
the x; coordinate axis and the lateral dispersion
coefficient (D,,) is oriented parallel to the x;
coordinate axis.

The results from the numerical solution of
this longitudinal dispersion problem with and
without the tensor transformation are shown in
Figure 3. The analytical solution as given by
equation (10) is also plotted. The results indicate
an excellent agreement between the numerical and
analytical solution when the tensor transformation
is used. The solution without the tensor transforma-
tion yielded a steeper concentration profile than
the analytical solution. Thus, a significant error
results in the numerical solution of the dispersion
equation when the tensor transformation is not
used and the cross-derivartive terms in equation (4)
are ignored.

Figure 4 shows the lateral concentration
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Fig. 3. Comparison of longitudinal concentration distribu-
tion calculated with and without the tensor transformation
for the longitudinal disparsion problem in two-dimensional
flow,

distribution after 0.71 pore volumes of fluid were
injected. Again, the numerical solution using the
tensor transformation provides more accurate
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Fig. 4. Comparison of lateral concentration distribution
with and without the tensor transformation for the longitu-
dinal dispersion problem in two-dimensional flow,
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.

results than that without the tensor transformation.
Some error in the numerical solution occurs near
the boundaries (x; = 0 and x, = ¢,). This occurs
because the straight boundaries of the column in
the (x,, x;) coordinate system must be approxi-
mated by a series of rectangles or squares in the
rotated coordinare system (x|, x3) (Figure 2). As
Axj and Axj become very small, a better approxi-
mation of the boundary conditions can be
expected. The numerical results for any value of
x3/¢; were generally the same for 0.3 <x,/2, € 0.7.
No dispersion (or mass flow) was allowed to occur
across the boundary columns x, = 0 and x, = ¢;.
This condition was approximated numerically by
serting the dispersion coefficients equal to zero

for all nodes on these two boundaries.

Longitudinal and Lateral Dispersion in
One-Dimensional Flow

If a rectangular column (0 € x; < €3,
0= x, <¢,)is used and a tracer source is
maintained over a portion of the input area
(0 < x, < b) as shown on Figure 5, then both
longitudinal and lateral dispersion will occur.
Assuming a homogeneous and isotropic saturated
medium with unidirectional flow in the x,
direction and 3C/3x, = 0, equation (1) becomes

aC 3*C 2:C aC
=D —— +Dp ——= -V, —.  (11)
at ax;i ax/} 3X,

The initial and boundary conditions are given by

C(X,_,O,t)=co; nglgb; t;O

C(x,,0,1)=0; b<x, <2; t=0
aC
—(0,x;,0=0, t>0
09X,
aC
_“(erx:ht):O! t>0
ax,

C(x,, %, t) = Bounded

C(X;,X;,O)"'O nglggl; X3>O. (12)

. Harleman and Rumer (1963) gave the following

approximate steady-state solution to equations
(11) and (12).

-C-—=‘/zerfc[ X —b

Co 2 v DTX;/V;

A problem of longitudinal and lateral disper-
sion in unidirectional flow was run using the code
in Appendix B and the following data:

I. (13)
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Fig. 5. Schematic diagram of longitudinal and lateral
dispersion problem in one-dimensional flow.

number of grid blocks (rows) in the vertical (x,)
direction (NR) = 26.

total number of moving points in vertical (x;)
direction (NP1) = 52.

number of moving points/grid block in x; direction
(NPZ) = 2.

number of grid blocks (columns) in horizontal (x,)
direction (NC) = 20.

total number of moving points in horizontal (x,)
direction (NP2) = 40.

number of moving points/block in x, direction
(NPX) = 2.

maximum number of time steps (MAXST) = 100.

initial value of counter for printing numerical
solution (KPRINT) = 1.

number of intervals at which results are printed
(IFAC) = 100.

simulation finish time (FINTIM) = 200 sec.
time increment, At (DELT) = 2.0 sec.
vertical spatial increment, Ax; (DELZ) = 0.40 cm.
total depth of model in x; direction,
2, (TZ) = 10.0 cm.
horizontal spatial increment, .
Ax, (DELX)=0.20 cm.
total width of model in x, direction,
2, (TX)=4.0 cm.

longitudinal dispersion coefficient,
Dy (DL) =0.01 ¢cm? sec™.
lateral dispersion coefficient,
Dt (DT) = 0.001 cm*® sec™.
length of tracer source in x, direction,
b (B)=2.20 cm.
velocity in x, direction, V; (VEL) = 0.10 cm sec™.



dimensionless concentration (C/C,) at input
boundary (CO) = 1.0.

dimensionless initial concentration,
C/Cq (CINTL) =0.0.

As in the one-dimensional program, NR was
increased by one to accommodate the upper
boundary condition.

The results from the numerical solution of
the longitudinal and lateral dispersion problem
are shown in Figures 6 and 7, at t = 200 sec and
after an approximate steady-state condition was
achieved. For comparison, the approximate
analytical solutions for the steady-state case as
determined from (13) are also plotted in Figures
6 and 7 as the solid lines. In general, the accuracy
of the numerical solution is excellent. The region
close to the source, i.e., x; = 0, is a problem area
where the accuracy is not as good. This occurs
because of the very steep concentration gradient
in the x, direction which approaches a step
function. Reddell and Sunada (1970) discussed
the problem of achieving accurate numerical
solutions along steep concentration profiles or
when step-input functions are used. They
reported that much smaller grid dimensions are
necessary to obtain accurate results in these
areas. It should also be noted that equation (13)
is only an approximate analytical solution and
not an exact one. Also, equation (13) is a steady-
state solution, but the numerical solutions are
transient. The numerical solutions were termi-
nated after 200 sec of simulation, and the results
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Fig. 7. Comparison of longitudinal concentration distribu-
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approximate analytical solution for the two-dimensional
dispersion problem in one-dimensional flow,

were changing only slightly with each additional
time step, and a true steady state had not been
achieved.

Longitudinal and Lateral Dispersion in
Two-Dimensional Flow

A longitudinal and lateral dispersion problem
was also solved numerically in the rotated '
coordinate system (x|, x3) as shown in Figure 8. A
fluid with a relative concentration of C/Cy = 1.0

t
—_—

Y4 —

| nT/ 8N 1
]

Fig. 8. Schematic diagram of coordinate axes rotation used

for comparing numerical and analytical solutions of the

longitudinal and lateral dispersion problem in two-

dimensional flow,
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Fig. 9. Comparison of lateral concentration distribution at
x3/%3 = 0.2 as calculated by using the tensor transformation,
without the tensor transformation, and by an approximate
analytical solution for steady-state conditions for the two-
dimensional dispersion and flow problem,

was injected over the interval a € x, < b and fluid
with a relative concentration of C/C, = 0.0 was
injected over the intervals 0 < x, < a and

b < x; < ¢,. Data used to numerically solve this
problem were the same as for the previously
described longitudinal dispersion problem.

Again, some minor modifications to the code
listed in Appendix B were necessary to run the
longitudinal and lateral dispersion problem with
and without the tensor transformation in two-
dimensional flow. The modified code is available
on request from the authors. ,

The results from the numerical solution of the
longitudinal and lateral dispersion problem with
and without the tensor transformation are shown
in Figures 9 through 12 after 2.1 pore volumes of
fluid were injected and an approximate steady-state
condition was achieved. For comparison, the
approximate analytical solution for the steady case
as determined from equation (13) is also plotted.
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Fig. 10. Comparison of lateral concentration distribution

at x3/¢; = 0.8 as calculated by using the tensor transforma.
tion, without the tensor transformation, and by an approxi-
mate analytical solution for steady-state conditions for the
two-dimensional dispersion and flow problem.
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Figure 12 shows that the numerical solutions
obtained using the tensor transformation are much
closer to the analytical solution than those without
the tensor transformation. However, the accuracy
of the numerical solution is not as good as was
achieved in the longitudinal dispersion problem
described earlier. As discussed earlier, this occurs
because of the very steep concentration gradient in
the x, direction.

The concentration profiles as plotted do not
show any “overshoot” or ‘“‘undershoot.” However,
overshoot and undershoot did occur but were
generally on the order of 10 to 10™ C/C,. Since
the numerical solution without the tensor trans-
formation did not produce any overshoot, the use
of a “nine-star” grid pattern to estimate the cross
derivatives for the tensor transformation is
believed to be the source of this small amount of
overshoot,

a. Anglfyctcal vain, at
‘ staady Atate
a & Num. saln, w/o tentor
w
'.L‘. 0k - * wumLsoln. =ien tentor
5 Al) salutfons are for
3 var/egedt
- \.._ .
E 0 -J/I]'O.l x)/«)a.a
£ .
o
.
8.2
.
]
[ e 0.2 a.} a.4 a.5 2.6 o7 0.8 2.9 1.9

Froetiom) distance, 1/t

Fig. 11. Comparison of |ateral concentration distribution at
x3/€; = 0.8 as calculated by using the tensor transformation,
without the tensor transformation, and by an approximate
analytical solution for steady-state conditions for the two-
dimensional dispersion and flow problem.
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Fig. 12. Comparison of longitudinal concentration distribu-
tion at steady state as calculated by using the tensor trans-
formation, without the tensor transformation, and by an
approximate analytical solution for the two-dimensional
dispersion and flow problem,



Summary and Conclusions

Four different convective-dispersion problems
were considered: (1) longitudinal dispersion in
one-dimensional flow; (2) longitudinal dispersion
with and without the tensor transformation in two-
dimensional flow; (3) longitudinal and laceral dis-
persion in unidirectional flow; and (4) longitudinal
and lateral dispersion with and without the tensor
transformation in two-dimensional flow. A steady,
uniform flow field was assumed and the porous
medium was homogeneous and isotropic. A
coordinate transformation was necessary to check
the numerical solution using the tensorial form of
the dispersion coefficient. The MOC was used to
solve the convective-dispersion equations. The
results from the numerical solutions of the
dispersion problems were compared with available
analytical solutions. Excellent agreement was
obtained between the numerical and analytical
solutions when the tensor transformation was used.
This provides strong evidence for the accuracy of
the MOC and the numerical tensor transformanon
used.

The MOC appears to be capable of solving
the longitudinal dispersion as well as the longitudi-
nal and lateral dispersion problems. No problems
with overshoot occurred and no numerical
dispersion resulted from the numerical process.
The small amount of overshoot that occurred in
the numerical solution is believed to be the result
of using a nine-star grid pattern to estimate the
cross derivatives for the tensor transformation.

The FORTRAN programs presented in the
paper are intended to illustrate the basic use of the
MOC in solving convective-dispersion problems for
a conservative tracer in a saturated porous medium.
For specific applications to real-world field
problems involving fluid sources and sinks in
confined/unconfined heterogeneous aquifers, other
FORTRAN programs (e.g., Konikow and
Bredehoeft, 1978) are available.
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Appendix A, Solution of One-Dimensional Convective-
Dispersion Equation by tha Method of Characteristics

wwwe INPUT [NFORMATION +--ot-—vwvvwwmw~

THYNOTE: TO ARUN #ROCRAM YOU MUST USE THE COMMAND:
IX MOC.FOR, SYS:[MSLIB/LID

HR = NUMAER OF GRIDS (ROWH) [N THE VERTICAL (X)) JIARCTION
¥Pl= NUMBER OJF MOVING POINTS IN THE VERTICAL OJIRECTION
SPZ= NUMBER OF MOVING POINTS/GRID IN X3 OIRECTION

MAXST= SAXIMUM NUMBER OF TIME STEPS

FINTIM= SIMULATION FINISH TIME IN SECONDS
CELT o TIME INCAREMENT [N SECONDS

DELZ = SPATIAL [WQREMENT IN IM.

kx4 = TOTAL DEPTH OF MOQEL I X) DIRECTION

oL = LONGITUDINAL D1SPERSION msrrtcxzm IN TMTe2/SEC.
VEL= VELOCITY IN X} 2LRECTIOI

CO & DIMENSIONLESS CONCEN’FMTE‘N AT THE [NPUT BOUNDAAY
JINTL = ODIMENSIONLESS (NITIAL CONCENTRATION

* 2ROGRAM VARIABLES

ALENT ® TOTAL LENGTH [N X) DIRECTION
MAXST @ MAX. HO. OF TIME STEPS DURING SIMULATION
ZC | 1= X1 COORDINATE AT GRID CENTER

20 ) & X3 COORDINATE OF MOVING POLNTS
S0} = COMCENTRATION OF MOVING POINTS
VO ) 4 VELOGQITY OF EACH MOVING POLNT
SUMC( ) » SUMMATION OF TOMCENTAATION OF HMOVING POINTS IN A GRID

COUNT{ 1= A COUNT JF SUMBER OF MOVING POINTS I¥ A GRIQ

QAVG | )= AVERAGE CONCENTRATION OF TRACER FOR A GRID AND IS
DETERMINED AR SUMC/COUNT

DELG ( )e CHANGE IN CONCENTPRATION FOR A GRID OUE TO DISPERBION

CCoAl ) CIMENSLONLESS COMCENTRATION @Y ANALYTICAL SOLUTION
NIl * ROW NUMBER OF GRID [N WHICH MOVING POINT [S LOCATED
G = INGREMENT ING FACTOR USED IN 3O0-LOOP

GaANAGANaANNOAONOAGANGAGAGONONNAGANGOR0

INTECER TSTEP
DIMENSION Z(L96),CAVG(49) . COUNT(49) ,5umMI{49) VIL96) ,DELC( 196},
§ CCOA{49),C(196),2C(4a%)
OATA NPRINT, [PRINT, NREAD/].5.3%/
WRITE ({PALNT.L00)
100 FORMAT (/. 3X.  THE FOLLOWING VARLABLES HAVE 1% FORMATS',
§ /.2%.' GIVE VALUES FOR: NR. NPL, NBZ, MAXST ./}
READ (NREAD.L) MR, NPL. NPT, MAXST
WRITE (NPRINT.2) ¥R, NPL, NPZ. ‘QAK.ST
WRITE {IPRINT, 200}
200 FORMAT (/.2X, ' THE NEXT 4 VAIIAS“I HAVE FREE FORMATS ./,
§ IX, ' GIVE VALUES FOR FINTIM, DELT, OELZ, T2°,/)
READ (NREAD,®") FINTIM,DELT,JELZ.TZ
WRLITE { IPRINT, 300}
0 FORMAT {/.2X, ' THE LAST FOUR VARIABLES HAVE FREE FORMATS',/,
§ 2. ° GIVE VALUES FOR DL, VEL. O, CINTL',//)
READ (MREAD. ") DL. VEL, GO, CINTL
WRITE [ [PRINT, 400)
400 FORMAT (/! 2X," QUTPUT DJISPOSED TO LINE PRINTER'}
WAITE (NPRINT,4) FINTIM. DELT, OELZ, TZ, DL, VEL. (0, CINTL
PZ = FLOAT(NPZ)
AD = DELT*OL/DELZ/DELI
ALENZ = DELZ * FLOAT(NR)
ADLSZ = DELZ/PT
NRML & SR - L

P e e m dmmammaamammammm——ne [ dvaanamman
H "Tv STER i ASSIGN INITIAL COORDINATES AND CONCENTRATIONS TO
z MOVING POINTS o
ZCIL) » 0.0
2C(2) = DELZ/2
D0 80 L s 1, NR
ao 2C(I) = 2E(I = L) + DELZ
20 67 I = L, SR
SUMCIL) = 0,0
COUNT(I)a 0.0
57 DELCII) = 2.0
D0 10 I = L, NPl
DOG » FLOAT ([ - 1)
()= (DELZ/PZ) * 10.5 = DOG)
Silie SINTL
IF (1 .LE. NPZ) T(I) @ L.3
Vi1l = VEL
NI o= 2(1), 3ELE * 1.0
SUMCINTL) s SUME(NIL) + C(1)
COUNT(HIL)= COUNT(NIL}+ 1.0
10 CONT INUE

D0 Ll [ = |, JR

IF {JOWNT(I) .EQ. 0.) COUNT({I}=i.Q
CAVG(L) w» SUMC{ L)/ COUNTIL)
TONTINUE

CTPAINT INITIAL TONCENTRATION FOR EACH GRID POINT®**e

TSTEF =
TINE = 0.0
WRITE [ NPAINT, L7)
500 I a i, 3R
500 WRLTE |SPRINT. 16) I, SUMCII)., COUNT(I), DELCII). GAVG(L)

1000 CONTINUE

M
LT START SIMULATION QVER TIME STEPS --
c

TSTEP » TSTER + L
iF (TIME « DELT .GT. FINTIM) QELT = PINTIM - TIME
TIME = TIME + DELT

= STEP 2: DETERMINES WHIGH GRID THME MOVING POINT I3 LOGATED, AND
RELOCATES THE POINT USING ASSIGNMED FLOW VELOCITY ea=-=-

2020 1 = L, NPl

NIL = Z(L1/0BLZ + 1.0

TODL w BLL) « DRLTYV(L)
20 CONTINUE

"1F DURING A TIME STEP, ANY MOVING POINT MOVES OUT OF THE SYSTEM. (T I3
< AE-ENTERED AT THE INFLOW ROUMDARY: ASSIGNED APPROPRIATE COORDINATES AND
c CONCENTRATION *eovvovess
[

DO 66 L = L. NPL
IF (Z(I) ,LT. ALEN%Z) GO TO 6&
NPM) = NB)L - L
DO 52 J = L, HPML t
ELIEIE TR W
Z(HM} = Z(NN - L)
viNN) = VNN - L)
S{NH) = C{HN = L)
51 CONT INUE -
(L = 2{2} - ADISZ
IFIR{L) LT, 0.0L) 34 = 0.01
V(1) = VEL
il = co
56 CONT tuut
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R T R R TP P L Ry P TR T R TR YT s

INITIALIZE THE SUMC AND COUNT ARARAYS """V

DO %4 [ = |, NR

SuMC (I} = 0.0

COWTII) = 0.0
54 CONT INUE

e T T T T L AL L LA LT LR Y Ty
2 COMPUTE SUMC AND COUNT FOR MOVING POINTS I[N A GRID **°"
[
00 40 [ = |, NP1
WIL = IFix (Z{I}/DELZ +« 1.0)
JUMC (NIL) = SUMC (NILl) +» C (1)
COUNT (NIL) = CQUNT (NIL) * L.0
40 COH'NNUE

A-ES!GDI A TEMPORARY CONCENTRATION TO EACH GRID. EQUAL TO THE
<) AVERAGE OF CONCENTRATIONS OF MOVING POINTS [NS[0OE THE GALD=---=
DO )0 [ » L. NR
IF (COUNT(L) .EQ. 0.) COUNT(I) » 1.2
CAVGL L) = SUME(L)/COUNTIL)
hl-] CONTINUE

[=
[ STEP 4: COMPUTE CHANGE IN GHD CONCENTRATION DUE TO OLSPERSION
[=}

0O 318 I = 2, NAML

OELC(I) = AD * (CAVGII-1) - 1."CAVG{I) + CAVG(I+1)]
CELC(NRI= AD * (CAVG(NR+Ll) =« CAVG{NA})

Bl ] CONTINUE
[ — [P R
[ STEP 3: UPDATE CRID POINT CONC. AASED ON DELC
<
DO 48 L = L, MR
CAVGLI) = CQAVG(I) « DJELC(I}
48 GCONT INUE

DO 22 I = 1, oPL

NIL = 2(f)/OELZ + 1.0Q
Cl{I)= C{I) » DELGINIL)
CONTXVU!

ERROR Fu‘NC'l'lQN ANALYTICAL SOI.IIHQN .

A & 2. *SORT(DL*TIME)
00 8L I = L, SR
S1L = EAFCQ((ZC(LI=V{L)*TIME)/A)
52« EREC{{ZC(L)+V(I)*TIME}/A)
CCOA( L) wd, S (SL+EXRP(V(I) "ZCLD) "OL) "52)
31 ZONT INUE

Qreesey PRINTS SIMULATION RISULTS M
[
WRITE (NPRINT, }01) Timg
WRITE (NPRINT.J2)
WRITE (NPRINT, JL) (1,2C(0),CAVG{I) ,CCOALL), [=L.HR)
1P (TSTEP .EQ. MAXST) STOP
G2 TO 1000
FORMAT (4(1%)}
FORMAT (/L1X.' NR=', [35,3X.’ ™OVING PTH. IN Z-DiRECTION=',
5 I5/1X." MQVING POINTS PRR GRID » ', [5,.3%. ' ™AX. TIME STEPS ', 1%

-

1
FORMAT (4({F10.2)1
FORMAT (/1X.'FINTIMe '  F10.2,3x,' DELT='.F10.2, 3X.

§ ' DEfZe', P£10.2,MK.°' I=', F10,),JX,' oLe'.210.),

§ 1K, VELa',EL6.8,)X,' Com',F10.3/iX. CINITIAL='.F10.3)

] FORMAT {2(F10.6))

17 I'ORHM' {/8X, '=mmmmsmmmssss=suasFOR THE GRID POLNTSmwsmsaw',

1 AL TR ST
8 sunc SBX,C COUNT', 7X. ' DELC', 7X.' CAVG' /)

16 FORMAT (1X, 18, 4(Ei4.8))

32 FORMAT {/4X. 'I'.JX, ZC{I)}', 5%, "Qoo(I1’, 7X, "CCOAL D) ', 6%, ' L', IX,
§ CICIT)', 5K, QO D), 7K, "CCOA(L) " 8, "I, 23X, "2C{L) ', 54, "caocflr ",
¥ 7K.'CCOA(I)‘/ISX.'(NUHIRICAL)‘.2K,'(m§.\‘TZCALl'.14X.
$  C{NUMERICAL) . JX. " (ANALYTICAL) ', L4X. ' (NUMERICAL)'.3X,

§ C(ANALYTICAL) ')

n FORMAT {3(2X,1).F7.2, 2E14.6))

oy FORMAT (,1X.  SIMULATION Timt e ' £10.3/)

stTov

END

e

Appendix B. Solution of Two-Dimensional Convective-
Dispersion Equation by the Method of Characteristics

Comemuestesssssanan==  INPUT INFORMATION --
“=% NOTE: TQ RUN THE PROGAAM YOU MUST USE THE COMMAND:
EX MOC2D.FOR.3YS [MSLIB/LID

------ NR = MO, OF GRIDS(AQWE! IN THRE VERTIZALIX3) DIRECTION
NFL = NO, JF mMQVING POINTS IN VERTICALIX3}) OIRECTION
NPZ w» NO. OF MOVING POINTS PER SRID [N XJ DIRECTION
NC o= NQ, OF GRIDS{COLUMNS) [N HORIZONTAL (X1) DIRECTION
NP2 = NO. OF MOVING POINTS [¥ HOR[IONTAL (X1} DLRECTION
. 3¢ WOVING POINTS PER GRID [N X1 DIRECTION
MAXIMUM NO. OF TIME STEPS USED [N SIMULATION
UI!N‘I‘-I‘C!T!»\L COUNTER FOR PRINTING NUMERICAL 3OLUTION
1FACaNUMBER OF [NTERVALS AT WHICH RESULTS ARE PRINTED

aaon

AaANDANANoLNn

m===r= PINTIM » SIMULATION FINLSH ‘H‘\B I SECUNDS
SELT ~ TIME I[MCREMENT LN SECON
MLL = 'IBHIGM- (X3} SPATIAL .NCHPCN" IN oM,
TZ = TOTAL DEPTH OF HOOEL IN VERTICAL (X3} DLAREGY{ON
OELX = HORITONTAL (X1} SPATIAL-INCREMENT [N CM.
TX = TOTAL WIDTH OF MODEL IN HOR{ZOWTAL (X1} DIRECTION

~esess DL = LONQITUDINAL DISP. COEFF. (CM*<1/%EC)
DT = LATERAL BISP. COEFP. (CH**2/SEC)
B & LENQTHM OF TRACER SOURCE IN XL OIRECTION IN COM.
YEL = VELOCITY [N VERTICAL (X1) DIRECTION (CM/SEC)
CO = DIMENSLONLESS COMC. AT INPUT BOUNDARY
CINTL » ZIMENSIONLESS [NITIAL CONG,

* PNOGRAN VARIABLES *

ALEWZ = TOTAL LENGTH OF MODEL [N VERTICAL (X))} DIRECTION

Z w VERTICAL (XJ) COORDIMATE OF MOVING POLWTS

X & HORIZONTAL (X1} COORDINATE OF MOVING POLUTS

C # DIMENSIOMLESS COMGC. OF MOVING POLNTS

V = VELQCITY OF FACH MAOVING POINT

0OGZ, JOGX = [NCREMENTING FACTORS USED I8 DO LOOPE

SUMC = SUMMATION OF CONCENTRATIOM OFf MOVING POINTI IH A GRID
COUNT = A COUNT OF Q. OF MOVING POINTS IN A GRED

NIl = ROW HO. OF A GRID [N WHICH A MOVING POINT I LOCATED
Ni2 = COLUMM NO. OF A GRID IN WHICH A MOVING POINT [$ LOCATED
PELC = CHMAZGE IN CONCENTRATION FOR A GRID DUE TO OISFERSIOM

ONaNNOaANaRNanAANARANRIAGaANnNAA

INTEGER TITEP

DIMENSION Z(%2),CAvG(26,21),D05P(26, 21),COUNT( 26,21}
DIMENSION SUMCI26,31),V(52),0RLC(26.20) . C6R( 28, 211.50582, 437
DIMEMSION ZC(26),CCOA(26,2L).XC(2L).X(42)

DATA SFRINT, IPRINT, NRRAD/], 5.5/



WRITE( [PRINT, LOQ)
Loo fORMAT(/, 1%, ' THE FOLLOWING VARIABLES MAVE 15 FORMAT /. IX,
$ ' GIVE VALUES FOR: NR, NPL, NPL.NC.NP2Z, NPX,MAXST,KPRINT, [PAC'./)
READ(NREAD. LJHR, NPL, NPZ. NC. NP2, NPX, MAXS'T, KPRINT, [FAC
WRITE(NPRINT, ZINR, NP1, NPZ, NC, NP2, NPX, MAXST, KPRINT, IFAG
WRITE[ IPRINT. 200)
200 FORMAT{/, 2%,  THE NEXT & VARIABLES HAVE FREL FORMAT',/,
§ 2X, ' GIVE VALUES FOR FINTIM. QELT, DELZ. TL, DELX. TX'./)
READ{NREAD, ") FINTIM, OELT, DELZ, TZ, OBLX, TX
WRITE{ IFRINT, JO0)
300 FORMAT(/, 2X, ' THE [AST & VARIABLES HAVE PAEE FORMAT',/,
$ 2%, ' GIVE VALUES FOR: DL, OT, &, VEL, GO, CINTL'.//!
READ{NREAD,*) DL, DT, &, VEL, CO. CINTL
WRITE{ IPRINT, 400}
400 FORMAT(//,2X, " OUTPYT DISPOSED TO LINE PRINTER')
WRITE(NPRINT, 4)FINTLM, DELT, DELZ, TZ, DL, VEL, DELX, TX, DT, B,
§ . CINTL
[ [NITIALIZE VARIABLES ~svv=m==n A dm e mmmmmmmmm e —a————
PL=FLOAT(NPZ)
BX=FLOAT(NPX)
ADZ=DELT ¥ OL/DELZ/DELZ
ADXeDELT * OT/DELX/DELX
NCRmIPIX(B/DELX)
NCBL=NCR + |
NEXB=(FIX{B*NPX/DELX)
NPXBLwNPXB +
ALENZ=DELZ * FLOAT{NR)
ADIZZ=DELZ/P2 N
NRM1mNR -+ L
HCML=NC - |

GRORDINATES FOR STATIONARY GRID SYSTEM ccsns-csummmm==

Z00L) = 0.
ZC(3) = DEL2Z/2.
XC({Ll} = DELX/2.
o0 BD a3, HR

ag TC(L)=2C(t-1) ~ DELZ
DO 81 [=2.NC
a1 XS(L)=xC(I-«L} + DELX
¢
Crwmmmme INITIALIZE SUMC AND COUNT =-—-

DO 67 J=l.NC
30 67 [=l. 3R
Sumc(t,J) = 9,
COUNT(I,J) = 0.
87 DELC(I,J) = 0.

<
Ce== STEP 11 ASSIGN INITIAL COORDINATES AND CONCGENTRATIONS TO MOVING POLNTS --
[

00 10 J=i, NP2

PO L0 E=i.NPL

DOGZFLOAT{ I-1)

SOQXaPLOAT(J-1)

Z(1)=(DELZ/PZ) * (0.5 + DOGZ)
XK[J)a(DELX/PX) * (0.5 + 0OGX)
C(L.J)=CINTL

IF{! .LE. NPZ .AND. J .LI. NPXE) C(l.J)=CO

<
Lmmammm= CALGULATE INITIAL VALUES OF SUMC AND COUNT <aasssavsas
[
V{{)mVEL
WIL=IPIX(Z(L)/PELT +L.Q)
NId=IFIX(X({J1/QELX +L. O}
SUMCINLL, NI2)egUMC{NIL, NL2) + CLL.J)
COUNT{NIL.NI2) = COUNT(NIL,8I2} + 1.0
10 CONT INUE
[+
Crmmmme— ASSIGN INITIAL CONCENTRATIONS TO STATIONARY GRID POINTY <uears
[+
oG L) Ja), 8C
B0 LL I=L.NR
EPICOUNT{L. ) .£Q. 0.) COUNT(L.J) =L.0
CAVG( L, Jymsumc({ L, )/ COUNT( L, J)
11 CONT INUE
TSTEP=Q
TIME=Q,
& .
Cammmnms SRINT INITIAL CONCENTRATIONS FOR EACH GRID POINT ------ e
WRITE{NPRINT,L7)
Da 500 I=1.NR
500 Jmi, NC
300 WRLTE( NPRINT, 16}I,J, SUMC(L,J), JOUNT( L. J) . DELCUL. J} . CAVG(L. J)

1000 CONTENUR

[+
Crmmmman SIMULATION STARTS -==vw=rmew==s=mmm-======msc—mo——a-mamsasaa=

TSTEP = TSTEP L
IF{ TIME + DELT .GT. FINTIM) DELT=FINTIM-TIME
TIMNE = TIME ~0QELT

Ge== STEP %: DETERMINE WHICH ORID EACH MOVING POINT 1§ IN, ARD RELOGATE
c USLNG VELOCITY -=-=wr==
[
DO 20 I=l.NiL
Z(t)e2(1) +» DELT * VII}
Fie) CONT [NUR
Crmmmmnm RE-ASSIGN COOADINATES AND CONCENTRATIONS TQ MOVING POINTS WHICH
[ HAVE MQVED OUT OF THE SYSTEM. i.a., INPUT THEM AGAIN AT T
[ INFLOW BOUNDARY ~=samwuar
c
DO 66 I=l, NPY
IFCE(L LT. ALENZ) QOTO &6
NPMLuNPL - L
00 &6 Kel, NPML
NN=WPL + L - K
ZOHK) > T(NN-1]
&6 CONT INUE

DO &8 Jel, NP2
0O &8 K=l NPRL
NNaHpL - 1 K
CINN.J) = C{NN~1,d)
68 CONT INUE .
TLl)=Z(2) - ADLISE
IPCZLL) (LT, .D1) Z{L)=.01

0O 65 Jul,NpX
[=:]

Cll,J) =
| I¥(J .GT. HPXB) C{L.J)=CINTL
(1] CONT INUE
¢
Cmmwwwn AESET SUMC AND COUNT
c
00 54 Iw|, NR
00 34 Jml.4cC
SUMC(L,J) =),
COUNT{ 1, J)w0.
34 CoNTiNug
[+

Qamwmnn FOR LACH GRID. 3SUM UP THME TOTAL JONCENTRATION . SUMC: AND THE
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Applying the USGS Mass-Transport Model (MOC)
to Remedial Actions by Recovery Wells

by Aly 1. El-Kadi®

ABSTRACT

The USGS two-dimensional mass-transport model
(MOC) is widely used in the analysis of ground-water
contamination problems. A need exists to examine the
accuracy of the code in situations dominated by radially
convergent and divergent flow around wells. The model is
applied here to situations that commonly exist in remedial
actions involving recovery wells. The cases simulated are a
recharge/recovery single well, a recharge/recovery doublet,
and plume capture by one or two production wells. The
results were tested against analytical and semianalytical
solutions, Inaccuracies in model results occurred especially
for the doubler case under continued long-time simulation.
Inaccuracies are caused not only by the mainly radial-flow
situation, or by the curvature nature of streamlines, but
also by the arrival of contamination at the sink nodes.
Better agreement of numerical and analyrical solutions was
obtained for the single-well and plume-capture situations,
However, a large mass-balance error exists for the single-well
case. Inaccuracies can be reduced by modifving the code
and reducing the finite-difference mesh (e.g., Erickson,
1985). However, the use of a verv fine mesh (i.e., on the
order of a few feet) may prevent the use of the code in
large-scale problems. Care must be taken in applying the
model to situations where production or injection wells are
close to each other.

INTRODUCTION

The U.S. Geological Survey two-dimensional
mass-transport model, known also as MOC and
developed originally by Konikow and Bredehoeft
(1978), utilizes the method of characteristics and
the finite-difference approach in the solution of
the mass-transport problem. The model has under-
gone numerous modifications and revisions (e.g.,
Sanford and Konikow, 1985). It has been applied
in a large number of field studies (e.g., Bouverte,
1983; Chapelle, 1986; and Sophocleous, 1984) and
tested against analytical and alternative numerical
approaches (e.g., Sophocleous ez al., 1982). The
well-documented code is relatively easy to use.
Various options can be applied to describe different
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hydrological conditions. The recent introduction
of a microcomputer version and a preprocessor for
input data preparation has increased the popularitv
of the code.

The model is tested here in situations
dominated by radially convergent and divergent
flow around wells. The authors of the code do not
encourage the application of the model to such
problems, especially when using a grid that is too
coarse (L. Konikow, pers. comm., 1987). However,
some applications of the code to similar situations
have been reported in the literature (e.g., Freeberg
et al., 1987). Erickson (1985), realizing that
problems arise in the use of MOC for these
situations, modified the code for use in the analysis
of single-well tracer tests. The major changes include
simulating the converging/diverging flow field
resulting from wells; eliminating the hydrodynamic

. dispersion in the well during the pumping phase:

changing the manner in which particle concentration
is estimated from node concentration; changing the
way mass is removed by pumpage; and adding new
particles before the pumping phase. A finer mesh
(one square foot) was also used. Better accuracy as
well as better mass conservation was obtained
following these changes.

Note, however, that the use of such a fine
mesh is impractical due to the limited area thar can
be handled by the code in this case. If we consider
the large number of particles that must be. handled
and the limit imposed on the size of the time step,
compurtational costs could be prohibitive. A need
exists to examine the suitability of the code in the
analysis of relatively large problems of a practical
nature.

In general, accuracy of numerical results can
be judged using various criteria relevant to the
purpose of model application and the expected use
of results. For example, when professional judg-
ment is needed, an order-of-magnitude analysis of
concentration values or travel times is generally
acceptable, especially under uncertainty in data
and processes involved. On the other hand, more
accurate estimates are needed in some situations
involving, for example, the assessment of exposure
levels of toxic chemicals in the environment. In the
present analysis, both visual inspection and esti-



mates of root-mean-squared error are used 1o assess
the accuracy of the model. “Reasonable” or
“good’’ results are defined in practical terms;
“unacceptable’’ results are based on severe
fluctuations.

The objective for the study is to verify MOC
for situations pertinent to remedial actions by
recovery wells, The cases simulated are a recharge/
recovery single well, a recharge/recovery doublet,
and plume capture by one or two production wells.
The model is not completely tested in the terms
described, for example, by van der Heijde et al.
(1985). These authors define a three-level testing
approach that ranges between testing against
analytical solutions and history matching.

REMEDIAL ACTIONS

Remedial actions include the use of systems
to contain spilled or leaked contaminants and to
recover and treat ground water. [For details of
different techniques see, ¢.g., U.S. Environmental
Protection Agency (1985) and Ehrenfeld and Bass
(1984).] Containment systems interfere with
transport mechanisms by means of hydraulic
barriers such as recovery wells, interceptor trenches,
grout curtains, and slurry walls. Treatment systems
include the use of physical, chemical, and biological
activities. Physical/chemical processes include in
situ air stripping and activated carbon absorption;
both are effective in reducing volatile organic
compounds. Air stripping helps remove volatile
chemicals from the soil by drawing or venting air
through the unsaturated soil layer. Another form
of air stripping passes contaminated water through
a packed column or tower with counterflowing air
and water. The effectiveness of carbon absorption
depends on the type of competing compounds
(e.g., Engineering-Science, 1986).

Aboveground and in situ biological methods
have been employed recently in the treatment of
contaminated ground water. Aboveground processes
include fixed film treatment such as trickling filters,
or suspended-growth systems such as activated
sludge (Jensen et al., 1986). In situ biodegradarion
can be performed by using existing soil micro-
organisms or by adding microorganisms and
nutrients to the contaminated aquifer. Such treat-
ment is presently in the experimental stage; its
effectiveness depends on a number of factors such
as type and concentration of contaminants, hydro-
geology, nutrient availability, dissolved oxygen, pH,
temperature, and salinity (Engineering-Science,
1986).

Recovery wells are the most commonly used

remediation techniques. In aquifer cleanup, they
extract the polluted ground water and either
reinject it after treatment or release it to a surface-
water body. In some cases, recovery wells are
cdmbined with injection wells to improve recovery
by altering the hydraulic gradient. The recovery

well system should be designed to intercept the
contaminant plume such that no further degradation
of the aquifer occurs. Modeling is a very useful tool
in the design of such systems (Boutwell et al., 1985).

TESTING THE MODEL

Case 1: A Recharge/Racovery Single Well

A recharge-pumping cycle for a fully penetrat-
ing well in a confined aquifer is used to test MOC.
Water of a known concentration (C,) is injected
into the well. After some time, the flow is reversed
and the contaminated water is pumped out. Such a
process can be used in field work to define the
dispersive properties of aquifers (see e.g., Gliven
et al., 1983). The situation may also represent a
cleanup process following extended contamination.

Gelhar and Collins (1971) derived an approxi-
mate analytical solution for the distribution of the
relative concentration in the well during the with-
drawal period. By neglecting the effects of well
radius and molecular diffusion, this expression
reads:

C v
= = Y erfc { r } (1)
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With i = 1 and 2 representing the indices for the
recharge and discharge period, respectively, V is
given by:

Vel-2 2)

1
where V; = Q;t; is the recharge or discharge volume
of water, Q; is the recharge or discharge rate, and
tj is time. In equation (1), « is the radial dispersiv-
ity, erfc is the complementary error function, and
R, is given by:
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where B is the aquifer thickness (assumed constant),
and n is porosity. For the special case of Q, = Q,,
equation (2) reduces to:

t
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in which t = t;, +t; is the total time,



Table 1. Common Parameters for Test Cases 1,A, 1.B, 1.C, and 1.D
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Fig. 1. Time change of relative concentration in the well as

estimated both numerically and analytically for case 1.A.
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Fig. 2. Time change of relative concentration in the well as

estimated both numerically and analytically for case 1.B.

Parameter Symbol Value Units
Saturated conductivity K 0.005 fu/s
Aquifer thickness B 20.0 ft
Porosity n 0.30 -
Ratio of longitudinal to transverse dispersivity ag/ag 1.0 -
Mesh increments in x direction Ax 900. fr
Mesh increments in y direction Ay 900. ft
Number of increments in x direction Ny 9 -
Number of increments in y direction Ny 11 -
Initial concentration G 0.0 %
Concentration of injected water Co 100, %
100 Fmﬂ-‘;—% Table 2. Values of ag, t,, Q,(=Q,) for
a8 4, Test Casas 1.A, 1.B, 1.C, and 1.D
&
Case ag (ft) ty(year) Q1 = Q1(cfs)
- 1A 100. 2.5 1.0
1.B 100. 1.0 1.0
1.C 0.001 2.5 1.0
Z 1.D 100. 2.5 0.5
c .
&
«“
8 504
o2
S
A number of hypothetical experiments were
simulated, and the results were compared to the
* analytical solution as given by equation (1). The
. input dara for MOC are shown in Tables 1 and 2.
— Analytical . .
s Numerical F_lg'urcs 1 thr‘ough 4 illustrate results of the
analysis for experiments 1.A to 1.D. The root-
9 P U SR S T mean-squared error for the four cases is, respectively,

1.9, 2.9, 3.4, and 1.4. Despite the severity of the
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Fig. 3. Time change of relative concentration in the well as -
astimated both numerically and analyticaily for case 1.C.
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Fig. 4. Tima change of relative concentration in the wall as
estimatad both numerically and analytically for case 1.D.

test, a radial flow case, reasonable match can be
observed for all cases. Some fluctuations can be
noticed, yet the overall behavior of the numerical
results is good. The largest deviation of the
numerical results from the analytical solution exists
for case 1.C. The deviations appear in the form of
numerical dispersion; errors are most severe for
larger well fluxes or longer injection periods. The
inclusion of large physical dispersion (Figure 1)
did not mask the numerical dispersion effects,
suggesting that most of the error is due to poor
representation of radial flow near the well rather
than to numerical dispersion, i.e., by inaccuracies
in predicting the flow field, rather than inaccuracies
in estimating the advection term. The percentage
mass-balance error is illustrated for all cases in
Figure 5 as a funcrion of time. The maximum value
of error is about ~16%, —22%, -23%, and -13%
for cases 1.A, 1.B, 1.C, and 1.D, respectively.
Considering the reasonably good results shown
in Figures 1 through 4, it seems that, as explained
by Konikow and Bredehoeft (1978), the large mass
error is caused also by the method of estimating
the solute mass removed from the aquifer at sink
nodes during each time increment. It appears also
that the radial flow does not cause serious problems
for MOC in the single-well test, e.g., in terms of
large fluctuations leading to unacceptable results.
Continuous injection, simulated earlier by
Konikow and Bredehoeft (1978), also shows good
accuracy. For a similar experiment (results not
shown here), the relative mass error ranged approxi-

284
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mately between +12% to ~19%. It can be concluded
that, for practical purposes, MOC is reasonably
accurate for continuous injection and for the
recharge-pumping cycle. However, the mass
conservation in the model should be improved. The
introduction of a large number of particles as well
as the use of a smaller grid size did not improve the
mass error encountered. (The results of these
simulations are not shown here.)

Case 2: A Recharge/Recovery Doublet

The second MOC test involved application to
a recharge/recovery doublet. A semianalytical
solution to the purely convective transport case
was introduced and programmed by Javandel et al.
(1984). The model, called RESSQ, uses the complex
velocity potential to estimate the concentration
distribution in the aquifer. The technique is applica-
ble to a two-dimensional flow in a2 homogeneous
confined aquifer in the absence of dispersion and
diffusion effects. The calculation steps are as
follows (Javandel et al., 1984):

The technique identifies, first, simple flow
components such as sources and sinks. Second, the
overall complex velocity potential of the system is
obtained by combining the expressions for each
individual component. Third, the velocity field is
identified by taking the derivative of the velocity
potential. Fourth, locations of contaminant fronts
and flow patterns are estimated at various values of
time. Finally, stream function of the system is used
to calculate the time variation of the rate at which
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Fig. 5. Relative mass-balance error for cases 1.A, 1.8, 1.C,
and 1.D, as function of time,
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Fig. 6. The aquifer model for the racharge/discharge
doublet,

a contaminant reaches any desired outflow
boundary.

Figure 6 illustrates the aquifer model for the
test problem simulated. Model paramerters arc given
in Table 1. The values of ap and a, were set equal
to zero. The rate of withdrawal or recharge was
taken as 1.0 cfs.

Figure 7 compares the time change of concen-
tration in the withdrawal well estimated using

MOC, with that estimated using RESSQ. The figure

shows reasonable match for a short time period
(less than 2.0 years). The two models predicted

the same value for the time at which the contami-
nant reaches the production well (about 1.5 years).
This value agrees with the available analytical
solution (Javandel et al., 1984). For a time larger
than 2.0 years, the numerical solution is not
accurate and shows large fluctuations for which the
analytical solution represents the upper envelope.
The time change of concentration in two observa-
tion wells is also shown in Figure 8. The concentra-
tion in the well upstream of the production well
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Fig. 7. Time change of relative concentration in the produc-
tion well for the aquifer model shown in Figure 5.

[at node (5,6)] shows much less fluctuation than
the concentration for the well immediately to the
left of the production well {at node (4,7)]. The
relative mass-balance error was reasonably small,
approximately between -10% to +2%. The error
fluctuates between —10% and +2% to reach mini-
mum at about 2.0 years, and then grows to about
—8%. It can be concluded that MOC is accurate in
dealing with similar problems for a relatively short
time; the accuracy then declines as the simulation
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Fig. 8. Time change of relative concentration in the two
observation wells shown in Figure 5.



continues for longer times due to the arrival of
contamination at the sinks. Again, as indicated by
Konikow and Bredehoeft (1978), the decline in
accuracy is a direct effect of the manner in which
concentrations are computed at sink nodes and the
method of estimating the mass of solute removed
from the aquifer at sink nodes during each time
increment.

Case 3: Plume Capture

Piume capture is a technique that prevents
further degradation of the aquifer by using a
number of pumping wells. The optimum number
of pumping wells and their discharge rates and
locations must be specified in advance. Recently,
Javandel and Tsang (1986) introduced a technique,
based on the complex potential theory, to define
the equations for the streamlines separating the
capture zone of one or more pumping wells from
the rest of the aquifer. The cases of a single well
and of two wells are used here to test MOC.

For the single-well case, assuming that the
well is located at the origin, the equation of the
dividing streamlines reads (Javandel and Tsang,

1986):

Q__Q tan‘;x
2BU  2rBU X

in which y and x are locations on the dividing
streamline, Q is well flux, B is aquifer thickness,

and U is Darcy’s velocity for the regional flow. The
test problem for this case is illustrated in Figure 9.
The parameters used are given in Table 1. The
simulation considers only convective transport. A
number of problems were simulated considering
different values for AH = H, ~ H,, with H, fixed

at 100 ft. (H, and H, are the values of the hydraulic
head at the upper and lower constant-head bound-
aries, respectively (Figure 9).] Equation (5) can be
used to estimate the minimum value of Q to capture
the plume. The velocity U can be estimated using
the head gradient and the hydraulic conductivity.

y=1t (5)

In this case the values x and y represent the coordi- -

nate of the right (or left) corner of the landfill
relative to the well location.

With a steady-state flow situation, the
numerical model was run long enough to represent
the steady-state condition for mass transport. An
iterative procedure was needed to estimate the well
flux. Figure 10 illustrates the node concentrations,
as obtained numerically, superimposed on the
analytical solution representing the dividing
streamlines as calculated using equation (5). The
concentrations shown were estimated for the case

LA IR
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and contaminant source
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Fig. 9. The aquifer model for plume capture by a single
production wail.
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Fig. 10. Relative concentrations at nodes of a part of the
aquifer superimposed on the analytical solution for the
dividing streamliine. The production well is located at the
origin.



with AH = 50 ft. The figure shows that MOC is
capable of approximating the capture area for this
case and also for all values of AH considered.

Figure 11 compares the well flux obtained
analytically [via equation (5)] with that estimated
numerically using MOC for different values of 4H.
The numerical model predicted higher values for
well flux over the entire range of AH. The value
needed to capture the plume numerically was
about 1.5 times the respective analytical value.
Sensitivity of results to the mesh size was not
studied; it is expected, however, that closer agree-
ment can be achieved as the mesh size decreases.

Figure 12 illustrates the time change of the
relative concentration in the well for three selected
values of AH: 20, 50, and 90 ft. Some fluctuations
exist, yet their extent is not severe,

The case of a plume capture by two wells also
was simulated for AH = 20 ft. The case is repre-
sented by Figure 9, with two wells located at nodes
(4,5) and (5,6). The landfill extended over five
nodes, (3,2) to (7,2). The theoretical discharge as
estimated analytically by the equation of Javandel
and Tsang (1986) is about 1.8 cfs. Although MOC
was also able ro approximate the capture area,
larger fluctuations in the pumping wells were
observed. The well flux, 2.3 cfs for this case, was
also larger than the theoretical value.

MOC is, in general, accurate in simulating
plume capture by recovery wells. The relative mass
error for all cases considered was acceptable, with a
value between -2.7% to —6.4%.
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CONCLUSIONS

The study examined the application of the
USGS two-dimensional mass-transport mode] MOC
in the analysis of some remedial actions involving
recovery wells. Three situations were examined: a
recharge/recovery single well, a recharge/recovery
doublet, and plume capture by one or two wells.
Solutions were compared to available analytical or
semianalytical solutions. The cases considered
involve mainly radial flow and curved flow lines;
these are considered to be severe tests for the
model. However, due to the popularity of the
model, it was felt necessary to quantify the errors
that may arise during its application to remedial
actions.

The study indicates that the results are
acceptable in situations involving a recovery/
recharge single well. The radial flow nature caused
some inaccuracies and fluctuations in the well-
concentration estimates, with relatively high mass-
balance errors; yet the overall behavior of results is
reasonable. Some inaccuracies are also attributable—
as Konikow and Bredehoeft indicated—to the
manner in which concentrations are computed at
sink nodes. Acceptable results also were obtained
for plume caprure where the cases involved a single
well or two wells. In these cases, the model over-
estimated the value of well flux needed to caprure
the plume. However, for practical purposes, the
model can be used in the analysis of such situations,
especially under cases where analytical solutions

“do not exist, as under heterogeneous conditions or

physical dispersion.



The analysis of a recharge/recovery doublet
indicates that the model is accurate only for a
short time after the start of the simulation. The
results are not acceptable for larger simulation
times.

Efforts are presently underway to improve on
the mass-balance calculations (L. Konikow, pers.
comm., 1987; see also Sanford and Konikow,
1985). In addition, improvement of mode] predic-
tion for radially convergent and divergent flows has
been considered (e.g., Erickson, 1985). Major
modifications include the simulation of the
converging/diverging flow field around the well,
and changing the way mass is removed by pumping.
A reduced mesh size is needed because the area of
the cell should approximate that of the well (on
the order of one foot). However, such discretization
will reduce drastically the application of the model
to large problems. Considering the coarse mesh
used here, and the possible trade-off between

‘computer costs and accuracy, the results obtained
for the single-well case and for the plume capture
case appear quite reasonable.
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Modifying the USGS Solute Transport
Computer Model to Predict High-Density

Hydrocarbon Migration

by M. Akhter Hossain and M. Yavuz Corapcioglu?

ABSTRACT

Chlorinared hydrocarbons, such as trichloroethylene
(TCE), trichloroethane (TCA), tetrachloroethylene (PCE),
chloroform, and carbon tetrachloride, enter soils and
ground water from chemical waste disposal sites and from
accidents. The migration of such high-density hydrocarbons
in 2 natural gradient unconfined gravel aquifer is studied.
The Buckley-Leveretr approach is extended to a two-dimen-
sional case to simulate 2 high-density immiscible hydro-
carbon displacing ground water in a gravity-driven system.
Governing equations that were developed earlier by
Corapcioglu and Hossain (1988) are solved by modifying
the U.S.G.S. solute transport model (Konikow and
Bredehoeft, 1978). The modification incorporates the
fractional flow curves of water and their saturation deriva-
tives in vertical and horizontal directions as functions of
degree of water saturation. The details of the modification
techniques are given, and the numerical results are
presented for a hydrocarbon spill. Numerical results show
that high-density, low-viscosity immiscible chlorinated
hydrocarbons can travel deeper and further in contrast to
lower-density, higher-viscosity compounds, and that the
migration is dominated by gravity largely uncoupled from
the horizontal component until the plume reaches the
lower boundary.

INTRODUCTION

Chlorinated hydrocarbons are widely used in
the chemical industry as metal degreasers and dry
cleaning compounds among other uses. As a result
of spills or past mismanagement, they are frequently
encountered as contaminants in ground water.
Dense chlorinated hydrocarbon groups include
halogenated aliphatics such as trichloroethylene
(TCE) with specific gravities from 1.2 to 2.2. In
contrast to light hydrocarbons like gasoline that
float on the water table, dense hydrocarbons sink
into the aquifer and remain at the bottom for
extended periods of time. The migration of these
hydrocarbons is generally governed by the vertical
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component instead of lateral advective transport
as for low-density hydrocarbons (Corapcioglu and
Baehr, 1987). Limited solubility of high-density
hydrocarbons furthermore poses a greater potential -
risk allowing the compound to dissolve into the
ground water over a very long period of time.
Meanwhile, the residual amount of hydrocarbon
left in the pores during the downward migration
continues to leach. Byer ez al. (1981) provide an
overview of the problern and note that the limited
solubility allows chlorinated hydrocarbons to stay
on the bottom for extended periods of time.
Villaume (1985) describes various case histories
involving dense nonaqueous phase liquids (NAPLs)
such as coal tar and PCBs.

In this research, we study the migration of a
high-density hydrocarbon in an unconfined gravel
aquifer. In other words, the transport of an
immiscible phase in a narural gradient gravity-
driven system is investigated. Any chemical (e.g.,
adsorprtion, dissolution) or biological (e.g., bio-
degradation, biotransformation) processes are
neglected in favor of studying density and viscosity
effects. These objectives are achieved by presenting
the system of equations for modeling dense hydro-
carbon contaminant migration in a water-saturated
porous medium. Then, governing equations are
solved by modifying the solute transport model
developed by Konikow and Bredehoeft (1978) at
the U.S. Geological Survey. The main emphasis of
this paper is to present the modifications introduced
into the software for study of high-density immis-
cible hydrocarbon migration in an unconfined
aquifer. Since the USGS program is well-docu-
mented and widely available for use in PCs, such a
modification to study a timely, but a problem of
different nature, would be a welcoming convenience
for the practicing hydrogeologist.

TRANSPORT EQUATIONS OF
HIGH-DENSITY HYDROCARBONS
Corapcioglu and Hossain (1988) developed
the governing equations for high-density hydro-
carbon migration in ground water. They assumed



that in contamination of gravity-driven natural

gradient systems by dense hydrocarbons (paw > ow),

the volumerric rate of ground-water flow is much
larger than that of hydrocarbons. In such a system,
ground-water flow is essentially horizontal along
the impervious bed, and the flow of dense hydro-
carbon contaminant is dominated by a sinking
mechanism due to density difference. The contami-
nant penetrates the aquifer essentially in the
vertical direction. This conclusion is confirmed by
observations of Schwille (1981) and Faust (1985)
who states that “For an immiscible fluid more
dense than water, we expect gravity effects to be
dominant. As a consequence we might anticipate
downward migration of the contaminant in both
the unsaturated zone and below the water table.”
Furthermore, Corapcioglu and Hossain (1986)
reported the migration of a TCE plume in a plexi-
glass laboratory flume of 30 inches deep, and note
the development of the plume essentially in the
vertical direction, independent of lateral flow
component. Their results show that it takes around
11 hours to reach the lower boundary.

Corapcioglu and Hossain (1988) obtained the
governing equation for two-dimensional flow of
high-density hydrocarbons in a homogeneous
inclined reservoir with uniform properties (see
Figure 1). Ground-water contamination by a dense
hydrocarbon can be formulated by a two-phase
fluid flow in a porous medium. TCE (hydrocarbon)
is referred as the immiscible (nonwetting) phase
and the water as the miscible (wetting) phase. In
their formulations, Corapcioglu and Hossain
neglected capillary pressures, liquid and soil
compressibilities to obtain
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Fig. 1. Definition sketch of the probiem.
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where qx and q, are the total (water plus hydro-
carbon) volumertric flow rates in lateral and vertical
directions, reSpecnvely Fractional flow expressions
fwx and ry, in the lateral and vertical directions,
respectively, are defined as
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where qyx and qy,; are the volumetric flow rate of
water in the latera] and vertical directions. In terms
of degree of water saturations Sy
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where ky, and kpyw are the relative permeabilities of
water and hydrocarbon, respectively;

kw and unw are respective viscosities;

Ap 1s the density difference (= py — ppw); and

n is the porosity of the aquifer.

We note that in equations (3) and (4), capillary
pressure differences are neglected, and in equation
(3), the gravity term due to the magmtude of angle
of inclination, a, of aquifers in nature is neglected.
Since our purpose is to model the migration of
TCE spill in a highly pervious gravel aquifer, we
can assume capillary pressure gradients have a
negligible effect on the flow. However, in other
types of aquifers, capillary pressure gradients may
be important. Furthermore, Corapcioglu and
Hossain (1988) showed qyx dryx/dx and qz drw, /32
to be larger than ry,x 9qx/9x and ry; 9q,/92,
respectively, to obrain equation (1). We should also
note that for an instantaneous hydrocarbon spill of
relatively small quantity, the volumetric flow rate
of water would be much larger than that of
hydrocarbon.

Permeability terms knw and ky, in equations
(3) and (4) are functions of degree of water satura-
tion, Sy, . Permeability expressions ky (Sw) and
Knw (Saw) are obtained from laboratory experi-
merits under no-flow conditions. For example,

Lin et al. (1982) obtained relative permeability
data for the case of trichloroethylene imbibition in
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a TCE-water system. We fitted the following relative
permeability expressions to Lin’s data. Curves of
similar forms were also employed by Faust (1985).
Thus, the permeability expressions are

(Sw—-0.331) (0.83 - Sy)**
It is known that
kw = kokew ,  Knw = kokmw (6)

where ko, is the porous medium’s intrinsic perme-
ability. Therefore, fractional water flow expressions
fwx and ry, are functions of degree of water
saturation Sy, only. The viscosity ratio (uw/unw) is

assumed to be constant at isothermal soil conditions.

Furthermore, (Apg cos a/q;) in equation (4) is taken
constant based on the assumption of constant
vertical flow due to gravity dominance. Then, we
can rewrite equation (1) as

qx drwx 9Sw qz dryz 9Sw 9Sw
o + =0 (7)
n dSy 9x n dSy Az ot

Equation (7) is a quasi-linear first-order partial
differential equation with a single variable S,. For
a one-dimensional case (horizontal x-direction), it
reduces to the Buckley-Leverett (1942) equation.
Buckley and Leverett addressed the oil production
problem encountered as a result of linear displace-
ment of oil in the reservoir by water. They con-
sidered a homogeneous inclined reservoir with
uniform, constant thickness, and solved the
governing equation for one-dimensional flow by
neglecting capillary pressures, gravity, and liquid
compressibilities.

By definition, the material derivative of Sy, is

-, —_—— (8)
dr ot ax dt 9z dt

A comparison of equations (7) and (8) shows that

d d
__5 Qx T'wx 9)
de n dSw
Sw
s 2m
Sw W lsy

Note that dx/dt |5, and dz/dtlg,, are velocity
components of an advancing surface of a given value
of the degree of water saturation. On curves x = x(t)
and z = z (t) which coincide with moving curves of
constant S, x(t) and z(t) are called characteristic
curves of equation (7). Then, equation (7) yields

dSw
q;-—o (11)

The solution of equation (11) can be obtained
by employing the method of characteristics. This
method was successfully used by Konikow and
Bredehoeft (1978) to solve the conventional solute
transport equation.

REVIEW OF USGS MODEL

Konikow and Bredehoeft (1978) developed a
two-dimensional digital computer model to predict
the concentration of a dissolved chemical species in
flowing ground water. In addition to concentration
values, the program simultaneously calculates
ground-water velocities in two lateral directions.
The program solves two coupling partial differential
equations, the ground-water flow equation (in terms
of head distribution in the aquifer) and the solute
ransport equation (in terms of mass concentration).

Konikow and Bredehoeft express the solute
transport equation as

aC 1 2 aC aC aC
—=— D - Vg -V, —+F (12
at ba,( ”a,) *ax  Vay (12)
ah
C(S-é-w-+W e—) c'w
where F = ‘ (13)
eb

and C is the mass concentration of the dissolved
chemical species; Dj; is the coefficient of hydro-
dynamic dispersion; b is the saturated thickness of
the aquifer; and C' is the mass concentration of the
dissolved chemical in a source or sink fluid. V« and
Vy are components of velocity in the x and y
directions, respectively; h is the hydraulic head;
S is the storage coefficient; t is the time;
W = W(x,y,t) is the volume flux per unit area; and
xi and x; are the Cartesian coordinates. W(x,y,t) can
be expressed as W(x,y,t) = Q(x,y,t) - K;(Hg - h)/m
where Q is the rate of withdrawal or recharge;
K; is the vertical hydraulic conductivity of the
confining layer, streambed, or lakebed; m is the
thickness of the confining layer; ¢ is the porosity;
and Hy is the hydraulic head in the source bed,
stream, or lake. The material derivative of concen-
tration is defined by

dC aC aC dx ac dy

e e 2 (14)

dt at ax drt ay dt

A comparison of the second and third terms on the
right-hand side of equation (14) with the second
and third terms on the right-hand side of equation
(12) shows that



Table 1. Correspondence Betwean Equations
in Our Mode| and USGS Model

Equation # for high-density

bydrocarbon migration Equation % for USGS model

(L) oo (12)

F=0................. .. (13)

8 . (14)

(9) . (15)

(10) ... (16)

(11) .o (17)
Vy = dx/dt (15)
Vy = dy/dt (16)

Substitution of equations (15), (16), and (12) into
equation (14) gives

dc 1 2 aC

.l op .k 17

ar b ax D ”axj)+ (17
ﬁ

a3

&/

Fig. 2. Water saturation profiles for uy, /ipw = 1.72, and
Paw = 1.46 g/cm?® (TCE) at three years with initial slug
injection. Note thatS,, = 1 — S, .

Solutions to equations (15)-(17) can be expressed
in a general form as x = x(t), y = y(t), and C = C(¢)
which are called the characteristic curves of
equation (12). A comparison of equation (17) with
equation (11) shows that the right-hand side of
equation (17) is equal to zero for an identical
match. Correspondence between equations in our
model and USGS model is summarized in Table 1.
The general solution technique by the method of
characteristics is given by Konikow and Bredehoeft
(1978), and the reader is referred to this reference
for a more detailed discussion.

In this study, we use an IBM-PC version of the
USGS program that is marketed by Scientific
Publications Company. Their version incorporates
several changes that were necessary to accommodate
the main-frame program in the IBM-PC. The details
of the modification of the USGS model are given
in the Appendix.

RESULTS AND CONCLUSIONS

The numerical model was applied to simulate
the formation of a TCE plume in a gravel aquifer
due to an instantaneous spill from a buried source
in the saturated zone (e.g., storage tank rupture). A
spill of a relatively small volume of contaminant
can be modeled as a slug injection (i.e., pulse
source) into a sloping natural gradient unconfined
aquifer, The aquifer is 700 ft thick and 1600 ft
wide, inclined at an angle of 10° to the horizontal.
The domain includes 162 nodes spaced 100 ft apart
in each direction. Note thart the figure illustrating
the results (Figure 2) shows only a portion of the
domain which is 700 ft thick and 800 ft wide. The
initial conditions included the assumption of 100%
water saturation throughout the domain.

Figure 2 shows the contour plot of the water
saturation distribution at three years using data
given in Table 2. The results clearly indicate the
dominance of gravity effects in the vertical direc-
tion; due to the high density of the contaminant,

Table 2. Model Parameters Used

Density of water . . ... ... .. .. ... e
Density of TCE. . . . . . ... ... i i
Density difference. . . . . .. ... ... e
Dynamic viscosity of water . .. ... ... .. ... .. ... ...
Dynamic viscosity of TCE. . .. ... ..o ovi o nn ..
Intrinsic permeability of soil . . .. .. ... ... ... ... .. ..,
Porosity of soil . . . .. . . . ... .. e
Angle of inclination. . .. ..... ... .. ... .. ... .. .. ...
Residual saturation of water in a water-TCE system. . . ... ..
Residual saruration of TCE in a water-TCE system. . . ... ...
Shock front saturarion or cutoff saturation . ... .........

................................ Pw = 1 g/em’®
.............................. Pnw = 1.46 g/cm?
..................... Ap = Py — Ppw = —0.46 g/cm?
......................... Uy = 1.0019 X 1072 poise
.......................... Enw = 0.58 X 107 poise
.......................... ko = 5.823 X 107 cm?

................................. Swnr =0.170
.................................. Swc = 0.675

' -
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spreading takes place only after the TCE plume
reaches the bottom.

In summary, we study the migration of a high-
density hydrocarbon in an unconfined aquifer. The
Buckley-Leverett approach is extended to a two-
dimensional case to simulate a high-density
immiscible hydrocarbon displacing ground water in
a gravity-driven natural gradient aquifer. Governing
equations are solved by modifying the USGS solute
transport model developed by Konikow and
Bredehoeft (1978). The modification incorporated
the fractional flow curves of water and their
saturation derivatives in vertical and horizontal
directions as functions of degree of water satura-
tion. Results show that high-density, low-viscosity
immiscible chlorinated hydrocarbons can travel
deeper and further in contrast to lower-density,
higher-viscosity compounds, and that the migration
is dominated by gravity largely uncoupled from the
horizontal component until the plume reaches the
lower boundary.

APPENDIX ~ MODIFICATIONS OF
THE USGS PROGRAM

In this appendix, we continuously refer to
Konikow and Bredehoeft (1978) by indicating
specific page and program line numbers. Therefore,
the reader should obtain an original copy of that
publication to follow the modifications needed for
modeling high-density hydrocarbon migration.

First, the two-dimensional areal problem is
modified to run for a two-dimensional vertical one.
Vertical z-coordinate replaces the lateral y-coordi-
nate. To achieve this, the inpur data are modified
as shown in Attachment IV on page 79 of
Konikow and Bredehoeft (1978). In the original
program (20.0) in Data Set 4 for test problem
number 3 stands for the vertical thickness of the
aquifer (THCK = 20 ft). To rotate the flow field,
we take a unit width in the lateral direction normal
to the plane of paper. Thus, (20.0) is replaced by
(1.00) (see Table 3). Then, on the same page (p. 79)
in Data Set 3, VPRM = (0.1), which is a dummy
variable in our case, is replaced by an arbitrary
constant, e.g., 2 X 107 ft/sec.

In the program, the subroutine VELO calcu-
iates the flow velocities at nodes and cell boundaries,
dispersion coefficients and the minimum number
of particle moves required to solve the solute
transport equation. In our modified version of
VELOQ, we calculate dx/dt and dz/dt at a given Sy
as expressed by equarions (9) and (10). Note that
in equations (9) and (10), we enter the values of qx
and q, calculated by considering gravity terms only.
The changes made at VELO are on page 55 between

lines E410 and E460. Lines E410-E460 are
replaced by

IF (CONG(IX,I1Y).GE.82.9) CONQ(IX,IV)=82.9

IF (CONC(IX,IY).LE.33.32) CONC(IX,IY)=33.2

WRITE(w,+) ’CONC(IX,IY)n’,CONC(IX,IY)

BE=(0.83)%%2.5

AA=(0.669) #*3

RENW(IX,IY)=((0.83-0,01#CONC(IX,IY))**2.5)/88

WRITE (#%,#) RENW(IX,IY)=‘, RENW(IX,IY)

RKW(IX,IY)=((0-0L*CONC(IX,IY)=0.331)%%3)/AN

WRITE(#,+) 'RKW{IX,IY)=’ RKW(IX,1Y¥)

DKRNW (IX,IY)®=2.5/BB#((0.83-0.01vCONC(IX,I¥))**1,5)

DKRW (IX,1Y)»3/AA® ((0.01%CONC({IX,IY¥)~0.231)%%2)

ALPHA= 178

grdx==SIN (ALPHA)

wEite (¥, *) ‘grdx=’,grdx

DENMX (IX, IY)=RKA(IX,IY)+1. 72#RKNW(IX,IY)

WRITE (%, +) 'DENMX(IX,IY)=’, DENMX(IX,IY)

DOENMX (IX,IY)=DKRW(IX, IY)+1.72*DKRNW(1X,IY)

DRWX (IX,IY)=(DENMX(IX,IY)*DKRW(IX,IY)-RKW(IX,1Y)*DDENMX(IX,
1IY))/ (DENMX(IX, 1Y) ##2)

WRITE(#, *) ‘DRWX(IX,IY¥)=’ DRWX(IX,IY)
VX(ZX,1Y)=PERM(IX, I¥) *GRDX*PORINV*DRWX (IX,IY)

WRITE(#, #) 'VvX=’ VX(IX,IY)

to calculate dx/dt as given by equation (9). Note
that the parameter grdx (which calculates the
hydraulic gradient in the x-direction) is equal to
-sin a, since the hydraulic gradient can be assumed
to be constant in a gravity-driven natural gradient
system. Furthermore, the first and second lines.of
this new program segment keep the water satura-
tion values above the residual water saturation

" Swr = 0.33 and below Sy, = 0.67 behind the front

as explained by Corapcioglu and Hossain (1986).
Note that this restriction on Sy is imposed only in
this program segment while calculating dryx/dSy
and not while calculating Sy, by subroutine CNCON
which computes the change in water saturation in
the aquifer. Since this restriction is imposed at the
very beginning, it also applies to calculate

dry;/dSy, which is handled by the program segment
given below. Such a restriction allows us to avoid
the existence of double water saturation at the
saturation front due to bulbous saturation profile.
A discussion of this phenomenon has been explained
by Corapcioglu and Hossain (1986).

One should note that Konikow and Bredehoeft
solved the solute transport problem in terms of
concentration, C. In this study we solve the high-
density hydrocarbon migration problem in terms
of water saturation, Sy, . Thus, the parameter termed
CONC (IX, 1Y) in the USGS program denotes the
degree of water saturation, Sy, in our modification.

Similarly, dry,/dSw and dz/dt are calculated

by

DRO==0.46%
QZ=0.028
UMNW=0. 0058
CT=(%.71E=4) *COS (ALFHA) *DRO/ (QZ *UMNW)
WRITE(®, #) ’CTw’,CT
UP(IX,IY)=REW(IX,IY)-CT*RENW(IX,IY)*REW(IX, IY)
WRITE(w,») ’Up=’ UP(IX,IY)
DURP(LIX,IY)=OKRW(IX, IY) -CT¥ (RKNW(IX,IY) *DKRW(IX, 6 IY¥)
1+RXW(IX, 1Y) *OXRNW(IX, 1Y))
DN(TX,I¥)=RKW(IX, IV)+1,72%RKNW(IX,I¥)
WRITE(®, %) ’DNw’ DN(IX,IY)
DON(IX,IY)=DKRW(IX,IY)+1,72*DKRNW(IX, IY)
DRWZ (IX,IY)=(DN{IX,IY)*DUP(IX,1Y¥)=UP(IX,IY)*DON(IX, IY))/
I(DN(IX,IY)*w"2)
qrdy=COs (ALPHA)
WRITE(*, %) ’DRWZ (IX,IY)=’,DRWZ (IX,IY)
VY{1X, 1Y) »PERM(IX, I¥) *GRDY*PORINV*ANFCTRYORWZ (1X, IY)



Table 3. Input Data for the Problem Studied I
: : II
Q a
-t -y
- e
3 & 3
o o <
-t - Q
[=] ~ = [+
S T3 .
- 2 » - =4
w9 o =]
g 9 ¥ @ -
oG M = = - b
CI S g
g 5 = g o - II
vy, ab vt -y ¥ L]
-~ g4 & L] -l
~ o ™ [ [ J=" =
R -2 - & =
e &€ g E U T - @
- = g3 O S © o
Lan TR - (5 =] ] =t
W e =
Y W m e i L] =] [ G
E o g0 o o £ = °
o) ] ] = l
o o G W m = = = ™
késlcéx G 1 7 Do ® s O o 1 o0 o o
25.0.0001 p.40 1 a6 0.50 1
0 2E-05
0 1.0\‘:vpm-2x10“5 Az
0 0.0 THCK=1 fc Ax
11.0 size of initial time step(sec)
000000000000000000 time increment multiplier
000000000000Q00000 storage coefficient(should be
ooooooooooooo a non-zero value)
000000000000 ODBYBAY dispersivity
0000000000000008Q0 ™ pulse source points(DATA SET 6) porosity
000000000000000Q \\
0000000000000€0000 N\ ghoyld be same
30000000 9000008 zource concentration(water saturation)

83.0 0.0 0 DATA SET 7

0l o. 0. 0‘ o‘ 0. 00
0.100.100.100.100.100.100.100.1¥%
0. 96. 96. 96. 96. 96. 96. 96, 9¢
0. 87. 87. 87. 87. 87. 88. 88.
0. 83. 83. 83. 83. 83. 84. 84, 84.
0. 80. 80. 80. 80. 80. B80. 81. 81.
Q. 77. 77. 77. 77. 78. 78. 78. 78. 78.
0. 75, 75. 75. 75. 75. 75. 75, 75. 76.
0. 0. 0. 0. 0. 0O, 0. 0. 0. 0.

1 1.0~ paTA SET 9

0. 0. 0. 0. 0., 0. 0. 0. 0. 0,
00.100.100.100.100.100.100.100.
96. 96. 96, 96, 96. 96. 96. 96. O.
g 88. 88. 89. 89. 89. 89. 89. 0.
84, 84, 84. 84, 85. 85. 85. 0.
8l. 81, 81. 82. 82, 82. 82. 0.
8. 78. 78. 78. 79. 79. 79. O.
76. 76. 76. 76. 76. 0.
0. 0. 0. 0. 0. 0.

INITIAL CONDITION
0.100.100.100.100.100.100.100.100.200.100.100.108,.100,100.100.100. 0.
0.100.100.100.100.100.100.100.100.100.100. (33, 33)100.100,200.100. 0.
0.100.100.100.100.100,100.100.100.100.100.100.100.100.100.100.100. O.
0.100,.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100. 0,
0.100,100.100.100.100.100.100.100.100.100.100.100.100.100.100,100. O.
0.100.100.,100.100.100,100.100.100.100.100.100.100.100.100.100.100. 0.
0.100.100.100.100.100.100,100,100.100.100.100.100.100,100.100.100. O.
0. 0. 0. 0. O. O, 0. 0. O. 0. 0. 0. O. O. 0. 0. 0. 0.

which replace lines E500-E540 on pages 55 and 56 g%

S I I BN N e Ee

< -==~VELOCITIES AT CEILL BOUNDARIES---
in Konikow and Bredehoeft (1978). Note that dz/dt X »GROX S PORINV *DRWX (1X. 1¥)
is expressed by equation (10), and DRO = Ap (in wg;:rﬁ:;m *GRDY4 PORINVeANPCTRSDRNE (X, 11)
g/em?), UMNW = u,, (in poise), and QZ = g, (in ' ’
ft/sec). Similar to grdx, in a gravity-driven natural Additional DIMENSION statements are added l
gradient system, grdz = cos «. In the program seg- between lines E200-E210 to include new variables
ments given above, we take ppw = 1.46 g/cm?® and in the program
“W /‘unw = 1.72‘. we kcep the hydraulic gradient DIMEMSION RENW(20,30),RXW(10,10), DFERNW(10,320) ,DKRN(10,10), l
and velocities at the cell boundaries constant by ;?5?"’.,‘.2%25"23,'°Sm§’gaf°5gﬁ§§§3'§§} ourize
replacing E590, E610, E620, and E640 on page 56 B o Y '

with Furthermore, the Data Sets given in Table 3 include l
722
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proper initial conditions for the problem studied.
Note that Konikow and Bredehoeft (1978) consider
an initially clear (i.e., C = 0 at t = 0) aquifer. This
would correspond to 100% water saturation in our
problem (i.e., Sy, = 100) as given by the last block
of numbers and Data Set 9 in Table 3. In Data Set
6, two 1’s in the third row refer to the referral

code of pulse source points. The 0’s in Data Set 6
indicate Sy, = 100%. In Data Set 7, Table 3 shows

1 Referral code to source point

1.0 Code for leakance from the source

83.0 Source concentration (S, = 0.83)

0.0  Diffusive recharge

0 OVERRD

In the case of pulse source, a slug of hydro-
carbon initially (t = Q) was injected into the aquifer
at a concentration Sy, = 0.33; input modifications
are shown in Data Set 9. In Data Set 7, the source
concentration is taken as 0.83 since after t = 0,
some hydrocarbon will remain in the pores at a
level Sor = 0.17 s0 Sw = 1 = Sor = 0.83. After an
initial pulse, water saturation will go back to 83%
at the source nodes. Similarly, initial conditions are
placed on the second row (Syw, = 33%) instead of
the first one. Figure 13 on page 29 of Konikow
and Bredehoeft (1978), shows the location of a
slug of tracer for a pulse source.

As we do not include observation wells, we
eliminate Data Set 1 by setting NUMOBS (number
of observation points) equal to zero. We also do
not include pumping wells so we eliminate Data
Set 2 by setting NREC (number of pumping or
injection wells) equal to zero. Thus, the coordinates
of observation and pumping wells in Data Sets 1
and 2 are eliminated.

With these modifications to subroutine VELO
and Input Data, we use subroutine CNCON and
other subroutines of the program without changes.
Subroutine CNCON, in this case, computes the
change in water saturation at each node and at
each particle for the given time increment. Note
that in the original Konikow and Bredehoeft (1978)
program, CNCON computed solute concentrations.
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APPROXIMATE AND ANALYTICAL
SOLUTIONS FOR SOLUTE TRANSPORT
FROM AN INJECTION WELL INTO

A SINGLE FRACTURE

by Chia-Shyun Chen? and S. R. Yates®

Introduction

In dealing with problems related to land-based

nuclear waste management, 2 number of analytical
and approximate solutions were developed to
quantify radionuclide transport through fractures
contained in the porous formation (e.g., Neretnieks,
1980; Rasmuson and Neretnieks, 1981; Tang et al.,
1981; Sudicky and Frind, 1982; Barker, 1982;
Hodgkinson and Lever, 1983; Rasmuson, 1984;
Neretnieks and Rasmuson, 1984; Chen, 1986). By
treating the radioactive decay constant as the
appropriate first-order rate constant, these solutions
also can be used to study injection problems of a
similar nature subject to first-order chemical or
biological reactions. In these works, the fracture is
idealized by a pair of parallel, smooth plates
separated by an aperture of constant thickness.
Using this macroscopic approach, Chen (1986)
gave solutions to different cases regarding the
injection of radioactive material into a fractured
formation. The planar fracture was assumed to
have a constant aperture thickness, 2b, and inter-
sect the well with a radius r, (see Figure 1). Water
containing radioactive constituents was discharged
into the fracture through the well under a constant
tlow rate of Q. The injected radionuclides moved
primarily through the fracture in a steady, radial
flow field where the velocity as a function of radial
distance, r, is described by

V()= At (1)

where A = Q/(4wb) as the advection parameter.
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Discussion open until July 1, 1989.

Ground water was assumed to be immobile in
the-underlying and overlying porous formations due
to their low permeabilities. However, the injected
radionuclides were able to move from the tracture
into the porous matrix by molecular diffusion (the
rhatrix diffusion) due to possible concentration
gradients across the interface between the fracture
and the porous matrix (i.e,, at z = 0). Two models
(Models I and 1I) were studied by Chen (1986).
Model I assumed advection and longitudinal dis-
persion as the transport mechanisms in the fracture,
while Model II considered only advection. Both
models included matrix diffusion. Solutions of
these two models are different under transient
conditions but converge to the same solution at
steady state for commonly occurring conditions.
Compared to the steady-state solutions of Model I,
the steady-state solutions of Model II are mathe-
matically simpler and thus are recommended for
use when dealing with steady-state conditions of
the stated problem. In addition to quantifying a
“worst case” scenario, the steady-state solutions
can be used to determine the maximum transport
distance of the injected radionuclides in the
fracture. For time-dependent conditions. however,
the transient solutions of Model | are suggested
because they are more generalized in the sense that
the longitudinal dispersion process in the fracture
1s taken into account.

These transient and steady-state solutions
have potential usefulness for quantitative study of
problems where radioactive material is injected
into a fractured formation for disposal or for tracer
tests. They also can be emploved to check the
accuracy of portions of pertinent three-dimensional
numerical codes; for axial symmetric systems the
radial dimension is a combination of the horizontal
x and y Cartesian dimension (i.e., r? = x? + y?),
and the matrix diffusion normal to the radial direc-

-~ Q. Constant Injection Ratae

s

Porous Matrix l s
A B

I Matrix Diffusion

. A A A
Planar Frac:ure with I l, z =0
a Conscantc Aperacurs e ——

Radial Adveccion and
: Longitudnal Dispersion
=0

Fig. 1. Schamatic of radionuclide transport from an
injection well into a single, planar fracture situated in
porous formation,



tion adds the third dimension, z. Consequently,
these solutions could be used to check two-dimen-
sional areal flow with matrix diffusions in the

* vertical direction.

By making use of the Stehfest method
(Stehfest, 19704, b), the transient solutions were
determined by numerically inverting the solutions
to Model I in the Laplace domain, which involve
the transcendental Airy functions. Calculation of
the transient solutions is not straightforward, and
the purpose of this paper is to document a con-
tained FORTRAN program, which computes the
Stehfest inversion, the Airy functions, and gives
the concentration distributions in the fracture as
well as in the porous matrix for both transient and
steady-state cases. A formula determining the
maximum transport distance is given here.

Mathematical Model and Solutions -

The mathematical model and its solutions are
briefly discussed here. Detailed discussions of
development of the model and derivation of the
solutions are provided in Chen (1986).

The dispersion theory for solute transport in
porous media is adopted, and the longitudinal
dispersivity in the fracture is assumed to be
constant. Hence, the longitudinal dispersion
coefficient for the radial flow field neglecting
molecular diffusion can be written as

Dr=alv (2)

where V is the steady-state, radial ground-water
velocity described by (1); and a, is the constant
longitudinal dispersivity.

The governing equations of the model can be
tormulated as

b, 2% AR,C, = R, 22 3)
m 9z? Pz ot
CXIA 62C1 A acl
—_—_— —————
r ar? r ar
n;Dyp 0C aC
= 2| -AR,C, =R, — (4)
b 32 |,.¢ at

where A is the decay coefficient for the radio-
nuclides (or the first-order rate constant for
chemical or biological transformation);

C, and C, are concentrations in the fracture

and in the porous matrix, respectively;

Dm, N3, and R, are, respectively, the effective
molecular diffusion coefficient, the porosity, and
the retardation factor for the linear-isotherm
adsorption in the porous matrix; and

~e

a;, b, and R, are, respectively, the dispersivity, half
aperture thickness, and retardation factor in the
fracture,

The initial condition for (3) and (4) is
Ci(r,0)=Cy(z,0)= 0 (5)

which states that no contaminants exist in the
system prior to injection.

The boundary condition at the interface of
the fracture and the porous matrix is given by the
continuity of concentrations as

C,(r,t) = Cy(z,1); z=0 6)

asr— o and z = ¢, a2 bounded condition is
prescribed for C, and C, as

Cg(m, t) = Cz ("",t) is bounded;

r2+z? =00 (7)

Two different boundary conditions for decay and
nondecay sources are considered at the well bore.
The decay boundary condition is

Ci(ro, 1) = CoeN/Co = e (8)

which may be relevant to injecting a radioactive
substance with a short half-life. Due to the rapid
decay, the concentration of the substance in the
well bore cannot remain at a constant level but
decreases with time following the exponential law
as stated 1n (8).

The nondecay boundary condition, however,
may be used if the concentrations art the injection
well remain at a constant level because of the long
half-life of the injected radioactive materials; that
is,

Cilrg,t)=Co/Co =1 (9)

In fact, if At < 0.01, the boundary conditions (8)
and (9) are approximately equivalent since (8)
yields a source concentration which like (9) is
approximately equal to unity. Therefore, use of
the decay or nondecay condition at the injection
well does not cause significant difference in the
calculated results provided At < 0.01.

Transient Solutions by Numerical Inversion

Analytical solutions to (3) and (4) subject to
(5) through (8) or (9) can be determined by the
Laplace transform technique. In appropriate
dimensionless forms, the solutions for the decay
boundary condition (8) in the Laplace domain is

. l/3

exp [(p — po)/2] A—llﬁl—yl
o Ailp%yo]

1
Gx(n,p)=p+ (10a)

G2 (p,p) = G, - exp [~§(p + o, )] (10b)



where G, and G, denote the concentration distribu-
tions in the tracture; and within the porous matrix
in the Laplace domain, respectively, p is the Laplace
transform parameter of the dimensionless time 7
defined by

T= At/Rlalz

and the symbol Ai(x) represents the Airy function.
The dimensionless radial distance p, the dimension-
less vertical distance £, and other dimensionless
parameters are defined in the Nomenclature.

The analytical Laplace inversion of (10) gives
closed form solutions of C, and C, for the problem.
As shown by Chen (1986), however, approximate
solutions determined by numerically inverting (10)
with the Stehfest method (Stehfest, 1970a, b) yield
accurate results for practical purposes. Specifically,
C, and C, for the decay boundary condition are
obtained by numerically inverting G, and G, given
in (10) with the following finite series of N terms

N
Ci(p,m)=p El Wi Gy (p,np); p=In(2)/r (11a)
n=

y |
Ca(o.r)2p T WaGalonp; p=1n(2)/r (11b)
n=

During the inversion calculation, p is inversely
related to 7, and N must be an even integer. The
weighting factors, Wy, are determined with the
rational function given by Stehfest (1970a, b).
These weighting factors are only dependent on the
value of N chosen; that is, they need to be deter-
mined only once for any numerical inversions so
long as N is fixed. In the computer examples
provided in the Appendix, 16 weighting factors
(i.e., N = 16) are given. It was found that 16 weight-
ing factors provided sufficiently accurate results on
an IBM-AT compatible microcomputer or on a
DEC-20 main frame. Double-precision calculations
are suggested when using the program. It should be
noted that the arguments in the Airy functions are
also dependent on p and hence on N and r (see
Nomenclature).

The Airy functions in (10) are calculated
using appropriate formulae given by Abramowitz
and Stegun (1970). Arguments of the Airy
functions in (10) are always positive. The first 16
terms of the power series given by Abramowitz and
Stegun (1970, equation 10.4.2) are used to evaluate
Ai{x) when 0% x < 3. For the condition, 3 x< 3,
Ai(x) is determined using a two-step procedure.
Firstly, the modified Bessel function of the second
kind of order 4, Kn/3 (x), is calculated by the
integral formula of equation 9.6.24 in Abramowitz
and Stegun (1970). Secondly, the calculated Ky, (x)

is converted to Ai(x) using the mathematical
identity of equation 10.4.14 in Abramowitz and
Stegun (1970). This method of determining Ai(x)
for 3 < x € 5 increases the computational stability
of the algorithm. For x > 3, the first 14 terms of
the asymptotic expansion given by equation 10.4.59
in Abramowitz and Stegun (1970) are employed
for evaluating Ai(x). If a computer with sufficient
precision is available, Ai(x) can be calculated by
using the power series in the range 0 € x < 5, and
by the asymptotic expansion for x > 5 as mentioned
above. In this event, the two-step computation for
3 < x < 5isnotrequired. When x > 3, Ai(x)
becomes small and can cause exponential underflow
problems. Therefore, Ai (x) 1s scaled by a multiply-
ing factor, x 4 exp [(%) x*]. To recover the actual
value for the Airy function durmg the calculat ions,
the result is multiplied by x~"% exp [- (%) x72].
This approach for evaluating Ai(x) was suggested
by Hsieh (1986).
In a similar manner, C, for the nondecay
boundary condition can be determined by replacing
Ails"y]
G, (p,p) = (1/p)exp [(p = pp)/2] ————
Ai[87 yo]

in (11a), and C, can be obtained by introducing
(12) to (10b) and (11b).

The effect of the nondecay boundary condi-
tion is to replace the term 1/(p + «,) in (10) by the
term 1/p. The calculation for the nondecay case
follows identical procedures as the decay case.
Hence, determination of concentration distributions
for both the decay and nondecay boundary condi-
tions requires only a slightly different calculation
in the program.

(12)

Exact Steady-State Solution

Under steady-state conditions (i.e., injection
time approaches infinity), the decay boundary
condition yields a zero source concentration at the
injection well, leading to a trivial solution of zero
concentration everywhere in the system. However,
nontrivial steady-state solutions exist for A > 0 and
a nondecay boundary condition; that is,

C, =exp{(-E, A - E; AT (13a)

C, = C, exp[-z(R;A/Dpy)*] (13b)

The longitudinal dispersivity is absent in (13)
because the longitudinal dispersion in the fracture
was neglected. Although Chen (1986) noted that
longitudinal dispersion in the fracture couid be
neglected for steady-state conditions without intro-
ducing noticeable error based on one problem, we



have verified that this conclusion is wue for general
conditions unless the parameter « is greater than
approximately 10, which is unreasonably high and
would rarely occur for practical problems. There-
fore, (13) provides a useful steady-state solution
for the stated problem.

The ultimate extent with which the concentra-
tion front can move in the fracture can be approxi-
mated with (13a). If the concentration front is
taken as the location where x percent of the injected
concentration takes place, then this ultimate moving
distance is approximately equal to

v

21In(1/x)

———— (14)
El N+ Ez >\l/z

I'y =

which is derived from {13a) by setting C, to x and
the well radius is neglected. For example, if the
frontal concentration is taken as 0.05, then the
associated ultimate moving distance is

To.05 =2.5 [El"\*_Ele/Z]'l/Z (15)

Examples

To illustrate the solutions contained herein,
several hypothetical examples were created. To
provide for the implementation of the computer
program by future users, the data used to create
the examples are reported in Appendix 2. To use
the program, which is listed in Appendix 1, aquifer
and chemical properties are required. The properties
used for the following example are: half aperture
thickness (b), well radius (r,), flow rate into the
fracture (Q), dispersivity (a,), effective diffusion
coefficient (Dp,), and matrix porosity (n,),
respectively; 5.0 X 10" m, 0.1 m, 3.65 m*¥day,

0.1 m, 1.0 X 10" m%day, and 0.01 m*m?. Other
required parameters include the decay coefficient
and retardation constant, which are 0.01 day™
and 1.0, respectively. For each calculation, 16
Stehfest weighting coefficients and double
precision were used.

Figure 2 shows the concentration distribution
as a function of radial distance at several times and
for two different boundary conditions at the well.
The solid and dotted lines indicate, respectively,
the concentration profiles based on the nondecay
and decay boundary conditions. For the injection
time equal to 0.01 day, the solutions determined
by the two different boundary conditions are
practically the same (see Figure 2) because the
relationship At < 0.01 is satisfied. Under steady-
state conditions, the solid line calculated by (12)
with a large value of time is almost identical as the

T T
1.0 .
"
H
5 4
.é 4
.g 8.5 -
a
- -
u- -
0.0 T N
2. 08 1:0‘05- 238m

Radial Distance (m)

Fig. 2. Concantration with respect to time and radial
distance in the fracture. The solid and dotted lines indicate
the results from the nondecay and decay casas, respectively,
The model coefficients are given in Appendix 2.

dots which resulted from the zero-dispersivity
approximation, equation (13). This coincidence
indicates that longitudinal dispersion in the fracture
is not important for steady-state conditions. The
ultimate moving distance, r, s, determined with
equation (15), is about 238 m, which is tound in
Figure 2 by graphic interpolation.

Figure 3 is a diagram of the concentration
distributions in the porous matrix for the example
contained in Figure 2. In Figure 3a, the concentra-
tion profiles of C, at a radial distance of 1.0, 5.0,
and 10.0 m and a time of 0.01 day is shown. In
Figure 2b, the concentration profiles are for
steady-state and radial distances of 1.0, 100.0, and
150.0 m. The dots indicate the results from the
approximate solution. As was shown for the
fracture, the zero-dispersivity approximation
produces almost the same results as the more
rigorous exact solution for this example.

Figure 4 contains a transient and steady-state
contour diagram of the concentration in the
fracture and porous matrix. For clarity, the
fracture has been enlarged. The dotted line in
Figure 4a indicates the position of the well bore. In
Figure 4b, again it can be shown that equation (15)
is a valid approximation for the ultimate moving
distance, rq 5.

Nomenclature

Dimensional Parameters

A advection parameter equal to Q/(47b), m?¥s.
b half fracture aperture, m.

Co concentration at the well bore, kg/m?.

Dm effective diffusion coefficient of porous

matrix, m?s.
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Fig. 3. Concentration in the porous media for times 0.01 d
(a) and at steady-state (b). The dots in {(b) indicate the
results from equation (13). The modai coefficients are given
in Appendix 2.

D, longitudinal dispersion coefficient, m¥s.
E, R,/A, s/m?.
E, ny (R,Dm )"/ (bA), s”/m?.

constant injection rate, m¥s.

r radial distance, m.

ro well radius, m.

r (£? = rg?)/2, m3.

t time, s.

A" ground water in fracture defined by (1), m/s.
z vertical distance in the porous matrix, m.

a; dispersivity of fracture, m.

A radioactive decay constant or first-order

rate constant for chemical or biological
reactions, s™*.

Dimensionless Parameters
C,,C, normalized concentration in fracture and in
porous matrix, respectively.

n, porosity of porous matrix.

R,,R, retardation factors in fracture and in
porous martrix.

P Laplace transform parameter.
y = p+ 1/(48).
Yo = po + 1(48).

« = (nya,/b)(R,Dpm /R, A)%.

a; = R,\aY/A.

B = pto+alp+a)t

4 (z/a,)(R;A/R, D)%, dimensionless vertical
distance.

T At/(R,a,*), dimensionless time.

P r/a,, dimensionless radial distance.

Do ro/a,, dimensionless well radius.

Function

Ai(x) Airy function.

Disclaimer

Although a portion of the research described
in this article has been funded wholly or in part by
the United States Environmental Protection
Agency, it has not been subjected to the Agency’s
peer and administrative review and therefore may
not necessarily reflect the views of the Agency, and
no official endorsement should be inferred.
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t =901 d
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:)_05- 238m
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Fig. 4, Contour diagram of tha concentration with respect
1o position and time, For t = 0.01 d (a), the contour levels
are: 0.95, 0.9, 0.8, ..., 0.1, For t = steady-state (b), the
contour {evels are: 0.95, 0.9,0.8,..., 0.1, and 0.05. The
dotted line in (a) indicates the position of the well bore,



Appendix 1. Program Source Code

THIS PROGRAM COMPUTES THE (APLACE INVERSION QF THE RADIAL
CLSPERSION EQUATION FOR VELOCITY DEPENOENT FLOW AND RADIOACTIVE
OECAY GUVEM BY CHEN(IFBA) USING THE LAPLACE INVERTION METHOD OF
STEMFEST(197D)

INPYT TMFORMATION:

INARFANERERTITIIIE

[moast parameters can be provided to the program from ejther
a aigk fiie or the keyboard. In ei1ther case, the parameters
that must e supplied are:

INTERACTIVE (NMUT (for cpening files)

it - Ineyt file number, [Ms! for disk, IN*5 for
reyooard.,

FILE = |F [N=Y1, cthen give the input file name,

10 - Qutput unit umber. (0% for disk, [Qs% for

terminat, [0=& for printer,

FILE - [F 1022, then give the output file name.

WODEL [NPUT DATA (either from a digk file or intersctively)

RECORO 1: (free format)
TITLECS) - Three Lines of title or problem descripcion.
18c

Steering parwmter for the boundary cordition at
the well., [f [BC=0; then a cecay bouncary.
If 1BCa1; then a non-decay Doundary.

» - Wumbar of Stehfest weighting cosfficients, for
[BM-AT compatible computert use Detween 10 ta 16,

R - Retardation cosfficient for the fracture surfece.

LH - Retardation coafficient for the parous matrix.

0 - Dispersivity of the fracture.

] - Fracture aperature thickhess,

N2 - Poregity of the porous matris.

ome - Effective diffusion coeffitiant for the porous
natrix.

LAM - Radioactive decay coefficient,

q - Flow into the fracture.

RECORD 2:

N2 - Number of ragial coordinAtes where a concentration
i to be calculated,

L1} - The radius of the wellbors.

R - The radial gistance where tne first concentravion
ig to be calSulated.

o - The discarce between corsetutive ragisi distamees.

A concentration will by determirwma at R + (1:1)0R,
for i=t,2,3,,.. NR.
RECORD 3:

Nt - Nunber of times Ine concentration 1s to e calculates,

TNT) < The 8T values of Crme.  The meximum size for tnis
array is 10.

RECCRD &

Wl - Mumber af vertical coordinates (in the Dorous Matrix)
whare 8 COncentration iy U0 be calculated. Note: the
total msoer of concentrations calculated witl De:
NRONZNT,

oz - The distance batuaen consecutive vertical gistances.

[MPORTANT VARIABLES

N0 - Dimergionless well radius

ORNO - Incremsntal dirsemioniess radial distance
MO - Dimermioniess radius K

oxl - Ingremmtal dimenaioniess vertical distance
Xt - Dimenmioniess vertical distance

TAY - fimrgioniess time

A - AIVeCTiOn DafMamter

ALFY - Peresmter relating to the radicsctive decay
ALF -« Paremmter relating to the diffusive Lescage

AAAANAARNNANAAANDAN A Oa OO A O A A A NN N GO A O eNNANC NN ANAGOGO N ANONANANNoNNRNaGOONaanRNaNAaANA 00NN

IMPLICIT DOUBLE PRECISION (A-N,0-2)

ml3;IEClS!ﬂ LAM N2, T(19), V(W) GC30), H(15) XR(30)
A10(30), 20¢

m‘mmn FILE20, TITLEC3)*70, MES1 (2)%46, MES2(2)%48

an

on

an

on

ann

[z X1}

COMMON IN,1T,10,10

DATA l!s1(1)l~verncnl concantrations will noc be catculateqt/
# MESI(2)/'Vertical concentrations will be calculated'/
#.MES2(1)/'A cecwy boundary comdition exists 2t the well'/

W OMEG(2Y/'A constant Dourdtaty cormifion €Xi30S at the well'/
DAYA INM, 100, (YT/1,2,5/,1A730/,18715/

----- rend Steering parameters -----
[REI00)

WRITE(!T,500)

READ(IT,*) IN

TFCINLEQ.O) CALL VTI00

IFCIN.EQ, ) CALL vIS2

CALL vTeQsi

WRITECIT,*)* GIVE INPUT DEVICE NUMBEN (1sdsk, Swcey) *
READCIT, ") It ]

LFCIN, ta. (W) THEN

CALL VTPOSI

WRITECIT,*)* GIVE INPUT FILE NAME'

READCIT, ' (A)*) FILE
QPENCUNIT=IN, FILE=FILE STATUS= OLD " MODE2'READ!)

CALL VTPOSI

WRITECIT, ™)' GIVE QUTPUT DEVICE NUMBER (2=dsk, Sxtey, &=1p)’
READ(IT, ') 1a

1,255

1F(10.£0.5) (L1320

1F(10.EQ, [30) THEN

CALL VTPOSI

WRITECIT, ") GIVE QUTPUT FILE NAME'
READ(LT, ' (A)') FILE
OPEM(UNIT210, FILE=FILE STATUS='NEW")
ELSE

ENDIF

----- read in input paramecers of the fraccure ----»
TFOIN.EQ, 1) THEN

READCIN, ' (A)*) (TITLECD), 124, 3}

READCIN,*) 18C

READCIN, ") M, A, R2.0,8 N2, DMZ,LAM, 3

READCIM,*) Wit 20,000

READCIN, *) wT (T(1), {2t NT)

REAQCIN,®) w1,22

ELSE

se=me- interactive inguUt ooTian -----

CALL INTRACCTITLE, [BC,N,RYV R2,0,8,H2,0M2, LAM, O, NR, RO R, DR,
MmE.0Z N1, T

ENDIF

se-es wrItE OUT IADUT DErAMETErS -cco-
[FZN20

[F(NZ.GT.Q) [FlNxt

LFCIQ.EQ, (1) CALL VTIPS

wRITE(1Q,50%)

WRITECIQ,91Q) (TITLECL), L2y, 3)
WRITE(10.91%)

WRITECIO, 5200 MESICIFIN®Y) MES2(1BCHT)
TF(D.N€,0,000) WRITE(1Q,925) N
1F(D.EQ.0.200) WwRITE(IQ,930)
[FOIQ.EQ.ITY CALL VTWALT

WwRITECID,935) 2,R1,8,0M2, 02 N2,LAM . Q
TFC10.EQ.1T) CALL VTuAlt

--v++ go to appropriste anatytical solution -----

semee modell if 0 » O, dtherwise mooeld  -----
{FCO.ME.0.000) CALL WOOELICTA, LB, IBC, N, RY, 2,0, B,N2,0M2,LAM 0
# NR A0, R OR NZ,DZ NT,T,V. 6 A, XR,AL0,20)

[F(D.EQ.0.000) CALL MCDEL2(1S,IAC,R1 R2,B,N2,0M2,LAM O, MR RO, R
# DR,NZOZNT,T)

----- format statements -----

900 FORMAT(IAC/),' GIVE THE TERMINAL TYPE:’, // 5X,'0 = vri00',/,

#5%,'1 « vIS2' 750, sa> ¢ %)

0% FORMAT(/,1X, 78CIN"),/,1X, *o0 TEX, ¢¥1)
90 FOIMT(H TN A, ety
915 FORMAT(1X, *'** ?6! wey, 1: TACIN®Y)Y
920 FMMT(IIIJX "PROBLEN mcmcmous' 7,0%,220 ) /41X,

})

"whé, /1

9% FMH\:,IZ.‘ Stantest weighting factors will be used to invert ¢
#he Laplace transform')

930 FORMATCIX, 'The dispersivity of the fracture is zere. Will use the
# approximate solution')

935 FORMAT(///1X,  INPUT PARAMETERS®/ 1X 16(1%=),//,
#X,'0ispersivity of the fracture (L)........0e--00 ', 1000
s, 1"13.6
ﬂx 'llurdnim confficiont for fragrure walls (0)°,10C1H.)
», 1#£13.6,/,

Mx -u;u width of fracture aperature fL3........00',10CT0)
#,1PE13.56

ﬂx '“H\meﬂ contficient of porous macrix [LYL/TT* 10C1N,)
#,1PEY3.G,/,

ﬁx ‘Retardation coafficient for porous matrix (0].' 10CIN.)
., 1P!13.6.I.

ﬂx 'Porosity of the porous matrix {0)........e0.00, 10000,)
., 1PE1Y.6 A

lﬂ iRadioactive decay comstant [1/T)........00000a', 10(TH,)
2, 1P! 3.6,/,

ﬂx ‘Constant injection rate (L*L"L/TI........c000.!, T0CIN,)
., 1?!13.6)

EDD

SUBRCUTINE MODELT -~ CALCULATES THE LAPLACE INVERSION SOLUTION
OF Chen (1985) WHNEN THE DISPERSIVITY (§
GREATER THAN 2EROQ.

nNOonNOoono

SUSROUTINE MCDELICIA, I8, 19C,N,R1,R2,0,8,N2,0M2,LAM, Q, W, RO
# ,R,OR,N2,02,87,7,V,G,H,XR,AL0,20)
IMPLICIT OOUBLE PRECISION (A-H,0-2)
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DQUBLE PRECISION LAM, N2, VCIA) XRCIA), TCIB), ATQCIAY, Z0CTA), GCIA),
m(1g)

COMMOM TN, [T 10, 1L
COMMON /ARGU/ AU ALF BETA BETAY

===++ CAlCULBTE The proolem constants ---«-
RO/D

RHOD =

ORHO = OR/D

RHOL = R/0

Pl = 2,000%0ATAN(Y De3D)

A = 0/(4.000%PTvR)

ALE 2 NZ*DYDSORT(R2*IM2/(R1%A1)/8
ALFY = RITLAM®D™O/A

OX1 = OZYDSQRT(RIA/(RI"OM2))/0
A1321.00/3.00

A2322,000/3.000

ALN230L0G(2.0Q)

reeme PPNt out caleulated oarwmprers ----¢

WRITE([Q,500) A, RHQD, DRNO, ALF, ALEY
IF(NZ.GT.0) WRITE(10,90%) Oxt

cescs gptermirg the Stenfest weighting coetficienty -----
IFCT(1).47.0.0D0.AMD . NT.EQ. 1) GOTO 15

CALL LINV(IA 18,M,V,G,H)

IF(10.EQ,1T) CALL VTWAIT

WRITECIO,910)

oo 10 =1 Nll

TERIE

WRITE(IQ, 915) ey, Lo v

CONTINUE

CALL VTWAIT

--ess calcuiate & concentration profile for esch time -++--

[F(IO.EQ.LT) CALL YTPOSI
WRITE(1Q,930)
IFLI0.EQ,IT) CALL VIWALT

merss Ngw it <t
00 20 k=1 NT

TAU » ATT(K)/(R1*D"D)
RHO = RHQI

[F(I0.EQ.1T) CALL VTPOS1
[F(T(E).LT.0.000) WRLTE(1Q,92%)
[F(T(X).GE.0.000) WRITECIG,930) T(K),TAU
wRITE(1Q,935)

se--- decermine AiQ ang Z0 (only onte) -+«
LFCTCRY . LT, 0.000) THEW

[F(IRC.EQ.Q) WRITE(S, 940)

[F(18C.EQ.Q) RETURN

TF(LAM.EQ.0.000) WRITE(LD, 945)
IF(LAM.EQ.0._0D0) GOTO 20

----- fimd values for stesdy state case -----
Y0 = ARG(ALF1T, RHOO)

I0¢1) = A23*(Y0)**1.%00

0Pt

TF(Y0.LT.3.000) (OPTa-Y

[F(Y0.GE.5,000) (OPT= @

AIOC1) = AILYQ, L0PY}

ELSE

ser-- fing values for time-decentent
THN = AI!G(DILE(FLUAHI))'MI\ZHAU‘ALH INOO)
YHX = ARG(ALN2/TAU+ALFT,RHOO)

1oPTat

IFCYMX.LT. 3. 0D0) 10PT=-1

LECYMN.GT.5,000) 10PTs O

00 25 L=1,N
PAYTSOBLE(FLOAT(L))*ALN2/TAU=ALFY
YO = ARG(PAY AWOO)

Z0(L) » AZ3*v0"*1,500

ATQCL)= AL(YQ, [OPT)

CONT I NUE

ENDIF

---6- caleylate the concentrations in the fracture -----
LOw

50 30 Rl MR

00=0,500% ¢ RHO-RHOD)

AP0 .00

[FCTCEY.LT,D.000) THEN

mm-se caleulate the steady-state values -----
T 3 ARG(ALF1,RHO)

[FCY.LT.5.00) THEN

2 = A23%(Y)"*1 500

CY=0EXP(OD+20¢1)-Z)"AI(Y, 1)*(T0/T)**0.2500/A10(1)
ELSE

QxXP=(YQ/v)** 2500

XP = AZZ®(YQU"1.500-v¥*1 500)
CisQXP*DEXP(DD+XP)

ENOQLF

ELSE

----- calculate the time-depancent vaiues -----
YMN = ARGCDBLECFLOATIN) )AL/ TAU+ALEY RNHO)
YMX = ARG{ALrZ/TAU=ALF], RND)

1QPYwt

IFCTMX.LY,3.000) 1QPY=-1

TF(YMN.GY,5.000) [OPT= Q

-eece Stahfest PUmIricAl integration method ---e-
00 35 L=t &

PAY = OBLECFLOATCL)IALN2/TAU+ALFY

T = ARG(PA1,RHO)

T = AZ3TYeet,500

FACT = DEXP(OD+ZO(L)-2)"(Z0(L)/2)**.2%

renes if 19Ca1, C31,0 aC the watl bore »-»e-
[FCISC.EQ. 1) PAYTZPAT-ALFT

ALFN = AL(Y, 10PT)
KRCLIAVCLYTCCALFNYEACT )/ CATOCL)"PAY))

XP = XP + XR(L)

15 COMTINUE

o

o

N

ETE

A

CraxXPrALng/ TAU
ENDLF

seres DETAL OUE FRSULY ceves

R = O*RHO

LO=LO+1

[F(CT,.7.0.000) C1=0.000

WRITE(1O,950) LO,R,0.000,€1

[F(LO.EQ.NR ,AND. NZ.EQ.0) GOTO 30

LFCFLOATCLO/IL) (EQ.FLOAT(LO)/FLOAT(ILY) CALL VIWALT
[FCFLOATCLO/IL) .EQ. FLOATCLO)/FLOAT(IL)) WRITE(IQ,935)

seees caleulate concentration in porcus magrix ccees
_Al=0X1

00 40 I1Z=%,NZ

TFIT{K).LT,0.000) THEN

==+++ calaulate 1Tendy State concentraton ---+-
CZ=C1DEXP( - X YSORT(ALF1))

T = O°XI/0SORT(RI*A/(RI®DN2))

ELSE

s-=-- ealeulate TiMp-depermient concentration ----+
Ipe0.000
oQ 45 L=,
PAY = '.-unzmum.n
T2 2 DEXP(-XI"DSGRT(PA1))
WP = P+ 2ZVERLL)
&5 CONTIMUE
Ca=2p ailnd/TAU
ENDLF

print oyt results -----
= u'x(/omruru(u-unzn
LO=, 0+
{§{C2. Lf 0.000) C2=0.000
WRITECIO,950) LO,R,2,C2
[F(LO.EQ.NR"NZ) GOTO 40
[FCFLOATCLO/IL)Y .EQ.FLOATCLO)/FLOAT(IL)) CALL VTWALY
TFCFLOATCLO/ZIL )Y BQ. FLOATILO)/FLOATCIL)) WRITE(IQ,935)
&0 X1 ax1+0X|[
30 RHQERNO+ORNO
20 IF(K_NE.NT) CALL VTMALT

-eses formet statements -----

00 FORMATC///71%, 'CALCULATED PARAMETERS'/1X,22(1H%)//
BIX, "Advection parsmeter (A). ... .....cceeuvvnnranns
#MPEVS.S,/,

L 0CHH Y,

llx,‘oimimlnl rodius of the well (RNOD),...... 00N,

#,1PE13.4,/,

ﬂl 'mmiumnl distance between radii (ORNQ),..' 10C1H.)

¢, 1P€13. 4, /.
ﬂ! ‘Ratio of diffusive loss to injection (ALPHA)..',
#,1PE13.6,/,

AIX, 'Oimergioniess rediosctive decsy cormtant C(ALPWAT)', 7(TH.)

#,1PE13.4)

905 FORMATCIX, 'Dimermioniess vertical spacing (OX1),.......

# ,10¢14,),1PE13.6)

910 FORMAT(///1X, 'STENFEST WEIGHTING FACTORS'/1X,27(Hx)//
(IR L TE LIy, SRISRIN R L' S PR 1N

915 FoRmMATCIX, 15, 1PE20.7, 30X, 15, 1PE20.7)

920 FORMAT( 16X, 'COMCEMTRATION DISTRIGUTION®
0,/,16X,26(1H8) /1)

925 FORMAT{SX, 'Time = Stesdy Stater,/)

930 FORMATCSX, 'Tine » * 1PE15.5,10x,'Tau = ' 1PE15.5,/)

935 FORMATCSK, '{' 14X, ‘R! 16K, '2' 15K, 'C/Ca')

G0 FORMAT(SX, 'ERROR: [8C

945 FORMAT(SX  'ERROR:

131,

matr = 1 for 3 steady state salution')
Lamtxia carot be zero for a steady state

] ulu:iaﬂ.',jgﬂl 'The concangration is 1.0 for X < infinity! /)
X

950 FORMAT(IX, (5, 6x,F12.3,5¢5X,F12.4))
LETURM

END

SUBROUT IME NAME: MCDELZ - THIS PROGRAM CALCULATES THE SOLUTION
OF Chanr (1988) WHEN THE DISPERSIVITY

1§ ZERO.

AT SNSRI S RN EAEY

an

SUBROUT INE MODELZCIS, IDC,RT,R2,8,N2,0M2,1,AM,Q, NR RO, R
& OR,NZ,OZ,NT,T)

IMPLICIT DOUSLE PRECISION (A-4,0-2)

OQUBLE PRECISION LAM, N

JIMENSION T(IB)

CawOM [N, 1T,10,1L

-ee-+ catcylate problem conscants oo
21 = 2,000"DATANCY .D+30)

A w Q/7(4.000%PI%8)

EY 2 R1/A

E2 = NZTOSQRT(RZOM2)/A/8
RIE » &

RITEC1Q, 900 A £1,82
SALL VTWALY

1F(10.EQ.1T) CALL VTPOSI
wRITE(1Q,905)
'FCI0.EQ,.T) CALL VTWAIT

sea-- CHLEULATE CONCENTTAtion for each timg -----
00 10 k=) MY

IFCIQ.EQ.IT) CALL VTPOSY

LF(T(K).LT.0.000) WRITE(10,910)

LF{T(R).GE,0.000) WRITE(IO,P15) T(K)
wRITE(10,920)

sren- galCulate ThE conCentration in the fracture -----

2=0.00!
Rkl
LOwQ

00 15 IRu1, MR
ARna*R/2. -RO*RO/2,

1=0.000
TFCTC(K).LT.0.000) THEN



[ steady-state solution ----- RETURN

MGY * -E1TLANTRR - E2SDSORT(LAMIRR 0 CA-B%8

[FCIBC.EQ. 3. AND_LAM.NE.0.000) C1 = 0,000 IFCCDABSCC) . GT.A2,00) . AND. (B.GT.0.D0Y) AETURN

TFCIBC.ME. O, AND . LAM. NE,0,000) C1=DEXP(ARGY) IF¢C.LT,-82.000) cOTO 25

{FOLRC.NE.O.AND  LAK.EQ,Q,000) C1=1,000 X=0AGS(8)

ELSE [F(X.GT,3,000) 6OTO 15
[ T & 1.00/(1.000+P*x)
¢ esves pime-cdeowsiant salugion e T ox TOAYV-THCAR-TY(A3-T*(AL-A54T))))

TIaT(K)-E1*hR Goto 20

IFCT1,LE.0.0) 6OTQ 25 15 Y 3 55641894D0/(X+.500/(X+1.00/¢X+1.500/(X+2,00/(X+2.500/(x+1.00

ARGISE2"RR/DSART(T1)/2.0 33302

ARG2=OSCRT(LAM®TT) 20 DEXF = Y*DEXP(L)

EXPYaE2*RR*DSORT{LAM) 25 IF(B.LT.0.000) DEXF » 2,DO*0OEXPCA)Y-DEXF

EXPZ=E1*RR*LAN - RETURM
c END
[+ ««--- cgleutation for a decay bowrdary comdition ----- c

[FCIBC.EQ.1) cofo 20 [ * A

CIDEAF(-LANET(K), ARGY) [

GoTO 30 C FUNCTION AICZA, IOPTY -- TMIS FUNCTION SUBRGUTINE COMPUTES THE
¢ [4 AIRY FUNCTION FOR POSITIVE ARGUMENTS.
[ svv-= catculation for a nan-decay boundary camgition ----- [

20 C1=0.500%(DEXFC-EXPT1-EXP2, ARGT-ARG2) < 1F 10PT » -1, USE THE SMALL ARGUMENT SERIES SOLUTION

# +DEXF(EXPY-EXPZ,ARG1+ARG2)) ¢ LF 10PT » Q, USE TWE LARGE ARGUMENT SERIES SQLUTION

Gara 3o c LE 1OPT = 1, USE THE INTEGRAL SQLUTION METHOD

25 C10.0 4
30 coutiNuE ¢ THE AIRY FUNCTION 1§ SCALED (MULTIPLIED) BY:
ENDIF [
[4 [ (Zv0.25) EXP{U), WHERE Ux{2./3,)%(2**1,5)
[+ saves print out results --e-- c

LOxLO+1 . ¢ vew - v »

WRITE(10,925) LO,R, 2,00 OOUBLE PREGISION FUNCTION AI{ZA,10PT)

IF(LO_EQ.NR ,AND, NZ.EQ.Q) GOTO 3§ IMPLICIT DOUBLE PRECISION (A=H,0-2)

IF(FLOAT(LO/ILY.EQ.FLOATC(LO)/FLAATCILY) CALL VTWALT OQUBLE PRECISION XG(10),WG(10)

TECFLOAT(LA/LL) .EQ, FLOAT{LA)/FLOATCILY) WRITE(1Q,92Q) COMMOM [N, IT,10, 1L
c g::: °’5°Z/cg§§§“°”§"2322,;-53:2;"32"’3"2;5,2 26877029,
[ sere- caloulate cONCENtration in porous media --.-- CORF1 SIEF COEF6/ 62 -2

35 2302 P 1 4.2354045970200- 32.1. 5610218027630 - -35,1.0135782123940-29,

0O &0 N=1 N2 2 4 3094311747180-33, 1. 62497404 77820 - 34/

TR{T(R).LT,0,000) THEN DATA v/, 33333333!3333333001 P1SQR3/% . 44139809300
¢ L Pg;!l! . 544907701800/, ;l/l 14159265359000/, PlDA/? 8539816340-1/
¢ c-ees steady-scate solution (only mon-decay bouncary ailowed) -++-- ¥,A23/ . Stbiabibdiebatatobnbivints

18C.NE. = DEXP(ARGT - Z*DSORT(RZ*LAM/DM2 OATA IlG/W/ xcl 76526521133497330-1, . 227745851 141445000,

éf_ﬁ,;u €.00 cz (ARGT - Z°0SART(RZTLAN/OMZ)) #.373706088715419400, . 5 1086700195082 7000, . 6360536807245 14000,
c T

cesme Cimm- ent jom «---- &
¢ IF (T'IfL?OmTO sgoluu DATA WG/, 15275!387130725!00 L1491 7298464 72403700,

T2 0SQRT(RZ/0M2) #, 162096 109318382000, . 1316806384491 T6H00, , 1181945319418 18400,

ARGIw(EQYRR+22)/DSQRT(T1)/2.0 #, 101930!198172‘0600,.&327576!57070‘71.0 1,.626720448334 1090401,

{F(IBC.EQ.1) GOTO 45 #.40601420800386940- 1, , 17414007139182110- 1/
¢ [

c -e--- dechay Doulmiry condition -see- e vesss fumgtion $CATements -----
C2sODEXE(-LAM®T(K),ARGT) FN(Y) = DEXP(-ZK*DCOSNCY) )*DCOSNCVEY)
Goro 55 . DACOSM(Y) » QLOG(Y+OSQRT(Y*Y-1.000)}
c <
[+ non-decay DOUNGErY comition «..-- [F(ZA.LT.0.00) WRITE(IO,900)
45 6280, SDO'(DEXF( EXP1-EXP2-DSQAT(LAMY®22 ARGY-ARGD) {FCZA.LT.0.00) STOP
» «QEXFEAPY-EXP2-DSQART (LAMYTZZ, ARG +ARG2 Y)Y 1RCIORTY 10,20,30
GOt 55 o
50 c220.0 [ series expansion for Ai(ZAY (for 0.0 =e ZA < 3,0) -+~
55 COMTINUE 10 Pelav~l

ENDIF F21.D0+PY( 1, SbebObbebiabboi 70 - Q14P¢ § 5555555555540 -03+
[ : 1 PU¢ 7.7T160493827160-05+P%¢ §,5454919565030-07+
¢ saeee BRIAT Ut results ----- 2 pog 2 TASATSOASAND -09+PT( 9.0964241345050- 12+

LO=L0+1 3 Pet 2.1458433463110~ 16+P¥( 3.9234455 18479017+

WRITECID,92%) LO.R,2,C2 [y P 5,5892071206250-20+0%( &, 42444h96462350 - 23+

1F{LO.EQ, NR™™Z) GOTO 40 5 PU{ 6.0R37TIA7028740 - 264P=( 4, B28374T643130~29+

[FCFLOATCLO/IL)  EQ.FLOATCLQ)/FLOATCILY) CALL VTWALIT ) Po( 5.2580140002110-32+P%( 1.8919941929220- 35+

[FCFLOATCLO/IL) . EQ.FLOAT(LA)/FLOATCIL)) WRITE(10,920) 7 9'( 1 00- 10%COEF 1+p%¢ 1.0D-10%COEFZ+

a0 I137+02 ] e 1.00-10* CMFJ))H)H))))))))))
15 Ra0+DR GEZA® (Y, now'( 8. 333:33333:310 02+P9( 1,984126084L1270 03+
10 [FCE.MENT) CALL VTWALT 1 PT¢ 2.2045855379190-05+pw( 1 nnmsmoo 07

RETURN 2 Ll B MMOTSSO!D 10eme( 1.721729846053D- 12+
< 3 e 3, 7265879784700 - 1547 ( 4, 2111464307830~ 18+
€ s it 7 o mmmma S e

00 FORMAT(///1X, ' CALCULATED PARAMETERS®/1X, 22(1"')// pe( 151 e 5N +
FIX, "AGVACTION CArMPRTEr (A)y..ucusnunnneecnaasaaaat TOCIHY, & pr( 3. 7A91810604030-33+p*( 2.0981068096450 - 36+
MPELS.6,/, 7 P 1.00- 10" COEFGep¥( l 00+ 10*COEFS«
nx, ‘Ratic of retardation in frecture to “A® (E11..°,10C1N,) L} L 1.00-10*COEF&)) 1IN NNMINMN
#, 1P!13.é,l. AlRCI*F-C2%G
#ix, 'hﬂnr 7 LIS [ (4 T 79 U=AZ3*2ATY. 500
®,1PE13.6 Al=(ZA"*0, 2500)*OEXPLY) AL ’

905 FOIHATU&X 'CONCENTRATION OISTRIBUTION® RETUAN
»,/, 100, a6ting, /0 < )

910 FORNAT(SX ‘Time = Stesdy Stln',l) c -==~+~ agymptotic expansion for Ai(ZA) (for ZA » 5.000) -----

915 FORMAT(SX,'Time = lvid 5./ Sx,¢/Ca") 20 ;x:axgg;am.m

920 FORMAT(SX,'1! '4x, 'R 'l‘ 1 C/Ce =y,

4 ARt DO+PR( -4, Mbbhbhbihttd - 02+P2( 3, 7132487654320 -02+

925 LORMATCIN I3, $x, Fiz.3]5(5%,12.0)) 1 Pu(-3.7993059127800-02+#°( 5.764919061267D-02+

¢ 2 PR¢ -1, 1609906402550-01+0%¢ 2,915913992307D-01+

¢ ” 3 p(-8, 7766694951000 01-P( 3,0794530301730+00+

° P DR e
CTIOM ARG -+ CA ATES THE ARGUMENT FOR THE AIRY FUNGTIOM 5 LSl G e02+PRL 1, +03+

: oM RG r+ CALCULATES THE H peq -4, 2072065997260+03111)23333333)

¢ - v Al=A/PIRT2

DOLJBLE PRECISTON FUMCTION newau; ¢ RETURN

I ICTT DOUBLE PRECISION (AW, 0-1)

LN G/ A1S,ALF, BETA,BETAS [ reees intagral represencation for Af(ZA) (for 3.0 s« ZA 3c 5.0) ---
¢ ¢ TARGUZ ATS,ALF, 10 %:p. ngog;(zl:"‘l .500)/3.000

a pPaj =

bt ol 1R (TP, LE.1.000) THEN

ARG = BETAIY(R « 0.25D0/8ETA) ﬁ;io.wo/u

'g's;u“ AL & DACOSH(TMP)
¢ ENDLF
¢ . ¢
¢ BA2 » XL/2.00
[ SUBROUTINE DEXF -- EVALUATES EXPCAIERFC(R) IN DOUBLE PRECISION SUMm » 0.00+0
¢ SUM1 = 0.00+0

<
-

OQUELE PRECISION FUNCTION OEXFCA,B) 00 3% [=) NG

IWPLICIT OOUBLE PRECISION (A-W,0-2) . t o» GA2T(XG(I) + 1.000)

OATA £7.3275911007,A1/.254829%9200/ A2/ . 28449673400/ Yim -BAZY(XG(LY - 1.000)

8 ,A3/1. 42161374100/, Ak/ 1, 45315202700/, AS/ 1. 04140542900/ SUM = S e WGCT)TEN(Y)
SUMT = SUMY = WGCITFN(TY)

DEXF=0.000 15 CONTIMUE

LFC(DARSCA)Y.GT,42,.00).AND. (B.LE.0.000)) RETURN ¢ .

1F{8.4E.0.0) GOTO 10 SUM = BAZS(SUNSLIN )

DEXFOEXP(A) Al = D!I’(lﬂ'(u"ﬂ 7500)*sum/P130R3



€
900

RETURN

FORMAT (¢ *9% VARMING **7 SUBROUTINE AI(Z) WILL NOT EVALUATE a
# NON-POSITIVE ARGUMEMT OF Al(2), )
END

ononaOaa

SUBRQUTINE LINV -- FINDS THRE STEAFEST WEIGHTING COEFFICIENTS

Il

(5]

o

]
20

SUBROUTINE LINVCIA, LB, N,V G, H)
IMPLICTT DOUBLE PRECISION (A-%,0-2)
DIMENSION GCIA),V(IA), N(1B)

G(1)%1.00

NHN/2

DO 10 {32 N
GCIY=GCT- 1) OMLEL])
CONTINVE

H(T122 BQ/GENN-1)

00 20 =2, NM

FIsOBLE(T)

IF(1.EQ.NH) GOTO 1§

HELITCF I "NMI"GCRY )/ COCNN-T32GCT "G~ 1))
GAYQ 20
RCDY=CFI** MY *GE27T)/(GCII"G(I- 1))

COMT INUE

TSHEZT (NN~ (NH/2)%2) -1

00 25 a1, N
v(1)20,00

Kix(le1)/2 .
K2a1

[FCRT,GT.NKIKZ=NK

00 40 K=K1,K2
[£(2*K~1.EQ.0) GQTO 30
1F(1.£9.X) GOTO 38

C VUL IRVCD ) +RCK) /(GCT-EDTGL27E-1))

3

35
0

2

v

G0Ta 40
VDIV )+MK)/GET-XK)
GarQ 40

VO aV( T *HIK) /G(2¥K+ 1)
CONT INUE

YOl z[SHev(T)

{SNw- [ SH

CONTINuE

RETURN

END

SUBROUTIME INTRAC -« ALLOWS INTERACTIVE INPUT

(This subroutine and the calling statemnt in the main program
can Dy removed i f intersctive input is not required)

OOOOANNNn

800
805

SUSROUTINE INTRAC(TITLE, LAG,N,RY, R2,D,0,42,0M2,LAM,Q, NR, RO
# R0, M2,02,NT,T

IMBUICIT DOUBLE PRECISION (A-M,0-2)

OOUBLE PRECISION N2,LAM

DIMENSION T(10)

CHARACTER TITLE(3)*70

Common T, 1T,10,1L

FORMAT(1X,A50,%)
FORMAT¢ 1X,A50)
CALL VTPOS]

00 10 1=1,3
WRITE(IT,805)' GIVE A LINE OF TITLE '
READCIT, ‘(A)*) TITLE(D)

CALL YTPOSI

WRITE(LT,80%)" GIVE Q: for DECAYING GCUMDARY COMOITION '
WRITECIT, B800)' of  Y: for CONSTANT CONCENTRATION BOUNDARY axs *
READCIT,*) 1BC

CALL VTPOSI

WRITECIT B00)' GIVE THE NUMBER OF VEIGHTING FACTONS (N} azs
READ(IY,*) ¥

CALL VTPOS!

WRITE(1T 800" GIVE RETARDATION FACTOR (FRACTURE: R11 233
READCIT,*) R1

CALL VTPOS!

WRITE(IT,B00)" GIVE RETARDATION FACTOR [PORCUS MATRIX: R2) 23> *
READCIT, =) @2

CALL VIPOSI

WRITECIT,800)° GIVE DISPERSIVITY [N THE FRACTURE (o) ans
AEADCIT,*) D

CALL VTPOSI

VRITECIT, 800)' GIVE WALF FRACTURE APERATURE DIMENSION (Bl  xs» °
READCIT,") 8

CALL YTPOS!

WRITE(1T, 805)' GIVE POROSITY OF PORCUS MATRIX [m | '
WRITECIT, B00)" H EEEN
READ(CIT,®) M2

CALL VTPOSI

WRITECIT, 80%)° GIVE DIFFUSION GOEFFICIENT IN MATRIX (Dm ] '
WRITE(]T, 8000 2 am3
READCIY, ) OM2

CALL VTPOS!

WRITECIT, 8000 GIVE RADIOACTIVE DECAY CONSTANT (| amtwis) 2as
READCLT,*) LAM

CALL VTPOSI

WRITECIT, 800)' GIVE THE INJECTION RATE [Q) zx3
READ(IT,™) @

CALL VTPOSIT

WRITECIT, 80%) GIVE THE NUMBER OF 2ADII (NT], WELL RADIUS (RO},
WRITE(IT,205)¢ START RADIUS ([R) ANO OISTANCE BETWEEN RADII (DR)

WRITECIT, B00)* =3 ¢
READCIT, *) NR, RO, R OR

CALL YTPOST

WRITECIY 805)' GIVE THE NUMBER OF TIMES THE COMCEMYRATION ¢
WRITE(IT,B00)" PROFILE 15 TO UE CALCULATED (NT) am ¢

READCIT,*) NT
CALL VTPOSL
00 15 [a1,NT
CALL vTPOSI

WRITE(IT 810) |

19 READCIT,*) (1)

810 FORMAT(1X,' GIVE THE ', 12, 'th TIME (V(1}]', 20X, 'z=s + §)
CALL vTpos]
WRITE(IT, 8052 GIVE THE WUMBER OF VERTICAL POSITIONS WMERE A '
WRITE([T,305)' POROUS MATRIX COMCENTRATION IS TO BE CALCULATED
WRITECIT, 800)" ==
READCIT, *) M2

o 1F(MZ.EQ.0) RETURM
WRITECIT 800)' GIVE THE SPAGCING BETWEEM VERTICAL POSITIONS
READCIT, ") D2
RETURN
END

zny !

SUBRQUT INES VT==® -- VIDEQ ORIVERS FOR VT-10Q AMD vT-52

nNNaoaoa

SUBRCUTINE vT100

CHARACTER®Y €5C

DATA ESC /#18/

WRITE(S,900) ESC
GO0 FORMAT ¢ '+v,1A1, 1<ty

RETURN

END

SUBRCUT [NE V152
CHARACTER™1 €5C
DATA ESC /#18/
WwRITE(S,900) £5C

900 FORMAT ('+' 1A1,'[721")
RETURN
EMD

SUBRCUTINE VTPOSI
CHARACTER™? ESC

CHARACTER CMD1YS, CMDZ*Y

DATA ESC /#18/, [LINE/B/, ICOL/Y/
DATA CMOY /P L1:1FY/,

# 002 71241/

WRITE(S,900) ESC,CMDY,ESC,CMO2
WRITE(S,90%) ESC,ILINE, 1COL
2ETURN

ENTRY yTPOSY
WRITE(S,500) ESC,CMD1,E5C,CMD2

900 FORMAT ('e',A,A AA,S)

505 FORMAT (*$¢ M '(' iz. 2,0:4,13.3,¢0y
WETURN
N0

SUBRQUTINE VTWALT

CMARACTER"T €£5C

CHARACTER cm\-s le'!

COMMON [N,

DATA €5C /ﬂll lLIN!/Z"I tcaLs1/
OATA CMOT /' {1141/

#0038 /0204

fe X3

----- it output device is the printer -----
{F(10.EQ.{T) GOrQ 10

wRITE((Q,%00)

RETURN

o0

mreee i f oWMtOME device is the Cerminsl
10 WRITE(S,90%) ESC,ILINE,ICOL

wRITE(1D,910)

READCIT, 91%) THP

WRITE(CS,920) E3C,CMOY, ESC,CMD2

RETURM

F00 FORMAT('1')
Q05 FORMATC'S! AV (0 122,00 13,3 1461y
910 FORMAT(‘+ Typm return fo continug »»» ' §)
315 FoamAT(GY. D)
920 FORMAT('+' A, A A,A,$)
END

Appendix 2. Examples of Program Input and Qutput

Exampie Lnput daca seC

1.0 0.1 5.0E-5 .01 L.0E-3 .0l 3.6%
L 1.0
.0

1

16 1.0
100.1
L 1
5 .002

Exampte input dats set

RN

PROBLEM SPECIFICATIONS

vertical concentrations will be calculated
A consTant boundary condition exists at the wall
16 Stehfest weighting factors will be ysed to invert the Laplace transform

or



[NPUT PARAMETERS

IARARITTRZZRRTNR

Oispersivity of the fracture (L1.............. 1.000000€-01
Retardation coafficisnt for frecture waiis ()] 1.000000£+00
Halt width of fracture sperature {L]1......... . 5.000000€-0%
Diffusion cowfficient of porous metrix (L¥L/11.. . 1.000000E-03
Retaraation coefficient for porous metrix [0],., . 1.000000&+00
Porugity of the porous meerix [01............ . 1.000000€-02
Radiosctive decay constant (1/T]....... . 1.D00000E-Q2
Constant injection rate (L*L*L/T). . .c.0viiiiivininnnannn 3. 450000E+00
CALCULATED PARAMETERS
AVECTION DAFMMMCEr (A),,iuuiiiuracanesias . 5.809155E+03
Dimensioniess radius of the well (RNOO) . 1.000000E=00
Oimansioniess distance betwaen radii (ORWO) . 1,0000008+04
Ratio of diffusive loss to injection (ALPHA),..... . 8.298001E-Q3
Dimeraioniess radioactive decey constant (ALPHAY), . 1L TR1A21E-08
Dimengioniess vertical spacing (OXI)...covuecnrsnannsnnn 4, 820438801
STEMFEST WEIGHTING FACTORS
! Vel 1" v(in
1 -3.9482540E-04 9 -1.0%29395€-00
H 2. 13373026+00 10 2.2%90133E«09
3 -5.51016878+02 1 +1,3997020€+09
4 3.3500141€+04 12 3.5824505€+-09
5 -8, 12665 11E+05 13 ~2.5914941E+09
] 1.0076184E+07 14 1.2270498E+09
7 -7.3261383E+07 1% ~3.4273656k+08
8 3.3905963E+08 16 4, 28418198+Q7
CONCENTRATION DISTRIBUTION
Timp = 1.0000CE - 02 Tau = 5.80916€+03
1 L] b4 C/Co
1 1.000 0000 9041
H 1,000 0020 b9
3 1.000 .Q0s0 3659
“ 1.000 ,0060 ATSA
1 1.000 .0080 o713
& 1.000 .0100 L0243
7 2.000 .0000 9857
] 2.000 .0020 L4353
9 2.000 .0040 J521
10 2.000 0040 . 1455
b 2.000 .0080 0656
12 2.000 L4100 .g21%
13 3.000 0000 2682
14 3.000 ,0020 6118
15 3.000 L0040 3294
16 3.000 . Q060 L1493
17 3.000 Q089 .0563
18 3.000 L0100 Q7S
19 &.000 0000 9427
20 4.00Q .0020 5T
21 4.000 0040 . 2981
22 4.000 0060 276
2 4.000 .0080 06k7
24 +.000 0100 0128
25 5.000 . 0000 .
26 §.000 .0020 S3Nn
27 5.000 0040 L2568
28 5.000 .0060 . 1008
29 $.000 . 0080 .0320
30 5.000 3100 .Qoas
N 4.000 .0009 . 8560
32 4,000 .0020 e
13 4.000 0040 .20%%
34 6,000 0060 L0713
IS 4.000 0080 0196
14 4.000 L0100 0042
37 7.000 . 0000 L 7904
38 7.000 0020 3870
19 7.000 0040 L1456
=4 7.000 0040 &6
41 7.000 0080 0098
L2 7.000 L0100 0016
3 8.000 . 5000 6841
[ 4.000 .0020 2T
3] §.000 00460 0842
(73 8.000 0060 L0191
&7 8.000 . Q080 .0031%
3 4.000 .0100 0003
1) 9.000 . 0000 S012
50 9.000 .0020 L1548
51 9.000 0040 L0347
5 9.000 . Q060 0052
53 9.000 .0080 . 0006
54 9.000 .0100 . 0000
53 10,000 .0000 . 2643
56 10,000 L0020 0561
§7 10.000 . 0040 L0072
58 10.000 , 0060 0001
59 10.000 .ooso . 0000
&0 10.000 .0100 . 0000
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Ground-Water Modeling: Applications’

by James W. Mercer and Charles R. Faust®

ABSTRACT

The numerical models used in ground-water studies
are general computer programs thac can be applied to a
variery of hydrogeological conditions. These programs are
based on approximations to the governing partial differ-
ential equations for ground-water flow and transport. To
use these models requires an understanding of the physical
problem and field dara. Although program input data and
output results are quantitative, the appropriate application
of numerical modeis remains a partly subjective procedure.
To use models, the hydrologist must assess the merits of-
alternative numerical methods, evaluate available data,

- estimate data where missing or absent, and incerpret

computed results. The review of previous model applications
can provide valuable insight on how these tasks may be
approached.

INTRODUCTION

The effective application of numerical models
to field problems in ground-water hydrology is
ironically a qualitative procedure. The hydrologist
must first decide whether a numerical model is
necessary for project objectives. If needed, he is then
faced with the decision of which numerical method
is best for his problem. Once a particular method or
computer program is selected, he must assess the
reliability of data that are needed to run the program
and the quality of the data that will be used to
verify computed results. Because available data are
never as comprehensive as desired, he will probably
have to fill in data gaps with estimated, interpolated,

This is the fourth in a series of papers on ground-
water modeling.
. bGeoTrans, Inc., P.O. Box 2550, Reston, Virginia
22090.
Discussion open untl March 1, 1981,
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or extrapolated values. Although running the
computer program is fairly straightforward, inter-
preting or analyzing the output can be very difficult.
The computed results may not compare well with
observed data. It is then necessary to adjust and refine
input data and rerun the compurter program until
some satisfactory agreement is obtained. This
refinement procedure is known as model calibration.
A calibrated model may be used for future fore-
casting, but care must be taken to avoid unwarranted
prediction.

The above discussion suggests that a successful
model application requires a combination of
experience with (1) hydrologic principles,

(2) numerical methods, (3) the aquifer to be
modeled, and (4) model use. Model use is the topic
of this paper, fourth in this series. In the previous
papers we (1) provided an overview of numerical
modeling, (2) presented and discussed the parual-
differential equations on which numerical models
are based, and (3) reviewed commonly-used
numerical methods. If we accept that model use is a
subjective procedure, then one way to gain
experience is to see how other problems have been
approached using modeling techniques.

There are several good review articles on
models used in ground-water studies. Prickett
(1975) presents a review of the available literature
on ground-water modeling. In addition to Prickett’s
work, Narasimhan and Witherspoon (1977) present
an overview on ground-water modeling. Anderson
(1979) summarizes the literature concerned with
modeling solute transport while Mercer and Faust
(1979) summarize the literature dealing with
modeling heat transport. Because of these articles,
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we do not present a literature review. Instead, in
this paper we consider, in detail, three examples.
The first deals with ground-water flow in a glacial
aquifer. The second application involives the analysis
of a poilution problem. The final example illustrates
the potential for using models to aid in data
collection,

GROUND-WATER SUPPLY EXAMPLE

This particular example was chosen for
discussion because it is typical of many applications
(only limited data are available), and it provides a
qualitative comparison of two alternative numerical
methods. This application was first presented by
Pinder and Bredehoeft (1968). It represents the use
of a ground-water flow model to analyze an aquifer
system composed of glaciofluvial deposits. It
includes a history match with limited data and a
prediction using a finite-difference model. This
problem was later simulated by Pinder and
Frind (1972) using a Galerkin, finite-element model.
Based on this field application and numerical
experiments, they present a discussion on the
relative merits of both numerical techniques.

Problem :

The village of Musquodoboit Harbour, Nova
Scotia (location map is shown in Figure 1) depends
entirely on domestic wells for a water supply.
Unfortunately, bedrock wells are of poor quality,
and shallow wells cannot meet demands during
summer months. Field studies indicate a nearby,
unconsolidated deposit containing good quality
water. Can this deposit provide an adequate water
supply for Musquodoboit Harbour?

ATLANTIC OCEAN

Fig. 1. Location map of the Musquodoboit River basin
(from Pinder and Bredehoeft, 1968).

LEGEND
CERICIC

3_T3TOCENE AND  RECENT
B mECIuT Aliovioa
PEAT AND MUCK
GLACO-FLUVIZL DEPOSITS

peed GLACIAL TILL \
BALECZOC
SENVONIAN
DB cranire SCALE 112600
PRECAMBRIAN
MEGUMA GROUP

%o, s _s00ywm

Fig. 2. Geologic map of Musquodoboit Harbour, Nova
Scotia, Inset is the well configuration for the pump test
conductad on this aquifer (numbered wells are observation
wells) (from Pinder and Bredehoaeft, 1968).

Hydrogeology .
According to Pinder and Frind, the aquifer is
adjacent to the Musquodoboit River %-mile
northwest of the village of Musquodoboit Harbour
(see the geologic map in Figure 2). The aquiferis a
glaciofluvial deposit consisting of coarse sand,
gravel, cobbles, and boulders deposited in a typical
U-shaped glacial valley cut into the slates and
quartzites of the Meguma group and granite
intrusives of Devonian age. The contrast in
permeability between the granitic and metamorphic
rocks and the glaciofluvial valley fill is so great
(approximately 10%) that the bedrock is considered
as impermeable in the aquifer analysis. The aquifer,
which is up to 62 feet thick, is extensively overlain
by recent alluvial deposits of sand, silt, and clay.
The alluvial deposits are less permeable and act
as confining beds. A cross section through the
valley is given in Figure 3.

Aquifer Analysis

A pumping test was conducted to evaluate the
aquifer transmissivity and storage coefficient, and
to estimate recharge from the river. The test was
run for 36 hours using a well discharging at 0.963
cubic feet per second (432 gallons per minute) and
three observation wells (see insert of Figure 2 for
locations). The test was discontinued when the
water level in the pumping well became stable.
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LEGEND

CENOZOKS

PLEISTOCENE AND RECENT
RECENT ALLUVIUM

- GLACIC FLUVIAL DEPROSITS

PALEQZOIC AND PRECAMBRIAN
GRANITE AND SLATE

SCALE

HORIZONTAL: 1in = 94811,

VERTICAL: 1inz1301t,

ELEVATION {fent]
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Fig. 3. Geologic cross section, Musquodoboit Harbour
area, Nova Scotia (from Pinder and Bredehoeft, 1968).

Initial estimates of aquifer parameters were calcu-
lated using the Theis curve and the early segment
of the drawdown curves for the observation wells.
Results are shown in Figure 4. The values are
somewhat variable, and because of the close
proximity of boundaries, the pumping-test results
are difficult to analyze using standard analytical
methods.

Although not included in the original report,
the late time data may also be analyzed using
Jacob’s method for distance drawdown data (Jacob,
1950). The transmissivity calculated by this method
is 0.288 fri/s, which is about five times smaller

than the values determined from the early time data.

Aquifer Model
The boundary used in the model is the contact
between the valley-fill deposits and the bedrock.
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Fig. 4. Time-drawdown curves for a pump test conducted
at the Musquodoboit Harbour aquifer (from Pinder and
Bredehoaft, 1968).
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Fig. 5. Finite-difference grid showing the modified trans-
missivity matrix adjusted on the basis of three additional
test well logs and digital model results (from Pinder and
Bredehoeft, 1968),

Because of the very low permeability of the bedrock,
the boundary condition is considered no-flow. A
uniform 45 by 57 rectangular grid was used by
Pinder and Bredehoeft, and is shown in Figure 5.
Note that approximately half the nodes are outside
the aquifer area and are not included in the calcula-
tion. The aquifer is considered to be confined;
however, steady-state leakage is allowed through

the river bottom.

According to Pinder and Frind, this grid could
be redesigned with approximately 25% of the nodes
by introducing a variable grid. Furthermore, a model
based on Galerkin’s approximation in conjunction
with deformed isoparametric quadrilaterals was
used to examine this problem and contained 96
nodes and 44 elements (see Figure 6). The flexibility
introduced through the use of irregular elements is
apparent in the definition of the impermeable
boundaries and the river. Often, however, the
subsurface geometry is not that well known. The
shape and distribution of the internal elements
demonstrate how an understanding of the hydro-
logic system can guide the hydrologist in the
selection of an efficient nodal arrangement. On
the other hand, a poorly designed model may be
inefficient and may provide inaccurate results.

History Match

The history match consisted of reproducing
the pump-test results. An initial estimate of trans-
missivity was made based on the pump-test
analysis and the geologic information.
Approximately 37 computer runs were made with
the finite-difference model, varying aquifer
parameters until a sarisfactory match was obtained.
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Musquodoboit Harbour aquifer (from Pinder and Frind,
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The final transmissivity distribution used in the
.model is shown in Figure 5. Using the same dara,
the problem was again simulated with the finite-
element model. A comparison of finite-difference
and finite-element drawdowns is shown in Figure 7.
These may be compared with the observed draw-
downs in Figure 4. Note that by using drawdowns,
the initial conditions for this linear problem are

simply initial drawdown is equal to zero everywhere.

According to Pinder and Bredehoeft,

A decrease in transmissibilicy results in a greater drawdown
afrer a given period of pumping. The storage coefficient
affects the shape of the time-drawdown curve before
equilibrium is reached in the aquifer system. The most
pronounced effect of an increase in the storage coefficient
was a decrease in the drawdown during the early periods
of pumping. Steady-flow conditions in the aquifer depend
upon the quantity of water entering the system through
the river bed. The closest approximation to the pump test
results was obtained using a permeability value (for the
confining material) of 0.00002 fect/sec for 10-foot
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Fig. 7. Comparison of finite-difference and Galerkin
solution at Musquodoboit Harbour (from Pinder and
Frind, 1972).

thickness of river bottom. The shape of the time-drawdown
curve was changed markedly by adjusting this value as
lictle as 0.000005 feet/sec.”

The aquifer is not confined everywhere and,
in, parts, behaves as a water-table aquifer. Although
the saturated thickness does not change much
with time because the drawdown is small, the
storage coefficient is rime-dependent due to
drainage of the aquifer system. To account for this
the following crude approximation was made. The
initial value for the storage coefficient of 0.003
was allowed to increase linearly with time to a
maximum of 0.06 after 10 minutes, over the entire
aquifer.

Prediction

The areal head distribution in the aquifer after
206.65 days of pumping at a rate of 0.963 cfs is
shown in Figure 8. Because of the aquifer's high
transmissivity, a rapidly expanding, flat cone of
depression develops. The influence of the
Musquodoboit River is observed within 2 minute
after pumping begins, and after 300 minutes the
drawdown at the closest impermeable boundary
is greater than 0.1 feet.

The drawdown for long pumping periods was
computed for the three observation wells used in
the pumping test (Figure 9). It is interesting to note
that the steeply rising time-drawdown curve levels
off rapidly after approximately 273 days of
pumping, and has essentially attained steady state
after 5,000 days. Based on this study, it was
concluded that the aquifer could easily supply
the village of Musquodoboit Harbour indefinitely
at a rate of 0.963 cfs (approximately 0.6 mgd).
This quantity of water was more than adequate to
supply the village needs for the immediate future.

Fig. 8. Potentiometric surface determined from the digital
modal after 206.65 days of pumping at a rate of 0,963 cfs
{from Pinder and Bredehoeft, 1968).

489



e L Toerew
L
20
b p o fn e 1 e s e s
o T T SRR e vation weil na
el
o
zd,. Oxptal mode #esats .’.' e sevrim i ._...._..‘--.-...
(sentrea wme sieos] A T
= r R ettt it 00 3 4
-y * T o
t - o - A
il o
‘
§ P 3 - S ]
g1 1
. I
28 - - .
o /_" - A
= - ".1 . E
> -
A Lidaid
100 o 10,000 160000 WO00 Q000000

PUMAING  PERIOD {mwutes)

Fig. 9. Time-drawdown curves obtained from the digital
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Discussion

In the Musquodoboit example, the subjective
aspects of model application are evident. The first
task was to determine if a numerical model was
necessary. Pumping-test data suggested that
because of boundary effects, analytical techniques
may not be adequate. The authors, therefore,
decided to use a numerical model, and performed
the necessary developmental work.

Evaluation of available data involved
reducing information from geologic reports to a
form usable in the model (that is, boundary
conditions, aquifer thickness, etc.). The pumping-
test data were also analyzed to provide estimates of
transmissivity and storage coefficient. These
values were refined via model calibration. This
took 37 runs and necessitated the assumption of
an arbitrary time-dependent change in the storage
coefficient.

It is interesting that the final transmissivity
value in the vicinity of the pumping well (see
Figure 5) was close to the value calculated using
Jacob’s method for the late time data. Although
effort was spent to march early time data, the
arbitrary time-dependent storage coefficient
probably had little effect on the predictive results
because after 10 minutes of pumping a constant
value was used. The predictive results are more
limited by the lack of data for both later times
and greater distances from the pumping well.

In addition to making predictions, this applica-
tion considered two different types of models.
Conclusions regarding the relative merits of the two
numerical methods are provided by Pinder and
Frind as:

1. **The analysis of the aquifer at Musquodoboirt
Harbour indicates that a carefully designed model using
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deformed elements may provide the same accuracy asa
finite difference model that used many more nodes.”

The relative cost, however, will depend mainly on
the matrix solution technique used for each method.

2. “The theoretical development of the Galerkin
method of approximation is possibly more abstract than
finite difference theory and the development of an efficienc
computer code for the Galerkin procedure is 2 formidable
task."”

3. “Experience has shown that errors in the input
of nodal locations in the Galerkin model can lead to
problems thac are difficult to detect. This problem does
not arise in the finite difference mode! because the entire
grid is specified by the spacing between rows and
columns.”

4. “In the final analysis the primary advantage of the
Galerkin approach to digital modeling of aquifer systems
is its flexibility in application.”

GROUND-WATER POLLUTION EXAMPLE

Konikow (1977) presents a good example of a
solute-transport model applied to a chemical
pollution problem at the Rocky Mountain Arsenal,
near Denver, Colorado. The model couples a
finite-difference solution to the ground-warer flow
equation with the method-of-characteristics
solution to the solute-transport equation.

Problem

Liquid waste by-products from the manu-
facturing of chemicals for warfare and pesticides
were disposed into uniined ponds from 1943-1956.
The wastes contained chloride concentrations of
several thousand mg/l. In 1954, severe crop
damage occurred to fields irrigated with ground
water along the South Platte River. This prompted
the construction of an asphalc-lined evaporation
pond. The purpose of this study was to
demonstrate the application of a numerical
solute-transport model to a complex field problem
involving contaminant movement in an alluvial
aquifer.

Hydrogeology

The location of the study area is shown in
Figure 10, and the major hydrologic features are
presented in Figure 11, The records of about 200
observation points were used to determine the
hydrogeologic characteristics of the alluvial
aquifer, including saturated thickness and trans-
missivity of the aquifer. Observed chloride
concentration for 1956 is shown in Figure 12 and
a water-table configuration is given in Figure 13.
The major features to be noted are the areas
where the alluvium is absent or unsaturated most
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of the time. Bedrock below the alluvium is
considered impermeable for the purposes of the
model analysis.

Agquifer Analysis

The transmissivity of the alluvial aquifer in
this area ranged from 0 to over 200,000 fr*/d
(over 1,800 m?/d), and the sarurated thickness
was generally less than 60 feet (18 m). No field
data were available for effective porosity and
dispersivity of the aquifer. These were determined
by trial and evaluated through a sensitivity
analysis.

Aquifer Model
Konikow states:

“The limits of the modeled area were selected to
include the entire area having chloride concentrations over
200 mg/l and the areas downgradient to which the
contaminants would likely spread, and to closely
coincide with natural boundaries and divides in the
ground-water flow system. The model includes an area of
approximately 34 mi® (88 km?),”

The modeled area was subdivided into a
finite-difference grid of blocks 1,000 feet (305 m)
on a side (see Figure 14). The grid is 25 columns
by 38 rows, but because of the boundaries, only
516 nodes are actually used to compute heads.
The boundary conditions for flow are indicated in
Figure 14. Constant-head boundaries were
specified where it was believed that either recharge
or underflow into or out of the modeled area
was sufficient to maintain a nearly constant
water-table altitude at that point in the aquifer.
Leakage was allowed from the canal.

No data were available to describe the chloride
concentrations in the aquifer when the Arsenal
began its operations. Because more recent
measurements indicated that the normal back-
ground concentration may be as low as 40 mg/l, an
initial chloride concentration of 40 mg/l was
assumed to have existed uniformly throughout the
aquifer in 1942.

Recharge and discharge into and out of the
aquifer had to be estimated. Recharge from the
disposal ponds varied from 0 to 1.08 fr*/s with
concentrations that ranged up to 4,000 mg/1 (but
were reduced significantly after 1956). The ponds
were treated as constant-head nodes.

History Match

Insufficient field data were available to
accurately calibrate a transient-flow model.
Therefore, the hydraulic history of the aquifer
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area (from Konikow, 1977).

was approximated by simulating four separate
steady-flow periods which differed on the basis of
the disposal pond operations. The computed
chloride concentration at the end of one of the
periods, 1956, is given in Figure 15. This compares
well with that observed given in Figure 12. A
comparison of observed and computed chloride
concentration patterns indicated that an effective
porosity of 30 percent and longitudinal and
transverse dispersivities of 100 feet (30 m) were
best.

The problem was simulated for a 30-year
period, 1943 to 1972, and numerous comparisons
of chloride distributions are given in the original
reference.

Prediction

During the history-match portion of this
study, leakage from pond C was found to be
relatively important in flushing pollution out of
the aquifer. To further assess this leakage, two
simulations were made over the time period
1972-1980. In the first simulation, pond C was
represented as full of fresh water; the computed



chloride concentrations for this case are shown in
Figure 16. For the second simulation, recharge of
fresh water from pond C was kept to 2 minimum;
the computed chloride concentrations for this
case are shown in Figure 17. With artificial
recharge, only one small area north of the Arsenal
would contain chloride concentrations between
200 and 500 mg/l; for the second case, there are
two relatively large areas of contamination.
Possible changes in water management in the
area were also considered. These might, for example,
involve maintaining withdrawal wells along parts of
the northern boundary to intercept the
contaminated ground water. To demonstrate the
value of a solute-transport model as a planning
tool, two sinks were incorporated into the model
and their steady-state effects on the chloride
concentrations were evaluated. Assuming the wells
begin operating in 1968 and that pond C remains
full after 1968 results in the computed chloride
concentrations in Figure 18. Intercept wells
would only slightly increase the rate of water-
quality improvement between 1968 and 1980 in
the area between the source and the sinks. Also
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Fig. 18. Chloride concentration predicted for 1980,
assuming that pond C is filled with fresh water during
1972-80 (from Konikow, 1977).
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note that the intercept wells should be placed matching; and (3) some assumptions based on

further downgradient to effect a more thorough qualitative arguments are necessary.
cleanup. In this example, additional data were needed
According to Konikow, " for dispersion coefficients, effective porosity,

initial and observed concentrations, and recharge

“Analysis of the simulation results indicates that the : s SRS
from the disposal ponds and from irrigation.

geologic framework of the area markedly restricted the

transport and dispersion of dissolved chemicals in the Insufficient data made calibration of transient
alluvium. Dilution, from irrigation recharge and seepage ground-water flow not possible, so four steady-
from unlined canals, was an important factor in reducing state flow periods were assumed. Comparisons with
the level of chloride concenrations downgradient from . .
observed and computed chloride concentrations

the Arsenal. Similarly, recharge of uncontaminated water

from the unlined ponds since 1956 has helped 1o dilute were made to determine the “best fit” values of

and flush the contaminated ground water.” dispersion coefficients and porosity.

Konikow also concluded that the stringent
Discussion data requirements for applying the solute-transport

As with the example for Musquodoboit model pointed out deficiencies in data existing at

Harbour, the Rocky Mountain Arsenal example the start of the investigation. The subsequent
illustrates the presence of some subjective aspects analysis and reinterpretation of hydrogeologic
in model applications. In addition, this example and chemical data led to a revised and improved
shows the additional complexity typical of solute conceptual model of flow and contaminant
transport problems. The additional complexity transport in the alluvium.
leads to some practical considerations: (1) input The conclusions and predictions based on
data determination, preparation, and evaluation mode] results, though quantitatively nonunique,
are more difficult; (2) some data are likely to be provided a great deal of qualitative insight into
missing for both model and input and for history reclamation alternatives. In this particular

situation, the relative merits. of the various
proposed remedial measures would have been
extremely difficult to assess withour the use of a
model (also see Warner, 1979).

DATA-COLLECTION DESIGN EXAMPLE
In practice, models have been applied

generally to field problems after data have been
collected. However, modeis also can be used to help
in data collection. In this example, we consider
the use of 2 model to help design two-well tracer
tests in a relatively porous limestone. Results
from the tracer tests will be used to determine
field dispersivity values for subsequent solute
transport studies.

Problem
Denmark is presently undertaking a drilling

program to evaluate the pstential for storage of

vy oot radioactive waste in salt domes. In particular, the
focus is on data collection in order to more fully
——-&Wﬂﬂ—‘-_] evaluate the geology and safety of such storage
i : e for two potential dome sites. The hydrological
? exrianarion data collected at the sites will play 2 major role in
——300=—Line of squal chioride cancentration (in milligrams per titer). the final evaluation.
e n— As part of this study, a need for the field

E: Area in wiicht atluvium is absant af unsaturated
Fig. 18. Chloride concentration predicted for 1980, : : £
assuming that artificial racharge from pond C is coupled ovcrlyu:zg the sait domes was iden Flfled‘ To
with drainage through two hydraulic sinks (from determine these values, a convenrional two-well

Konikow, 1977}, tracer test will be used. This test involves injecting

dispersivities that characterize the carbonate strata

404



water containing a nonreacting tracer in one well
while withdrawing water from the second well,
both having the same constant volumetric flow
rate. The tracer concentration is measured in the
withdrawal well as a function of time. This data
can be analyzed to determine dispersivity values.

Because little data are available on the
hydrologic properties at these sites, several
questions were raised about the test design.
Among the most important were:

1. What range of pumping rates is necessary?
2. What range of well spacing is adequate?
3. How long should the test take? and

4. Are three-dimensional effects important?

Hydrogeology

Other than a generalized stratigraphy, little of
the hydrology of the test site is known, especially
for the deeper units. In descending order, the units
consist of: (1) an'upper aquifer system of
Quaternary and Miocene age composed of clay,
till, sand and gravel, totalling about 200 m in
thickness; (2) Tertiary clays having a low
permeability and a thickness ranging from 200 to
400 m; (3) a lower aquifer system consisting of
Paleocene and Cretaceous limestone and chalks
with a thickness ranging between 200 and 500 m;
and (4) a Precretaceous cap rock for the salt dome,
having a low permeability. Based on this
description, the lower aquifer system is considered
to be confined, with fluid pressures slightly in
excess of hydrostatic.

Analysis

To help answer the design questions
discussed earlier, two models were used. The first
model is an analytical solution for quasi-steady-state
flow between a recharging-discharging well pair for
partially penetrating wells in three dimensions
(Hantush, 1961). The second model is based on
finite-difference approximations to the ground-
warer flow and solute transport equations in
three dimensions (INTERCOMP, 1976).

In order to use either of these models, it s
necessary to estimate probable ranges of
pertinent hydrologic parameters. Based on values
obtained at other locations for units similar to the
lower limestone aquifer system, the ranges in
Table 1 are assumed. The well field consists of two
wells with equal open intervals at the top of the
aquifer (assumed to be 200 meters thick). Major
design variables include injection flow rate,

Table 1.

Parameter or Design Variable Range
hydraulic conductivity 1.0X10™-1.0X10™ m/s
potrosity 0.08-0.32
horizontal to vertcal 100.0-1.0

anistropy
longirtudinal dispersivicy 5.0400m
injection flow rate 1.61X107%-1.61X102 m*/s
length of open interval 10-20 m
well spacing 2040 m

length of the open interval and well spacing, which
are also included in Table 1.

With the major hydrologic and design
parameters ¢stimated, a sensitivity analysis was
performed, which involved both models. The
main purpose of the analytical model was to
estimate the length of time to run the test. In a
standard tracer test, three injection periods occur:
(1) injection at a constant flow rate with no tracer l
until quasi-steady state is achieved between the
two wells, (2) continued injection at the same flow
rate, but now introducing the tracer—the slug period,
and (3) continued injection, now with the tracer
eliminated. This procedure produces a concentra-
tion breakthrough curve at the withdrawal well that
looks like an asymmetrical bell (see Figure 19). The
shape of this curve is used to estimate dispersivity. In
designing a tracer test, a common practice is to end
the slug period when the tracer is first encountered
in the withdrawal well. The analytical solution pro-
vides an estimate of when this occurs, if dispersion is
neglected. The analyrtical results show that for a
horizontal to vertical anisotropy ratio of 100 or

8

=

Concealiation csmalizedt

2

0 L 1 3 ] 1 3 I | []
[} 2 4 ] a 10 12 1 ] L)
’ Tima of injection penod |dayet

Fig. 19. Concentration breakthrough curves for the two-well
tracer tast at the withdrawal well, for different vaiues of
longitudinal dispersivity, Q. Transverse dispersivities are
one-tenth as large as the longitudinal values for each case.
Other data include: slug period, 4.63 days; porosity, 0.2;
hydraulie conductivity, 1.0X10™ m/s; well spacing, 40 m;
open interval, 20 m; and pumping rate, 1.61X 1072 m’/s.
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Fig. 20. Concentration breakthrough curves for different
ratios of horizontal to vertical hydraulic conductivity, k¢/k2.
Longitudinal dispersion is 10 m; aquifer thickness is 140 m;
ail other data are the same as that given in Figure 19. Note
that the three-dimensional rasults for partially penetrating
welils approach the two-dimensional results as the
anisotropy ratio increases.

larger, three-dimensional effects are not

significant (see Figure 20). For isotropic conditions,
results show the slug period is generally twice as
long as for the corresponding anisotropic case.

In addition to providing the duration of the
slug period, the analytical solution also determines
the injection (and pumping) rate for the solute
transport model. The injection rate was calculated
assuming a head difference between wells of 160
m. If the injection rate required to sustain this
difference exceeded 0.0161 m?*/s (about 360,000
gpd), then 0.0161 m?/s was still used. With these
data and injection constraints, sensitivity analysis
using a two-dimensional, areal transport model
was performed to assess the influence of porosity, -
dispersivity, and well spacing. To evaluate the
importance of three-dimensional effects, a three-
dimensional transport model was used in
conjunction with different ratios of anisotropy.
Some results from the sensitivity analysis are
shown in Figures 19 through 22.
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Discussion

In this final example, models are used before
data are collected to provide insight into system
behavior. The relative importance of the various
hydrologic and design parameters were assessed
and used to guide darta collection. Conclusions
(somewhat oversimplified here) of this study
include: (1) For a given well spacing and head
differential in the wells, the durarion of the test
will be related inversely to hydraulic conductivity
and directly to porosity; (2) The major design
criteria affecting the duration of the test are well
spacing and head differential between the wells,
which are related directly and inversely to the
duration of the test; (3) Based on the range of
possible hydrologic data and design criteria for the
site, a single injection test may require from less
than one month to two years to obtain sufficient
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Fig. 22. Concentration breakthrough curves for two wall
spacings. Slug periods were 10.4 and 46.3 days with pumping
rates of 1.80X 107 and 1.61X 107 m/s for spacings of 20
and 40 m, respactively. Other data include: hydraulic
conductivity, 1.0X 10°% m/s; porosity, 0.2; open interval,
20 m; and anisotropy ratio, 100,



informdrtion about the system; (4) If the hydraulic
conductivity of the aquifer is low, a small well
spacing will be required in order to conduct the
test in a reasonable amount of time; (5) The time
required to reach a quasi-steady flow berween wells
will be short in comparison to the duration of the
test; (6) Tests can be designed for 2 moderate
injection rarte of less than 1,500 m*/day; and
(7) Analysis of the field-test data can use a
two-dimensional model if the anisotropy rartio is
greater than 100; otherwise a three-dimensional
model may be required.

~ Consideration of the model results led to
recommendations, that are not presented in this
article, on both test design and well drilling. As an
example, it was recommended that single-well flow
tests be performed on the first well before drilling
the second. The resulting information would be
useful in selecting appropriate well spacing for the
next well.

This type of sensitivity analysis employing
models may be used for other data collection
programs. For example, model results could be
used to guide the placement of monitor wells to
help insure their success in detecting the possible
movement of contaminants from disposal sites.

SUMMARY

The effective application of ground-water
flow models involves several interrelated areas:
model selection (need), computer program use,
sensitivity analysis, system conceptualization,
data collection design, history matching —
calibration and prediction. The use of models
cannot be considered a step-by-step procedure.
Actually, it is an iterative process to which one
never achieves a fully satisfactory conclusion. The
reason for this is that when dealing with real
systems, a model is never exact and complete
data are never available. Consequently, considerable
scientific judgement of a subjective or intuitive
nature is necessary for any degree of success. For
transport problems, the need for subjective
judgement is greater than with ground-water flow.
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Microcomputer Model of Artificial Recharge

Using Glover’s Solution

by D. Molden, D. K, Sunada, and J. W. Warner®

ABSTRACT

An interactive program written for an APPLE [I+
48K computer is presented which solves Glover's (1960)

-analytical solution for recharge trom a rectangular basin.

The program is capable of graphically displaying the rise
and decline of the recharge mound for either an infinite
homogeneous medium or for a stream aquifer system.

INTRODUCTION

Advances in technology are rapidly increasing
the speed and storage capabilities of microcom-
puters, enabling them to perform more tasks that
were previously reserved for main frame com-
puters. But, unlike the many programs available
for main frame computers, at present there are
relatively few ground-water programs available for
microcomputers. The program presented here is a
model of artificial recharge, written in BASIC for
use on the APPLE II+ 48K microcomputer
(APPLE 1I+is a trademark of APPLE computer).
Glover's (1960) solution for a rectangular basin
with a constant recharge rate and the principle of
superposition are used to model the growth and
decline of a recharge mound in the cases of an
infinite, homogeneous aquifer and for a stream
aquifer system. The model can also be used to
calculate discharge from the recharge basin into a
stream for various times. The results of the model
are displayed both graphically and numerically.
The program is interactive, allowing for easy data
input and program execution.

Analytical solutions have been derived for the
problem of artificial recharge from circular and
rectangular recharge basins and for various assumed
initial and boundary conditions (Baumann, 1952;
Glover, 1960; Hantush, 1967; Hunt, 1971; Rao
and Sarma, 1981). Most of these analytical solu-
tions have not been used extensively by practicing
hydrologists because the solutions often involve
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complex integrals which are poorly behaved and
difficult to evaluate (Sunada et al., 1982). Hand-
held programmable calculators are capable of
solving many simple problems, such as those
involving the well function. However, the
analytical solutions for artificial recharge are
typically too complex and impractical to solve on
handheld calculators. Conventional solution of the
artificial recharge problem on large main frame
computers has been by numerical methods, such as
finite-difference and finite-element methods. The
microcomputer is ideally suited to solve many
types of problems, such as that of artificial
recharge, which do not require the enormous
capabilities of the main frame computer. The
advent of the microcomputer has added greater
importance and usefulness of many analytical
solutions, such as thart for artificial recharge. The
increasing capabilities of microcomputers coupled
with their increasing personal availability, primarily
due to their decreasing cost, are destined to make
the microcomputer an indispensable tool of the
hvdrologist.

MATHEMATICAL BASIS OF RECHARGE
FROM RECTANGULAR SOURCES
Glover’s (1960) solution for constant recharge
from a rectangular basin (Figure 1) has the form

Rt 1 u
H= o J (erf = - erf = )(erf = - erf = )dr (1)
45 o JT JT Jr JT

where

x - W/2 x +W/2

y - L/2 y + L/2
and
H = mound height (L),
R = recharge rate (L/T),
S = storage coefficient (dimensionless),
T = transmissivity (L¥/T),
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. Fig. 1. Definition sketch of artificial recharge from a
rectangular basin,

w = basin width (L),

L = basin length (L),

X,y = Cartesian coordinates (L),

t = time (T),

T = dummy variable of integration,

erf(u) = error function.

Glover’s solution is for a2 homogeneous, isotropic
unconfined aquifer with constant recharge and an
initially horizontal water table. For Glover’s
solution to be valid, the mound rise should be
small compared to the initial saturated thickness
of the aquifer.

To utilize Glover’s solution it is necessary to
evaluate the integral in equation (1). This integral
is difficult to solve which is a major reason why
Glover’s solution is not used more extensively by
practicing hydrologists. Both Simpson'’s rule in 10
steps and Gaussian Quadrature with up to 20 points
(Abramowitz and Stegun, 1972) were tried to solve
equation (1) directly, but neither method gave
completely satisfactory results over a large range of
data inputs. In evaluating Glover’s solution,
Simpson'’s rule applied directly to equation (1)
gave the least satisfactory solution. Gaussian
Quadrature applied directly to equation (1) gave
satisfactory answers in most but not all cases that
were simulated.
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Hantush (1967) provides a better means of
evaluating equation (1) by integration by parts.
Performing the multiplication indicated in
equation (1), Glover’s solution is written as

Rt l u, U, 1 u, Us
H=—{ {jerf—=erf—dr—ef—erf—=4d
48 [é Jr JT r (')[ Jr ! Jr ’

1 u 1
- [ erf— ::rfE dr + f erfEE erfll—3 dr]. (2)
0 Jr JT 0 Jr JT

Hantush shows that the integrals in equation (2)
can be evaluated as

1 u; u;
[ erf—erf —=dr =
0 Jr JT
erf(u;) erf (u;) + (4/m) u;y; W(uj + u})

2 2
+ (2/m) [u; et erf (uj) + u; el erf (u;)]

= 2 [uf M* (ug, u)) + uj M* (uj, up)] (3)
where
w1 exp[-ui(l +r?)]
M"(ui,Uj)=-l P - dv  (#)
Ty -1 1+r1°
y ;
r=(v+1l)— (3)
pATH

and W (u) = well function.

For implementation of equation (2) on the
microcomputer, expressions for the error function
and well function are used and the integral in the
function M* is numerically evaluated by Gaussian
Quadrature. In the program the error function is
evaluated by a polynomial approximation
(Abramowitz and Stegun, 1972).

For u > 0, the error function is given by

-

erf(uW=1-(e, b+e,bi+e,bi+e,bi+esb®)e™ (6)

where
b = 1/(1 + pu) e, =—1.453152027
e, = .254829592 e; = 1.06140543

e.=-.284496736 p = .3275911
1421413741

and erf(-u) = —erf(u). The error in equation (6) is
in the order of 1077,

The well function is found by approximations
given by Huntoon (1980) and Abramowitz and
Stegun (1972). For values of u < 1, the program
uses

€3

W(u)=2o—In(u) +a, u+a, u*+a u+asu*+asu’ (7)



where
ap=—.57721566 a;= .05519968
a; = .99999193 a4 = —.00976004
a, =-.24991055 as = .00107357.

For values of 1 € u < =, the program uses

1 u*+b,ut+b;u*+bsu+b,
W(u) = (8)
uexp(u) ug+c,u’+cui+ciu+cy
where
b, = 8.57332874 ¢, = 9.57332235
b, = 18.0590170 ¢y =25.6329561

ba= 267773734 c,= 3.95849692

In the program the integral in M* is evaluated
using six-point Gaussian Quadrature given by

u 6 expl-ui(l +r)))
M* (g, ;) =1 x P Vi (9)
mu; k=1 1 +r?
where
UJ' .
r = (Ag+ 1) —, (10)
uj
Ay = abscissas of Guassian Quadrature,

Vi weights of Guassian Quadrature.
The abscissas and weights are
A;=-A=0.238619186
A,=-A;=0.661209386

A;=-A;=0.932469514

V, =V5=0467913935
V'_\ =V5 =0.360761573
V3 =VQ=0171324492

USE OF SUPERPOSITION

The principle of superposition (McWhorter
and Sunada, 1977) is used to obrain additional
solutions for the case of a finite aquifer or for the
case of a variable recharge rate. Superposition in
time is used to calculate the decline of the recharge
mound after recharge is stopped. With a stream in
the vicinity, superposition in space is used to
calculate mound profile and discharge to the
stream with time.

At the end of the recharge period an image
basin at the same locarion as the real basin begins
withdrawal (negative recharge) while the real basin
continues to recharge. The mound height due to
the real basin is added to the drawdown due to the
discharging image basin to give the actual mound
height:

Section View
Racharging Discharging
basin basin

PE1 =R R~ 1

T —— ls
TTREEREARK oo s o
Plan View Stream
(x,y)
Y
L ~N L
Xp X
w w

Fig, 2, Definition sketch of the use of superposition when a
stream is in the vicinity (x, = real x coordinate; x; = image x
coordinate),

H =H, + H;, (1
where
H, = mound height contribution from the real
basin,
Hj; = mound height contribution from the

image basin superimposed in time.

If a stream is in the vicinity, an image dis-
charging basin is set up on the opposite side of the
stream equidistant from the real basin (Figure 2).
The drawdown from the image basin is
superimposed onto the mound height contribution
from the real basin to give the actual mound height

H =H, + Hj (12)
where

Hs = drawdown contribution from the image
basin superimposed in space.

If the end of the recharge period has been
reached and a stream is in the vicinity, an image
basin at the same location as the real basin begins
discharging and another image basin at the same
location as the image basin opposite the stream
begins recharging. The mound height at a selected
location is given by
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H=H; +Hg + Hyf + Hjg (13)
where
His = mound height contribution from the
image basin superimposed in time and
space,

DISCHARGE TO THE STREAM
The integral equation for flow to a stream is
(McWhorter and Sunada, 1977)

o oH
Qr = (T—)dy : (14)
- -] aX
where
Qr = total discharge to the stream (LY/T).

The integral is evaluated numerically by computing
the integrand at selected intervals along the stream
and integrating the distribution by the method of
trapezoids. The numerical evaluation yields the
expression for discharge

(T 3H/3x)i.1 + (T aH/3x);] Av;

n
Qr=2 = (15)
i=1 2
where
Av; = the interval between points i-1 and 1

along the length of the stream,

number ot locations that stream discharge
per unit length was calculated.

3
1]

The value of n is selected by the program so that
the discharge between locations n-1 and n is less
than 0.1% of the rotal discharge calculated up to
location n. The quantity 8H/ax is approximated by
computing the mound height at 1 foot away trom
the stream denoted by H'. Because the head at the
stream 1s constant and known (selected to be zero
in this case) the discharge is approximated by

n
Qr=T :—71 [H{.; +H{] ay;. (16)

Figure 3 is a plot of discharge to the stream vs.
time, with values obtained from the program using
the data in Figure 5.

PROGRAM DESCRIPTION

Taking full advantage of the capabilities of
the microcomputer, this interactive program is
written to be self-explanatory and easy to use. The
graphics are employed for quick visual study. An
example run is described to demonstrate the flow
of the program. The figures represent what would
be shown on the screen.
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Fig. 3. Discharge to the stream vs. time,

The program can be easily operated by
persons with very little knowledge of computers,
yet many advantages of computer use are available.
The program works by a “turn key’ system; that
is, the disk containing the program is inserted, the
computer turned on and the program execution
begins. The user is prompted at each step, often
with a variety of options. Data are easily entered or
changed; results are quickly obtained and readily
compared.

When starting the program, a menu presents
the user with selection of model options (Figure 4).
For our example, option 1 is selected to model
artificial recharge in an aquifer with a fully pene-
trating stream. The recharge parameters and their
values are then displaved on the screen (Figure 5).
To change a value, the number corresponding to
the recharge parameter to be changed is input. The
old value is displayed and the user asked to input a
new value (Figure 6). The updared parameter list is
again displaved and the process repeated until 0 is
typed. The program then checks for any value
which is out of range. A message will inform the
user if there are any mistakes and appropriate
values must be entered. With no mistakes, the
program begins execution.

ARTITICIAL RECHARGE

OPTIONS
1) STREAM IN VICINITY
1) WO STREAM 1N VICINITY
3) READ FILES

4) EXIT
TYPE THE NUMBER OF YOUR CHOICE 1

. J

Fig. 4. Screen display. Model options: artificial recharge
will be modeled with a stream in the vicinity,




In this example, both mound profile and dis-
charge to the stream are calculated. As values for
head are calculated at selected distance they are
plotted on the graphics screen with the values of

a , )

L) RECHARGE RATE (FT/DAY) 2
1) TRANSMISSIVITY (5Q.F7T/DAY) 2500
3} SPECIFIC YIELD .2
4) BEGINNING TIME (DAYS) 30
FINAL TIME (DAYS) 0
TIME INCREMENT (DAYS) 30
3) IND QF RECHARGE PERIOD (DaY$) 30
%) BEGINNING DISTANCE (FT) Q
FINAL DISTANCE (FT) 300
DISTANCE INCREMENT (FT) 59
7y DEPTH TO WATER (FT) 30
3) BASIN WIDTH (FT) 200
9) BASIN LENGTH (TT) 200
10) ANGLE FROM LENGTH AXIS (DEC) 0
11) DISTANCE TO STREAM 230
12) CALCUTATE MOUND PROFILE YES
L1) CALCULATE JISCHARGE TO STREAM YES
TYPE THE NUMBER OF THE VARLABLE YOU
WISH TQ CHANGE. TYPE 0 LF YOU WISH

\ 70 CONTINUE WITHOUT CHANGING. 7 _/

Fig. 5. Screen display. Parameter display: the depth to
water will be changed,

( )

DEPTH TO WATER = 30 FEET

INPUT NEW DEPTH TO WATER 10

_ y

Fig. 6. Screen display. The depth to water is changed from
30 to 20 feet.

4 N\
TYPE C 70 CONTINUE

2% _n-.!q
———

a5z

t

18

i K I I i a 1 ! ! |

STREAM AT 3R TO 3@ ¥ 33 oAl

(
\_ N wi3uws

Fig. 7. Screen display. Mound profile at 30 days.

time, distance and mound height shown beneath
the plot (Figure 7). Upon completion of the plot,
the user is asked to type C to continue. The
graphics screen is then cleared and discharge to the
stream is calculated. The display gives the distance
along the stream, the mound height at one foot
away from the stream, and the discharge per unit
length at that point as the points are calculated
(Figure 8). When the discharge per unit length
becomes negligible, the total discharge to the
stream is given,

To reexamine and study the problem, the user
is presented with a variety of output options
(Figure 9). The “data display’’ option gives a list of
the recharge parameters used. The “results display™
tabulates the numerical values of the results. A
hard copy of the data and results can be obtained
with the “results printout” option. The graphics
are quickly recreated by the “graphics display”’
option. Data and results can be stored on the disk

r a

DISCHARGE TO STREAM
DISTANCE HEAD DISCHARGE/
ALONG AT UNTT
STREAM L 00T LENGTH
(FT) (FT) (5Q.F1/DAY)
30 DAYS
4] 03881 97,03
50 .03739 93.48
100 .03333 33.33
200 02329 8.2
400 9.36E-03 14,63
300 2.35E=93 5.38
1600 3.2E-06 .8
3200 0 0
k TOTAL DISCHARGE = 58000 CUBLC FT./DAY

Fig. 8. Screen display, Discharge to the stream at 30 days.

( )
OPTIONS

L) DATA DISPLAY

—

-

RESULTS DISPLAY

~—

3) GRAPHICS DISPLAY
4) RESULTS PRINTOUT
5) CREATE FILE

6) ANOTHER RUN

~

7) EXIT
TYPE THE NUMBER OF YOUR CHOILCE 3

\ J

Fig. 9. Screen display. Qutput options: create file is chosen
to store data on the disk.
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READ FILES

DO YOU WISH TO SEE THE CATALOG
(Y/ES, ¥/O)7 N

INPUT FILE NAME: NO STREAM

TYPE STOP TQ RETURN TQ THE MENU

- _/

Fig, 10. Screen display. Read files: the file "‘no stream” is
read from the disk,

with the “create file”” option. The “another run”’
option allows the user to go back to the original
model option, retaining all the present values of
the recharge parameters. The “create files” option
is chosen and the name given to the file is
“strearn.”’

Next, the “another run’’ option is chosen and
the original recharge option appears (Figure 4).
‘‘Read files” is then selected and the name of the
file to be read is entered (Figure 10). The previ-
ouslv made file “no stream”” is read from the disk.
This file has exactly the same recharge parameters
as “streamn’’ but simulates recharge in an infinite
aquifer. After the file has been read, the list of
output options again appears on the screen with
the exception that “create file’” has been changed
to “read another file.” Up to 10 files can be read
and simultaneously stored in memory. “Read
another file" is chosen to read in the file “stream.”

To compare the influence of a stream, the
graphics will demonstrate anv difference in mound
profile. The *“‘graphics display” option is chosen.
The program has the capability of plotting several
sets of points on the same graph enhancing com-
parison of solutions. “No stream’’ is chosen and
plotted. The “graphics display " option is again
chosen with “‘stream” to be plotted. The program
asks if the same plot is to be used. In this manner,
“stream’’ (dotted line) and “no stream are plotted
on the same graph (Figure 11). With a stream in
the vicinity, the mound height is lower than an
infinite aquifer and not symmetric around the
center basin.

Glover (1960) also presents a solution for
recharge from a circular basin using instantaneous
slug injections. A comparison was made berween
the mound profile under a square basin using the
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data of “no stream’ and a circular basin of thé
same area (Figure 12). Using 250 instantaneous
injections took over 100 times the execution time
required by the rectangular basin program, yet gave
approximately the same solution, showing that this
program could also be used to simulate recharge
from a circular basin.

DISCUSSION

To calculate one point on the recharge mound
takes about 13 seconds in interpreted basic and 6
seconds in compiled basic. To get a good graphical
representation of the recharge mound height, it is
usually adequate to calculate about 10 to 20
points, and total time of execution is usually only
a few minutes. Memory requirements are not
restrictive, as the program takes about 25K bytes
of random access memory leaving about 15K bytes
of memory for variables and 8K bytes for graphics

TeRE C TG CONTINUE M
[ i
232 T

13 -

R Al & - e .
BM:.._..L.._III"JLIIII i kpg

NO STRESM AY 28 TO 2@ 3y 3@ HAYS
ATREAM AT 32 TO 23 8Y @ DAwY

\— J

Fig. 11. Screen display. “Stream’” (dotted line) and “no
stream’’ are plotted an the same graph.

TYeRE C TO CONTINUE - & IAF M
za e U

]
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- ' —aga

,' JATED TAg) = a

RECTANGLLAR AT 2@ TO 38 3y I3 omy2
CIACLZ AT 3@ TO 39 3¥ 23 0AYS

~ A
SROLND
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Fig. 12, Square basin (solid line) vs. circuiar basin (dotted
line). The solution for the circular basin almost completely
ovariaps the solution for a rectangular basin,




in a 48K computer. The compiled version requires
additional storage and will run on a 64K computer.

A major problem faced by hydrologists is to
reduce the complex mathematical equations used
in the study of ground water into results that can
be readily understood by lay persons interested in
water. By making programs which are very “user
friendly’” and which make extensive use of
graphics, the ground-water hydrologist is much
better able to communicate with nontechnical
water users. This program was developed as part of
a demonstration of artificial recharge in the San
Luis Valley, Colorado, in cooperation with several
local irrigation districts. The graphics features of
the microcomputer were well suited to describe the
effects of artificial recharge to nontechnical water
users.

Using the program, the effects of various
recharge strategies can be quickly investigated. For
example, the user can study the effects of changing
basin geometry, changing recharge rates and
changing duration of recharge. The effects of
different soil characteristics and boundary condi-
tions can also be easily studied. The comparison of
results for different case studies is enhanced by
the capability of the program to plot several
different case studies on the same graph.

CONCLUSIONS

The advent of microcomputers has given
ground-water hydrologists another choicg of tools
for problem solving. The microcomputer is well
suited to solve many types of problems, such as
that of artificial recharge, which do not require the
enormous capabilities of the large main frame
computer. Bv making programs which are very
“user friendly” and which make extensive use of
graphics, the ground-water hydrologist is much
better able to give a clear understanding of his
results to the nontechnical water user. The
program presented in this paper is one example of
a large number of problems which could be solved
on a microcomputer.
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NOTE
A program listing is available, and can be
obtained by request to Ground Water. A floppy
disk for the APPLE II+ and documentation is

available at duplication and mailing cost (approxi-
mately $20). Every effort has been made to
provide an error-free program, but the authors do
not take responsibility for any errors which may
have been overlooked.
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Mapping Recharge Areas Using a Ground-Water
Flow Model — A Case Study

by Mary W. Stoertz* and Kennsth R. Bradbury®

ABSTRACT

We have developed a2 method to calculate ground-
water recharge rates using the mass-balance equation, water-
table elevarion data, estimates of hydraulic conductivity,
and aquifer thickness data, and have applied this method to
produce a map of the recharge and discharge patrerns for a
ground-water basin in central Wisconsin. This recharge

" mapping method is simplified using a modified compurter

program, the USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). The modeled recharge
pattern compares favorably with a recharge map based on
field observations. Because recharge rates are extremely
sensitive to hydraulic conducrivity, the magnitudes of the
calculated rates are less reliable than the patterns of
recharge and discharge areas. However, introducing streamn
discharge data constrains the model to produce net recharge
rates averaged over the basin which agree with estimates of
the basin yield. Because the method is insensitive to the
position of lateral boundaries, it can be used to map
recharge over areas within basins that are not physically
bounded. Recharge maps made with this method can be
used to design ground-water monitoring networks and as
frameworks for interpreting geochernical or potentiomertric
data,

INTRODUCTION

Of the many factors which control a well’s
susceptibility to contamination from the surface,
the areal distribution of recharge and discharge is
one of the most difficult to measure or predict,
often requiring installation of extensive networks
of multilevel piezometers in which water levels are
measured frequently (e.g., Faustini, 1985;
Sophocleous and Perry, 1984, 1985; Rehm et al.,
1982). _

2 University of Wisconsin-Madison, Deparcment of
Geology and Geophysics, 1215 W. Dayton St., Madison,
Wisconsin 53706.

bwisconsin Geological and Natural History Survey,
3817 Mineral Point Road, Madison, Wisconsin 53705.
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This paper describes a method for mapping
recharge and discharge areas using an existing
water-table map. Like Freeze's (1967) method of
mapping recharge and discharge areas, vertical
fluxes derived from Darcy’s Law are contoured to
produce a map. In applying Darcy’s Law, however,
Freeze (1967) determined the vertical hydraulic
gradient with a three-dimensional mathematical
model. In contrast, we obtain a water balance for
each water-table cell by calculating fluxes between
the water-table cell and its four adjacent cells.
Heads specified for each cell determine the
hydraulic gradients. The recharge or discharge rate
is interpreted as the deficit or surplus in the water
balance. Other studies of recharge thar are similar
in concept to this one have been presented by
Stallman (1956), Tanaka and Hollowell (1966),
Cooley et al. (1971), Weeks and Sorey (1973),
and Lappala (1978).

We apply the method areally in two dimen-
sions to a ground-water basin in Portage County,
Wisconsin and verify the resulting recharge map by
comparing it to a field-based recharge map of the
same basin.

OVERVIEW OF THE METHOD APPLIED
IN TWO DIMENSIONS -

The recharge mapping method described here
is based on the steady-state mass-balance equation,
and is illustrated in Figure 1 for one-dimensional
flow in a homogeneous aquifer. The flux Q between
two adjacent cells is calculated by Darcy’s Law,
using observed heads h, hydraulic conductivities K,
and aquifer thickness, all of which must be
specified. Heads in cells are fixed, so the entire
water table is represented as a specified-head
surface. Cell D (Figure 1) loses more water to cell
C than it gains from cell E, according to Darcv’s
Law which determines the flux between the
constant-head cells; there is 2 net mass deficit for
cell D. To maintain the observed head, hp, water
must be added as recharge, Rp. Similarly, vertical’
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Fig. 1. Schematic of the racharge mapping method.

discharge Ry from cell B will offset a mass surplus
for cell B. To extend this schematic to two dimen-
sions, the mass balance is calculated using the four
cells adjacent to each water-table cell. Contouring

the values of the recharge and discharge rates for

* each water-table cell produces a recharge/discharge
map. ,
The USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984) contains a pro-

cedure to calculate the mass budger for individua]
cells. The Appendix gives modifications of the
model to include flows between specified-head
cells in its cell-by-cell budget calculations.

APPLICATION TO CENTRAL WISCONSIN
The Buena Vista Groundwater Basin occupies
an area of 170 mi? in central Wisconsin (F igure 2).
The unconfined aquifer is composed of medium to
coarse moderately sorted outwash sand, ranging in
thickness from 50 to 150 ft with the depth to
water from 5 to 60 ft. The aquifer is bounded
below by igneous and metamorphic bedrock and in
places by sandstone. The surface relief is about 150
ft, primarily due to the series of moraines forming
the eastern no-flow boundary of the basin. The
Wisconsin River bounds the basin on the west, and
the northern and southern boundaries correspond
to flowlines determined from a water-table map
(Lippelt and Hennings, 1981). Comparison of
seasonal water-table maps and a water-table map
prepared from well-construction reports spanning
several decades indicates that these flowline
boundaries do not shift significantly (Blanchard
and Bradbury, 1987). Faustini (1985) showed that
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Fig. 2. Map of the Buena Vista Basin showing August 1984 field-observed water-table contours. Locations of water-lavel
control points and surface drainage are shown, along with outlina of the ditch subarea.




Table 1. Summary of Hydraulic Conductivity Va(ues (in ft/s) as Determined by Various Methods

Number of Lower endpoint Upper endpoint Standard deviation
Method samples ~ ————-—- 9% ClL*—————~— Geometric mean of log (K)
Aquifer pumping test 11 6.2X10™ 1.3 X107 29X 107 0.98
Specific capacity test 266 1.9 X107 2.2X%X107? 2.1x107 0.25
Slug test 48 42Xx10™ 12X10° 7.2X 10" 0.79
Perrneamerer test 8 2.2X%10° 8.2x 107 4.3%X10™ 1.53
Grain size analysis 71 8.9Xx10™ 1.8X 107 1.2X107 0.68

* The large 95% confidence intervals for pumping and permeameter tests are due to the small number of data points rather

than scatter in the values.

the Buena Vista Groundwater Basin behaves as a
closed basin with respect to ground water; i.e.,
ground water does not cross the boundaries except
where it flows into the Wisconsin River. Detailed
studies of the drainage ditches in the central basin
(Faustini, 1985), corroborated by theoretical
studies of these ditches as flow boundaries (Zheng
and Anderson, 1985), show that local flow systems
are well-developed within the basin.

Hydraulic Conductivity

Several hundred measurements of hydraulic
conductivity have been made in the vicinity of the
Buena Vista Groundwater Basin using pumping
tests (Weeks, 1964, 1969; Holt, 1965; Weeks and
Stangland, 1971; Karnauskas, 1977; Rothschild,
1982), specific capacity tests (Bradbury and
Rothschild, 1985), slug tests (Allen, 1985),

mmm] < —30in/yr (strong discharge)

-30to = 10in/yr (moderate discharge)

= 10to 5in/yr (weak recharge and discharge)

5to 15in/yr (moderate recharge)

permeameter tests (Stoertz, 1985), and grain-size
analyses (Brownell, 1986). Although several hydro-
stratigraphic units are discernible (Brownell, 1986),
the aquifer is generally homogeneous as indicated
by the narrow confidence intervals for specific
capacity tests, slug tests, and grain-size analyses
(Table 1). We treat the aquifer as homogeneous
and use the geometric mean of pumping test
conductivities as an initial estimate of the hvdraulic
conductivity of the whole basin.

Water Table

Figure 2 shows the August 1984 water table
(Faustini, 1985), measured over several days
following a week without rain. Because vertical
gradients were relatively stable and storage changes
were small, we view this water-table map asa
steady-state map corresponding to late summer

”
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Fig. 3. Modeled map of recharge and discharge rates for the Buana Vista Basin, based on the August 1984 water-table map
and a hydraulic conductivity value of 3.0 E-3 ft/sec, Basin outline (dashed) is the same as in Figure 2,
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seasonal conditions. We argue that the water table
in very permeable aquifers can be viewed as a series
of quasi-steady-state profiles interrupted by briet
periods of intense recharge. The primary influences
on water-table profiles between recharge events are
fairly steady fluxes, including a steady feeding of
the aquifer from water traveling through the
unsaturated zone in recharge areas, and a steady
draining of the aquifer by evapotranspiration and
ditch discharges. The resulting water table, while
seasonal, is therefore fairly steady.

Model

The darta just described, including boundary
conditions, hydraulic conductivity, and water-table
configuration, were used with a modified version
of the USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). Modifications
are described in the Appendix. The basin was
modeled on a 16 by 32 grid, and the resulting
recharge/discharge map is shown in Figure 3.

Calibration to Streamflow

Because the method is based on Darcy’s Law,
the calculated flux between adjacent cells varies in
direct proportion to the hydraulic conductivity
which is inherently uncertain. Additional informa-
tion about the flow system, such as measurements
of fluxes (e.g., streamflow or pump discharges),
must be used to constrain the hydraulic
conductivity. '

Faustini (1985) measured streamflow at eight
gaging stations along Ditch 4 in the central basin,
and one day later made a detailed water-table map
of a subarea of the basin including Ditch 4 (Figure
4, also outlined in Figure 2). Ditch stages were used

in constructing the map and were assumed to be
close to the underlying aquifer heads. The stream-
flow data allow calibration of hydraulic conductiv-
ity to streamtlow but require a finer-meshed model
of the ditch subarea (Figure 5) to give sufficient
resolution to capture the details of the water-table
map near the ditches. By applying the recharge/
discharge mapping method to the ditch subarea, we
can compute the discharges from nodes along the
ditches and then compare them rto the field-
measured discharges for each segment of the ditch.
Modeled and measured discharge gains between the
upstream gage (Gage 8) and the downstream gage
(Gage 1) for three different values of hvdraulic
conductivity are plotted in Figure 6. Stream sedi-
ments, aquatic vegetation, and local variations in

[m < = 30 intyr (gtrang discnarge
D =30t0 = 10 inlyr (mogerats discharge)

z

|:| = 1010 § indyr (wedk rachargs and discharge)
[ 5to 1Siniyr imodarate recharge

wLES .
a = 13 infyr (strong recharge)

Fig, 5. Map of recharge and discharge rates for the ditch
subarea based on the July 2, 1984 water-table map.
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hydraulic conductivity affect stream discharges, so
the model cannot reproduce exactly the discharge
increases. We nevertheless get an acceptable fit to
the changes in ground-water discharge along the
ditch using a value of K of 3 X 107 ft/sec which
agrees with the geometric mean of conductivities
from pumping tests in the Buena Vista Basin
(Table 1). Moreover, basin yield estimates using
this hydraulic conductivity value agree with esti-
mates from previous studies in the area. This
estimate of hydraulic conductivity was used to
prepare the map in Figure 3,

Field Verification

We verified the modeled recharge pattern
(Figure 3) by comparing it to a field-based recharge
map (Figure 7) prepared by Faustini (1985) using
topography, piezometric patterns, seepage measure-
ments in stream sediments, and water-table response
to precipitation, as indicators of recharge. Faustini
(1985) did not assign rates to his various recharge
and discharge zones, but instead differentiated them
on the basis of whether they were part of regional,
intermediate, or local flow systems. It is therefore

R4

H] R
D! y

Primary discharge area. _

Local (or intermediate) discharge area.
Transitional between recharge and discharge.
Recharge induced by a dam.

Recharge area for local (or intermediate) flow
system.

possible to compare only the pattern and not the
rates of recharge and discharge in Figures 3 and 7.
In both figures, recharge occurs at the upper
(eastern) end of the basin, and along the north and
south flanks of the lower basin. Discharge occurs
along streams and at the break in slope below the

- moraine in the east. The recharge patterns in the

ditch area are poorly reproduced due to the large
cell dimensions relative to the size of the ditches.
The map for the ditch subarea (Figure 5) shows
that with an appropriate discretization, the modeled
discharge pattern near the ditches matches the
field-measured pattern.

The model results are summarized in the first
row of Table 2. Recharge areas cover 57.5% of the
basin, and discharge areas cover 42.5% of the basin.
Recharge rates averaged over recharge cells average
13 in./yr, while discharge rates (over only discharge
cells) average —17.6 in./yr. Because the system is
assumed to be at steady state, the volume of
recharge must equal the volume of discharge. Since
recharge areas are larger than discharge areas, the
rates are higher in discharge areas. While recharge
areas will not always be larger than discharge areas

Secondary recharge area associated with ground-

% R, water divide between streams tributary to

the regional discharge stream.

% R, Primary recharge area associated with a regional

groundwater divide.

Fig. 7. Recharge map based on fieid obsarvations (after Faustini, 1985, Plate 7).
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Table 2. Comparison of Recharge énd Discharge Rates and Areas, and Basin Yieid, for Various Models ’

Recharge area Discharge area Average recharge Average discharge Basin yield
Model K, ft/sec - ———— %oftotal = ————~ e — MY — =~ — — — — - —
8/84 3X107 57.5 42.5 . 130 -17.6 7.5
8/84 2X 107 575 42.5 8.6 ~11.7 5.0
Coarse 3X 107 57.4 42.6 8.0 -10.8 4.6
Fine 3X1073 54.5 455 24.1 -28.6 13.0
$/84 3X1073 57.2 42.8 15.9 -21.3 9.1
12/83 31X 107 56.3 43.7 13.1 -16.9 7.4
Ditch 3% 107 58.9 41.1 11.2 -21.0 6.6

Average recharge = (Toral recharge)/(Total recharge area).
Average discharge = (Total discharge)/(Total discharge area).
Basin vield = (Total flux through system)/(Total area).
Total recharge = Toral discharge, at steady state.

(e.g., Freeze and Witherspoon, 1967, Figures 1c
and 4a), Freeze and Cherry (1979, p. 197) observe
that “discharge areas commonly constitute only
5-30% of the surface area of a watershed.”

Two checks on these rates were used: first,
net annual recharge rates cannot exceed precipita-
tion (31 in./yr in Portage County), and should be
considerably less because of evapotranspiration. In
applying the method, however, calculated rates
exceed precipitation at several cells. A high-recharge
cell may be caused by a lens of low-conductivity
material that was not detected in drilling and
therefore not included in the model. Unexpectedly
high rates may also be caused by interpolation
errors in discretizing the water table.

A second check on the magnitudes of the
mapped rates is to compare the net annual recharge
for the entire model to the annual basin yield. The
net annual recharge is calculated by dividing the
recharge volume by the total model area. For a
steady-state model, the volumerric recharge rate
equals the volumetric discharge rate, so either can
be used to calculate basin yield. Holt (1965) esti-
mated that the annual discharge from streams in
the region averages 10.3 in./yr, or 6.8 in./yr during
dry periods. The net annual recharge for this model
is 7.45 in./yr for August 1984. Because the August
water table was measured during a relatively dry
period, the calculated net recharge rate over the
entire basin agrees with Holt’s (1965) estimate of
the basin yield.

SENSITIVITY ANALYSIS
We checked the method's sensitivity to
discretization, hydraulic conductivity, and head
by changing each of these in turn, and observing
how the change affected the recharge pattern and
rates.

Discretization

To test the sensitivity of the mapping method
to cell spacing, we used three different discretiza-
tions, with nodal spacings of 0.25 to 0.5 miles
(“fine” grid, not shown), 0.5 to 1.0 miles (Figure 3),
and 1 to 2 miles (“‘coarse” grid, not shown). Com-
paring the basin yields for these three models
(Table 2, last column) shows that cell spacing
affects the modeled yields profoundly, raising the
question of how one should choose the cell spacing.
Ideally, one would continue refining the grid until
changes between successive simulations become
acceptably small. Like other hydrologic parameters,
however, recharge appears to be scale-dependent:
the apparent recharge for a basin increases as the
cell spacing decreases. Local flow systems, which
account for much of the recharge and discharge
within a basin, occur at all scales, so by using a
smaller cell spacing, one accounts for more local
flow and hence more recharge. Where the cell
spacing is larger than local flow path lengths, water
discharges in the same cell as it is recharged, result-
ing in zero net recharge. With increasing cell
spacing, one overlooks increasing amounts of
“intranodal flow" (Feinstein, 1986). At the limit
net recharge is zero if a closed basin is viewed as a
single cell, and net recharge should approach net
infiltration if a fine cell spacing is used.

Increased recharge with small cell spacing can
also be an artifact of the data collection and
modeling. In detailed water-table maps constructed
using geophysical methods, the water table is not
artificially smoothed by interpolation between
piezometers and can be quite irregular (Geoff
Bohling, 1988, pers. comm.). If equally detailed
hydraulic conductivity data are not available,
calculated recharge rates may be unrealistically
high because water-table irregularities arise from




both recharge and conductivity variation. We
conclude that '

1. Recharge may be scale-dependent. This
idea could be tested using mathematical models.

2. The choice of cell spacing is constrained by
data availability. If one wishes to equate recharge
with basin yield, a cell spacing that captures the
general water-table curvature is appropriate. In
defense of this vague guideline, we are in much the
same position as someone establishing guidelines
for piezometer placement: in both cases, one
wishes to avoid over-interpolation.

Hydraulic Conductivity

Changing the hydraulic conductivity for the
entire basin does not affect the pattern of recharge
and discharge, but rates are affected. In many
hydrogeologic problems, recharge rates are of less
interest than the distribution of recharge and
discharge areas. In these problems it is not necessary
to constrain the conductivity with flux measure-
ments since the parterns are insensitive to the
magnitude of hydraulic conductivity. Even in
heterogeneous aquifers, only relative hydraulic
conductivity values may be known, but the
patterns will still be valid.

Hydraulic Head

Water-table maps for April 1984 and
December 1983 were used to make seasonal
recharge maps as a test of the method’s sensitivity
to head changes. Comparison of the April and
August maps (not shown) indicates that local flow
svstems are developed or enhanced during the
spring, especially in the central basin where the
water table is shallow (5-15 ft). The basin vield
increases to 9.1 in./yr during the spring (Table 2),
and average recharge and discharge rates both
increase by abour 20%. Comparison of the
December and August maps shows decreased
activity of local flow systems during the winrer,
especially in the eastern basin where the water
table is relatively deep (30-60 ft). The basin vield,
average recharge rate, and average discharge rate
are similar to those of a dry season. Comparing all
the seasonal maps, it is interesting that while fluxes
nearly double, the percentage of the basin being
recharged remains about the same, approximately
57%, and the general patterns of recharge and
discharge are similar from season to season.

THREE-DIMENSIONAL ASPECTS
Modeling the inherently three-dimensional
recharge process with a two-dimensional model
seems paradoxical: the assumption of horizontal
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flow is implicit in a two-dimensional areal model.
but the flow of interest is the vertical component.
We view recharge not as a vector, but as an addi-
tion of water to the aquifer. Provided the full
thickness of the aquifer is modeled and the lower
boundary is impermeable, recharged water
effectively flows horizontally when moving toward
discharge areas. Where vertical gradients are very
large, however, the appropriate hydraulic heads to
assign to nodes in a two-dimensional model are not
water-table elevations, but averaged heads one
would measure in an aquifer screened over its
entire thickness.

In complex hydrogeologic settings, three-
dimensional models may be necessary. The recharge
mapping method for three-dimensional models is
similar to the method in two dimensions; the water
table is fixed, as in the two-dimensional case, but
the heads in the lower layers are calculated with
the mathematical model. The flux is calculated
between each warer-table cell and five adjacent
cells, including one below the cell of interest.

CONCLUSIONS

We have presented, demonstrated, and field-
checked a method for making recharge maps that
is readily available because it is adapted to the
USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). The advantage of
this method over field measurements of recharge is
its dependence on data commonly available from
well logs. The method must be used cautiously in
the following cases:

1. If head data are widely spaced, the method
may not have sufficient resolution to make manage-
ment decisions about individual wells or properties.

2. Where hydrogeologic data are scarce,
predicted recharge and discharge rates must be
viewed with skepticism because there is a nonunique
relationship between the recharge/discharge pattern
and the shape of the water table.

3. If flow is strongly three-dimensional, the
method must be applied using a three-dimensional
analysis. '

Despite these limitations which apply to
ground-water flow modeling in general, the method
described here is a useful tool for aquifer manage-
ment. The method can be used to assist field
studies, decreasing costs by indicating areas where
contaminants might be entering the flow svstem.
The method also should be useful in interpreting
concentration data for natural ions, environmental
isotopes, and contaminants. The combination of
horizontal flow vectors drawn from a water-table.
map and recharge patterns obtained from the



mapping method produces a pseudo-three-dimen-
sional flow map. Such a map provides, at least
roughly, the advective flow regime needed to
interpret ground-water movement.
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APPENDIX
Modification of the USGS Modular Ground-
water Flow Model (McDonald and Harbaugh, 1984)
permits the user to calculate recharge to and dis-
charge from a water table. This Appendix describes
modifications of the computer code and how to
apply the technique.

Code Modifications
Two-Dimensional Models

The example in this paper is a case where flow
can be treated as two-dimensional (thin, extensive,
permeable aquifer) in which case only one layer is
used in the USGS model. Because the water table is
specified, there are no active (IBOUND>0) cells, so
the model’s solution routines are not needed. Some
computers require that the solution routines be
skipped to avoid terminating the program. Execu-
tion goes directly to the budger calculations. The
solution routines can be skipped by omitting the
following 19 lines from MAIN (McDonald and
Harbaugh, 1984, p. 50):

MAIN =~ Remove the following 19 lines:
DO 300 KPER=1,NPER
DO 200 KSTP=1,NSTP
DO 100 KITER=1MITER
IF(TUNIT(8).GT.0) CALL SIP1AP(...5 lines total...)
[F(TUNIT(11).GT.0) CALL SOR1AP(...4 lines total...)
[F(ICNVG.EQ.1) GO TO 110
100 CONTINUE
KITER=MXITER
110 CONTINUE
F{ICNVG.EQ.0) STOP
200 CONTINUE
300 CONTINUE

Because the model as originally written does
not calculate flows between adjacent inactive
(IBOUND.LE.0) cells, subroutine SBCF1F, which
calculates flow from specified-head cells to active
cells, must be modified to include flows between
specified-head cells. Six lines require modification,
as follows:

SBCF1F — In the following lines, change .LE. to .EQ.:

. IF(IBOUND(J-1,1,K).LE.0)GO TO 30
IF(IBOUND(J+1,[ K).LE.0)GO TO 60
IF(IBOUND(J,I-1 K).LE.0)GO TO 90
[F(IBOUND(J,I+1,K).LE.0)GO TO 120
IF(IBOUND(J,1K-1).LE.0)GO TO 150
IF(IBOUND(J,1K+1).LE.0)GO TO 180
In effect, the flux calculations will be skipped

only for no-flow cells, not specified-head cells.

Three-Dimensional Models

Although this paper discusses recharge
mapping for a single-layer two-dimensional model,
the method is similar for creating a recharge map
for the upper layer in a three-dimensional model.
Because there are active cells in the layers below
the water table, MAIN does not have to be modified
as in the two-dimensional case. The changes to
SBCF1F are the same as for the two-dimensional
case.

Data Entry

Two packages are used: the block-centered
flow package (BCF), and output control (OC). If
the model is three-dimensional, either the strongly
implicit procedure (SIP) or the slice-successive
overrelaxation (SOR) package will be used as well.

Basic Package Input

The IBOUND array for the water-table layer
will be filled with 0’s and -1’s. Set all the water-
table cells to -1, and cells outside the problem -
domain to 0. This makes the water table a specified-
head surface. The observed heads are entered in the
starting-head array (Shead). Head values for the
center of each cell are obtained by interpolating
between potentiometric contours, either by hand
or with a computerized interpolation routine.

Block-Centered Flow Package Input

The simulation is wreated as steady state
(1SS = 1). The cell-by-cell flow terms must be
printed for each specified-head cell, so
ICBCFL = -1.

Hydraulic conductivities values for each cell
are read in array HY. Bedrock surface (aquifer
bottom) elevations are read in array BOT.

QOutput Control Input

This package enables printing of cell-by-cell
flow terms; they are not printed if the default
output is used. ICBCFL = 1 to print cell-by-cell
flow terms.

Presentation
To contour the recharge and discharge rates,
most contouring programs require an input file



containing the array dimensions (NROW,NCOL),
the cell spacings (DELR(]),DELC(I)), and a listing
of fluxes by row and column. Preparing such a file

involves reformatting the USGS Model’s ouput file.
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THREE-DIMENSIONAL, CROSS-
SEMIVARIOGRAM CALCULATIONS
FOR HYDROGEOLOGICAL DATA

by Jonathan D. Istok?, Richard M. Cooper®,
and Alan L. Flint¢

Abstract. Geostatistics is a powerful tool for the analysis of
hydrogeological data, but few well-documented compurer
programs for performing the necessary calculations have
been presented in the technical literature. This is especially
true for applications that require either three-dimensionai
or multivariate analyses. This paper describes a FORTRAN
subroutine, VARIO, that can be used to compute experi-
mental direct- and cross-semivariograms from a set of
sample data, for any specified direction in one-, two-, or
three-dimensional space. The subroutine combines into
groups those sample pairs that fall within predetermined
angular tolerances of the specified direction. The number of
sample pairs used to compute the value of the experimental
semivariogram at each value of separation can be specified
in four different ways, depending on the nature of the
available data. Written in FORTRAN 77, VARIO can be
used on any compurer that supports a FORTRAN 77
compiler. Source code listing, user instructions, and
example input and outpurt data for VARIO are presented.

Introduction

Whenever we make measurements at points
distributed in space, we may refer to the quantity
we are measuring as a regionalized variable. Some
examples of regionalized variables in the field of
hydrogeology are hydraulic conductivity, trans-
missivity, porosity, water-table ¢levation, ground-
water temperature, and ground-water contaminant
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concentrations. The term geoszatistics refersto a
set of statistical procedures (1) for describing the
spatial correlation displayed by regionalized
variables, and (2) for using theoretical models of
this spatial correlation to obtain local and global
estimates for regionalized variables over the sample
space. Geostatistical procedures are proving to be
useful for solving a variety of practical problems

in hydrogeology including determining values of
aquifer parameters for input into numerical models
of ground-water flow and solute transport
(Delhomme, 1976; Neuman and Yakowitz, 1980;
Vauclin et al., 1983), mapping ground-water levels
over large areas, and determining the severity of
ground-water contamination at hazardous waste
sites (Cooper and Istok, 1988a, b). Several reference
texts are available that describe the theory of geo-
statistics (David, 1977; Journel and Huijbregts,
1978; Clark, 1979), but few well-documented
computer programs have been presented in the
technical literature, This is especially true for
applications that require three-dimensional or
muitivariate analyses.

Essential to a geostatistical analysis are direct-
and cross-semivariograms (defined in the Theory
section). In the case of one- and two-dimensional
problems, computer programs may be easily
written to compute direct-semivariograms (Journel
and Huijbregts, 1978). However, many problems in
hydrogeology are truly three-dimensional and the
use of direct-semivariograms based on 2 one- or
two-dimensional approximation of the problem
domain is not realistic. Also, in many situations
(e.g., when more than one type of measurement is
made at each sample point) it may be useful to
study several regionalized variables simultaneously.
If we determine that some of the regionalized
variables are intercorrelated, the use of direct-semi-
variograms (which only display the spatial correla-
tion of a single regionalized variable) is not suffi-
cient. Instead, a multivariate geostatistical analysis
is required, and this necessitates the use of direct-
semivariograms computed for each regionalized
variable and cross-semivariograms computed for
each pair of intercorrelated regionalized variables.
Procedures for the general problem of computing
cross-semivariograms in three-dimensional space are
more complex and for this reason are not widely
used. To our knowledge, a compurer program for
performing these calculations previously has not
been reported in the technical literature.

The objective of this paper is to describe a
FORTRAN subroutine, VARIO, that can be used
to compute direct- or cross-semivariograms from a
set of sample dara for any specified direction in



one-, two-, or three-dimensional space. The sub-
routine can be used as either an exploratory tool,
or as one component of a general purpose
geostatistical software package. Future papers will
describe subroutines for fitting theoretical models
to the semivariograms computed by VARIO, and
for using the fitted models to obtain local and
global estimates for regionalized variables over the
sample space. It is hoped that the publication of
these subroutines will promote a more widespread
use of geostatistics in the field of hydrogeology.

Theory

We are concerned here with a set of measure-
ments made at an arbitrary number of sample
points distributed in one-, two-, or three-dimen-
sional space. The position of a sample point could
- be specified in a variety of ways, depending on the
type of measurement. For example, if the measure-
ments were made on core or ground-water samples,
the position of each sample point would probably
be specified by the location of the borehole, the
elevation of the drill collar, and the depth from the
drill collar to the center of the sample. To simplify
the following discussion, however, we will assume
that the position of each sample point has been
specified by a set of coordinates represented by the
vector X with components (xy ), (Xy, Xy), Of
(Xu, Xy, Xw ) according to whether a one-, two-, or
three-dimensional sample space is considered. The
collection of sample points is represented by the
set (X, ..., xn) where N is the number of sample
points. At each sample point xi, as many as M
types of measurements may be made, and these are
represented by the set {z;(xg), ... zm (Xk)
k=1toN}

For the following geostaristical procedures to
be strictly valid, it is required that (1) the sizes (e.g.,
the volume or the mass) of all the samples are the
same, (2) the same sampling procedures are used to
obtain each sample, (3) the same measurement pro-
cedures are used for each measurement of the same
type, and (4) the dimensions of the samples are
much smaller than the dimensions of the sample
space. These requirements are collectively referred
to as the requirement for constant and point
support. These requirements are satisfield approxi-
mately in most applications encountered in
hydrogeology, but in cases where they are not, an
additional procedure called regularizaton may be
required (Rendu, 1978).

For many geostatistical techniques, it is also
required that the regionalized variables are
normally distributed (e.g., when using kriging to
estimate the value of a variable at a point, devia-

tions from a normal distribution may result in
biased estimates). The probability that the region-
alized variables are normally distributed may be
determined from any of several statistics, e.g., the
chi-squared statistic (Henley, 1981), the
Kolmogorov-Smirnov statistic (Henley, 1981), or
the Shapiro-Wilk statistic (SAS Institute, 1985). In
many cases, a log-transformation will improve the
fit of the regionalized variables to a normal distri-
bution (Cooper and Istok, 1988b). A class of geo-
statistical methods called indicator geostatistics
has been developed for the case where the
regionalized variables are not normally distributed
(Journe] and Isaaks, 1984).

Procedure for Semivariogram Calculation

The first step in a geostatistical analysis is
structural analysis, the determination of the
statistical structure of the spatial correlation
displayed by the experimental data. The first step
in a structural analysis is to perform a detailed
review of all the available data to determine if
some or all the spatial correlation displayed by the
data can be attributed to known geologic,
geographic, topographic, or other factors. Particu-
lar attention should be paid to factors that cause
trends or discontinuities in the data. For example,
an observed trend in measured values of saturated
thickness in an alluvial aquifer may be caused by
the pattern of deposition (e.g., in an alluvial fan).
Faults and nonconformities can often cause abrupt

changes in measured values of regionalized variables.

For example, measured values of porosity might

_change abruptly along a transect if the transect

crosses a fault that juxtaposes two different
lithostratigraphic units.

The next step in a structural analysis is to try
to develop a theoretical model to quantify the
pattern of spatial correlation displayed by the data
and, in general, this requires the calculation of sev-
eral experimental direct- and cross-semwariograms.

The experimental direct-semivariogram,
7;;(h), is a measure of the spatial correlation
displayed by pairs of measured values of a singie
variable i. The experimental cross-semivariogram,
v{i(h), is a measure of the spatial correlation
displayed by pairs of measured values, of two
different variables i and j. Both types of
semnivariograms are defined by

1 N&h)
2N(h) i=1

yi(h) =

[zi(xk) = zi(xk + h)] [zj(xk) = zj(xx + )] (1)

where h is the vector separating a pair of sample
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points, and N (h) is the number of pairs of samples
that are separated by the same vector h. Equation
(1) defines the cross-semivariogram for regionalized
variables i and j. When only one regionalized
variable is considered, j = i, and equation (1)
defines the direct-semivariogram for the
regionalized variable i.

In a geostatistical analysis, semivariograms
usually will be calculated for several specified
directions for h. If all the semivariograms are
equivalent, the regionalization (the underlying
natural phenomenon that the regionalized variable
represents) is said to be isotropic. When the spatial
structure of a regionalized variable is not the same
in every direction chosen for h, we say that the
regionalization is anisotropic. The source of
anisotropy depends on the type of regionalized
variable studied. For example, anisotropy in the
physical or chemical properties of alluvial aquifers
may be caused by depositional processes. Similarly,
anisotropy in ground-water contaminant distribu-
tions may be caused by dispersion or by an
anisowropic ground-water flow pattern. Whatever
the source, anisotropy in a regionalization will
cause experimental semivariograms to be
anisotropic. Since we will seldom know prior to
our analysis if the regionalization is isotropic, we
must be able to calculate semivariograms as a
function of both the direction and magnitude of h

v (W) = 75 (@, 8, Ih1) (2)

where a and § are two angles that define the
orientation of h in three-dimensional space (see
below), and thl is the magnitude of h. Thus, to
perform a geostatistical structural analysis on a set
of measured values of a regionalized variable, a
procedure is needed to compute the values of
experimental semivariograms for any specified
direction and magnitude of h.

Conceptually, this procedure is simple. The
steps are as follows:

1. Select a particular direction h, by specifying
the angles ao and B4 and the distance |h,l.

2. Find all possible pairs of sample points that
are aligned in the specified direction.

3. If a direct-semivariogram is to be computed,
retain only those pairs of sample points that have
measured values of the regionalized variable for
which the direct-semivariogram is being computed.
If a cross-semivariogram is to be computed, retain
only those pairs of sample points that have
measured values of the two specified regionalized
variables for which the cross-semivariogram is being
computed.

4. Group the sample pairs into categories of

Ihl and substitute the measured values at each pair
of retained sample points into equation (1),

In practice, performing these calculations can
be difficult, primarily because the number of
samples available for a geostatistical analysis is
usually small and because the measurement points
are usually irregularly distributed over the sample
space. This means that if we limit the semivario-
gram calculations to only those pairs of samples
points that are exactly aligned in the specified
direction, an insufficient number of pairs of sample
points will be available to accurately define the
values of 75(h) [e.g., Journel and Huijbregts, 1978,
p. 194, suggest that a minimum of 30 to 50 pairs
of sample points are required for each value of
7;j(h)]. This problem often can be avoided by per-
forming the semivariogram calculations using those
pairs of sample points that are approximately
aligned in the specified direction. This is done by
specifying angular tolerances for ay and 8y, Aag
and AB,.

Consider a pair of sample points x, and x,. In
three-dimensional space, each point is defined by a
set of coordinates (xy, Xy, Xw). The separation
vector h = x, - x, has components

hy = xy); = Xu) | (3a)
hy = Xy)2 = xy)i (3b)
hw = Xw): ~ Xw)2 (3¢)

where the term x),, for example, is the x,
coordinate of sample point x,. The position of h in
space also can be defined by two angles, a and

Bn in the x, — Xy and Xy — Xy planes where

ap = arctan(hy/hy) (4a)
Bn = arccos(hy /thi) (4b)

and |h1 = Vhy +hy + hy is the magnitude of h.
Following the procedure outlined above, the

pair of measured values at the points x, and x, are

used in the calculation of y(aq, B0, th1) only if h

is aligned with the specified direction h,. Alignment

of the pair of sample points with the specified

direction is indicated if

ag ~ Adg S ap & ag +Aa, (5a)
and Bo = ABo & Bh = Bo +AB (5b)

These criteria are illustrated in Figure 1. If we wish
to compute semivariograms for the isotropic case
(i.e., the case that the experimental semivariograms
are independent of a, and g, ), the criteria in
equation (5) still can be used if Aa, and AB, are
both set equal to 180°.



-90°< a, < 90°
-90° < B3,< 90° 0<af3,<180°

Fig. 1. Definition of angles and angular tolerances used to
specify a direction h,,

0< AQo< 180°

Once all the pairs of sample points aligned
with a specified hy have been identified, they are
grouped into categories of |hl. In general, four
different methods can be used to perform the
grouping operation. The choice of which method
to use for a particular problem will depend on the
number of sample points and on the way that the
sample points are distributed in space. One criteria,
for example, is that pairs of sample points with
greatly different values of Ihl should not be
combined because this will result in a smoothing of
the semivariogram. The initial step for all these
methods is the same; the pairs of aligned sample
points are sorted, from smallest to largest, using
the value of |hi for each pair. Then the sample pairs
are combined into groups by one of four methaods:

Method 1: Divide the range of 1hl values into
intervals of constant size. |h! values are grouped
according to the interval in which they occur. The
number of pairs of sample points in each group will
be different.

Method 2: Divide the range of lhi values into
intervals of variable size. thl values are grouped
according to the interval in which they occur, The
number of pairs of sample points in each group will
be different.

Method 3: Specify the number of sample pairs
to place in each group. The number of pairs of
- sample points in each group will be the same. The
size of the intervals of 'hi is variable.

Method 4: Put each unique value of Ihl into a

separate group. The number of pairs of sample
points in each group will be different.

Whichever method is used, the measured values
of the regionalized variable(s) for each pair of
sample points in a group are substituted into
equation (1) to compute the value of v} for that
group. The mean value of [h! for a group (which is
the value that will be plotted on the semivario-
grams) then can be computed by averaging the |h!
values for all the pairs of sample points in the

group.

Computer Implementation—Subroutine VARIO
The FORTRAN subroutine VARIO was
written to implement the procedures described
above. VARIO can compute either direct- or cross-
semivariograms from a set of sample data, for any
specified direction in one-, two-, or three-dimen-
sional space. The maximum number of sample
points is limited only by the available computer
memory and can be adjusted by changing the value
of parameter MAX1, currently set at 100. Each
sample point can have any number of regionalized
variables in addition to the x, (x,, xy), or
(xy, Xy, Xz) coordinates of the point. The sub-
routine has been tested and compiled on IBM
compatible microcomputers using the Microsoft
FORTRAN 77 compiler (version 3.3). The
particular machines used had 640 Kbytes of RAM.
The definitions of FORTRAN variables used
in VARIO are in Table 1, and the source code.

Table 1, Variables Passed to VARIO from Calling Program

DIM = Dimension of problea (1, 2, or J).

ALPHA = Spacified directiom in X, - X, plane (=90° g
ALMMA < 909).

DALPHA = Tolerance for alpha (0 £ DALPHA ¢ 1809 .

BETA - :ml;l::o’d}r.euen in X, =X, plane (=907 5

DBETA » Tolerance for beta (0 < DBETA < 1809),

REVI = Column number of firsc regionalized variable.

REVJ = Column number of secand regionalized variable, If

REVI = REVJ then a direct-semivariogram be computad.
REVI = REVJ then a cross-samivariogram will be
computed,

LOGTRAN = Flag to indicata if sesivariograms will bas computed
on the natural logarithm of the values of the
tegionalized variable. If LOGTRAN = 1, natyral
logqarithes of the valuas of tha ragionalized
variapla(s) will ba ysed. If IDGTRAN = O, the .
original valuas of tha regionalized variable(s} will
be used.

METHOD = Choice of grouping sethed to use for (hi (1, 2, 3,
or 4).

LIMITS{1l) = Intarval siza(s) for |hi Lf METHOD =» 1 or 2.
Number of sawple pairs in sach group if METHOD
® 3, Not used if METHOD = 4.

LIMITS (30)

INFILE = Input data file name ( £ 20 charactars).
OUTFILE = OQutput data file name ( < 20 characters).
TITLEL = First title for OUTFILE ( £ 80 charactars).

TITLEZ = Sacond title for OUTFILE { < 80 charactars).
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SUBRCUTINE VARIO(DIM, ALFHA, DALPHA, BETA, DRETA, REVI, REVT,

, METHOD, LIMITS, TITLEL, TITLE2 , INFILE, QUTFILE)
PARAMETER (MAX1»100, MAX2%2000)
INTEGER DIM, METHOD, GROURN, @V, GCOUNT, GNUM, REVI, REVJ
REAL LIMITS(30), LOWXY, LOWYZ
CHARACTER®20 INFILE, CUTFILE
CHARACTER*R0 TTTLE1, TITLEZ
CCMMIN /BLK1/ XUW(MRXQ, 3)
CMMN /BLIR/ GROUPH(MAX2) , GROUPZ (MAQ), GROUPN (MAX2)
QOMMON /BLIG/ GH(MANR), GN(MAX2), NREF(MAMR), GCINNT, GNM
rMMON /BLK4/ Z(MAX1,2)
DATA P1/3.141592654/

- OPEN INFUT AND CUTRUT DATA FILES

OPEN(5, FILE-INFILE)
OPEN(6, FIIEOUTFILE, STATUS='NEW')

. WRITE HEADINGS TO QntUT FILE

WRITE (6,10) TITLEL, TITLE2
FORMAT (15X,AB0/L5X,A80/)
WRITE (6,20) INFILE, DIM
FORMAT (11X, 'INFUT DATA FILE: ',A20,6X. 'DIMENSIONS:
WRITE (6,30) ALPWA, BETA, DALPHA,
FORMAT (11X, 'SPECTFIED DIRECTION:'//
23X, 'ALPHA = *,F6,2,5X, 'BETA = ',F6.2/
22X, 'DALPHA = ',F6.2,4X, 'DBETA = ', F6.2/)
IF (REVT .BQ. REWT) THEN
WRITE (6,40) REVI
FORMT (11X, 'DIRECT-SEMIVARIOGRAM FOR REGIONALIZED',
' VARIABLE *,12)

', 12/)

ELSE
WRITE (6,50) REVI, REVY
FORMAT (ux, ' CFOSS-SEMIVARIOGRAM FOR REGIONALIZED',
' VARIABLES *,I2,° AND ',I2)
ENDIF
WRITE (6,60)
FORMAT (6X,68('=')/
18X, 'GROUR' , 5X, 'AVERAGE' , 5X, 'NO. OF'/
19X, 'NO. ', 9X, 'H*,8X, 'PAIRS ', 11X, 'GAMMA(H) '/
18X,5('="),5K,7('="),5X,6('=") . 8X,11("=")/}

CONVERT' ANGLES FRCM DEGREE TO RADLANS

CON = PT / 180,
ALPHA = ALPHA * CON
DATJHA = DALPHA * CON

BETA = BETA * OON
DEETA = DEETA * OQON

UPXY = ALPMA + DALPHA / 2.0
LOWXY = ALFHA = DALPHA / 2.0
UPYZ = BEIA + DBETA / 2.0
LwWYZ = BETA - DBETA / 2.0

CGHECK FOR VALID INFUT VALLES.
MESSAGE AND STOP

IF CHEXXS FAIL, PRINT ERROR

IF ((DIM .ILT. 1) ,OR. (DDM .GT. 1)) CALL ERROR{1)

IF ((REVI .IT. 1) .OR. (REVJ .LT. 1)) CALL ERFOR(3)

IF ((LOSTRAN .CT. 1) .OR. (LOGTRAN .LT. 0)) GALL ERROR(4)

IF ((METHOD .GT. 4) .OR. (METHOO .LT. 1)) CALL ERFOR(S)

N = PT / 2.

tF ((ALPHA .GT. CON) .CR.
(BETA .GT. OON) .CR.
(DALPHA .GT. PT) .CR.
(DEETA .GT. PL) .OR.

(ALPHA, ,LT. =CON) .OR.
(BETA .LT. =CCN) .OR.
(DALPHR .IT. 0.) .OR.
(DEETA .LT. 0.)) CALL ERROR(6)

INITIALIZATION

DO 70 I=l, MAXZ
aUPH(I) = 0.
GEUPZ(L) = 0.
GROURN(I) = 0
GH(I) = 0.
GN{I) » 0
NREF(I) = O

CONTINUE

GNM = 0

GXANT =

READ FROM INFUT FILE: (XMUWI(1,I),I=1,DIM), 2(1,1) AND Z(1,2)

(XUVW(NX, T}, Ta1, DIM), Z(NX,1) AND Z({¥%X,2)
IF (REVS .IT. REVY) THEN
REVE

FEAD(S, %, END=140) (XUVW(NX,I), I=1,DIM),2(NX,1)
IF(Z(BK].) WNE. =999.) NX = NK + 1
GOTO &

ELSEIF (W Q. 2) THEN
READ(S, #, ENDw140) (XUVW(NX,I), I-l DIM) ,Z(NX,1) ,Z2(NX,2)
IF (Z(NX,l).NE.=399. .AND. z(uxz) NE.=999.) NX = NX + )
GOTO 90

ELSEIF (FIVT .GT. 2) THEN
READ(3,*, END=140) (XUVW(NX,I),I=1,DIM),Z(NX,1),

(OMY, I=1, REVT=-REVI=1) ,Z(NX, 2)

IF (Z(NX,1).NE.=999. .AND. Z(NX,2).NE.-999.) NX = NX + }
GOTO 100

ENDIT

Fig. 2. Source code listing for VARIO (continued).

aa

160

ELSE
IF (REVT .BXJ. REVI) THEN
110 READ(S, *, END=140) (XUVW(NX,I),I=1,DIM), (DM, I=},REVI-1),
1 Z(NX,1)
IF (Z(NX,1) .NE. -999.) NX = NX + 1
GOTO 110
ELSEIF (REVJ .EX). REVI + 1) THEN
120 READ(S, »,END=140} (XUVW(NX,I),I=1,DIM), (OMY, I=1, REVI-~1},
1 Z(NX, 1} ,Z(NX,2)
IF (Z(NX,1) .NE.=299. .AND, Z(NX,2).NE.=999.) NX = NX + 1
GITO 120
EISE
130 READ(S, ¥, END140) (XUVW(NX,I),I=1,DIM), (DMY, I=1,REVI-1),
1 Z(NX,1), (MY, I=1,REVI-REVI~1) , Z(NX, 2)
IF (Z(NX,1).NE,-999. .AND. 2(NX,2).NE,=999.) NX = NX + 1
COTO 130
ENDILF
ENDIF

140 NX=NX = 1
IF (NX .CT. MAX1) THEN
WRITE(*,150) ' DATA ',NX,MAX1
150 FORMAT(A, 'SIZE OF',IS,' EXCEEDS MMM SIZE OF',IS/' STOP!')
GO0 180
ENDIF

..... FIND ALL ALIGNED PATRS OF MEASUREMENT FOINTS, AND RUT THE
CCMPUTED SEPARATICN AND MEASURED VALUES FOR THE PAIR INTO
TEMFORARY STORACE (ONE-DIMENSIONAL PROBLEMS)

IF (REVJ .EQ. REVI) THEN
REVT = 1
ELsE
RFEVT = 2
ENDIF
REVI = 1
GALL FINDPTS (DIM, METHOD, LOGTRAN, NX, 1, REVI, REVT, UPKY, LOWXY, UFYZ,
1 LOWYZ)
IF (GOXNT .GT. MAX2) THEN
WRITE(*,150) ' EXPANDED DATA ',GCOUNT, MAX2
GOTO 180
ENDLF
CALL SETGROP(METHOD, LIMITS)
CALL FINDPTS (DIM, METHOD, LOGTRAN, NX, 2, REVI, REWS, UPXY, LOWXY, UFYZ,
1 LOWYZ)
OO 160 I=1, GCODUNT
IF (GROUPN(I) .NE. 0) THEN
GROUPH(T) = GROUPH(I) / GROUPN(I)
GROUFZ(I) = CROUFZ(I) / (2 * GROURN(I))
ENDIF
WRITE (6,170) I, GROUPH(I), GROURN(I), GROUPZ(I)
CONT'INUE

170 FORMAT (17X,14,6X,G8.3,7X,13,%8%,G15.7)
180 CLOSE (9, STATUS=' KEEP' )

aan

CLOSE (6, STATUS=' KEEP' )
RETURN
END

SUBROUTINE SWAP(M, N)

SUBRCUTINE FINDPTS (DIM, METHOD, LOGTRAN, NX, NCHOTCE, REVT , REVT, UPXTY,
1 LOWXY, UPYZ, LOWYZ)
PARAMETER (MAX1=100, MAX2=2000)
INTEGER DIM, GROUEN, GN, METHOD, GCOUNT, GMUM, REVE, REVY
REAL LOWXY, LOWYZ, HU, HV
LOGICAL CHANGE
COMMON /BLKI/ XUVW(MAX1, 3)
MIN /BIK2/ GROJPH(MMGR), GROUPZ(MAR), GROIUPN (MAX2)
CMEN /BLIG/ GH(MAXZ), GN(MAXZ), MREF(MAX2), GOCUNT, GNUM
COMMON /BLKA, 2(MAX1,2)
REAL XU/MRQ)), XV(MAX1), XW(MAXD)
(XU, XLW(1,1)), (XV,XUWW(L,2)), (XW,X0MW(1,3))
DATA PI/3.141592654/
IF (DIM .EQ. 1) THEN
0O 140 T =1, NX =1
0O M0 =T+ 1, NX
IF (U .BQ. XU(I)) .OR. (Z(J,REVI) .1E. -990) .CR,
(Z(J,REVT) .LE. =990.) .CR. (2(I,REVI) .1E. -990.)
JGR. (Z(I,REW) .LE. =990.)) GOTC 140
HO=XU(T) = X(J)
DISTWGORT (HU*+2)
CALL (TMEUTE(LOGTRAN, ZVALLE, I, J, REVI, REW)
CALL ADCRIEC(METHOO, NCHOICE, DIST, ZVALLE)

L

FIND ALL ALIGNED PATRS OF MEASUREMENT BOINTS,
MEASURED

ELSE IF (DDM .2Q. 2) THEN
0O 150 J=1, NX-1
DO 150 I=aJ+1, NX
IF (((T) .EQ. RW(I)) .AND. (XV(J) .BEQ. XV(I)) .OR.
(2(,REVT) .LE. =390.) .OR. (Z(J,REVT) .LE. -990.).0R.
(Z(1,REVI) .LE. =990.) .CR. (Z(I,REWJ) .LE. ~990.))
O 150

[Ty S

FIND THE SEEPARATION VECIUR FUR A PAIR OF SAMPLE FOINTS

HI=XU(1) = XU(T)
HVEXV(I) = XV(J)
DIST=GQRT (HIwe2 + HV**Z)



c DETERMINE IF THE PAIR OF POINTS IS ALIGNED WITH THE SPECIFIED EISE IF (METHOD .EQ, 3) THEN

[ DIRECTION (IN THE XU~XV PLANE) MAX=LIMITS (1)
< TEMPeMAX
MeL U=
NmJ HXMNT=1
IF (XU(N) .EQ. XU(M)) THEN 00 240 I=1, GCOUNT
ANGLE1=PI / 2.0 250 GNUMSGIM + L
IF ((ANGLEL.GT.UPXY) .CR. (ANGLEL.LT.LEWXY)) THEN IF (GROUBN(I) .GT. TEMP) THEN
ANGLEL=PT / (-2.0) GH (GNUM) =GROUFH ()
CALL SWAP(M,N) G {QUM) «TEMP
ENDLF NREF (GNUM) =KOUNT
GROURN (1) »GROURN(I) - TEMP
ANGLEL=ATAN(HV / HIJ) = WRITE (6,%) GH(GWM), TEMP, NREF(GNUM)
ENDIF FEUND=RCUNT + 1
IF ((ANGLEY .LE. UPXY) .AND. TEMP=MAX
1 (ANGLEL .GE. LOWXY)) THEN GOTD 250
CALL (TMPUTE (LOGTRAN, ZVALUE, M, N, REVI, REV) ELSE IF (GROUPN(I) .LI. TEMP) THEN
CALL ADCREC (METHDD, NCHOICE, DIST, ZVALLE) GH{RM) =CROUTH(T)
ENDIF ’ QN (GUM) =GROUPN (1)
150 CONTINUE NREF (GNUM) miOUNT
c [od WRITE (6,*) GH(GNUM), GROUFN(I) ,NREF (GM)
¢ FIND ALL ALIGNED PAIRS OF MEASUREMENT FOINTS, AND FUT THE TEMATEMP = GROUPN(I)
c COMPUTED SEFARATION AND MEASURED VALUES FOR THE PATR INTO ELSE
[ TEMIORARY STORAGE (THREE-DIMENSIONAL PROBLEMS) GH (GNUM) aGROUTH (T)
c G (@UM) «TEMP
EISE NREF ((20UM) =KOUNT
0O 160 J=1, NX-1 c WRETE (6,%) GH(GVUM), TEMP, NREF(GNLM)
00 160 [4J+1, MX KOUNT=KOUNT + 1
IF (((AI(T) .BQ. MI(I)) .AND. (XV(J) .EQ. () TEMPwMAX
1 LAND, (XW(T) .BQ. ¥¥(I))) .OR. ENDIF
2 (2(J,REVI) .LE. -990.).0R.(Z2(J,REVJ) .LE. ~950.) 240 CONTINUE
3 LOR. (Z(I,REVI) .LE. -990.) .CR. ELSE
L (Z(I,RENT) .LE. -9%0.)) GOUTO 180 ERMCNT
0O 27% =1, GAM
¢ GH(T) »GROUPM(X)
¢ FIND THE SEPARATION VECTOR FOR A PAIR OF SAMPLE FOINTS 27%
c ENDIF
HU=U(T) ~ MU(T) DO 990 I=l, MAXZ
Hv=XV(I) = XV(J) GRATH (1) =0,
Hw=XW(I) = XW(J) GROUPZ (T)=0.
DISTwSGRT (HIwe2 + HUw®2 + HWe#2) GROUPN (I) =0
¢ 990 CONTINUE
e DETERMINE IF THE PAIR OF FOINTS IS ALIGNED WITH THE SFECTFIED DO 99% Iwl, MM
c DIRECTION (IN THE XU-XV AND XV-XW PLANES) GH(I)=GH(T)*1,0001
[ad : 995 CNTINUE
M=1 CRIXINT=0
I FETURN
CHANGE=, FALSE . END
IF (XU(J) .BEQ. XU(I)) THEN c
ANGLEI=PL / 2.0 SUBRGUTINE CCMPUTE(LOGIRAN, ZVALUE, M, N, REVI, REVT)
IF ({ANGLEL.GT.UPXY) .OR, (ANGLEL. LT, LOWXY)) THEN PARNETER (MAX1w100, MAX2=200Q)
ANGLE1=PT / (~2.0) COMMON/BLEKA,/Z (MRX1, 2)
CALL SWAP(M,N) INTEGER REVT,REVT
CHANGEw. TRUE. c
BNDIF Z1=% (N, REVT)
ELSE 22+Z (N, REMJ)
ANGLEL=ATAN(HV / HU) 23w (M, REVT)
BbIE Z4=Z (M, REVT)
ANGLE2#ACTIS (ABS (#4) / DIST) IF (LOGTRAN .BQ, 1) THEN
IF (MW .LT. 0.0) THEN ::-%10(21)
ANGLEZ»=ANGLEZ =L0G10(22)
IF (.HOT. CGHANGE) CALL SWAP(M,N) 43=10G10(23)
ENDIF . mi;-xmm {Z4)
IF ((ANGLEl .LE. UPXY) .AND. (ANGLE) .GE. LOWXY
1 (.(mn. (ANGLE2 .u:’. UPvzZ) (mn ) Ir (KEVI .BQ. REVT) THEN
2 (ANGLE2 GE. LOWYZ)) THEN ZYALLUE=(Z1 = Z1)#w2
CALL COMPUTE(LOGTRAN, ZVALLE, M, N, REVI, REVJ ELSE
CALL Am::(rsnmm, NCHOYCE, DIST, IVALUE) ) ZVALLE=(Z) = 23) * (22 = 24)
160 CONTTNUE RETURN
ENDTF D
RETURN ¢
B0 SUBRCIIINE ADCREC(METHOO, NCHOICE, DIST, ZVALUE)
¢ PR -mdwc: -%m) GRAUTN (MAX2
SUSROUTINE SETGROUP(METHOO, LIMITS / BLI2,/GROUTPH ), , (MAX2)
PARAMETER (m—xéo, MG 2000), COMMN/BUK/GHMAXZ) , GN(MAXZ), NREF(MAX2), GIXUNT, GNUM
COMMON/BLEKR/GRXJFH (MAX2) , GROUPZ (MAX2) , GROUPN(MAXZ) INTEGER METHOO, GROURN, GN, GCCUNT, GNUM
COMMON/BLIC/GH(MAX2) , GN(MAXR), NREF(MAXZ), GCCUNT, GNUM REAL GH, GROUPM, DIST
REAL LIMITS(30) LCGICAL FOLRND
REAL GH, GROUPH, DIST TATA TOL/1. 0001/
INTEGER METHOD, GROURN, GN, GCOUNT, GNUM, TEMP If (NIOICE .EJ. 1) THEN
0O 170 I=1, GOUNT=1 H‘E‘f“"m
a1
IO 180 J=I, GCOUNE 0o f:: N, GOCUNT
B0 o UPHE) LT GRAUPR(L) AT IF ((DIST .GE. GROUFH(N)*(TOL-0.0002)) .AND.
GROUPK( L) »GROUTH(T) gm-g’“-
GROUBH (T) =X 2
Ne=GROUBN(L) ENDIF
GROUPN (L) =GROUPN(T) 800  CONTINUE
GROUEN (T il 810 IF (.NOT. IIND) ']:?
GLOANTGCOUNT
170 CONTDUE
IF (METSDO .EQ. 1) THEN m
GNM=GROUPH(GCOUNT) / LIMITS(1) + 1 (M) =0LST
0O 220 Tsl, GMM , mgumm-o
GH. -] L]
ELSE IF (mr::o .Bd. 2) THEN o 750 ey e
Ml
230 r &%%m; THEN IF ((DIST .IT. GH(N)) .AND. (GN(N).NE.0)) GOTO 760
QEMeGIM + 1 750
GOTO 230 760 GROUPH (NREF (M) ) =GROUPH (NREF (M) ) + DIST
ENDIF GROUPE (NREF (M) ) "GROUPZ (NREF (M} ) + ZVALLE
MMM - L CROUPN (NREF (M) ) =GROUEN (NREF (M) ) + 1

GNM)=GN(M) -~ 1
Fig. 2. Sourcs code listing for VARIO (continued). IF (NREF(QUM) .GT. GCOUNT) GOOURTwAREF (GMM)



E1SE
M=l

GOOUNT=GNUM
00 770 Nel, GOOUNT
M=
IF (DIST -LT. GH(N)) GOTO 720
770 CONTINUE
78G GROUFH (M} =GRUPH (M) + DIST
GROUPZ (M) =GROUPZ (M) + ZVALLE
GROUFN (M) =GROUEN (M) + 1
ENDIF

RETURN
END

SUBROUTTINE ERROR (NUM)
INTEGER NUM
IF (NUM .BQ. 1) THEN
WRITE (*,510)
ELSE IF (MM .EQ. 2) THEN
WRITE (¥,620)
ELSE IF (NUM .BQ., 3) THEN
WRITE (*,630)
ELSE IF (MUM .BQ. 4) THEN
WRITE (*,640)
ELSE IF (NUM .EQ. 5) THEN
WRITE (*,650)
ELSE
WRITE (*,660)
ENDIF
610  FORMAT (' PROCRAM ABORTED - INVALID DIMENSION GIVEN')
620  FORVAT (' PROGRAM ABORTED = EXCEED ARFAY''S LIMITS')
630  FORMAT (' PROGRAM ABORTED « INVALID COLLMNS GIVEN')
640  FORMAT (' PROGRAM ABORTED - INVALID CODE FOR NATURAL LOGARTTHM',
1 * OPERATION')
650  FORMAT (' PROGRAM ABORTED - INVALID CDDE FOR GROUPING OFERATION')
660  FORMAT (' PROGRAM ABORTED - EXCEED DEGREE BOUNDS')
STOP
END

Fig. 2. Source code listing for VARIO,

listing is in Figure 2. All program control informa-
tion is passed to VARIQ through the argument list
in the calling statement. The dimension of the
problem is specified with the integer variable DIM.
The direction for which the semivariogram is to be
computed is specified by the real variables
ALPHA (= a, in Theory section and in Figure 1),
DALPHA (= Aa), BETA (= 8), and DBETA (= AB).
REVI and REV] are used to specify the
column numbers (on the input data file) that
correspond to the regionalized variable(s) to be
used in the semivariogram calculations. If
REVI = REV], then a direct-semivariogram will be
computed. If REVI # REV], then a cross-semi-
variogram will be computed. For example, if
REVI= REV] = 2, a direct-semivariogram will be
computed for the regionalized variable that corre-
sponds to the second column of the input data file.
If REVI = 1 and REV] = 3, a cross-semivariogram
will be computed for the pair of regionalized
variables that corresponds with the first and third
columns of the inpur data file. LOGTRAN indicates
if the semivariograms are to be computed using
the natural logarithm of the values of the regional-
1zed variable (s). METHOD is used to specify the
grouping method to use for thi, If METHOD = 1,
then method 1 (described in Theory section) will
be used. The interval size for h is specified by the
value of LIMITS(1). If METHOD = 2, then
method 2 will be used. The interval sizes for h for
each group are specified by the values of LIMITS (1)

to LIMITS (30). If METHOD = 3, then method 3
will be used. The number of pairs of sample points
to place in each group is specified by the value of
LIMITS(1). If METHOD = 4, then method 4 will
be used and the array LIMITS is not used.

VARIO reads the coordinates of the sample
points and the measured values of the regionalized
variable(s) for each sample point from the data file
specified by the character variable “INFILE".
VARIOQ reads data from INFILE using “free-
format” FORTRAN read statements. The form
this data file should be in for one-, two-, and three-
dimensional problems is shown in Figure 3. The
computed semivariograms are written to the data
file specified by the character variable “OUTFILE".
The two character variables TITLE] and TITLE2
are used to label the output data file.

Example inpurt data for VARIO are given in
Tables 2 and 3. The first example is for a two-
dimensional problem (DIM=2) used as an example
by Clark (1979). Direct-semivariograms are com-
puted for three directions (« = 0°, 45°, and 90°)
for a single regionalized variable. The results shown
in Table 4 are for grouping method 1. The average
value of hyl, the number of pairs of measurement
points, and the value of v;}(«o, 8o, ho 1), labeled
GAMMA(H) on the output file, are computed for
each group.

The second example is a three-dimensional

DIM = |
Xyl Z{L,1 = = = ZU,10)
X, (2) Z(2,1) . . o 2(2,i0)
Xy{NX) ZINX,1) » + « Z(NX,IQ)
DIM = 2
X i) Xy()  Z{L) - -« Z01,10)
Xul2) X (2)  Z@2,N - « « Z(2,10
Xy(NX) X, NX)  ZINX,)e o « Z(NX,I0)

DiM=3

Xulh X (1) Xwil) Z{L1) o o« Z(1,10)
Xul2)  Xyl2) Xgl2) Z@20) « « » 2{2,100

Xy(NX) XyINX) Xy (NX)  ZINX,De o  Z(NX,IO)

Fig. 3. Input data file structure for VARIO.



Table 2. Example Input Data” for VARIO for a problem (DIM=3). Cross-semivariograms are
Two-Dimensional Problem (DIM=2) Computed for two pairs of regionalized variables.
Xy, ft Xy, ft Fe, % Xy, ft Xy, ft Fe, % In both cases, the regionalization is considered to

be isotropic. The results shown in Table 5 were

0 0 38 100 300 37 . .
100 o 37 200 300 37 calculated using grouping method 1, and the results
200 0 35 300 300 35 shown in Table 6 were calculated using grouping
400 0 30 400 300 38 method 3,
600 0 29 500 300 37
700 0 30 600 300 37 Summary
808 108 ;2 ;83 ;gg :i A general procedure is presented for calcu-
100 100 35 0 400 42 lating direct- and cross-semivariograms, from a set
200 100 36 200 400 43 of sample data, .for any specified direction in one-,
300 100 35 300 400 42 two-, or three-dimensional space. Four different
400 100 34 400 400 39 algorithms are presented for combining sample
500 100 33 500 400 39 pairs into groups, and these should handle most
333 igg ;g ?gg :gg :(1) problems that occur in practice. A FORTRAN
800 100 28 800 400 38 subroutine is presented for implementing the
0 200 35 0 500 44 procedure on any computer that supports a
100 200 38 200 500 40
300 200 35 300 500 42 Table 4. Output from VARIO for Example
‘s‘gg igg ;; ‘S*gg ;gg ‘3‘8 Input Data in Table 2
600 200 36 600 500 37 TWO-DIMENSIONAL EXAMPLE GIVEN IN CLARK (1979}
700 200 35 700 500 36 INPUT DATA FILE: TABLEZ DIMENSIONS: 2
0 300 37 SPECIFIED DIRECTION:
ALPHA = .00 BETA = .00
DALPHA = .00 DBETA = .00
DIRECT-SEMIVARIOGRAM FOR REGIONALIZED VARIABLE 1
GROUP AVERAGE -”;57-11-)? -----------------
Table 3. Example Input Data for VARIO for a .. M BAIRS O GAMMAUH)
Di i = 1 100.00 36 4§
Three-Dimensional Problem (DiM=3) 3 L8 o0 3 13- 30
Xy Xy Xw  Bromide Chloride Bramofojrm . 100 % 23 8170
3 5 500.00 7
—Tom--- e g - mg/m 6 §00.00 ) 13.04
7 700.00 9 15.56
0.0 0.0 2.9 82 240 27.2 8 800.00 4 15.63
2'5 178 579 24'8 AR A I E R E R R R RN AN I RN NI E PN NI FEINEINFEEEEERES
;i 946‘ 231 gi THWO-DIMENSIONAL EXAMPLE GIVEN IN CLARK (1979)
' . INPUT DATA FILE: TABLE2 DIMENSIONS: 2
0.0 1.0 3.1 0 3 0.0 SPECIFIED DIRECTION: 90,00 SETA 0
ALPHA = . - R
2.9 165 553 0.4 DALPMA = .00  DBETA = .00
;; ii; Z;(z) 3:‘? DIRECT-SEMIVARIOGRAM FOR REGIONALIZED VARIABLE 1
GROUP AVERAGE NO. OF
1.0 2.0 3.0 103 315 0.0 NO. H PAIRS GAMMA(H )
2.8 177 558 23.0 L 100.00 e "'“;";;
2.6 210 663 20.0 g ggg.gg gz 1: :;
22 30 95 0.4 4 100:00 13 27.54
1o 30 3.0 0 3 o1 5 500.00 5 26.10
2 8 151 472 4 2 AR EESEEEEEEE N EEEE SN NEENEEEEEENNEEEENNETENAS S EEENEEEERSRERRE
2.6 76 230 3.4 TWO-DIMENSTONAL EXAMPLE GIVEN IN CLARK (1979)
2.2 5 ' 25 0.1 INPUT DATA FILE: TABLE2 DIMENSIONS: 2
1.6 174 582 13.9 SEECIFIED DIRECTION:
ALPHA = 45.00 BETA ~ .00
2.0 4.0 2.7 2 6 1.4 DALPHA = 1.00 DBETA = .00
2.3 2 5 0.1 .
1.5 0 2 0.1 DIRECT-SEMIVARIOORAM FOR REGIONALIZED VAR!ABI’:E__E ________
20 5.0 27 118 348 0.1 GROUR AR N Re GAMMALH)
2.5 186 632 95  mmeee ewmmmms mmmmee mmmeeeoe
. 31 3.89
2.3 165 520 3.6 é ;:;:3 22 5,89
3 424.126 14 8.54
2.1 8 8 0.1 4 $65.69 8 8.69
1.7 10 28 0.1 5 707.11 3 .13




Table 5. Qutput from VARIO for Example
Input Data in Table 3

THREE-DIMENSIONAL EXAMPLE

INPUT DATA FILE: TABLE 3 DIMENSIONS: 3
SPECIFIED DIRECTION:

ALPHA = :]]

DALPHA = 180.00

BETA = .00
DBETA = 180.00

CROSS-SEMIVARIOGRAM FOR REGIONALIZED VARIABLES 1 AND 2

_________________________________________________________

GROUP AVERAGE NO. OF
NO. H PAIRS GAMMA(H)
1 20 i1 15%899.23
2 .40 12 22309. 46
3 .60 7 24103.71
4 .80 & 17290.92
S 1.00 10 16162.55
[ 1.04 21 22529.24
7 1.17 12 19155.54
] 1.28 H] 22555.30
9 1.49 1 50373.00
10 1l.44 25 17112.40
11 1.57 7 14919.36
12 1.68 1 1380.00
13 1.77 3 225%59.50
14 1.92 1 35485.00
1s 2.06 1 .00
156 2.26 48 2215%9.15
17 2.34 11 19731.18
13 2.4% 9 14242.39
19 2.59 3 16487.17
20 .69 2 33246.25
21 3.17 18 10673.75
22 .23 19 20348.63
23 3.35 1 44255.00
24 3. 42 2 14538.7%
25 J.64 9 34442.22
16 3,80 1 60208.00
27 3.87 1 45457.50
2 3.94 1 .00
29 4.48 16 12864.63
k1] 4.54 13 27013.23
31 4.67 3 16856.83
32 5.39 14 14496.43
33 $.43 5 18562.60
34 5.52 1 7632.00

FORTRAN 77 compiler. Copies of VARIO, and an
example main program and data files can be
obtained by sending a formartted 5%-inch floppy
diskerte (360 Kb format) to the senior author.
Future papers will present procedures and sub-
routines that use the experimental semivariograms
computed by VARIO to fit theoretical semi-
variogram models, to calculate extension variances,
and for kriging and cokriging. It is hoped that the

Table 6. Qutput from VARIQO for Example
input Data in Table 3

THREE-DIMENSIONAL EXAMPLE

INPUT DATA FILE: TABLE 3 DIMENSIONS: 3
SPECIFIED DIRECTION:

ALPHA = .00

DALPHA = 180.00

BETA a .00
DBETA = 180.00

CROS5-SEMIVARIOGRAM FOR REGIONALIZED VARIABLES 1 AND 3

---------------------------------------------------------

GROUP AVERAGE NO. OF

NO PAIRS GAMMA(H)
1 37 10 569.483
2 97 o 417.80
3 1.22 30 489 .81
4 1.590 30 477.45
5 1.21 30 364,58
6 2.10 30 641.21
7 2.81 30 454,69
8 3.29 30 6368.87
9 4.29 30 698.03
10 5.13 30 450.49

increased availability of programs and subroutines
for geostatistical analysis will encourage the more
widespread use of these methods by practicing
ground-water hydrologists.
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A GALERKIN FINITE-ELEMENT PROGRAM
FOR SIMULATING UNSATURATED FLOW
IN POROUS MEDIA

by R. Khaleel® and T.-C. Yeh®

Abstract. A fullv documented Galerkin finite-element
FORTRAN program is presented for solving the one-
dimensional, transient flow equation in unsaturated porous
media. Material balance error summaries are presented to
demonsrrate accuracy of the numerical scheme. Compari-
son of our simulated results with other existing numerical
solutions using the Galerkin scheme provided excellent
agreement.

Introduction

Unsaturated flow typically involves nonuni-
form, time-dependent moisture contents and flow
fields. The partial differential equation governing
unsaturated flow in porous media is nonlinear, and
is not readilv amenable to accurate analytical solu-
tions. In recent years, the Galerkin finite-element
technique has been used to solve the transient,
unsaturated tlow equation (e.g., Neuman, 1973;
van Genuchten, 1978; Yeh, 1981; Huyakorn and
Pinder, 1983). In the Galerkin approach, the
dependent variable—the pressure head—1s approxi-
mated by a series of basis (or shape) functions and
associated time-dependent coefficients. The
approximating series are then substituted into the
governing equations and the resulting errors
(residuals) minimized through the use of weighted-
residual theorems (Zienkiewicz, 1977). The
integral equartions derived in this manner are
evaluated using the finite-element method of
discretization, resulting in a set of (quasi)-lincar
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equations which can be solved using appropriate
matrix equation solvers.

In this paper, a Galerkin finite-element
solution of one-dimensional unsaturated tlow
equation is developed using linear basis or shape
functions. A fully documented listing of the
FORTRAN program is provided. Material balance
error summaries are presented to demonstrate
accuracy of the numerical scheme. Results
obtained using our program are compared with
other existing numerical solutions.

Numerical Model

The pressure head form of the differential
equation describing one-dimensional, vertical flow
of water in an unsaturated homogeneous and
isotropic soil profile, can be written as:

] ] v
LW =— KW —~W-2)]-C*(¥)—=0 (1)
az 0z ot

where £ is the differential operator defined in the
flow region; ¢ is the pressure head, L; K(y) is the
hydraulic conductivity, LT™; C*(¢) = 36/3¢ Is the
specific water capacity, L''; 6(y) is the volumetric
water content; z is cartesian coordinate (positive in
the downward direction), L; and t is time, T. Both
¥ and K are assumed to be single-valued function
of 9.

The initial conditions are

¥(z, 0) = ¥o(2) (2)

and the boundary conditions are the usual
Dirichlet (constant pressure) and Neuman (flux
type) conditions:

v(z,t)=yr(z,t) onTl (32)

and

3
K(w)(—é-i-l--l)ni-»qrz(z, =0 onl; (3b)
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where [, + [; = I', the boundary of the region;
qr, is the surface flux prescribed along the
Neuman boundary [3; and n; is the unit outward
normal on Iy,

The finite-element equations are formulated

using the Galerkin technique (Neuman et al., 1974).

A trial function can be selected of the form
A ¥ () N;(z) (4)

where N are the element shape functions; V; are
undetermined coefficients which become the nodal
values of the function ¢ ; and n is the total number
of nodes in the finite-elemnent grid system. For a
one-dimensional linear element ¢, the shape
functions are

z
Ny=1l-—

» (52)

and

N—'Z
2Le

(5b)

where L. is the length of element e. Upon substi-
tuting the trial function (4) into (1) and setting the
resulting residual orthogonal to all N;’s, one
obrtains a set of n integral equauons in the flow
domain Q:

ffZJ:(nlz)Nidzno i=1,2,...n (6)

which, upon integration by parts on the second
derivative term in (6), can be solved for the
unknowns y;.

A functional representation is used to express
the variable paramerers K and C within a linear
element with two nodes, as weighted averages of
the corresponding nodal values of the element.

K(z) = (7a)

©
It (A4

Kg (¥g) No(2)

and

C*(z) = Cf(vg)Ng(z). (7b)

1

<
% 1S

The same shape functions as those of the trial
function (4) are used here. The final finite-element
equations are written in the matrix form as

3y
[A]{W}*'[B]{‘g't‘}:{F} (8)
where for a typical one-dimensional linear element

e, the elements of the matrices and the right-hand
vecror in (8) are:

£ NgKg ot g,
Lc 2=1 az az

Ly=1,2  (8a)
2

b, =Lf Z NoCy N;N; de,
e 0=

fle:{é

2=1

(8b)

aN;
NQKQ-;;‘-dz—l.[NiqudF. (8¢c)

Because of the nonlinear nature of the differ-
ential equation, the solution is iterative at each
time step. Using a time weighting factor ¢, where
0= e =< 1, equartion (8) is discretized in time as

(Al (e W™+ (1 - &) (1)

1
= [B] ({w}*™! - w}*) = (F} (9)

where k indicates a point tX in time, and

Atk = tk*l — (K The matrix [B] in (8) s
diagonalized by a procedure known as “lumping.”
According to this procedure, we calculate the
elements in {B] as

Z *
bfﬁ!ggl NeCeN;dz 1=) (10a)
e 0=

bfj =0 i#] (10b)
Experience indicates that a stable solution is
obtained with the lumped mass matrix. A lumping
procedure similar to that just described was
successfully applied by Neuman (1973) to a
number of seepage problems.

Following the mass lumping procedure for
matrix [B] and performing necessary integrations,
the element matrix for an interior element
becomes:

_G_[ (K1+Kz)“(K1*‘K2)]{‘P1}k+1+
2Le L-(K, +K;) (K, +Ky)

Le [cm +CP6 ]{ }kﬂ
at 0 Ct/6 +c,/3

(e - 1)[ Ky +Ky) - (K, +Kz)] { Wl}k
ZLc -

(K, +K;) (K, +K,)
LC[CT/3+C;/6 0 ]{‘h}k

At 0 Cr6+Cr/3dty,
{"(K1+Kz)/2} (1)
K, +Ky)/2
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The variable coefficients in (9) are evaluated
at one-half the time step. At the beginning of the

. . B - 1, . .
iteration, estimates of «,Dli“' * are obtained by linear
extrapolation:

k
At )
(v - oD (12)

ul\""/z = l’l’/k +
! bo2ackel !

These are used in determining the variable
parameters K(y), 9(¢), and C*(¢); and in updating
coefficient matrices [A], [B], and the right-hand
vector {F} in (9). A tridiagonal system of linear
algebraic equations is generated at each iteration

and solved for w§<+1 at all nodes by gaussian
elimination (Carnahan et al., 1969). Due to the
nonlinear nature of (9), these estimates for wli‘”

must be improved (Neuman et al., 1974). At each
K+

iteration, an improved estimate of U s

- obtained by averaging the most recent estimate of

l.’/{“'l with w{‘, the value obrained in the previous
time step:

P =gk gl (13)

After having reevaluated K(y), (), and C* ()
based on t./xli”'/‘; and coefficient matrices [A], [B],
and right-hand vector {F}, equation (9) is again
solved for improved estimates of w%‘*l. The

iterative procedure is continued unrtil che relative
change in pressure head between two successive
iterations is within a prescribed tolerance.

Computer Program

The computer program is written in
FORTRAN for the DEC 2060 computer at Neéw
Mexico Tech computer center. A reprint ot the
program used in solving an infileration problem
(Warrick et al., 1971) is given in Appendix A.

The FORTRAN code consists of a main
program and eight subroutines. The main program
accepts the input data and governs the sequence of
operations to be performed. Initial segment of the
main program (up to statement number 169)
controls the type of input data, their sequence, and
printing. Actual simulation of the problem starts at
statement 179 (LA is simply an integer number to
indicate simulation increments). Equation (12) is
programmed in statement 195, whereas equation
(13) 1s programmed in statement 329.

The iterative segment of the program for
solving the nonlinear equations starts at statement
203. In statements 207 through 251, we set up the
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individual matrix elements [equation (11)}. The
RH arrays are generated for use in the MATBAL
subroutine.

After assembly of individual martrices, the

"global matrices are tormed in statements 257

through 305. The program, in its present form, can
handle two types of boundary conditions: (1) a
constant pressure boundary; and (2) a constant
flux boundary. The global matrix for the interior
nodes is formulated in statements 276 through
285. The global matrix for the top boundary
condition is formulated in statements 257 through
272. For the lower boundary condition, the global
matrix is formulated in statements 289 through
305.

The variable time step size used during simula-
tion is calculated in statements 360 through 367.
At each time step, the equation for calculating At
is given by

k
. . At DELZ
Atk*l = min(=—— * TOL, 0.1* ——=)
ek Q1)

and is programmed in statement 364. The variables
TOL, DELZ, and Q(1) are defined in the initial
segment of the main program. The variable e¥ is
defined as

L gk - gk
€ = max "
1 ;.’Ji

and is programmed In statements 313 through 319.

Subrourine INTERP is used to linearly inter-
polate for values in the soil hvdraulic properties. It
is used only when the parameter INT equals 1.
When INT = 0, functional relationships are used to
describe the soil hydraulic properties.

The five functional subroutines FNCTP,
FNCPT, FNCZT, FNCPK, and FNCPC are used to
obtain, respectively, (1) pressure head y given
moisture content 4, (2) moisture content 8 given
pressure head ¥, (3) ¢ as a function of the depth Z
for the initial condition, (4) hydraulic conductivity
K as a function of ¢, and (5) water capacity C* as
a funcrion of ¥.

Subroutine TRIDIA is used to solve the tri-
diagonal system of equations generated by
equation (9). It is adapted trom a similar sub-
routine given by Carnahan ez al. (1969). The arrays
A, B, C, and D formulated in statements 257
through 305 during global assembly procedure are
inputs to the TRIDIA subroutine. The solution
vector of ¥ values is contained in array ANS and
returned to the main program.



The material balance errors are calculated in
subroutine MATBAL. Both differential and

cumulative material balance errors are calculated at’

each time step. The equations used in MATBAL to
calculate inflow, outflow, and change in storage are
developed following equation (11).

Application

Our computer code was used to solve the
infiltration tflow problem as described by Warrick
et al. (1971). Other finite-element solutions for
this particular problem are available (van
Genuchten, 1978). Our simulation results could
therefore be compared with those of van
Genuchrten.

Warrick et al. (1971) obtained experimental
data from a 6.1-m by 6.1-m square field plot of
Panoche clay loam having an approximate initial
water content of 0.20. The soil was werted with
7.62 cm of 0.20 N CaCl, solution, followed
immediately by tracer-free water. The total
infiltration time was 17.5 hours,

Functional relationships (INT = 0) for 8, ¢,
K, and C*(y) were given by van Genuchten (1978)
for Panoche clay loam soil (Warrick et al., 1971).

o) 0.6829~0.09524 ¢n 1Yl Y = — 29,484
V =
0.4531-0.027328n 1Yl —29.484 <\ £ —14.495
... (143)
o) )—1300exp(—10.50),6€.3606
V -
-1.59X 10" exp (—36.66), 0 > 3606  (14b)
, 19.34 X 10° 11734095 g ~29 184
Ky =
516.8 lWI0-97814 _99 484<y £ ~14.495(14¢C)
0.09524/ 11 ¢ € —29.484
Cr(y) =
v 0.02732/1yl, —29.484+ <Yy s~14+495 (14d)

where the hydraulic conductivity, K 1s in cm/day;
and the pressure head, ¢ is in cm.

The initial and boundary conditions are as
follows:

'9(20)- 0.15+0.0008333 z, 0<z<60

71 0.2000 60<z% 125 (15a)
U(0.1) =-14.495 6, =0.38 (15b)
w(125,t) ==159.19 8,.=0.20 (15¢)

where the distance z is in ¢m; and time t is in days.
The following were the input data (main
program, Appendix A) for our test problem:

Interpolation parameter, INT = Q;

Saturated hydraulic conductivity, KSAT = 37.8
cm/day;

Saturated moisture content, POR = 0.38;

Tortal number of nodes, NODES = 51;

Spatial increment, DELZ = 2.5 ¢m;

Initial time step size, DELT = 1 sec;

Convergence criterion, TOL = 0.01;

Time weighting factor, EPS = 0.3;

Maximum iterations during a time step, MAXIT = 10;
Maximum size of time step, DELMAX = 1000 sec.

The variables NP and NPT (main program,
Appendix A) were given dummy integer values
when the parameter INT = 0. For node 1, the
boundary conditions were given by: type of
boundary condition, NBC(1) = 0, the pressure head
value, BC(1) = -14.495 ¢cm, and Q(1) = 0. For
node 51, the boundary conditions were:
NBC(51)=0,BC(51)=-159.19 ¢m, and
Q(51) = 0. The initial conditions were provided by
calling subroutines FNCZT and FNCTP.

Figure 1 is a comparison of water content
profiles obtained using our unsaturated flow

MOISTURE CONTENT
0.2 0.3 0.4
i

T l T I

intial distrbution

F
(&)

o - —
I
a

w 80— -y
a

B Q9 hr ]

100 -

B ey gEeH (1978) 7

® mwn
120 —
L - | 1 I

Fig. 1, Moisture content profiles at two and nine hours for
the Panoche clay loam soil (Warrick et 3/, 1971);
Az=25cmand e =05,
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program with those obtained by van Genuchten
(1978) using his mass-lumped linear finite-element
(MFE) program for the Panoche clay loam soil. As
discussed earlier, a variable time increment size was
used during simulation. A total of 86 time steps
were needed for the nine-hour simulation.
Frequently it required no more than four or five
iterations to converge to a relative pressure head
tolerance value of 0.01; at no time did it require
more than seven iterations. As suggested by
equation (14d), there is a discontinuity in C(y) at
¥ = -29.484 cm. However, these same functional
relationships (14) were also used by van Genuchten
(1978). An indication of accuracy of our numerical
results is given by the material balance error
analysis. The cumulative material balance error at
the end of the nine-hour simulation was of the
order of 107% percent of the total inflow rate. We
used a single precision in our computer code; use
of double precision would have further improved
these errors. Our numerical results are nearlv
identical to those of van Genuchren (1978); the
two solutions were indistinguishable from each
other on the plots (Figure 1). However, this is to
be expecred since both our and van Genuchten’s
method used identical numerical schemes.
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Appendix A, A Finite-Element Program
to Simulate Unsaturated Flow
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Mgy Lol FORMAT(' ‘10X, %¢'=") ,ALD,'SOIL PROPERTIES °,i0('="1//)
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98309 =
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[LLIL R

08400 REAQ (6, V) NP, KXAT

04709 IF (TVT. EQ, ) SO TO 77O

08300 WRITENPRT, LOD T

8900 1202 PORMAT(C L 10X, LOT =)L R L LIT LTRR LAY =Y, /Y
03000 DO 1Y 1AlNP

14100 READ (6. *)XP(T} XK{L}

a9100 XWif mexp(ly

09100 WRITE(MPRT, LOOTIXPIL) XK {1}

49400 1003 FORMAT(' *,L0X,2%16.5)

9400 io CONTINUE

0409 70 CONTINUGE

08700 <
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18000 READ (&, %) NPT, poIR

ieLdo tF (INT .EQ, 0) GO TO 172
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10400 2 LNPT

1a%09 READ (6, ") XPR (L)  STHE(D)
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AL N

WRITE (NeRT, 101%)

FORMAT (' /10X, 101 =", "PSI',10{ '="}," € ', 100" ="y, /)
ABC NPT |

00 30 Iwl.NpC

XCHO) & (XTHR L) =XTHE (Te L)1/ XPR (D) ~XPR(I+|})

YP{I) %0, 5= (XPR{I)+APPIT=1))

ARITE (HPRT, LOOGIXPIT) ,XC (T}

FORMAT{' ‘', L10X,2FLlA.%)

CONTIMNUE

CONT INUR

READ DARAMETERS

READ (6, *1NOOKS , DELY , DELT , TMAX  TOL  EP® , MAXIT, DRLMAK
#R{TEINPRT, 137) YODEE, DELZ, DELT . TMAX, TOL, KPS, RAXIT, DELMAX
PORMAT{" " ,//.L0X," TITAL NG, 2F NOQES«
RERPRS: 2 P TELTA B.5,0,LL8," DELT=
LN, TMAZe "L FLALS,/, LLX, 'TOLERANCE= ',
LiX.'  TIME WEISHTING FACTOR. 288 = ',FL§.%,/,
LIK, " MAXIT= ', [4,/,11K," MARIMUM DELTw',FLE.3./.
F/LLK, T BOUNDARY COMDITI{ONG =====m==',

L3x,” vODE',' TYPE',' PET Y, q "
NOOE L <NODES = |

NELEM=NODE |

L=0ELe

HELIMLaNELEM=]

INCTIAL COMDITION AND BOUNDARY CONDITION

0O 3% tei,2
Na|

IF {I.9Q.21N+H00E%

READ (6. *)NaC (1) ,AC(T), (D)

WRETE (NPRT, LL) N, NBC(T) . 3C (1) ,Q(1)
PORMAT (* ', 10X.215,2FL0.2)
PAL(MI=8T([)

PRIT (NI =PST ()

TPYLINYAPPST (M)

CONTINUE

WRITE (NPRT, {Q08)

PO;HA‘N‘ L7 L0RADET =), INTTTAL CONDETTOm® \0(*='},/)
IF (INT .£0. 1) GO TO 96

0O 407 (=2, 400EL

I=2+0ELT

CALL FNCIT (3,THETA)

JALL FNCTP (THETAPSI(IV)

cONTINUE

30 T 404
REAQ(S,. ") (PRSI (T}, [=2 NODEL)

CONT INUE

20 40 [#2,80DE)

ePSL{TIwAET (1)

TeSL (D =PPRT T

CONTINUE

WRITR [NWRT, L0091 (L, 287 ([}, ]=| NODES)
FORMAT (5 (T4.F10.3))

SIMULATION STARTS HERE

TiMEsd. O
LA®Q

TiMg LOow

CONTINUR

LA=LA+L

TIME=TIME~DELT

WRITE (NPRT, LO10I TIME

FORMAT (T L/, 10{" =", 'SINULATION TIME = ', Z1).8,5100"="1,
Al

PREOTCT PSI AT ~+1'2 TIME STEP AY L[NEAR EXTRAPOLATION

THENATHIN

W= TWOUT

WZ | 2wl

OWINeO .

OWOUT+A .

TFILA.GT. L) PTT90.5*DELT/OTL
0o 100 (=1 ,NODES
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IF(LA.LE, L) PSINCLI»PRPSI(T)
CONTIRUE

ITERR)

T*ERATION LOOP

CONT (HUE
ITEA (TERS L

AET UP ELEMENT STIFFNFSS SATRIX

IF(PSIN (K} . LT.0.01CALL INTERP(XP, XK, PSINIK), XKL, ")
TPIPSTH (KL} LT .N.QICALL INTERP(XP, XK, PATR(KS+L) , XK2 N
TF(PSIHIK) L7, 0. 0)CALL INTERP(YPF, X, PEIM(K) ,CL, 400
[F(PEIM(R¢1) . T.0.0)CALL INTER KL BRIH(KeL) ,C2,80C)
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A Three-Dimensional Analytical Model to Aid in

Selecting Monitoring Locations in the Vadose Zone
by C.R. McKee and A.C. Bumb

Abstract

Monitoring of the vadose zone is a potentially complex, time-consuming, and expensive problem. The location of
monitoring points and selection of monitoring instruments can be optimized by using computer models. Numerical
models developed for this purpose in the past have often been expensive and difficult to use. This paper describes a fast.
three-dimensional, approximate analytical solution to the moisture content in the unsaturated zone. An analytical
solution is available for steady-state drainage, whereas an approximate analytical solution is available for the transient
case. The model will handle an arbitrary distribution of fluid sources, as well as vertical and horizontal impermeable
boundaries.

The model may be applied to predict the incursion of fluid from accidental leakage or infiltration over large areas
from unlined ponds and land treatment sites. The model is quite useful as an aid in designing monitoring or
premonitoring programs near hazardous waste sites. Examples are presented to demonstrate the model’s utility in
estimating the maximum spread of a contaminant, the extent to which the fluid may spread with depth, the regions of
high and low capillary pressure, and the non-linear behavior of the saturation when drainage from several sources in
considered. These results are useful for the placement of monitoring locations and the selection of appropriate
instruments, and as atool in working with regulatory agencies to design monitoring programs. A glimpse of the future is

necessary for today’s planning. Computer models are some of the most useful crystal balls we have available.

Introduction

Computer models for predicting unsaturated flow
near waste sites have become more numerous and preva-
lent in recent years, although their use has yet to become
widespread. A review of such models has been given by
Oster (1982). The use of models in the unsaturated zone is
complicated by a lack of data and the need for the
operator to be familiar with numerical analysis of non-
linear problems. Moreover, the assessment of the impact
at a hazardous waste site is a time-dependent problem in
three dimensions (Adams et al. 1983), which further
suggests its complexity. Furthermore, instabilities can
arise, requiring a linearization of the saturation vs. capil-
lary pressure curve (Segol 1982). Comparatively few
hydrologists and geohydrologists have the necessary
mathematical and computer training to handle such dif-
ficulties. Indeed, many of these problems continue to be
the object of present-day research. The authors have
developed a computer model that is free of the problems
associated with the use of numerical models, yet is three-
dimensional and can be run rapidly on a microcomputer
by the experienced hydrogeologist.

The problems associated with monitoring and pre-
dicting the fate of hazardous waste in the vadose zone can
lead to considerable expense (see, e.g., Devary and
Schalla 1983) and these programs, if not well planned,
may not obtain the necessary data, resulting in delays
that further escalate costs. Everett et al. (1982), in an
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excellent review of monitoring systems, point out that
premonitoring programs are necessary because they pro-
vide clues on potential mobility rates and valuable
information for the design of a vadose zone monitoring
system. The approach they advocate appears largely
intuitive and based on previous experience. Personal
experience, unfortunately, is difficult to quantify and
pass on to other investigators. Hence, the use of premoni-
toring data as input to a mathematical model to predict
the direction and rate of migration of contaminants is
advocated. Most investigations do not have sufficient
funds available in the premonitoring stage to obtain the
extensive data required for numerical modeling. Thus,
the recommended approach is to use an analytical model.
This will allow optimum use of the monitoring budget to
concentrate sensors and sampling devices in the most
likely avenues of pollutant migration. The authors’expe-
rience in working with regulatory agencies is that they
often require a worst-case analysis, using a mathematical
model, to predict paths of contaminant migration in case
containment mechanisms fail. The monitoring systems
are then designed, based upon this analysis, for early
detection of contaminant migration.

According to Everett et al. (1982), a vadose zone
monitoring program consists of premonitoring followed
by an active monitoring program. Premonitoring consists
of assessing the hydrologic and geochemical properties
of the vadose zone. In this study, “premonitoring” is



synonymous with the term “site characterization.™ Here,
the authors are interested only in the hydrologic charac-
terization of the vadose zone. Lack of a chemical assess-
ment is not a significant problem because anions, many
complexes, and some organics travel with little or no
adsorption. Some chermicals may affect fluid mobility,
and this can be readily incorporated in models using
different mobility rates. Chemical movement in the vapor
phase may be important, but is not considered here.
Tracking the infiltration front usually represents a worst-
case analysis. If this shows unacceptable migration, then
a geochemical site characterization may be necessary.

Selection of a Computer Model

The mathematics of unsaturated or multiphase flow
are well known (they are reviewed by Bear 1979, Corey
1977). The equations have also been tested in numerous
hydrologic, agricultural and petroleum laboratories.
Nonetheless, the equations remain very difficult to solve
either analytically or numerically due to their non-
linearity and tendency to form sharp fronts. Sharp fronts,
in turn, are the result of a non-linear dependence of the
hydraulic conductivity on saturation. Ground water
velocity increases with saturation, causing waves or per-
turbations to catch up to the infiltration front. The pro-
cess is analogous to the formation of shock waves in
hydrodynamics.

Procedures in modeling unsaturated flow are re-
viewed or illustrated by Lappala (1982), Segol (1982),
Sharma (1982), and Dagan and Bresler (1983). These
procedures or steps may include: (1) site characterization
to obtain field data for a model; (2) selection of a
mathematical model; (3) selection of a method to obtain
a solution from the mathematical model; (4) prediction
and comparison with field data; and (5) history matching
and improvement of the model selected.

According to Dagan and Bresler (1983), accurate site
characterization in the case of unsaturated flow is a
time-consuming process. Moreover, the error due to spa-
tial variability, which is random in many cases, can be
much larger than that due to model approximation. The
reason for the difficulty stems not only from the usual
geologic variability but also from the large array of
parameters that must be determined. These include the
non-linear functional dependence of saturation on capil-
lary pressure of suction and the corresponding relation-
ship between effective saturation and hydraulic conduc-
tivity. Approximately eight parameters are required to
characterize a given soil type depending upon the func-
tional forms selected to describe the capillary pressure,
saturation, and hydraulic conductivity curves. Because it
is often difficult to obtain the desired accuracy for neces-
sary measurements, and because unsaturated flow prop-
erties are often unknown and must be inferred from
measurements in the literature on materials having similar
composition, the selection of an elaborate method to
solve the equations would appear unwarranted. This is
not a serious limitation because simple approximate
methods, even in a spatially variable field, generally lead
to predictions as accurate as field data for the saturation
over the entire field (Dagan and Bresler 1983).

A typical approach to the problem is to state that
because the equations are non-linear and because hetero-
geneities exist, a finite difference or finite element
approach is the only practical method of obtaining a
solution. The authors do not agree with this viewpoint,
and indeed believe that in many cases there are strong
reasons for considering an approximate analytical solu-
tion instead. The alternatives will be compared to justify
this approach.

Once the basic site characterization is complete and a
mathematical model describing the physical situation is
at hand, the nextstep is to select a solution technique for
the equations. The major mathematical solution tech-
niques include finite difference, finite element, analytical,
and combined analytical and numerical methods.

Finite Difference and Finite Element Models

For steady-state problems, using regular meshes and
the common triangular elements, it is easy to show that
both the finite element method (FEM) and the finite
difference method (FDM) result in identical difference
equations (Allen 1955, Zienkiewicz 1977). Higher-order
FEM have not proven as useful in solving unsaturated
flow equations, Higher-order methods involve more
computational time per discretization point, which is
compensated for by using fewer points. However, this
works only if the functions are smooth and interpolation
can be performed with high accuracy (Finlayson 1980).
Because unsaturated flow often results in rapid changes
in saturation, higher-order methods must still use more
potnts to define these areas, which often makes them
prohibitive in cost (Abou-Kassemn and Aziz 1982, Ewing
1983). .

FEM enjoys advantages over FDM in ease of inter-
polating data and fitting odd boundaries. However, for
steady-state and transient problems with variable coeffi-
cients in two dimensions, FEM has some disadvantages
(Emery and Carson {971). These include long execution
times and large storage requirements, which may be an
order of magnitude larger than using FDM, as well as
potential inaccuracies in the treatment of sources and
transient terms. For three-dimensional problems, the
storage and execution time favor FDM by the square of
the matrix band width over two dimensions. Both, how-
ever, become unwieldy in storage and execution time in
three dimensions when fine zoning is required. According
to Brebbia (1981), the finite element method, in many
cases, constitutes an inaccurate and expensive technique,
whose early claims were often exaggerated.

While these differences are of interest, it is noted that
efficiency considerations generally dictate that lower-
order methods be employed. Except for storage and
execution times, the stability and accuracy of the two
methods are similar.

For regular meshes both FDM and FEM are spatially
accurate to second-order terms (square of the nodal
point spacing multiplying the higher-order derivatives of
the dependent variable). However, most practical prob-
lems require the use of irregular meshes that are only
accurate to first-order terms. Upstream weighting of
conductivities and fully implicit weighting are frequently
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used to preserve stability, and these. again are only first-
order accurate. As long as the functions involved are
smooth, the higher-order derivatives in the error terms
remain bounded. When sharp fronts are present, how-
ever, the higher-order derivatives become very large and
can cause substantial error. Under this condition, order-
of-error concepts lose their value, and the solution of the
difference equation will generally not converge to that of
the partial differential equation.

Lax’s equivalence theorem for linear equations is
often invoked to show that if stability of the difference
equations occurs, then the solution will converge to that
of the differential equation (Smith 1978). However, both
the FEM (Segol 1982) and the FDM (Sharma 1982)
formulations are unstable (implying lack of convergence
to the differential equation) unless the saturation vs.
capillary pressure curves are linearized. But if non-linear
material properties are to be linearized, why measure the
non-linear soil properties in the first place? Upstream
weighting of conductivities and the commonly used fuily
implicit technique are deceptive terms to increase stabil-
ity. These methods effectively add diffusion terms to the
solution, which were not present in the original differen-
tial equation.

For low-order FEM and FDM, grid orientation
effects can also distort the solution. (For a discussion, see
Aziz and Settari 1979). The calculated displacement
fronts will appear vastly different depending on whether
the leading edge of the infiltration front is moving parallel
to or diagonally along the mesh. Both answers are calcu-
lated incorrectly! Grid orientation effects are eliminated
using higher-order FDM (Yanosik and McCracken 1973,
Abou-Kassem and Aziz 1982) and FEM (Settan et.al.
1977), but again at additional expense and complexity.

In the authors’ experience, some instabilities can be
eliminated by using a grid that is smaller than the dis-
placement head p, (see Brooks and Corey 1964, for
definition). However, as Segol ( 1981) states, “This usually
requires the nodal spacing of the finite element grid to be
small (on the order of centimeters or tens of centimenters)
to avoid numerical instabilities. [t is impractical to design
such a fine mesh for a field problem because of economic
considerations.”

The preceding remarks serve to illustrate the authors’
reservations concerning the use of FEM and FDM for
solving the equations of unsaturated flow. In general.
their power and accuracy for solving highly non-linear
equations are often overstated. The thousands of waste
sites requiring analysis, compared with the relatively few
geohydrologists familiar with advanced numerical tech-
niques, and the questionable accuracy of these techniques
in practical use, has motivated the authors to re-examine
the utility of purely numerical solutions and proceed
instead in another direction: that of analytical solutions.

Analytical Solutions

Included in this category are analytical, quasi-
analytical, and approximate analytical solutions. Fol-
lowing Philip (1969), the authors define analytical solu-
tions as those found completely by mathematical analysis.
Quasianalytical solutions are those that have a well-
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detined mathematical form, but require numerical tech-
niques for their evaluation; integral equations and itera-
tive successive approximation methods fall in this cate-
gory. Approximate analytical solutions include situations
in which the solution does not exactly satisfy the differen-
tial equation, but the error can be shown to be negligible
for specified conditions. The latter approach broadens
the range of possible applications and increases the flexi-
bility of analytical solutions, and is the approach followed
in this article.

The advantages of the analytical solution the authors
are proposing are: (1) it is three-dimensional; (2) no
numerical dissipation or damping coefficients are re-
quired; and (3) it is fast enough to run on microcomput-
ers. The computer model can handle arbitrary distribu-
tion of unlined ponds, land treatment areas, and/or.
leakage from surface sites, directional permeability, ver-
tical impermeable and constant-head boundaries, and
horizontal impermeable boundaries. For certain cases,
time-dependent solutions are available. Among the dis-
advantages are that the boundary geometry must be
regular, permeability may not vary spatially (although
directional permeability is included, which mav some-
times account for layering effects), and the model should
not be used near the water table if mounding of the
phreatic surface is appreciable. These drawbacks will be
removed in the future using combined analytical and
numerical techniques.

Theory .

The governing equation for the movement of fluid in
an unsaturated medium was first obtained by Richards
(1931). When conservation of mass is applied using Dar-
cy’s law, as modified by Buckingham (1907), and allowing
that the gravity vector need not coincide with a positive
coordinate axis, the governing equation for unsaturated
flow is (in general terms)

= . 7
v . {_IS(S) v (PC(S) +g|—g[— ]: - ¢%§' (la)

where K is the permeability tensor: p, is the capillary
pressure head or suction, measured in units of head of the
wetting fluid; R is the radius vector from the source; S is
saturation, tis time; and ¢ is porosity. When z is defined
positive downward, with gravitational force downward.
in a homogeneous medium, the result is

7 AKS) V (peAS) +2) | = - ¢%=:’- (1b)
On the other hand, if z is taken as positive upward, then
the sign of z is negative in Equation 1b. In this article z is
taken as positive downward.

A general solution for Equation Ib is not available
because of its non-linear character, which arises from the
interrelationship of K, p., and S. For certain cases, ana-
lytical solutions are available (Philip 1969). This article
describes an analytical solution that is computationally
faster than numerical procedures, yet maintains the time
and three-dimensional spatial dependence. The solution
is obtained by simplifying Equation 1b using a Kirchhoff
transformation. The simplified differential equation is
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Figure 1. Typical piot of capillary pressure as a function of satura-
tion to illustrate the selection of S, S_, and Pe,-

linear for some specific functional relationships between
K, S, and p_, described in the following section. An
analytical solution can then be obtained for an un-
bounded medium, while for a bounded medium, a modi-
fied method of images is used.

Functional Dependence of p, and K on S

Many empirical relationships for saturation vs. capil-
lary pressure and saturation vs. hydraulic conductivity
have been suggested (Corey 1977, Bumb 1987). The spe-
cific functional relationships for the dependence of capil-
lary pressure and hydraulic conductivity on saturation,
which will be used to transform Richards’ equation, are

—_ S'Sr _ P.- P
S, = g5 = ewp| - 252 @
and
K=K,S§, (3)

where K is saturated hydraulic conductivity; n is an
exponent in Equation 3; P, 1s a parameter in Equation 3;
S, iseffective saturation; S_ is maximum saturation; S_is
residual or irreducible saturation, and 3 is a parameter in
Equation 2. When capillary pressure is equal to Pe»
effective saturation is 1.0, and actual saturation is equal
to the maximum saturation, In general, the more uniform
the pore size distribution, the smaller 8 becomes. Equa-
tion 2 is referred to as a Boltzmann distribution. It is not
valid for p, > P, since it will yield values of S, greater
than unity.

To establish the validity of the functional relationship
between p_and S, Equation 2 is used to fit experimental
data for capillary pressure vs. saturation. For plotted
capillary pressure vs. saturation data, the values of S,
Sq. and p, are approximately established as shown in
Figure 1. Once approximate values of S and S, are
selected, p, and f can be obtained using standard curve-
fitting techniques (minimization of absolute error, least-
squares method, relative least-squares method, etc.).
Depending on the quality of the curve fit, S  and S, may
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Figure 2. Curve fits (solid lines) to match data from Brooks and
Corey (1964) for consolidated material. Data were converted to an

equivalent water-air system using Brooks and Corey's Equation 17.
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Figure 3. Curve fits (solid lines) to match data from Brooks and
Corey (1964) for unconsolidated material. Data were converted to
an equivalent water-air system using Brooks and Corey'’s Equation
17.

need to be adjusted and the curve-fitting technique
reapplied to obtain final parameter values.

Equation 2 was fitted to data from eight samples
studied by Brooks and Corey (1966) and one sample
from a low-level waste management site in the Powder
River Basin in Wyoming. Figures 2, 3 and 4 show the
data points along with the curves obtained from Equation
2 using the values of parameters given in Table 1. As can
be seen, the curve fits are excellent in the interval S t0 S .

Expressions defining the relationship between S and
p. are more commonly found in the form of a power law
(Corey 1977). These, however, are also empirical rela-

Spring 1988 GWMR 127



tionships. Curve-fitting techniques are required to select
the values of the adjustable parameters, and their range
of validity is also restricted (Bumb 1987). Thus, these
relationships suffer the same restrictions as Equation 2.
Equation 2, however, has the advantage of permitting
Richards’equation to be transformed to a linear equation
for certain cases. This fact, and the fact that a reasonable
fit to experimental data is obtained, provide the justifica-
tion for using Equation 2.

TABLE 1
Properties of the Soils Used in the Examples
SI' sm Pcl ﬁ

Sample %) (%) (cb) (cb)
Powder River Basin soil 27.7 950 397 78.09
Touchet silt loam* 360 96.5 1499 8.32
Fine sand* 174 945 7.39 3.32
Hygiene Sandstone* 58.0 975 10.56 3.27
Berea Sandstone* 31.0 960 848 275
Volcanic sand* 155 98.0 3.05 219
-Fragmented sandstone* 33.0 970 167 170
Fragmented mixture* 300 96.0 327 147
Glass beads* 9.5 970 563 091

*Converted to equivalent water-air system using Equa-
tion 17 of Brooks and Corey (1964).

A power-law expression relating relative permeability
and effective saturation has been proposed by several
authors (Corey 1954, I[rmay 1954, Averjanov 1962). These
expressions are equivalent to Equation 3, the values of
Kg Spe S, being defined by the data, leaving n as an
adjustable parameter. Corey (1954) proposed a value of 4
for the exponent in Equation 3, while Irmay (1954) pro-
posed a value of 3. Reiss (1980) suggested a value of | for
a smooth fracture. Using data from Brooks and Corey
(1964) and Irmay (1954), our curve-fitting procedures
suggested n to be in the interval from 2 to 3 for consoli-
dated and unconsolidated material. By analyzing draw-
down test data from a saturated coal seam in the presence
of desorbing methane, Bumb (1987) and McKee and
Bumb (1987) obtained n = 3, in agreement with Irmay’s
theoretical result. The case for n = 1 is particularly attrac-
tive, because then an analytical solution for the transient
case can be obtained. For n # 1, Richards’ time-
dependent equation does not transform to a linear equa-
tion and successive approximations may be used to
obtain a solution.

Analytical Solutions
A new variable, 8, is defined using a Kirchhoff trans-
formation, to reduce the non-linearity of Equation 1b:

6= [Kdp.= & x (4
P

Then, using Equations 2 and 3 and assuming an isotropic
medium, Equation b is transformed to
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Figure 4. Curve fit to match data for PRB soil.

% , 2% , 2% 26 _ 1 o4
ox? + dy? + 2 "% oz D ot (33)
where
a = % (5b)
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ﬁKO 1
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As can be seen from Equation Sc, the non-linearity
involving & for the term in brackets becomes unity only
forn= 1. For n = 1, the coefficient of the diffusivity, D,
simplifies to

—_ BKO =
D _¢(Sm _s) for n ] (5d)

The same result can be obtained for anisotropic media by
scaling the coordinate system using the following trans-
formations:

x = x* Vk,/k, (5e)
y = y* vk J/ky (56)
k./k &
= 7% X 5
1=z [\/ _—Lkz ] (5g)
and
%

— kz .
= §ax] o



where X*, y* and z* are the actual coordinates in the
anisotropic media and coincide with the principal axis of
permeability.
Note that Equation 5a1s a linear differential equation
-forn = | in the transient case and for all values of n at
steady-state. The boundary and initial conditions are
obtained by recognizing (1) that the medium is initially
assumed to be at uniform saturation; (2) that far from the
point source the medium will be unaffected; and (3) that
there is a source of constant strength (infiltration rate) at
the draining site.

Time-Dependent Solution forn=1

The solution to Equation 5a for n = | is obtained by
analogy with the problem of heat transfer from a point
source of constant strength moving through a uniform
mediumn. The solution for a source at the origin is (Cars-
law and Jaeger 1959)

{7 aDit )= Fry
41D 1)
(t e

L 60

i \[
A6 =4 0.,__0...__-[&“””
b AVE AP o

where 8, is the value of § at initial saturation, and Af is
the change in 6. Evaluating the integral for a source with
infiltration rate Q at x’,y’,z’ results in

(z-27) 2 :
6_0 = Qef__. eUR‘-’- erfc _.B___-f—‘x_@
0 8mR 27Dt 2
(6b)
+ eoR 2 erfe R - GLDI
23/Dt 2
where
R = V(x-x)?+(y-y)* + (2-2)° (6¢)

This solution is for a point source. Areal leakage for
land treatment facilities can be obtained by superposition
of a large number of point sources. Superposition can be
used to sum any number of solutions of the form of 6b,
since 5a is linear when n = | or in the steady-state case.
Saturation as a function of space and time is obtained
using the inverse transformation from Equations 2, 3,
and 4,

(7N

in
S=5 + (S, - S (“3)

BK,

Time-Dependent Solution for n # 1

" As noted earlier, governing Equation 5a is non-linear
when n # 1. However, the non-linearity occurs only in
the coefficient of diffusivity, D. The non-linearity for D
(Equation 5c) is in the S, term. To be conservative, the
authors evaluate the coefficient of diffusivity by substi-
tuting unity for S,. By doing so, diffusivity is overesti-
mated, and therefore the spreading of soil moisture con-
tent is overestimated. In the limiting case of large times,
time-dependent model calculations are the same as
steady-state model calculations, indicating some confi-
dence in the approximation.

Steady-State Solution

_ If the steady-state case is considered, the n = | restric-
tion may be removed because the governing equation,
% _ 2% ., 2% 28
= 4 = e _ =4

ax? ay* a2 "% & 0 (8)
is linear for all values of n. Non-linearity, however, is
preserved in the inversion to capillary head and satura-
tion. The solution for the steady-state case is

o = iR OXP {— T(R-G- z’))} (9)

This result is also from Carslaw and Jaeger (1959), as
noted by Philip (1969).

Boundaries

The solutions presented in the preceding section are
valid for a vadose zone of infinite depth and extent. These
assumptions are questionable for many situations, par-
ticularly when the physical boundaries of the vadose zone
are near the leakage or infiltration. A common example
is leakage under a lined pond, where the lining forms a
horizontal impermeable boundary. Solution techniques
for impermeable boundaries can be developed using the
approximate method of images and non-linear superpo-
sition for partial differential equations, Because the results
are different for horizontal and vertical boundaries, they
are presented separately.

Horizontal Impermeable Boundary Above the Source

When no flow through the soil surface is allowed, and
the source is at a depth d below the surface, Raats (1972)
gives the following equation:

8, - 6, = Abu[r,z-d] + e@ Afy[r.z+d]

(10)

- W em g [ L (24P ¥ ()
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where E, is the exponential integral function. Equa-

tion 10 is also applicable with appropriate definitions of

d for any impermeable boundary above the source.

Horizontal Impermeable Boundary Below the Source
For an impermeable boundary at z = a, the no-flux
condition is represented by:

g ez
||
where €, is a unit vector in the positive z direction. This

condition represented in terms of the Kirchhoff trans-
formation vanable @ is

0
ﬂux=—K5(pc+ )=0 atz=a (I

A

— -g. : ez
z=a B}

fue = &
ux = 3z

K =0 (12)

Z=a

The theory of images, as illustrated in Figure 5, has
been used extensively in the hydrology of saturated flow
to model impermeable and constant-head boundaries
(see, for example, Muskat 1946), and in conduction of
heat in solids to model perfect insulation or constant’
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temperature {Carslaw and Jaeger 1959). For these appli-
cations, @ would represent the potential (head or temper-
ature) and the no-flow boundary condition given by V-4
= 0 at the boundary. In that case the exact method of
images results in § = 8y + 8,, where 8, is the solution for
the real source and 6, is the solution for the image source.
In the saturated flow case (@ + 0), the real and image
solutions have the same mathematical form, but the
presence of gravity causes an asymmetry between them
for unsaturated flow. The authors’ modified method of
tmages has the same form as the classical method of
images, namely :

Af = MGy + A8 (13)

In Equation 13, 8 is the solution due to a “real” point
source at (x’,y’,z’) in an infinite medium (which may be
either Equation 6b, time-dependent, or Equation 9,
steady-state) and #; is the solution due to an “image”
point source for a horizontal boundary at (x',y’, 2a-2") in
an infinite medium with gravitational force acting
upward:

-al-Zamsy 2 Dt
agh = 6 -4, = Qedrir) {ean,z erfe ( R .,.ai?.‘)

87R, 2Dt 2
e Ryl arfe (-R—'_..*'a@)} (142)
2Dt 2
where
R, = V(x-x) + (y-y)* + (z-(2a-2))? (14b)

The steady-state image solution is also obtained by
changing the sign of (z-z') in Equation 9 and replacing R
with R,. Notice that the flow due to the “real” solution
(8g) will be downward (gravity pulling water downward),
while the flow due to the “image™ solution (8%) will be
upward (the direction of gravity is reversed). The flux
due to a real source in which gravity is downward is then
06y
fluxg = 3 K (15
and the flux due to an image source in which gravity is
upward is

q _ {28,

ux; = |3 + K
and the total flux at the boundary is given by

flux = fluxg + flux; = 0 (17

which is satisfied as shown in the appendix, and hence
the solution is Equation 13. The error introduced by
reversing the sign of gravity is evident when Equation 13
is substituted into differential Equation 5 as all the terms
do not cancel (see appendix). The remaining terms vanish
exponentially with distance from the real source.

Z=a

(16)

Zz=a

Vertical Impermeable Boundary
The vertical impermeable boundary at x = b is
represented by

~§—(pc+z)=o (18)
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Figure 5. Schematic of real and image sources used to model a
horizontal “impermeable” barrier under the real source.

or, equivalently,

o8
o 0 (19)
This is easily satisfied, with no change in the sign of

gravity, by
Ve = Vi, + Vo (20)

where 8 is the solution due to the “real” point source
and 6 is the solution due to the “image” point source
located at (2b-x".y’,z'); €7 is obtained by substituting
(2b-x") for x" in Equation 6a.

Flux and Velocity
The flux in the unsaturated zone is given by

g ez '
ﬂux—_-wKV'(pc'F "*_.—z) 20
F
where €, is a unit vector in the positive z direction, Note
that p_ is in units of head of water (or wetting fluid).
The x. y, and z components of flux in terms of 8 are

x compounent of flux = 28
P ax (22a)
component of flux = 28 '
ycomp By (22b)
g6, n
zcomponent of flux = % - gT_g_lz —/-3- 8 (22¢)

Derivatives of @ are easily calculated from the expression
for 8. Equation 22 is linear; therefore, the method of
superposition can be used to obtain flux. If a horizontal
impermeable boundary below the source exists, Equa-
tion 22 will have the appropriate sign with the second
term on the right.

The cross-sectional area for particle movement is
reduced by a factor of ¢S. Therefore, the particle velocity,
v, is obtained from flux using

flux
— 23



Application of the Computer Model to
Monitoring

There are at least six ways in which computer model-
ing can aid in designing an effective monitoring program:
(1) The maximum spread, both laterally and vertically, of
contaminants from a leak or waste site can be estimated.
Most monitoring should be concentrated in this region,
with sparse monitoring outside it to check that the
movement of fluid is as anticipated; (2) The model will
indicate whether fluid from the site tends to spread with
depth. Accordingly, samplers and instruments, such as
moisture blocks. can be set at depths where they will be
most likely to intercept fluids from the source; (3) Regions
beneath the waste site or leak can be classified into areas
with low and high soil moisture suction or capillary
pressure head values (most moisture movement occurs at
less than a few meters of suction head). This information
can be used to identify the most accessible flow region for
instrumentation, because the high flow region wil trans-
port contaminants most rapidly; (4) One can, from the
computer output of suction and saturation, estimate the
range of suction and saturation values expected in the
vertical plume. This range can be used to select the
optimum instrumentation to measure moisture content
and potential, and the appropriate sampling units such as
lysimeters. Many types of instruments are available;
however, they often work over limited ranges in soil
moisture and suction. Computer calculations will help
reduce the uncertainty in selecting appropriate instru-
ments to carry out the desired function. (5) The non-linear
nature of hydraulic conductivity and capillary pres-
sure/saturation must be considered when leakage occurs
from multiple adjacent sources in the same area. Super-
position of flows from multiple sources can create an
unanticipated region of higher flow between the sources;
and (6) The computer model can be used as an aid in
working with regulatory agencies to lend assurance that
an adequate monitoring plan has been, or will be,
implemented.

Two different soil types will be used to illustrate the
preceding concepts. The first, termed Touchet Silt Loam
(TSL), was studied by Brooks and Corey (1964) and has
0.54 ft! (1.77 m"') for the value of @ when n = 3. The
second is a sample taken from the Powder River Basin
(PRB) in Wyoming in conjunction with an investigation
for an experimental low-level waste disposal facility. For
this soil, a is 0.057 ft! (0.189 m-!), again for n = 3.
According to Philip (1969), a for most soils lies in the
range of 1.52 to 0.06 ft! (5 to 0.2 m'), Note that a is
proportional to |/ and that large B values correspond
to a wide range of pore sizes. Hence, TSL soil contains an
average range of pore sizes for the soils Philip (1969)
studied, while PRB soil is within the range expected but
toward the lower range of a, indicative of a wide range of
pore sizes.

These two soil types were chosen because they exhibit
very different behavior of the vertical unsaturated flow
plumes, and they serve to illustrate the points the authors
have made for the use of a computer model. In all cases,
the effective saturation, S, is plotted in the accompanying

figures. The real saturation can be obtained using the
valuesof S, and S, found in Table 1. When S, =0, thesoil
is at residual saturation, S, where soil water movement is
negligible. The permeability of the PRB soil was mea-
sured at 0.4 darcy, or a hydraulic conductivity of 1.15
ft/day (0.35 m/day) for water movement, and a porosity
of 34.5 percent. TSL was assumed the same so that the
effect of @ on the saturation profile can be illustrated.

Vertical permeability is normally less than horizontal
permeability. A ratio of horizontal to vertical permeabil-
ity of 4 was selected based on measurements conducted
on shallow aquifers. It is assumed a layered soil will
exhibit the same behavior. If S, is the same for both soils,
then the hydraulic conductivity will be the same for soils
with the same saturated hydraulic conductivity. For the
following examples, it is assurned that initially the soils
are at irreducible saturation. All the steady-state examples
use n = 3 to relate effective saturation to hydraulic con-
ductivity, i.e., K = K S}

Point Source Leakage

Point source leakage is typical of the behavior of
leaks from buried pipes or tanks. The three-dimensional
axisymmetric solution for TSL and PRBsoils is given in
Figure 6. The leakage rate is assumed to be 52.8 gpd (200
liters/day). Note that at 33 feet (10m) below the source,
the fluid has spread laterally to 33 feet (10m) for TSL and
72 feet (22m) for PRB soil using the S, = 5 percent
contours to illustrate the penetration of the fluid. For
equivalent increases in effective saturation, S,, the plume
for PRB soil is much wider. However, from a contami-
nant transport perspective, TSL maintains higher soil
moisture content directly under the leak, resulting in
faster movement of the fluid. At 100 feet (30m) horizon-
tally from the leak and 100 feet (30m) deep, TSL should
not transport contaminants, whereas PRB soil will. The
relative siting of monitoring instruments is obvious from
the two plots of effective saturation.

Uniform Pond Leakage

Figure 7 shows a cross section of an unlined pond or
land treatment site 49.2 feet (15m) by 98.4 feet (30m).
Infiltration of 9.17 gpm (50 m3/ day) is assumed, which is
approximately 30 percent of the maximum soil infiltra-
tion rate. This allows for a flow reduction due to fines at
the surface. The results of calculations in the TSL and
PRB soils are given in Figure 8. Note that at 80 feet (24m)
from the edge of the pond for TSL [120 feet (37m) from
the origin along the major axis] instrumentation would
have to be buried at a depth of 100 feet (30m) to intercept
appreciable amounts of fluid seepage from the site. How-
ever, the PRB pond calculation indicates considerable
saturation at the same distance from near the surface to
the maximum depth calculated. The velocity, which
increases with saturation, shows more gradual vanation.
At 65 feet (20m) deep and less than 30 feet (10m) away
from the pond, the effective saturation is 38 percent,
which is very close to saturation under the pond in PRB
soil, A sample at this point would therefore be predicted

to be representative of that under the pond. For TSL, the .
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Figure 6. Steady point-source leakage compared for a soil with
TSL and PRB soil properties. The relative spreading of the plume
in the two cases indicates very different monitoring approaches.
Fluid would move most rapidly directly under the leak in a TSL
soil. The leakage rate in both cases is 5.28 gpd (200 liters/day).

maximum effective saturation of 80 percent occurs
directly under the pond where the flow is highest. In this
case, for an existing site, directional drilling would have
to be used to sample or install instruments in the mos
active region of flow. -

Multipond Calculation

The layout for two ponds is given in Figure 9. This
problem was chosen because it is a true three-dimensional
calculation with no axis of symmetry to reduce the
amount of calculation required. If this were done accu-
rately with a finite difference or finite element computer
program using a 3-foot (1 m) grid spacing, approximately
15 million nodal points would be required. Needless to
say, it would not be in the realm of possibility to run this
problem on today's computers. This problem demon-
strates the advantagés of the analytical approach, partic-
ularly to aid in understanding the flow patterns.

Saturation contours for TSL and PRB soils are
shown in Figures 10 and 11, respectively. The flows for
each pond combine to produce the highest saturation
between the ponds. This is due to the rapid non-linear
increase in the hydraulic conductivity as the saturation
increases. The area between the ponds is the predicted
zone of greatest flow, and monitoring should address this
area first.

The spreading of fluid is again radically different for
the two cases. The TSL needs monitoring close to the
ponds, while the PRB soil will influence a larger area.
Absolute saturations between the ponds will be in the 45
to 60 percent range. Figure 12 shows the components of
particle velocities projected on the cross-sectional plane
shown in Figure 9 for TSL soil. Information on velocities
(and flux) is important in determining how fast contarmi-
nants are moving and in designing leak detection net-
works.

Time-Dependent Calculations
The principal utility of time-dependent calculations is
to estimate arrival time of contaminants at selected loca-
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for this cross-section
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Figure 7. Cross section for uniform steady infiltration calculation,
performed for half the pond along the major axis. Uniform infiltra-
tion from the pond at a rate of 9.17 gpm (50 m*/day) is assumed.

Leakage from an Unlined Waste Site
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Figure 8. Steady-state effective saturation contours for two differ-
ent soil types for the cross section shown in Figure 7. Maximum
flow and saturation occur directly under the TSL waste site and
can be accessed only by directionally drilled holes. The same satu-
ration values are accessible for monitoring near the edge of the
PRB site.

Layout of 2 Ponds for
3D Computer Calculation
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Figure 9. Plan view of two asymmetrical ponds for three-
dimensional computer calculation. The calculation is performed in
a vertical plane along the cross-section line.
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Figure 10. Steady-state effective saturations along cross section
shown in Figure 9 for TSL soil. The highest flow occurs between
the two ponds.

tions and to gauge when instruments should begin to
respond. The results for n = | and n = 3 are given in
Figures 13 and 14, respectively. The time-dependent cal-
culation is exact for n = 1. For n = 3 the coefficient of the
time-dependent term (D) is the same as for n = |; however,
the spatial part (&) contains the correct terms. The calcu-
lation can only be regarded as an approximation of the
transient behavior. This deficiency will be removed in
future work. Large differences in saturation profile again
persist for the two soil types, although they are not
shown.

Notice that for n = I, it takes almost 50 days for
I percent effective saturation to reach 100 feet (30m)
below the center of the pond. However, in Figure 14 forn
= 3, the 5 percent S, contour reaches the same point in
less than 10 days. Although the time-dependent solution
for n # 1 is approximate, faster arrival times (greater
spreading) for n = 3 compared to n = | are also indicated
from steady-state calculations (Figures 13 and 14). This
is surprising since higher values of n result in lower
relative permeability, and one would intuitively expect
that lower permeability would result in longer travel
times. The preceding statement applies to linear differen-
tial equations written in pressure. The governing equation
for the vadose zone in terms of capillary pressure (Equa-
tion 1) is highly non-linear; it becomes linear only in
terms of 8 (Equation 5). Note that this equation is analo-
gous to the equation for heat transfer from a constant-
strength source moving through a uniform medium. In
the analogous problem, a would correspond to the speed
of the moving heat source. Since « is proportional to n,
one would expect more spreading of heat (and saturation)
for higher velocities of the heat source (higher n).

Summary and Conclusions
State-of-the-art for modeling unsaturated flow was
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Figure 11, Steady-state effective saturations along cross section
shown in Figure 9 for PRB soil. Monitoring in this case shouid be
concentrated between the ponds since this is the region of highest
flow and saturation.
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shown in Figure 9 for TSL soil.

reviewed, with the conclusion that approximate analytical
solutions offer unique advantages—primarily ease and
economy of running the program and freedom from a
host of numerical instabilities and damping coefficients
that were not present in the original differential equation.
The disadvantages include a lack of spatial variation in
hydraulic conductivity.

Six reasons were given for using a model to guide the
installation of instrumentation in the vadose zone. The
primary reasons are that instruments can be selected to
optimally respond to the saturation and soil potential
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condition in situ. [nstrumentation can be located in the
areas of the highest fluid mobility to afford the earliest
detection of contaminant escape. Also, the model can be
used in working with regulatory agencies to justify and
optimize the design of a monitoring system. The model is
not advocated as the final solution for asite, but rather as
a tool with which to guide and develop a vadose zone
monitoring program. The final model must, of course,
include the effects of site-specific geometrical constraints
and heterogeneities.
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Appendix: Calculations for Horizontal
Boundary Conditions

From Equations 15, 16, and 17, it is known that the
flux at the impermeable boundary is given by

Flux = |22 K + 2L+ K

ux =13, K+ 3 z=a (A-D)
From Equations 6 and 14, it can be shown that

o0 ot

o z=a -7 oz 7=3a (A—z)

Substitution of Equation A-2 into Equation A-1 yields

Flux =90 (A-3)

z=a

Hence the image solution

Ve = Vg + V6 (A-4)

satisfies the no-flux criterion. However. when the

“image” solution for a horizontal boundary is substi-
tuted in the differential equation, all the terms do not
cancel. This is due to reversing the sign of gravity for
the “image™ solution. The ‘remaining terms for the
steady-state case are

Since a is a small number, these remaining terms are
negligible. As long as R and z are positive, the error
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Figure 13. Time-dependent frontal (1 percent effective saturation)
advance for PRB soil and the pond layout shown in Figure 7, The
exponent relating effective saturation to hydraulic conductivity is

1; therefore, for this case, the analytical solution is correct.
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term decays exponentially. Similarly, it can be shown
that the remaining terms for the transient differential
equation are also negligible. Thus, this image solution
technique, while not exact, is still a preferred approx-
imation to an otherwise very complex proolem.

Nomenclature
a = distance to impermeablc boundary [L]
d = depth to the source [L]}
D = parameter defined in Equation 5d [L?*/T]



e = unit vector in the positive z direction
K = hvdraulic conductivity [L; T}

K, = hydraulic conductivity at maximum

saturation [L/T]

n = power in the power-law relationship for K
as a function of soil saturation
p., = displacement pressure head obtained by
extrapolating the capillary pressure curve
to S =1 [L]
P_ = capillary pressure head [L]
Q = flow rate or strength of point source [L3/T)
R = distance from point source [L]
R, = distance from image point source [L]
S = saturation of the soil
S. = effective saturation
S_ = maximum saturation
S, = irreducible or residual saturation
t = time since drainage began [T]
v = velocity of particles "

x,y.z = Cartesian coordinates, z defined positive
downward [L]

x"y.z” = location of point source [L]
a = constant defined in Equation 5b [L-']

B = adjustable parameter in the saturation vs.
capillary pressure relation, Equation 2 [L]

6 = dependent variable defined by Kirchhoff
transformation, Equation 4 [M*; T]

@ = value of 4 at initial conditions

8z = dependent variable for real point source in
an infinite medium [M2/T]

g% = dependent variable for image point source
for a horizontal impermeable boundary in
an infinite medium [M?/T]

8y = dependent vanable for image point source
for a vertical impermeable boundary in an
infinite medium [M?/ T}

¢ = porosity
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Simulation of Vapor Transport Through the
Unsaturated Zone — Interpretation of
Soil-Gas Surveys

by Lyle R. Silka

Abstract

Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil
and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published
soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been
considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of
pesticides generally differ substantially from those of VOCs.

This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through
unsaturated soils using a two-dimensional, finite-difference, solution to Fick’s second law of diffusion. An effective
diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is
computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data,
nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content
in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be
complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal vanations in
moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC

liquid and contaminated ground water.

Introduction

Volatile organic chemicals (VOCs) have been identi~
fied nationwide as one of the more ubiquitous groups of
hazardous chemicals present in contaminated ground
water. A major reason for this is the widespread use of
VOCs in the manufacture of pesticides, plastics, paints,
pharmaceuticals, solvents and textiles, as well as constit-
uents of petroleum products. Due to the presence of
VOCs at many sites of contamination, there has been
increasing interest in the sampling and measurement of
VOCs in soil gas to estimate their extent in soils and
ground water. With the recent development of the porta-
ble gas chromatograph, the quantitative and semiquanti-
tative field analysis of VOCs in soil gas is now a reality.

Portable gas chromatography, a relatively new tech-
nology, has been shown to be especially applicable to the
investigation of soil and ground water contamination
through the analysis of shallow soil gas. Under diffusive
transport, VOCs volatilize from ground water and move
upward through the unsaturated zone, ultimately venting

to the atmosphere. This process provides a means to
delineate areas of subsurface contamination through the
analysis of VOCs in the shallow soil gas. Also, it has been
shown empirically that the concentration of VOCs in
samples of shallow soil gas are related to the concentra-
tion of VOCs in ground water (Glaccum et al. 1983,
Lappala and Thompson 1983a and b, Swallow and
Gschwend 1983, and Marrin 1984). Soil-gas surveys are
recognized as a valuable tool, both alone and in conjunc-
tion with other remote-sensing techniques, that can pro-
vide data on the location and extent of soil and ground
water contamination and can aid in the design of more
detailed ground water studies involving soil borings and
monitoring well networks.

The successful interpretation of a soil-gas survey
depends on several factors, including the size and age of
the source. the moisture content and organic carbon
content of the unsaturated zone, and the volatility and
solubility of the VOC. Prior to conducting a soil-gas
survey, the effects of these factors should be evaluated in
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order 1o opuimize the design of the soil-gas survey.
Through a review of theory and application of a computer
model, this paper presents an evaluation of the opera-
tional limitations of soil-gas surveys.

Behavior of YOCs in the Subsurface

Transport Mechanisms

The transport of VOCs from a source through unsatu-
rated soil may be by mass flow as a solute in percolating
water or by diffusion as a vapor in soil gas. Mass flowas a
vapor due to advective migration may be important in
the upper few feet of the unsaturated zone, Advective
vapor migration in the shallow soil may be induced by
diurnal temperature and barometric variations. Baro-
metric, or atmospheric pressure changes are not consid-
ered here because, on the scale of typical soil-gas investi-
gations, changes in barometric pressure would produce
minor vertical piston-type fluctuations in the soil gas as
the air alternately compresses and expands. The alternat-
ing up and down movement of the soil gas under the
influence of the barometric fluctuations would tend to
approach an average condition.

However, pressure and temperature gradients can
become important near subsurface structures such as
basements and utilities that are vented to the atmosphere.
Nazaroff et al. (1987) found that pressure and temperature
gradients may be transmitted to the subsurface by resi-
dential houses with basements and could induce signifi-
cant advective transport of soil gas to lateral distances of
20 feet (6m). Although this paper does not address these
influences and considers vapor migration under isother-
mal and isostatic conditions, the influences of atmo-
spheric wind-induced pressure gradients and tempera-
ture-induced thermal gradients near subsurface structures
should be considered in the interpretation of soil-gas
surveys.

For VOCs that have low solubility limits in water, as
is generally the case with the chlorinated solvents, diffu-
sive transport in soil gas can predominate (Spencer and
Farmer 1980). When a liquid VOC is spilled on the soil or
leaks from a tank into the soil, the VOC will begin to
partition into the liquid and vapor phases and become
dissolved in soil moisture and adsorbed onto the surfaces
of soil minerals and organic matter. The degree of parti-
tioning of the VOC among these four components will
depend on the volatility and water solubility of the VOC.
the soil moisture content, and the nature of soil solids.

Partitioning Between Liquid and Soil Gas

The saturated equilibrium concentration of a VOCin
air above a volatile liquid is expressed by Raoult’s law
and is described by a partition coefficient that is depend-
ent on the vapor pressure of the VOC and the temperature
(Thibodeaux 1979). At equilibrium, the mole fraction of
a VOC in the air space above the pure VOC liquid at a
specified temperature is expressed as:

Y=p/Pr (D

where y is the mole fraction of the VOC, p is the vapor
pressure of the VOC, and p is the total pressure in the air
space.
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Equation | provides a means to estimate the source
concentration of a VOC vapor in the soil gas above a free
VOC liquid spill. Vapor pressures for many VOCs at
ambient temperatures are available in the literature (for
example, Perry and Chilton 1973, and Callahan et al.
1979).

Partitioning Between Soil Gas and Soil Moisture
Partitioning between the VOC vapor in the soil gas
and VOC dissolved in soil moisture may be expressed as
the ratio of its concentration in each of the two phases
(Equation 2). At equilibrium, this ratio is constant for
constant temperature and is governed by the relationship
expressed as Henry's law, i.e., (Thibodeaux 1979):

K’H = Cc,/ CL (2)

where Ky is Henry’s law constant for the VOC at a
specified temperature, Cg is the concentration of the
VOCinsoil gas, and C, is the concentration of the VOC
in the water.

The Henry’s law constant may also be expressed as a
function of the VOC vapor pressure, the concentration of
the VOC in water, and temperature as (Thibodeaux
1979):

Ky = 16.04p, M,/ TC, (3)

where M, is the gram molecular weight of the VOC, T is
the temperature (in degrees Kelvin), and the other
parameters are as previously defined.

Dilling (1977) reports values of Henry’s law constant
for numerous chlorinated solvents with those for selected
VOCs presented in Table 1. Empirically derived values of
Henry's law constants reported by. Dilling (1977), Swal-
low and Gschwend (1983), and Lappala and Thompson
(1983) are in reasonable agreement with the calculated
values of K, keeping in mind the temperature depen-
dence of K.

Partitioning Between Soil Moisture and Soil Solids

In addition to the partitioning of the VOC between
the vapor and aqueous phases, some of the VOC will be
adsorbed onto the soil minerals to a lesser extent and
onto soil organic matter to a greater extent. Although no
research in this area is known to this author, adsorption
of VOC vapor on to organic matter may be an important
sink for VOC transport in soil gas. In order to estimate
the possible importance of adsorption onto organic mat-
ter, results of research on the adsorption of aqueous
VOCs have been utilized. Although not specifically
directed at the current problem, the results from the
experiments with aqueous solutions of VOCs may prove
applicable, because soil solids will be surrounded by
water layers of at least several molecules thick for even
the driest soils. The process of partitioning of the VOC
between the soil gas and the soil solids then becomes a
two-step process of partitioning from the vapor into the
water and subsequently from the water onto the soil
solids.

Since no known research has been directed at the
problem of determining the partitioning of VOCs in a
three-phase system, the validity of the approach utilized
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TABLE 1
Reported Values of Henry’s Law Constant, Vapor Pressure and Solubility at 25 C for Selected
Chlorinated Solvents

Henry’s Law
Constant
Solubility Vapor Calculated
Chemical in Water Pressure (Measured)
(ppm) (mm Hg) (Dimensionless)
1,1,2,2-Tetrachloroethane 3000 6.5 0.019
1,1,2-Trichloroethane 4420 23 0.038
1,1-Dichloroethane 8700 82 0.050 (.040)!
Tetrachloroethylene 140 18.6 1.2(0.5)2
(0.43)!
Trichloroethylene 1100 74 0.49 (0.33)3
trans-Dichloroethylene 6300 326 0.27
cis-Dichloroethylene 3500 206 0.31
Source: Dilling (1977).
Notes:

'Empirical values reported by Dilling (1977).

?Empirical values will vary from calculated values due to differences in temperature.
3 Empirical values reported by Lappala and Thompson (1983).

for this model is unknown. Nevertheless, as described
later, to the extent that Jury et al. (1984) tested this
approach, they reported finding good agreement between
calculated and empirically derived values for the effective
diffusion coefficient.

At equilibrium, the degree of partitioning between
the soil solids and the soil moisture is expressed as!

Kp=S/C, (4)

where K, is the partition coefficient or distribution coef-
ficient (with units of 13/m), S is the mass of chemical
adsorbed per unit dry mass of soil solids, and C is the
concentration of the chemical in the soil moisture.

For aqueous solutions, it has been observed that
strongly hydrophobic organic chemicals tend to adsorb
more strongly onto the soil solids. Empirical studies by
Karickhoff et al. (1979) found that K, was proportional
to the organic carbon content of the soil, as well as the
octanol:water partition coefficient (Kgyw), @ measure of
the hydrophobicity of an organic chemical. For the equi-
librium condition, this relationship has been expressed as
(Karickhoff et al. 1979, which is essentially the same
relationship determined by Rao et al. 1985):

Ko = 0.63K owfoc | (5)

where K, is the distribution coefficent of Equation 4, f .
is the soil organic carbon content, and Kqy, is the octa-
nol:water partition coefficient.

The amount of carbonaceous matter in the soil is the
dominant factor controlling the extent of adsorption of
dissolved organic chemicals. Karickhoff et al. (1979) also
found that the particle size of the mineral fraction was
important. For example, the distribution coefficients for
pyrene and methoxychlor on the sand-sized fraction were
approximately 100 times less than the distribution coeffi-

cient for the silt- and clay-sized fraction, due primarily to
the lower organic carbon content of the sand (Karickhoff
etal. 1979). Table 2 presents data for K5y, and calculated
values of K, using Equation 5 for selected VOCs. From
the example calculations of distribution coefficients in
Table 2, these VOCs are not strongly adsorbed onto the
soil solids due to their relatively low octanol-water parti-
tion coefficients. Pentachlorophenol, in comparison, with
alog Kqy 0f 4.74, has a Ky of 35, i.e., pentachlorophenol
will be preferentially adsorbed to the soil solids by a
factor of 100 to 1000 times greater than the chlorinated
solvents listed in Table 2.

VOC Vapor Diffusion in Soil Gas

As previously stated, the primary transport mecha-
nism for VOCs in the unsaturated soil is by diffusion
through the soil gas. The distribution of VOC concentra-
tion in the soil gas can be modeled by Fick's second law,
which in one dimension is expressed as (Thibodeaux
1979):

C/dt = Dd?C/dz? (6)

where C is concentration of the VOC in air, D is the
diffusion coefficient, and z is the distance traveled.

Assuming the outer boundary condition is zero con-
centration, Equation 6 can also be expressed as (Thibo-
deaux 1979): ' '

C
T = erf[2/ (4Dv0Y] @
(250.10) ) _
where C,, ,, is the concentration (as mole fraction) at a

distance z and time t, C .2 .., is the initial concentration,
and erf is the error function.
Swallow and Gschwend (1983) conducted limited
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TABLE 2
Reported Values of Log Octanol: Water Partition Coefficient and Calculated Values of
Distribution Coefficient for Selected Chlorinated Solvents

Log Octanol:Water

Calculated Distribution
Coefficient?

Fraction Organic Carbon

Chemical Partition

Coefficient* 0.001 0.01 0.03
1,1,2,2-Tetrachloroethane 2.56 0.23 2.3 6.9
1,2.2-Trichloroethane 2.17 0.09 0.9 2.7
1,1-Dichloroethane 1.79 0.04 0.4 1.2
Tetrachloroethylene 2.88 0.48 4.8 ' 14.4
Trichloroethylene 2.29 0.12 1.2 3.6
trans-Dichloroethylene 1.48 0.02 0.2 0.6
cis-Dichloroethylene 1.48 0.02 0.2 0.6
Notes:

“From Callahan et al. 1979,
3Calculated from Kp = 0.63Kgwfoc.

controlled laboratory experiments using a glass tank.
Although their experimental design prevented a direct
measurement of the concentration of VOCs in the unsat-
urated zone, Swallow and Gschwend (1983) concluded
that volatilization can be adequately modeled by Fick's
second law.

Diffusion Coefficient in Soil Gas

The diffusion coefficient for VOC vapor in air was
estimated by Jury et al. (1983 and 1984) to be 4.6 ft2 /d
(0.43 m2 / d) based on studies by Brattain in 1929 of the
gas diffusion coefficient of intermediate molecular weight
organic chemicals. However, Bruell and Hoag (1986)
reported values of the diffusion coefficient for benzene in
air of from 8.0 to 8.4 ft2 /d (0.74 and 0.78 m? /d).

The diffusion coefficient in soil gas has been found to
be reduced from that in air by a tortuosity factor which
accounts for decreased cross-sectional area for flow and
increased length of the flow path. Jury et al. (1983 and
1984) concluded that the Millington-Quirk tortuosity
formula has been proven useful for describing pesticide
soil diffusion coefficients. More recently, Bruell and Hoag
(1986) confirmed the validity of the Millington-Quirk
model in column experiments. Jury et al. (1983) estimated
the diffusion coefficient in soil gas by determining the
effect of the Millington-Quirk tortuosity formula on the
diffusion coefficient in air by:

DG = DalO«‘}/ né (8)

where Dy is the diffusion coefficient in soil gas, D is the
diffusion coefficient in air, a is the volumetric air content
of the soil, and n is the total soil porosity.

Since the VOC vapor may partition between the gas,
liquid, and solid phases, an effective diffusion coefficient
can be formulated that incorporates that partitioning.
The removal of VOCs from the soil gas by partitioning
into the soil moisture and soil organic matter resuitsin a
reduction in the apparent diffusion rate, and con-
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sequently, the apparent, or effective, diffusion coefficient.
Jury et al. (1983) developed the following relationship
between the diffusion coefficient in soil gas from Equa-
tion 8 and the effective diffusion coefficient:

D, = Dg/[(bKp/Ky) + w/ Ky + a] 9)

where D, is the effective diffusion coefficient in soil gas
corrected for effects of partitioning, Dy is the diffusion
coefficient corrected for tortuosity using Equation §, b is
the bulk dry density of the soil, Ky is the soil partition
coefficient from Equation 5, Ky is Henry's law constant
from Equation 3, w is the volumetric soil moisture con-
tent, and a is the volumetric air content, where n (total
porosity) = a + w.

Jury et al. (1984) report that the model for the effective
diffusion coefficient expressed in Equation 9 gives results
that are in good agreement with empirically derived
values of D,.

Model Description

Although several investigators have developed mod-
els for the simulation of the transport of organic chemicals
in the soil (for exampie, Leistra 1973, Jury et al. 1983 and
1984, Rao et al. 1985), these models are limited in their
application to the simulation of the diffusion of VOCs in
soil gas. In general, the previous models were developed
for application to the modeling of pesticide movement
and fate in soils. The models are one-dimensional analyt-
ical solutions that do not allow for heterogeneous soil
properties and initial conditions. Also, these models
incorporate transport of the chemical in the liquid phase.
as the models were intended for the study of the leaching
of pesticides from soils (Jury et al. 1983). In the case of
the model developed by Rao et al. (1985), transport by
vapor diffusion was omitted.

Corapcioglu and Baehr (1987) described a one-
dimensional, finite-difference model of VOC transport
through the unsaturated zone. Although their model
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simulates multiphase transport in vapor, water and
immiscible liquid, and accounts for partitioning, adsorp-
tion, and transformations, the vertical, one-dimensional
nature of their model limits its application to the inter-
pretation of soil-gas survey results that are two- to three-
dimensional in nature.

To correct for these limitations, a two-dimensional
vapor diffusion model was developed and described pre-
viously (Silka 1986). This model is a finite-difference,
forward-difference approximation relative to time, and
is based on Fickian diffusive transport. (Although
unavailable to this author at this writing, Striegl (1987)
subsequently reported on the development of a similar
model).

Model Assumptions
The model is based on the following assumptions.

Diffusion is described by Fick’s
second law,

Assumption |

Partitioning coefficients are linear and
system is at equilibrium with respect
to partitioning, i.e., Equations 3 and 5
are valid.

The Millington-Quirk tortuosity for-
mula defined in Equation 8 is valid.

Assumption 2

The soil properties of bulk density, b,
and total porosity, n, are homo-
geneous.

Assumption 4

The diffusion coefficient in air, D, is
constant.

Assumption 5

Assumption 6 The soil gas is isostatic and at atmo-
spheric pressure, 1.e., there is no
pressure-gradient induced advective

vapor flux.

The soil system is isothermal, i.e..
there is no thermal-gradient induced
convective vapor flux,

The VOC is conservative, i.e.. the
VOC is unaffected by biotransforma-
tion, hydrolysis, or redox reactions.

Assumption 7

Assumption §

The model allows for heterogeneous initial concen-
trations with either constant concentration sources or
instantancous spike sources. The diffusion coefficients
may be varied over the finite-difference grid and in the x
and y directions by weighting coefficients. The effects of
partitioning are incorporated by using the effective diffu-
sion coefficient as defined in Equation 9.

Since the finite-difference equation is solved using the
forward-difference approximation relative to time, the
maximum size of the time steps must meet the following
criterion for the solution to be stable. For two dimensions
where dx = dy = x, (i.e., the grid spacing is the same in
both directions and equal to X):

dt < 0.25X2 a/D, (10)

where dt is the maximum time step, X is the grid spacing,
a is the volumetric air content, and D, is the effective

diffusion coefficient (after Wang and Anderson 1952).

Model Verification and Validation
To date, the verification of the vapor diffusion model

has been limited to comparisons with computed results
from the one-dimensional analytical solution presented
in Equation 7. At this time, it is difficult to adequately
validate the vapor diffusion model against real field data
due to the lack of good data.

An adequate validation problem requires information
on the moisture content and organic matter content of
the soil, the soil texture, as well as the concentration and
distribution of the source. Further complications arise
when one considers that field conditions are dynamic,
i.e., always changing. This problem is especially acute for
soil moisture content, which, over the large scale, fluctu-
ates seasonally. Also, field data are not available in suffi-
cient detail to allow description of the spatial variability
of soil conditions resulting in necessary oversimplification
of the physical setting. Jury (1986) lists several potential
problems that must be considered to successfully carry
out a field validation experiment of a vapor diffusion
modet:

t. Lateral and vertical variability of transport and reten-
tion parameters may introduce heterogeneities and
anisotropy not included in the model;

2. Macropores, cracks, plant root holes and animal bur-
rows may create discontinuities difficult to account for
in the model;

3. Time-dependent boundary conditions, such as depth
to water table and seasonally saturated zones may
alter the system geometry from that modeled:

4. Problems with validity of measurement techniques for
characterizing field properties may introduce model
error;

5. Scale effects may be important in the field that are not
accounted for in the model, such as temperature
variation,

Although not available at the time of this writing,
Striegl (1987) published an account of an apparently
successful modeling of the diffusion of methane from a
waste disposal trench in Illinois using a two-dimensional
finite-difference solution of Fickian diffusion similar to
the model described here.

Implications for Soil-Gas Surveys
Delineating Surface Contamination

Previously, this author has presented the results of
sensitivity analyses using the model 2D-DIFF to assist in
designing and interpreting soil-gas surveys for contami-
nated soil and leaking underground storage tanks (Silka
1986, and Ferre and Silka 1987, respectively). With regard
to the use of soil-gas surveys for identifving shallow
contaminated soil (Silka 1986), the optimum grid spacing
for the soil-gas survey was found to be primarily depend-
ent upon soil moisture and the value of Henry's law
constant. and, to a lesser degree, organic matter content.
Figure 1 illustrates the dependence of the effective diffu-
sion coefficient on Ky and fraction of pore volume occu-
pied by water (w/n). The reduction in D, is represented
by the ratio of D,/ Dg, where Dy; is the diffusion coeffi-
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cient corrected by the Millington-Quirk tortuosity for-
mula in Equation 8. Therefore, in dry soil D,/Dg; is
unity.

Obviously, optimum conditions for soil-gas surveys
are obtained when dry soil conditions have prevailed
prior to the survey. Since moist soil is the rule, though,
especially in the more humid regions, the optimum grid
spacing will generally be less than 100 feet (30.5m). For
VOCs with even moderate values of Ky, for example,
trichloroethylene (TCE) with Ky, of 0.4 and 1,1,2,2-tetra-
chioroethane (TET) with K, 0f 0.02, the reduction in the
effective diffusion coefficient is sufficient to reduce their
distance of migration. Compared to a VOC witha K of
0.0, TCE would migrate on the order of only 60 percent
of the distance, while TET would migrate on the order of
only about 20 percent of the distance of the unretarded
VOC within the same time period. In homogeneous soils,
the maximum extent of the migration of vapor through
soil gas will be limited by the thickness of the unsaturated
zone. However, many soils are heterogeneous and strati-
fied, and greater lateral migration may occur.

Mapping Ground Water Plumes

Several observations reported in the literature con-
cerning the interpretation of soil-gas surveys for ground
water plume mapping have been investigated using the
model 2D-DIFF. It has been reported that concentra-
tions of VOCs in soil gas decrease from the source at the
water table to the surface by up to 5 orders of magnitude
(Lappala and Thompson 1983). This field observation
follows from the diffusive transport equation. Since the
soil-gas system is bounded below by an essentially con-
stant concentration source and above by a constant zero-
concentration boundary (i.e., the atmosphere), the vapor
concentration will decrease logarithmically from the
water table to the surface in an ideal, homogeneous soil.

Figures 2 and 3 show two cases for the distribution of
vapor concentration with distance above the centerline of
a plume of contaminated ground water where the water
table is at a depth of 32.8 feet (10m). The concentration is
presented in dimensionless units. Figure 2 shows the
results for a relatively dry soil having only 8 percent water
content (a=0.32, w=0.08) and a VOC with a2 Ky of 0.02.
Figure 3 shows the results for a wetter soil with a 20
percent water content (a=0.2, w=0.2). In both cases, there
is greater than a 3 to 5 order of magnitude change in the
VOC concentration in soil gas from the water table to the
surface, even when the concentration profile approaches
steady-state,

For the dryer soil (Figure 2), the higher effective
diffusion coefficient results in the concentration profile
approaching steady-state faster than the wetter soil case
(Figure 3). Thus, the dryer soil conditions will result in a
more responsive concentration profile as compared to
the wetter soil. Shallow soil-gas measurements in the
dryer setting will better reflect the distribution of the
VOC in the ground water at that point in time.

More recently, Evans and Thompson (1986) con-
cluded that aerobic biodegradation of hydrocarbon
vapors was the cause of lower than expected concentra-
tions, <10 ug/ L, in shallow soil gas at depths of less than
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Figure 2. VOC concentration in soil gas vs. time and distance
above the water table under nearly dry soil conditions (w=0.08).

5feet(1.5m) when compared to the > 1000 ug/ L concen-
trations in the 6- to 14-foot interval (1.8 to 4.3m). How-
ever, they also reported at least one instance when the
concentration gradient reversed and decreased withdepth
below the 6~ to 14-foot (1.8 t0 4.3m) interval.

In order to substantiate the interpretation that bio-
degradation was occurring, active microbial populations
and degradation by-products, such as CO, generation
should be confirmed in the soil column. Since these data
are tacking for their particular site, alternative explana-
tions may be just as viable. For exampie, the lower-than-
expected concentration in the uppermost 5 feet (1.5m)
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Figure 3. VOC concentration in soil gas vs. time and distance
above the water table under wet soil conditions (w=0.02).
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could be due to the normal decrease in concentration
expected under the concentration gradient established by
diffusion alone. Inspection of Figures 2 and 3 shows that
transient concentration profiles can produce a concen-
tration decrease of greater than 3 orders of magnitude
from the 6- to 14-foot (1.8 to 4.3m) interval to the less
than 6-foot (1.8m) interval. Considering that the concen-
tration decrease due to the diffusion gradient would be
greater in wetter soils, biodegradation is not necessary to
explain the observed decrease.

Evans and Thompson (1986) also reported the obser-
vation that vapor concentrations decrease rapidly, by 2 to
3 orders of magnitude, just beyond the edge of the ground
water contamination zone. Simulations were conducted
using 2D-DIFF for an advancing front of a non-aqueous
phase liquid (NAPL) floating on the water table. The
model was set up with a constant saturated vapor con-
centration of 6000 ppm at the NAPL-soil gas interface
and an initial concentration of 6000 ppm along the left
side to represent the downward path of liquid VOC
migration. Two variations were run, one with a vapor
diffusion rate that was faster than the NAPL front veloc-
ity, and the second with a vapor diffusion rate that was
slower than the NAPL front velocity. Figures 5 and 6
show the results in terms of the relative positions of the
NAPL front and the 0.01 ppm concentration contour,
The results presented in these figures can be applied to
the case of only dissolved VOC in a ground water plume
by dividing 0.01 ppm by 6000 ppm, i.¢., the contours in
the figures would be equivalent to 1.6 x 10 times the
concentration of the VOC in the soil gas just above the
water table.

Figure 4 indicates that for a source front, i.e., NAPL
or dissolved contaminant plume, that moves slower than
the diffusion rate, the VOC does diffuse beyond the
plume edge asobserved by Evans and Thompson (1986),
up to a height of 40 feet (12.2m) above the water table.
Above a height of 40 feet (12.2m) from the water table,
the vapor front falls behind the liquid front. However,
Figure 5 indicates that when the diffusion rate in soil gas
is less than the velocity of the source front, the VOC
distribution in the soil gas will lag behind the source front
or edge of the plume at a much lower height above the
water table. In the case illustrated in Figure 5, the VOC
diffusion in the soil gas begins to lag behind the front ata
height of about 15 feet (4m) above the water table. The
lag increases to about 60 feet (18.3m) at a height of 30 feet
(9.2m) above the water table. Therefore, it may not
always be the case that the soil-gas survey will detect
VOCs beyond the edge of the plume, and, in fact, may
underestimate the extent of the plume.

Discriminating Between Ground Water and
Surface Sources

A problem that arises in the course of soil-gas surveys
for detection of surface sources, but more so, for mapping
ground water contamination, is the potential interference
caused by VOC vapors from another source. The inter-
ferences are especially problematic in highly industrial-
ized areas with multiple contaminant sources. Based on
sensitivity runs, the vapor concentration due to a con-
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taminant source may be sufticient out to several hundred
feet to mask the detection of vapors emanating from
contaminated ground water when vapor concentrations
due to ground water contamination are much less than
those due to the diffusion from a surface source. This
potential problem was first recognized by Marrin (1984).

Computer simulations reported previously (Silka
1986) were used to estimate the potential interference
from the upward diffusion of VOC vapors emanating
from contaminated ground water. For the modeling, it
was assumed that the highest VOC concentration in
ground water underlying the area of the soil-gas survey
was 100 ppb. The depth to the water table was 30 feet
(9.2m). This level of ground water contamination could
result in soil-gas concentrations in the upper 3 feet (0.9m)
of soil as high as 150 ppb.

In comparison, a surface source of TCE, with a
saturated vapor concentration of 72,000 ppm, could cause
a concentration in soil gas at a distance of 100 feet
(30.5m) of as high as 72 ppm. Even with a relatively low
saturated vapor concentration, forexample TET at 6000
ppm, the concentration in soil gas at a distance of 100 feet
(30.5m) could be several parts per million. Vapor concen-
trations of less than a part per million due to diffusion
from contaminated ground water would be completely
masked by such surface sources.

Conclusions

Previous investigators have shown that VOC vapor
migration through the unsaturated zone is primarily
under diffusive transport. The vapor diffusion is ade-
quately described by Fick’s second law, and the effects of
partitioning between soil-gas and soil moisture can be
incorporated into the model by the use of Henry's law
coefficient. Adsorption of VOCs onto soil organic matter
is accounted for by the empirical relationship between
the octanol-water partition coefficient and the liquid-solid
partition coefficient.

Design of soil-gas surveys should be developed with
an understanding of the potential extent and distribution
of contaminants in the subsurface. Preliminary modeling
of the diffusive transport using a model such as 2D-DIFF
can provide useful criteria for designing the survey and
interpretation of subsequent results. Modeling results
presented here and in a previous paper (Silka 1986)
demonstrate the importance of soil moisture content to
the design of the soil-gas survey. Optimum conditions for
soil-gas surveys occur when lengthy, dry soil conditions
have preceded the survey, which usually occur during
July, August and September over much of the United
States.

Interpretation of soil-gas survey results are hampered
by unknown or poorly defined parameters, such as soil
porosity, moisture content, organic matter content, as
well as source attributes. In general, the variation in soil
moisture will have the greatest influence on the rate of
diffusion of VOC vapors through the unsaturated zone,
especially for those VOCs with small values of K. Shight
increases in soil moisture dramatically reduce the effective
- diffusion rate and increase the time required for concen-
trations in soil gas to approach steady-state values. Dry
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soils in arid regions may allow quasi-steady-state concen-
tration profiles to be approached. However, steady-state
conditions probably are never.approached in the humid,
temperate regions where frequent, episodic wet and dry
periods occur.
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