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Understanding Computer Use in Ground Water Science: An
Anthology

This anthology contains 24 papers selected because the National Water Well
Association believes they are among the best contributions on explaining the role
computers can play in understanding and illustrating ground water concepts.

NWWA uses its anthologies as a means to disseminate information about
narrow, but very important subjects.

All the articles presented within the anthology are available at the National
Ground Water Information Center and are stored within Ground Water On-Line,
the 65,000 record bibliographic data base operated by the Center. The National
Ground Water Information Center was established in 1960 as a repository
available to scientists, government, contractors, business and the public.

The NWWA, a not-for-profit professional society and trade association,
represents all segments of the ground water industry. Its more than 23,000
members from nearly 70 nations include the world's leading ground water
geologists and hydrologists, ground water contractors, engineers, manufacturers,
and suppliers of ground water-related products and services. From its Dublin,
Ohio headquarters NWWA provides the industry, government, business, and
consumers guidance for sound scientific, economic, and beneficial development,
protection and management of the world's ground water resources.
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A Simple Computer Program for the
Determination of Aquifer Characteristics
from Pump Test Data

by Joseph C. Holzschuh

ABSTRACT
A computer program, based on the Hantush inflection

method and designed for "desk top" computers is presented.
The method assumes a leaky, isotropic, homogeneous
aquifer of infinite areal extent. The language employed is
BASIC, an interactive language used on the Wang Model
2200 programmable calculator. The program can be easily
adapted to FORTRAN IV for use on larger machines.

INTRODUCTION
The staff at our Water Management District

required a fast, approximate, and simple method for
checking the analyses of pump test data submitted
by various consultants in support of permit applica-
tions. Such a method would be used, not to replace
type curve solutions but rather to provide initial
estimates of aquifer characteristics, cross check
other types of analyses and lend further support to
them. Machine analysis was desirable, to eliminate
human errors.

The equipment available was a Wang Model
2200 desk type calculator with 8K of memory and
a cassette tape data storage system. A large IBM
system was also available, but could not be directly
used by our hydrologists in a "hands on" mode as
could the Wang. Also, "turnaround" time for the
larger system was typically 1 day or longer. Turn-
around time for the desk top system was usually on
the order of minutes. Many organizations have
like or similar mini-computers available. Adapting
the program to such machines would prove no
problem.

Supervisory Hydrologist, Southwest Florida Water
Management District, 5060 U.S. Highway 41 South,
Brooksville, Florida 33512.

Discussion open until February 1,1977.

METHODOLOGY
The method finally selected and adapted for

machine use was the Hantush inflection point
method (DeWiest, 1965). This method is based on
determining the slope of a semi-log, drawdown
versus time curve, at the inflection point (Figure 1).
The inflection point (shown on Figure 1 at S feet
of drawdown and occurring at time T) is assumed
to be at one-half the maximum or equilibrium
drawdown (S4>). The computation of the slope of
the line should be done over a full-time log cycle
centered about the inflection point. The program
first determines the time (T) at which (S) occurs.
Since the data points fed into the machine will
probably not include point (T,S), T must be
determined by interpolation from points (Tl, SI)
and (T2, S2). This is done by computing the slope
(Ml) between points (Tl, SI) and (T2, S2) and

Fig.
LOG«, AXIS (time)

1. Semi-log drawdown curve.
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utilizing that slope to compute (T). When point
(T, S) has been determined, the value of T3 and T4
(+ and - 0.5 log cycle respectively) can be found.
Since (T3, S3) and (T4, S4) are again probably not
in the input data, they too must be interpolated
from the closest input data points available, i.e.
(T8, S8), (T6, S6), (T7, S7), and (T5, S5), utilizing
slopes (M3) and (M2) respectively. The program
determines the slope of the drawdown curve (M)
over Vi-Iog cycle and full-log cycle intervals. This
was done because in rare instances equilibrium
is reached so quickly that using a full-log cycle
would include points outside the straight-line
portion of the curve. Both slopes are printed out
although only the full-log cycle slope is used. The
investigator should check to see that both slopes
agree closely. Any significant difference should be
investigated.

Once the slope has been determined the only
remaining difficulty is solving for r /B. Han tush
provides the following equation:

where:

K = e r / B Ko (r/B)

K = 2.3 S/M

(1)

(2)

Equation 1 is an implicit equation and cannot
be solved directly. A solution is provided, however,
by plotting values of r/B vs. K on semi-log paper,
and approximating the curve so derived with a series
of straight lines. Depending then on the value of K,
the program selects the proper straight-line equation
and solves for r /B. Accuracy is usually sufficient
for most purposes but the values of both K and r/B
are printed out by the program so the investigator
may consult a set of tables if so desired.

With r/B now known, transmissivity, storage
and leakance can be solved for directly using the
equations given by Hantush and shown in lines
950-970 in the program. The complete program is
shown in Figure 2.

The inflection point method requires that
equilibrium be reached during the pump test, and
accordingly one of the assumptions made in the
program is that the final data point entered is on
the flat or equilibrium part of the curve. Experi-
menting with the program using data derived from
local pump tests has indicated that if the test is
terminated at a time when an appreciable portion
of the equilibrium drawdown has already occurred,
the transmissivity and storage coefficients reported
by the program will differ only negligibly from their
actual values. The leakance reported will tend to
reflect a limiting value which will always be greater

I S «EM P/tOCRA.'tER flOL.TSCHUU 7 / 2 5 / 7 5
2 0 PRINT "INFLECTION POINT METHOD"
30 DIM Z ( 2 , l O 0 )
4 0 REM - •
5 0 REM — T i l l s SECTION INPUTS DATA —
6 0 RÏM
70 INPUT "HOW MANY MEASUREMENTS " 'J
SO INPUT "GIVE PUMTtl) «ELL Q ( n f f ! ) " . 0
9 0 INPUT "RIVE HAUiUS TO OBS U£I.L ( F T . ) " , R l
1 0 0 INPUT "DO YOU U'ISII TO ÍNTEK riATA OR READ OFF TAPE

ENTER AND RECORD DATA • 1
READ OFF TAPE - 2 " , A

1 1 0 ON A COTO 1 2 0 , 1 3 0
1 2 0 PRINT "PLEASE LOAD BLANK DATA TAPE"
1 3 0 FOR C - I T O S
140 INPUT "CIVE TIME (HIN.), DRAWDOWN (FT)", I(1,C),:(2,C)

l»0 DATA SAVE ;()
170 OOTO 250
ISO PRINT "PLEASE LOAD APPROPRIATE DATA TAPE"
190 STOP
200 PRINT :PRIMT .PRINT ¡PRINT
210 DATA LOAD Z()
220 «EM
230 REX —COMPUTE DRAW0OWÜ AND Tt!<E AT INFLECTION PT.--
240 REH
230 S0-Z(2,N)
260 S-SO/J
270 FOR C-1T0 s
2S0 IF S [ Z(2,C) THEN 300
290 NEXT C

310 Ml-" ÏS1-S2 >7<TÁ1421443190ií*(L0Õ(tl)-LOC{T2)))
320 B-S1-M1*.41-'"14 '~~ '
330 T-101((S-B)/MI)
340 REM
330 REM —COMPUTE SLOPE OVER ONE HALF

ANO FULL LOC CYCLES —
3Í0 REM
370 K-0
3S0 L
390 COTO 410
400 L-.4342944319033*LOO(T) ¡ H
410 FOR C-ITO :;
420 it T3 ( Z(1,C) THEN 440
410 ME.TT C
440 T5-2(l,C):T7-Z(l.C-l)¡53-Z(2,C)iS7-.Z(2,C-l)
450 FOR C«ITO .V
460 IF T4 [ Z(1,C! THE» 430
4 70 NEXT C
4 80 T6-Z(1,C):T3-:(1,C-1):56»Z(:.C)¡S1-J(2,C-1)
490 MZ-(i(S5-S?)/(.4 3¿214431')<)31«(LOC(-5)-LOG(T7)) ))

510 M3-('(Síi-3.1)/(,4 34 2 5448l9')n"(LOn(Ta)-LOC(T.1))))
520. SW!I3*(.4 34:144.1100 51» (LOC (T4 )-LOfi (T3 ) ) ))+S8
530 IF H-1 THEN ¡71)
540 M4-(53-54)*2
350 H-l
560 COTO 400
370 M-S3-S4
580 K»(2.3«S)/M
590 REM
600 REM —COMPUTE R/3 —
610 «EM
620 IF KI4.763 THEM Í31

I
l

L1-L+.25 :L2-L-.25 ¡T3«10!H : Ti-11•

L + . 5 ¡ L : - L - . 5 ¡ n - l 0 ! L l ¡ T 4 - L 0 ' L :

0 I K
630 IF K
640 IF i:
630 tF K
660 [F K
Í 0 Pi:t

THE:I 700J . 6 e 2 THE:I
1.351 TI:ES
1 . 1 4 4 TUE M 740

. 5 4 7 TI¡C:i 7606 6 0 [ F K ._ .
Í 7 0 PRi: tT "ERROR S / B ] i "
«SO R - 1 0 ! ( ( K - . 2 5 G ) / ( - 2 . 2 S i ) >
490 W!O In

- ¿ . 0 8 6 ) )

«
4 9 0 W!O
TOO R - 1 0 ! ( ( i : -
7 1 0 COTO 1 0 0
7 2 0 R - 1 0 ! < ( K - . 9 4 3 ) / ( - l .
7 1 0 C O T O i o n
7 4 0 R - 1 0 1 ( < £ • ! . 1 4 4 ) / ( ' 1 , 1 5 4 ) )
7 3 0 COTO 3 0 0
7 6 0 R - 1 0 ! ( ( K - l . U 4 ) / ( - . 3 5 3 0 ) )
7 7 0 REI!
78(1 REM —START 0UTCJT —
7 9 0 REM
SOO PKIHT " R / B - " , . 1

"" "K - " , *

"HALF LOC CYCLE SLOPE
"FULL LOC CYCLE SLOPE

",M4
",M

BIO MINT
S20 PRINT
810 PRINT
840 PRINT
S Í 0 FM NT
S60 PRINT "SLOPES SHOULD AORF.C CLOÜKLY"
"" - • - " ¡ f T U E r „„ MOT, PLOT 0» SEMI-LOG PAPER TO SEE tF"

"FULL LOG CYCLE SLOPE INCLUDES COINTS OUTSIDE"
"STRAICHT LINE PART OF CURVE"

870 PRINT
880 PRINT
890 PRINT
90O STOP
910 PRINT ¡PRINT ¡PRINT ¡PRINT
920 REM
930 REN —COMPUTE TF.AIItlMISSIVITY,

STORAGE AND LEAKACE"
940 REM
930 T9-C64«q«r<p(-R))/H ¡«KM
960 S9-<T9«T«JO/(518A*!tl!2) !REM
970 P-T9/((RI/K)!2) ¡HEM
980 REM — •—
990 «KM --COMPLETE OUTPUT--
1000 RLM - —
1010 I'KIÏIT "A'lUrrivIt CHARACTERISTICS AM AS FOLLOWS"
1020 PRINT ¡PRINT
1030 PKINTUStürt 1040, TI:PRINT
1040Ï TltAIISMtSSIVITY - IUt*H» CPO/FT.
1050 PRINTUSll.fi IHtn.SiîPIIIIIT
1060Z StOHACK L'llKFrtCIEHT - t.HHtt
1070 PRINTUSINn lOHO.P
lOdOt LÊAKAIICK ( P ' / M M
1090 KMO

COMPUTE TRANSMISSIVITY
COMPUTE STORACr
COHI'UTE LEAKANCE

CPO/FT.13

Fig. 2. Program listing.

than the actual value. Such a limiting value for
leakance can be useful when field conditions have
prevented running the pump test to equilibrium.
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RUN
INFLECTION POINT METHOD
HOW MANY MEASUREMENTS? 12
CIVE PUMPED WELL q (CPM) ? 10t)n
GIVE RADIUS TO OBS WELL (FT.)? 110

DO YOU WISH TO ENTER DATA OR READ OFF TAPE
ENTER AND RECORD DATA - 1
READ OFF TAPE - 2? 1

PLEASE LOAD BLANK DATA TAPE
CIVE TIME (MIM.), DRAWDOWN (FT)? .2,1.76
GIVE TIME (MIN.), DRAWDOWN (FT)' " " "
CIVE TIME (MIN.), DRAWDOWN (FT):
GIVE TIME (MIM.), DRAWDOWN (FT)'
RIVE TIME (MIN.). DRAWDOWN (FT);

Table 1.

GIVE TIHE (MIN.), DRAWDOWN (FT)
GIVE TIME (MIN.), DRAWDOWN (FT)
GIVE TIME (MIN '

.5,2.75
1,1.59
2,4.26
5,5.23
in,5.9(1

. . 20,6.47
DRAWDOWN (FT)? 50,6.92

GIVE TIME (¡UN.), DRAWDOWN (FT)?
GIVE TIME (MIN.), DRAWDOWN (FT)?
GIVE TIME (MIN.), DRAWDOWN (FT)?

100,7.11
200,7.20
500, 7.21

GIVE TIMS (MIN.j, DRAWDOWN (FT)? 1000,7.21
R/B - 5.O7672123E-O2

3.296153200416

HALF LOG CYCLE SLOPE
FULL LOG CYCLE SLOPE

2.500443771353
2.515508077402

SLOPES SHOULD AGREE CLOSELY
IF THEY DO NOT, PLOT ON SEMI-LOG PAPER TO SEE IF
FULL LOC CYCLE SLOPE INCLUDES POINTS OUTSIDE
STRAIGHT LINE PART OF CURVE

STOP
¡CONTINUE

AQUIFER CHARACTERISTICS ARE AS FOLLOWS

TRANSMISSIVITY - 99753 GPD/FT.

STORAGE COEFFICIENT - O.000O95

LEAKANCE (P'/M') - 0.135709 CP0/FT.I3

END PROGRAM
FREE SFACE-1Q258

Fig. 3. Typical printout.

UNITS AND DATA ENTRY
All variables used in the program are in the

gallon/foot/day system. The specific units used for
input and output data are specified in the program
and shown in the example.

Since much of the drawdown data that we
work with are already stored on tape cassettes,
provisions are made in the program to read the
time-drawdown data directly from a tape and to
write that data on a tape when they are initially
entered. If only direct entry of data is desired

Type Curve inflection Point

Transmissivity
Leakance (P'/m')
Storage

100,000 gpd/ft.
.025 gpd/ft.3

.0001

99753 gpd/ft.
.0257 gpd/ft.3

.000095

with no provisions for tape storage, lines 100-120
and 160-210 of the program can be eliminated.

EXAMPLE
An example (employing generated data) used

by Cooper (Bentall, 1963) to illustrate the use of
type curves is used here to compare the two
methods. Figure 3 is a print-out yielded by the
program, when the data presented in Cooper's
Table 6 (r = 100 ft.) are inputed. The values
obtained using the type curve method are shown
here in Table 1 in comparison with those obtained
by the program. The values in this case agreed
closely, well within the limits of most field data.

CONCLUSION
Much has been said recently about the dangers

of computerizing pump tests, with most of that
fear probably well founded. The author wishes to
emphasize that the program presented herein
should not be used indiscriminantly, i.e. as a black
box which grinds out answers of unquestionable
reliability. The applicability of the inflection point
method to the problem at hand must be considered,
as well as other factors such as anisotropy and
boundary conditions.

REFERENCES
Bentall, R. 1963. Shortcuts and special problems in

aquifer tests. U.S. Geological Survey, Water-Supply
Paper 1545-C.

DeWiest, J. M. 1965. Geohydrology. John Wiley and Sons.
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Pumping Tests in Patchy Aquifers

by J. A. Barker and R. Herbert3

ABSTRACT
A numerical simulation and analytical study of a

constant-rate pumping test, for a well situated at the centre
of a disc of anomalous transmissivity and storage coefficient,
have been used to aid in the interpretation of tests performed
in a "patchy" aquifer in India. Equations describing the
long-time behaviour of drawdown show that Jacob's method
can be employed to estimate the regional transmissivity from
drawdowns measured at any point in the aquifer or in the
pumping well. However, these equations also show that an
average storage coefficient should be calculated from draw-
downs measured outside the aquifer discontinuity.

The results of this study support the hypothesis that
the average transmissivity of a heterogeneous aquifer can be
calculated from rates of drawdown observed after long
periods of pumping.

INTRODUCTION
All aquifers are to some extent heterogeneous

and this fact brings into question the validity of
normal methods of pumping-test analysis which
assume homogeneity. While it is perhaps obvious
that pumping tests tend to "average out" the

Senior Scientific Officer and Principal Scientific
Officer, respectively, Hydrogeology Unit, Institute of
Geological Sciences, Maclean Building; Wallingford, Oxon,
0X10 8BB, England.

Manuscript received August 1981, accepted October
1981.

Discussion open until September 1,1982.
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properties of aquifers, it is natural to be suspicious
of results obtained when the pumping well is situated
in a region of the aquifer which is considered to be
atypical—especially if the only drawdown measured
is that in the pumping well.

This paper describes (i) a field investigation
that led to a consideration of the general problem
of pumping tests in patchy aquifers, (ii) our attempts
to gain insight into the problem by computer
simulation and mathematical analysis of a simple
form of heterogeneity, and (iii) a general hypothesis
suggested by this study and previous work. Some
particularly unusual pumping-test data, which appear
to have a simple interpretation in the light of the
analysis, are also presented.

BACKGROUND
The Overseas Section of the Hydrogeology

Unit of the Institute of Geological Sciences is
carrying out a study in the Deccan Traps of India
which involves the drilling and pump-testing of
many wells. Well yield has been found to be
unpredictable. Typically, a test site would be
centred on an established well yielding about 5 to
10 1/s (0.18 to 0.35 frVs). It is quite common for
an observation well subsequently drilled 20 metres
away to yield less than 1 1/s (0.035 ft3/s). This
variability in yield has led to the conclusion that
the aquifer is generally of low transmissivity but
has within it pockets of relatively high
transmissivity.

Vol. 20, No. 2-GROUND WATER-March-April 1982



T2'S2

Fig. 1. Idealised heterogeneous aquifer studied.

The theoretical study described here was
carried out to assist interpretation of the results
of pumping tests performed in such an aquifer. In
particular, the case of a pumping well situated in a
high transmissiviry pocket with observation wells
both inside and outside the pocket, has been
studied.

IDEALIZATION OF THE SYSTEM
In order to make the problem amenable to

analytical as well as numerical methods, the system
was chosen to have radial symmetry about the
pumping well (see Figure 1). The aquifer is confined
and consists of two regions with transmissivities T,
for r < R and T2 for r > R, and corresponding
storage coefficients St and Sj. It is assumed that a
constant pumping rate, Q, is maintained throughout
the test in a fully penetrating well.

NUMERICAL STUDY
This idealized pumping test was simulated

using a simple one-dimensional (radial) finite-
difference model. Parameter values were chosen to
approximate typical conditions encountered in the
field tests in India. The values chosen were T, = 80
mVd (0.01 ftVs), T Í = 5 mVd (0.0006 ftVs),
S, = SÍ = 0.001, R = 60 m (197 ft), Q = 5 1/s (0.18
ftVs). The pumping well was assumed to have a
small finite diameter 2rw = 0.2 m (0.66 ft).

Figure 2 shows a semilog plot of simulated
drawdown data, s, against time of pumping, t, for
the test well (r = rw ) and for observation wells
in both aquifer regions, r = 2 m (6.6 ft) and r = 62
m (203 ft).

For a fully-penetrating well pumping from a
homogeneous, confined aquifer of transmissivity, T,
well storage may have a significant effect on draw-
downs if Tt/rw

2 < 25 (Papadopulos and Cooper,
1967). This corresponds to times less than 4.5
minutes (25TW

1/TI) in the simulated test. Following
this initial period there is a phase of the test when
drawdowns in the outer aquifer region are negligible
and the test results are consequently similar to those
expected for a line sink in a homogeneous aquifer
of transmissivity Ti. Further, since the quantity
u = r2Si/4T tt is less than 0.01 for t > 4.5 minutes
and r < 10 m (33 ft), drawdowns in both the
production well and the inner observation well
should follow the Jacob equation (Cooper and
Jacob, 1946; Todd, 1959):

Si =

where C= 1.78 . . . .

In
4T.t

Cr2S,
(1)

The simulated data are approximated by equation
(Í) during the period 4.5 min. to 30 min.

As the radius of influence of the test moves
into the outer aquifer region, drawdowns increase
more rapidly until most of the water results from
the lowering of heads in the outer region. It then
seems reasonable to expect that rates of drawdown
would become dominated by the transmissivity T2.
Figure 2 shows that all three curves tend to straight
lines with roughly the same slope which, applying
Jacob's equation, gives a transmissivity value close
to the simulated values, T2.

t (mirai —

> Hit wttl
O " 1 1

g r« 62a

plots at «qn ï

ploti of tqni

•H:

1 10 WO

Fig. 2. Simulated drawdown data.
1000 10000
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ANALYTICAL STUDY
The above numerical study suggests that

Jacob's method can be used to obtain the trans-
missivity, T2, from the rate of drawdown, measured
in any part of the aquifer, after a sufficiently long
time of pumping. In order to investigate this
hypothesis, analytical expressions for the drawdown
valid after long times were obtained by the method
outlined in the Appendix. If Si and s3 are the
drawdowns in the inner and outer aquifer regions
respectively, then for large t-

4T2t 2T, , R
(2)

and

f (itiinsl -—

- irb.Q»9'5l/s

Ksf well
o <• obs'nwell 30 m
o r - - IMm

1 10 100 1000 '0000

Fig. 3. Field data from a pumping tast performed in India.

(3)

A simple interpretation of these equations
suggests that the inner aquifer region is in a quasi-
steady-state with the drawdown described by the
Thiem equation, while the drawdown in the outer
region is described by the Theis equation for a
homogeneous aquifer.

These equations confirm that a semilog plot of
drawdown against time will tend to a straight line
with slope Q/4TTT2. They further show that the
intercept of this line on the t-axis can be used to
estimate the storage coefficient S2, but only if the
drawdown is measured in the outer aquifer region
(assuming R to be unknown). A plot of s against In r
should consist of two straight lines with slopes
Q/27I-T, for r < R and Q/2ffT2 for r > R.

AN UNUSUAL FIELD RESULT
Figure 3 shows the results of a pumping test

carried out in India in an aquifer known to have
"patchy" properties. The results are unlike those
usually obtained from a pumping test in that
observed drawdowns are almost independent of the
distance of the observation well from the pumping
well.

All the wells drilled at this site had exceptionally
high specific capacities which indicates that the wells
lie within a zone of abnormally high transmissivity.
If, as a first approximation, the pumping well is
assumed to lie at the centre of a disc of high trans-
missivity, then equation (2) can be used to predict
the drawdown after long times. If T, is much greater
than T2, the final term in equation (2) can be
ignored, so the drawdown, s,, will be independent
of the radial distance (r) of the observation—on
reflection, a fairly obvious result. The apparently

anomalous data presented in Figure 3 thus can be
explained, and the application of Jacob's method
reveals a relatively low regional transmissivity of
about 50 m2/d (0.006 ftVs). The transmissivity of
the inner region must, by contrast, be very high—
possibly greater than 3,000 m :/d (0.4 ftVs).

A GENERAL HYPOTHESIS
The results of these investigations lead to the

following hypothesis concerning the interpretation
of pumping-test data for heterogeneous aquifers:
The average transmissivity of an aquifer can be
determined, using Jacob's method, from rates of
drawdown measured at any point in the aquifer, or
in the pumping well, after long times of pumping.

We have only confirmed this hypothesis for a
very special case of heterogeneity; Tóth (1967)
argues the general case as follows: "Generally, pump
tests indicate the presence of some kind of bound-
ary. If, however, the pump test is long enough to
permit a 'sampling' by the cone of influence of rock
volumes which arc large even on a regional scale,
time-drawdown curves will behave again as if water
was withdrawn from an infinite, homogeneous

aquifer."
Vanden berg (1977) used a two-dimensional

computer model to simulate a constant-rate pumping
test in an aquifer with randomly distributed trans-
missivity but constant diffusivity. He concluded
that the Theis curve-fitting method could be used
to obtain average values of the transmissivity and
storage coefficient, the fit to the simulated data
being best for large values of t/r2. Other work on
the effects of statistical variations of properties on
flow in porous media is reviewed by Freeze (1975).
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From his own study of a one-dimensional
model. Freeze concludes that a heterogeneous
formation in general cannot be replaced by an
equivalent homogeneous formation when consider-
ing transient flow. However, the "average trans-
missivity" referred to above is that which would be
appropriate for use in a regional aquifer model with
long time-scales ; more precisely, for use when the
characteristic time for changes of interest is much
greater than X2/K , where x is the characteristic scale
of spatial variation of transmissivity (e.g., R in
Figure 1) and K is the characteristic diffusivity. Here
the implicit assumption is that the aquifer is essen-
tially homogeneous when viewed on a sufficiently
large scale.

DISCUSSION
In Figure 2 the transition between the two

straight-line sections of the drawdown curves is
characterized by a continuous increase in slope.
Figure 4a shows an alternative form of the curve
that may be observed when T2 < T,. Similarly,
for the case T2 > T,, numerical simulations
revealed the two forms of behaviour shown in
Figures 4b and 4c. The form obtained depends on
S,/S3 and r/R for a given value of T , / T Î .

In deriving equations (2) and (3), no
assumption was made concerning the size of R, so
these equations could be applied to a well where a
cylindrically symmetrical region of formation
damage is expected, or even to a well with a thick
gravel pack. In both cases the equations show that
the aquifer transmissivity can be calculated from
rates of drawdown measured either in the pumping
well or in observation wells, although the storage
coefficient should be deduced from drawdowns
measured some distance from the pumping well.

CONCLUSIONS
A pumping test performed in an aquifer with a

radial discontinuity in its properties will result in
time-drawdown curves of one of the forms shown
in Figures 2 and 4; after long times of pumping the
drawdown behaviour is described by equations
(2) and (3).

When considered in conjunction with the results
of previous studies of pumping tests in heterogeneous
aquifers, the results of this study demonstrate that
Jacob's method can be used with confidence to
obtain a regional average for the aquifer transmissiv-
ity. An average storage coefficient should, however,
be calculated from drawdowns measured at large
distances from the pumping well.

NOMENCLATURE
C = e x p 7 ( = 1.78. . .).

I. \

Ko

modified Bessel functions of the first kind.
\

modified Bessel functions of the second kind.

In t —
Fig. 4. Alternative forms of the drawdown variation for the
idealised system. The form depends on T,/T2 , S,/S, and r/R.

p Laplace transform variable.

- (.p s t K no .

Q well discharge rate,

r radial distance from the pumping well.

R radius of the boundary of the two aquifer
regions (Figure 1).

Si drawdown for r < R.

Si Laplace transform of Si.

s2 drawdown for r > R.

%i Laplace transform of ŝ .

S, storage coefficient for r < R.

SÍ storage coefficient for r > R.

t time after the start of pumping.



T[ transmissiviry for r < R.

T2 transmissivity for r > R.

u = r2S/4Tt.

<x =(S2Tl/SlT2)'
Á.

& =2n T,/Q.

y = Euler ' s c o n s t a n t (= 0 . 5 7 7 2 . . . ) .

8 = T Î / T , .

4> = pq [9a K, (aq) Io (q) - Ko (aq) I, (q)].
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APPENDIX
Derivation of the Asymptotic Drawdown Equations

Referring to Figure 1, let S[ and s2 be the
drawdowns in the inner and outer aquifer regions,
respectively. Applying Darcy's law and the equation
of continuity:

S lÍí l=Il2(r^) forr<R (Al)
3t r 3r 3r

and

d$2 Ti 3 ds2
!_i = ^ _ ( r _ i ) forr>R (A2)

Assuming the well to be a line source with no
storage:

r -0 (A3)

The drawdowns and radial fluxes in the two
regions must be equal at r = R, so:

s,(R,t) = s,(R,t) (A4)

and:

3s, ds->
T, — (R,t) - T2 - ^ (R,t)

dr dr
(A5)

The drawdown at a sufficiently large distance
from the well will be zero:

s,(~,t)»O (AÓ)

Initially, at the start of pumping, the drawdown will
be zero everywhere:

s1(r,o) = s î(r,o) = 0 (A7)

The solution of equations (Al) to (A7) can be
tackled by taking Laplace transforms and solving
the resulting ordinary differential equations, in terms
of modified Bessel functions to give:
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j3s,(r,p)
(qqr/R)

(A8)

(A9)

where

p is the Laplace transform variable,

q ' -pSiRVT, ,

0 a pq [9a K, (aq) Io (q) ~ Ko (aq) I, (q)],
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0 =2TTT1 /Q,

d =T, /T, .

The transforms given by equations (A8) and
(A9> are exact and could be inverted to give explicit
expressions for the drawdown at all times; the
inversion procedure would, however, be very compli-
cated. Since only the long-time behaviour of the
drawdown is of interest, equations (A8) and (A9)
can be replaced by expressions that are valid for
small values of p (and hence q). Now, for small x:

Ko (x) =* In (2/x) - 7

K, (x) =* 1/x

and I, (x) ** x/2

So, for small values of p, equations (A8) and
(A9) become:

and:

_ 1 R 1 2 7
0s, = - ( I n - + - l n -

p r d ctq d

1 2R
= — (In 7)

0p aqr

(A10)

(AU)

Equations (A10) and (Al l ) are easily inverted
to give:

4irT,s, . 4T2t 2T2 R
= In + In — •

Q CS2R
2 T, r

and:

4T,t

(A12)

(A13)

where In C = 7.

Equations (A12) and (A13) are the required
expressions for the drawdown after long times.



Program HVRLVl — Interactive Determination of
Horizontal Permeabilities within Uniform Soils
from Field Tests Using Hvorslev's Formulae

by K. U. Weyer and W. C. Horwood-Browna

ABSTRACT
A computer program is presented for interactive,

user-oriented calculation of permeabilities from slug tests
using Hvorslev's formulae for filters in uniform soil. The
analysis scheme is cost-efficient and allows for simple
sensitivity analyses.

INTRODUCTION
In 1951 the U.S. Corps of Engineers (Hvorslev,

1951) presented a synopsis of methods and equa-
tions for the determination of permeabilities in
granular material from laboratory and field tests.
Although many different methods have been
published since then, Hvorslev's methods still are
used widely in practice for a calculation of
permeabilities from "slug tests" in piezometers. In
a slug test a rise of water level is caused in a well or
piezometer by an instantaneous addition of
material, be it water or solid material. The recession
of the water level over time is used to calculate the
permeability of the surrounding rock. In general,
Hvorslev's methods arc considered to be an adequate

aNational Hydrology Research Institute, Ground
Water Division, 101-4616 Valiant Drive N.W., Calgary,
Alberta, Canada T3A 0X9.

Received October 1981, revised December 1981,
accepted December 1981.

Discussion open until November 1, 1982.

tool for an estimation of the magnitude of permea-
bilities in aquifers. For this reason the computer
program HVRLVl has been developed by the
National Hydrology Research Institute (Calgary).
The program has been written such that the
calculations can be carried out interactively. This
facilitates efficient evaluation and permits sensitivity
analyses of field data obtained.

The terms permeability and hydraulic conduc-
tivity are used interchangeably in this paper.

METHODS OF PERMEABILITY
DETERMINATION

The theory of Hvorslev's permeability deter-
mination has been summarized in Hvorslcv's (1951)
original figure 18 which also presents the field
methods and equations used.

The program HVRLVl applies to field condi-
tions where the well point filter is installed in
uniform soil (see Figure 1). Three basic methods
for permeability determination are considered:
the constant head method, the variable head method
and the basic time lag method. Assumptions are as
follows:

• Soil at filter intake.

• Infinite depth and directional isotropy (kn

and kv constant).

• No disturbance, segregation, swelling or
consolidation of the soil.
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Constant Head Method
The calculation makes use of the equation

Fig. 1. Field arrangement for Hvorslev tlug tens calculated
by program HVRLV1. See Table 1 for explanation of
variables.

• No air or gas entrapped in soil, well point or
pipe.

• Hydraulic losses in pipes, well point or filter
negligible.

• No sedimentation or leakage.

Before commencement of calculation the following
parameters need to be known: q, HC) L, D, and the
ratio kh/kv. The notations, dimensions and names
of input variables are listed and explained in Table 1.

Variable Head Method
The calculation makes use of two equations

j , . mL /

d - l n [ — V
8-L-(t,

dMn(

Uh 8 - L - ( t

+ (

- t « >

2mL
D

3 - t,

m L N:
_ )

) H

) l n H

mL

D

m L

"5"

< 4

> 4

Before commencement of calculation the following
parameters need to be known: Ht, H2, t^ t2, d, L,
D, and the ratio kh/kv.

Basic Time Lag Method
The calculation makes use of the equations

,, . r mLd2-ln[ — mL 2

— )

8-L-T

kh
8-L-T

mL
for —

D

, mL
for — > 4

D

Before commencement of calculation the following
parameters need to be known: d, L, D, the ratio
kh/kv, and T. The determination of the basic time
lag is outlined in Figure 2. The basic time lag T is
the time t at which H is equivalent to 0.37 Ho.

PROGRAM STRUCTURE AND OPERATION
The program HVRLV1 has been listed in

Appendix 1. It has been written in Multics
FORTRAN which is an extension to ANSI Standard
FORTRAN, 1966. The program has been tested at
the University of Calgary Honeywell computer. The
computer operates on a DPS Level 2 running
Multics Release 8.2. The program can be operated
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Table 1. List of Notations and Data Input Parameters

Notation
Name of input

Variable1 Dimensions of Input

D
d
L
He
H,

T
kv

m
kh/kv

DSCREEN
DPIPE
LSCREEN
HC
HI
H2
Q
T1.T2
TLAG

RATIO
IDENT

Diameter of intake area, [cm)
Inside diameter of piezometer pipe, (cm|
Length of intake, [m]
Constant piezometer head, [m]
Piezometric head for t = t ] , [m|
Piezometric head for t = t2, [m]
Flow of water, [cm3/s)
Time, [s]
Basic time lag, [s|
Vertical permeability of soil
Horizontal permeability of soil

Transformation ratio: m = Vkh/kv

Name of piezometer (up to 8 characters)

Input is format free. Variables are separated by a semicolon, data values by blanks or commas.

in interactive and in batch mode. Table 2 shows
the hierarchy of subroutines used.

After program and data files have been set
up in the mass storage area of the computer
system, the program can be operated simply

following the logic and steps outlined in Figures 3
and 4. The control commands used are listed and
explained in Table 3. Within the execution of the
program they are submitted as outlined in Figures
3 and 4. Necessary data variables are listed and

• a
«3a>
X

o
a>

.37H

Table 2. Hierarchy of Subroutines in Program HVRLV1

.1OHo
Time t

Fig. 2. Determination of basic time lag T from semilog plot
of time vs. head. Ho is the piezometric head H at the time
t = 0.

HVHLVl - «A1NLINE

BLOCK DATA

DRIVER

ÎNTE*P

SKIP

RDTITL

RDvAC,

CHEAD

VHEAO

BTLAG

PRTITL

INTERACTIVE AND BATCH
CONTROL STRUCTURE

PERMEABILITY CALCULATION
" ~ ANO PRINTING OF RESULTS

Table 3. List of Control Commands for Program HVRLV1

tNPUT'Xl

0UTPUT-X2

TtTLE( )

CHEAD

VHEAD

BTLAC

PROC Ot PROCEED

STOP

• X1-5 intataetlv* nd*
- Xl*5 batch aed*, data an f i la jpacifi.d

- x j . i output to tarainal
• X2»« output CO t i l * X!. X3#«

- ganaral haadln^ (ot output tabla,
72 chacaetaci H l l n i .

' 14» conatant haad Mthod of calculation

- u«« vaclaOl* naad «athod si calculation

- u » Male tina L»9 gMtnod at calculation

- pcoc«d with calculation

• no iutthac calculation
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ENTER MODS ANO P I L E CONTROL ( I N P U T » X 1 ; O U t P U T - X H :

I I N P U T ' S
I O U T P U T - 6
I OUTPUT^-X2
I OUTPUT"K2 f 6

• o u t p u t t o f i l * XZ; X J * «
o u t p u t t o t * f m i n a L a n d t o f i l * X2

i ENTER CALCULATION METHOD ( " C H E A P " ; , " V W E A D * , " S T A L A G ' , " S T O P " ) : \

— CONSTANT HEAO METHOO - -
ENTER: T I T L E , I D E N T , D S C R E E N , L S C R E E N , R A T I O , Q , H C

T I T L E I . . . ) ; t O E N T * . . . I
D S C S E E N ' D S l , 0 S 2 . . . , ; L S C H E E N - H . L Z . . . . ; R A T I O - H I , R 2 . . .

! Q - O U ) , Q ( 2 ) , . . . ; H C - H C ( l ) , H C ( 2 | , , . . , '

— VARIABLE HEAD METHOD - -
ENTER: T I T L E , Î ù e N T , O P 1 P E , D S C R E E N , L S C R E E M , R A T I O , T l , T 3 , H 1 , H 2

T I T L E ( . . . 1 ; I D E N T " . , . : D P I P E * O P l , D P 2 , . . . :
1 O S C R E E N - O S 1 , D S 2 , . . . 1 L S C R E E N . L I , L Î , . . . : R A T I O - R l , R 3 , . . . ;
I T l ' T K L I , T 1 ( I I , . . . ; T 2 - T 2 U I , T 2 ( 2 I , . . . 1 .
| H l - H L I l . ) , H 1 ( 2 I , . . . ! H I ' H i ( l ) , H ! C ) , , , , ;

- - BASIC TIME LAC METHOD —
ENTER: T I T L E , I D E N T , D P I P £ , D S C R £ E N , L S C S E E N . R A T I O , T L A C

' T I T L E ! . . , ) : I D E N T » . . . ; D P I P E ' D P l , D P 3 , . . . ;
I O 3 C R E E N - D S 1 . D S 2 , . . ..• ' - S C R F . E N . L l , L 2 , . . . ; T L A C . T H , T L 2 , . . . ;

Fig. 3, Operation of program HVRLV1 in interactive mode.
Program messages are in solid boxes, user responses in boxes
with broken lines. Use of T ITLE ( . . . . ) is facultative. STOP
can be submitted at any response time.

explained in Table 1. Error messages generated by
the program are listed in Table 4. Figures 5 and 6
are examples of interactive and batch executions,
respectively.

To terminate the program the command
STOP can be submitted at any time when response
is required. The use of TITLE (. . . .) is facultative.
The sequence of data variables is not restricted.
Data variables are format free; commas and blanks
serve as dividers for data, semicolons as dividers for
variables.

AUTOMATIC LOOPING FACILITY
Up to 10 values can be assigned to a data

variable, (e.g. DSCREEN = XI, X2 , X10).
Where more than one value is assigned, the program
will automatically loop through all possible combina-
tions of data, within one input set. The looping
sequence is outlined in Table 5. Within the table
the looping sequence follows the rows before
progressing vertically.

PROGRAM OUTPUT
Output can be routed to a terminal, a separate

output file or both as outlined in Figures 3 and 4.
Separate output files are automatically structured
by pages and paginated, with column headings and
titles printed on each page (see Figure 6). The
tables contain the input data, the ratio (mL)/D and
the calculated permeabilities in cm/s and m/s.

Tables can be built up interactively from a
terminal or by using batch files. If use is made of
the automatic looping facility, interactive output
at the terminal is in the form of a table (see
Figure 5). Otherwise the output at the terminal is
interspersed with the record of interactive
communication. Using the output parameter
OUTPUT = 6, X2 will build up a table in file X2
which does not contain the record of the inter-

ËNTEH MODE AND FILE CONTROL (INPUT-Xlt OUTPUT-XJ)!

! *_ ̂  — _ ^
I INPUT-Xl
OUTPUT-X2

I OUTPUT»*
| OUTPUT'S,X2

T
input troa CU» Kl, X1*S .

• output to CU* X3, X2#« '
output to ttrnintl !
output to tarminal And to f l i t XÎ i

— RÍADIH0 INPUT PROM nt.1 XI —

CHEM)
TITLK. . . I :
DSCREEN-0S1,
Q ' Q ( l ) , 0 ( 2 1 ,
PROCEED
BTLAG

IDENT*,
D S 2 , . . .
. . . ; HC

r » A T I O » R l , R 2 , . . . i
• H C ( l ) , H C ( J ) , . . , ;

I D E H T » , . . ; Q P I P E - D P l . D P Z , . . . ; T L A C a T L l . T t l , . . . ; -
D S C W e N . D S L ,
PROCtID
STOP

O S 2 , . . . t B A T I O . R L , « 3 , . . , ;

- Calculation

- Ctlculation 1

Fig. 4. Operation of program HVRLV1 in batch mode.
Program messages are in solid boxes; user responses are in
the broken-line box. An example of a batch input file for
two different calculations is in the dotted box.

Table 4. List of Error Messages
MESSAGES DURING FILE CONTROL SPECIFICATION:

• ERROR • UNEXPECTED END OF DATA INÏUT
INPUT AND OUTPUT PILE MUST BE S P E C I F I E D , OR "STOP"

• ERROR * UNABLE TO READ FILE CONTROL CARD

RE-ENTER INPUT AND OUTPUT STATEMENTS

• ERROR • UNIT NUMBER MU5T BE FROM 1 TO 9 9

• ERROR • CONFLICTING INPUT/OUTPUT SPECIFICATION

RE-ENTER INPUT AND OUTPUT STATEMENTS

MESSAGES FROM SUBROUTINE DRIVER:

• ERROR * CALCULATION METHOD MOST SE SPECIFIED

• ERROR * UNEXPECTED END OF DATA INPUT

• ERROR • PARAMETER NAME NOT RECOGNIZED

• ERROR * MISSING EQUAL SIGN

• ERROR * UNABLE TO READ DATA VALUE AT COLUMN . .

• ERROR * MISSING VALUE FOR PARAMETER
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Fig. 5. Example of interactive communication at a terminal
using the automatic looping facility for basic time lag
calculations* The figure shows data input and the results
of calculations.
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Fig. 6. Example of batch execution using the automatic
looping facility for basic time lag calculations. The figure
shows data input and the results of calculations.

active communication. All tables printed arc
suitable for direct inclusion in reports without
further typing. An example of the procedure and
results is given in Figure 5.

Table 5. Looping Sequence for the Three Types of
Data Input. Looping Sequence Is in Order of Listing.
Data Pairs Are Treated as One Variable. Horizontal

Progress Precedes Vertical Progress.
1. Constant head method

Q

HC
data
pair

RATTO :

LSCREEN :

DSCREEN :

Variable head method

Tl, T2

H l •

t R
in

"10

DS1( DS: DS
ln

Hl, H2

RATIO

LSCREEN

DSCREEN

DPIPE

data pair
Hi, AH,,

, R,,

,AH1(1

,RI0

Li- L2 Lin

DSi, DS2 DSJQ

DSi, DS2, 'Dsin

3. Basic time lag method

TLAG : Ti, T?,

RATIO : R1, R2,

[.SCREEN : LSj, LS2,

DSCREEN : OSj, DS2,

DPIPE : OPi, DP2,

'IO

'10

,LS

,DS
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APPENDIX 1. HVRLV1 PROGRAM

PROGRAM HVItLVt CALCULATES, IS INTERACTIVE ANO BATCH «ODE.
HORIZONTAL HYORAULIÏ CONDUCTIVITIES rOK C i 3 S "G* IN
FIGURE 11 OP H V O R S L B V , M . J . , 1 9 ï l , TIME LAG AMD SOIL
PERMEABILITY I» GROUSDWATER 'OBSERVATIONS.

AUTHORS - W.C.HOIBIOOO . Í

AVRIL, 1911

CHARACTER-L - A P . D , F 1 L P A R ( 3 . S I . COMMA, SCOLAN
COMMON / C 1 0 0 0 / I N , t O U T , I A I N , I A O U T , INTER

• /C2000/ CARD HOI , ICOL
• /CJ1OO/ COMMA, SCOLAN
OATA FILPAR/ IHI, LHO, 1HS,

• 1HN, 1HU, IHT.
• LHP, IHT, IHO,
• 1HU. LHP, LHP,
• LHT, LHU, 1» ,
• IH , LHT, 114 /

IAOL'T«6
OPEN STATEMENTS IN MULTICS FORTRAN CONNECT A PtLE OR DEVICE
TO A UNIT AND ASSIS» CONTROL ATTRIBUTES FOR A CONNECTED UNIT
OPEN(IAIN,FORM-"¡ocmit t tr t* , . IODE."in" ,PROMPT. .TRUE,1
OPEN dAOUT.fORM." f O C I M t t í d * . MODE, " o u t ".CARRIAGE., TRUE. I

90 I C 1 - 0
I C 2 - 0
I N - 0
IOUT-0
INTMP.0
IOUTMP-0

READ MODE ANO FILE CONTROL PARAMETERS
loa WRITE! IAOUT, 1.101
110 FORMAT!/' ENTER MODE AND FILE CONTROL (INPUT-X1; OUTPUT-X2I : ' ]
U S READCAÍN, 130.END-BOO) CARD
LIO FORMATI80A11

ICOL.L
THE 3IGN "5" tNOtCATES A MULTIPLE RETURN OPTION
CALL s X I P l l . O . S B O O l

HEAO PARAMETERS
140 CALL I N T S R P ( F I L P A R . 3 , 6 , 1 C )

I F d C . E 9 . 0 l GO TO 1 4 0
I F I I C . i g . J I SO TO 9 9 9

SKIP TO £OUAL SIGN
CALL 5 K I P ( 4 , 1 , 3 1 4 0 1

SKIP TO NUMBER
150 CALL S K I P U . 1 . S 1 4 0 I

REAO NUMBER
CALL ROVALIREALF.IERR)
I f ' l E B B . S O . 1) SO TO KO
IUNT.IFIX{REALfl
IF(IUNT.LE.O.OR.IUNT.CT,99> SO TO 860

ASSICH NUMBER ACCORDINGLY
I F ( I C . S Q . i l 00 TO UO

"INPUT"
ICWCl- l
*T"NT.ME.5I IN.IUNT
IF<IÜNT.5Q.S> INTMP-Î
50 TO 170

"OUTPUT-
ISO lC!-tC2*L

IfllUNT.NE.il IOUT«tUNT
IFÜUNT.EO.S) IOUTMP-Í

CHEC* FOR ADDITIONAL UNIT NUMBER
170 CONTINUE

CALL S K I P I l . l . S l l O l
IflCAROdCOLl ,EQ.COMMA) SO TO IÎ0
IPICARDltCOLI.NE.5COLAN) SO TO 140

. . . . S K I P TO NEXT PARAMETER
CALL S U l ï l L . l . S i a O l
GO TO MO

CHECK ASSIGNMENT Of UNIT NUMBERS
UO CONTINUE

trilMTOP.ST.O.AND.IS.GT.O) OO TO BIO
i r i l H . M . O ) GO TO : o í
irilB.EQ.IOUT.OR.IN.EO.IOUTMP) SO TO HO

200 irtINTMP.EO.01 GO TO 210
tritNTttr.EQ.IOUT.OR.rtlTHf.EQ..IOUTMf> GO TO « i d

¡LO CONTINUE
IFdN.EO.O.AHO.INTNF.iq.O) 00 TO 120
IfUOUT.EQ.0.ANO.IOUTMP.E0.0) SO TO 120
IAIN-INTMP
IAOUT-I0UTÎ4P
IF(IOUT.GT.O) OPtM(IOOT.rOR»l-"fat«et« | - ,HOO*«"out ,

• CARRIASt'.TRUl!)

iriIN.ST.0) WRITE II N T H . 2101 IK
220 rO«H»TI//' — REAOWS IMMIT DATA fROM TILI * , U , " /)

! f l U CONTROL PARAMETERS AND MODE KAVI S I M SflCiriED
CALL DRIVER

! STOP EXECUTION
9t« STOf

; ERROR MESSAGES
9 0 0 W R I T I I I A O U T . I U I
9 1 0 rORHAT(' • ERROR * UNIXPECTEO (HO Or DATA INPUT' /

INPUT ANO OUTPUT TIL» MUST H J P K l f l ï D , OR - 5 T 0 » * '1
GO TO 100

1 4 0 HRITEIIAOUT.aSI»
8 5 0 FORMAT!' • ERROR • UNABLE TO «IÃO r t l l COMTROl, CARD'/

RE-ENTER INPUT ABO OUTPUT STATEMENTS')
GO TO 90

1 ( 0 WRITEIIAOUT.ITO)
• TO FORMAT! ' • ERROR * UNIT NUMBER MUST S I FROM 1 1O M ' l

SO TO 100
1 1 0 v tRITKIAOirr .190 )
i t O FORMAT!' ' ERROR • COWLICTtlM murT/OIITÍHT S Í Í C i r i C A T t O N V

• ' RE-EHTIR INPUT AND OUTPUT STATEMEHTS')
GO TO «0
END

B L O C S D A T A

5L0CK DATA INITIALIZES PARAMETERS IN COMMON BLOCKS

BLOCK DATA
CHARACTER*! BLANK, COMMA, SCOLAN, LBRACK, «BRACK, CVEC,

• MINUS
COMMON / C 3 0 0 0 / 3LANK

• / C 3 L 0 0 / COMMA, 3COLAN
• / C 3 3O0/ L3RACX, RBRACK
• / C 3 I O 0 / c r e c i l j l , PLUS, MINUS

DATA 9LANK/LH / , COMMA/LH,/, SCOLAN/LH;/, LRRACK/LH(/,
• RBRACK/1H)/, P L U 5 / 1 H * / , MINUS/LH-/

OATA CVEC/IHO, LHl, LHJ, VH3, LHt, 1H5, LHÍ,
• LHE/

ISD

LH1, LH9, LH,.

0 S t V E 5

SUBROUTINE DRIVER DIRECTS THE READING OF COMMANDS ANO
PARAMETER VALUES AND CALLS THE CALCULATION SUBROUTINES

SUBROUTINE ORtVER
CHARACTERS CARD, PARAU5.71,

COMMA, TITLE
DIMENSION N V C H U ! , NWH ( 9 ! , s
COMMON / C 1 0 0 0 / IN. IOUT, IAIN, IAOUT, TÜTER

/ C 2 0 0 0 / CARDiaOl, ICOL
/ C 1 0 0 0 / SLANK
/ C 3 Ü J 0 / COMMA, SCOLAN
/ C 4 0 0 0 / 1 D E N T Ü I , DATPARI11,101 , NVALÍ1L)
/ C 4 2 0 O / IMETH, IAOFLG, tOPLG
/ C 4 3 0 O / T I 7 L E I 7 2 ) , NTITL, NWTITL
/ C 4 4 0 0 / NLINE, NLINEX

DATA AMETHD/ LHC, 1HV, LHB, IHS,
LHT, LHT.
LHL, IHO,
LHA, 1HP,
1HG, LH /

IOENT, "*LANK, 5COLAH

1HH, 1HH
1HE, LHE

LHA
LHO

LHA,
IHD,

DATA PARA
IHO,IHD,1HL,1HR,IHT,IHT,LHT,LHH,LHH,IHH,IHO,LHI,LHT.LHP,
LHP, LHS,LHS, L H A . l H L . m
1HI,1HC,1HC,1HT,IHA,LH
1 H P , 1 H K . 1 B R . 1 H I . 1 H 5 . 1 H

. IHJ
IH

, LH
, LH
. LH

1HX
i:i
IH
IH
IH

,LH2
,1H
,IH
,IH
,1H

LH , LH
LH , LH
I H , IH
LH , LH

9, 9/ ,

LHO,
LHE,
LHN,
IHT,
',H ,
IB ,

IHI
LHT
LHL
LHE
IH
IH

LH«
LHO
LHC
LH
l.H
LH ,

IHS,
LHT.
IHO,
LHP,
IH ,
'H ,

•1HE,1!4( ,1HE.1HO,LH , LH
*1H ,1HS,1HE,1H ,1H ,LH
•IH , IHN.IHM.IH ,ÍK . IK ,LH ,

OATA NVCH/ 2 , 3 , t . 1 0 , 1 1 /
NWH/ 1 , 2 . 1 , 4 , S , 7 ,

NViTL/ L. 2 , 3 , 4 , 5 /
N L I N t . n
NLINEX*3S
IAnFLO.0
I'1FLS-O
IFiTAOVT.GT.0) IAOfLG"l
I F d O U T . G T . 0 ) lOFLOtl
IMETH-0

1 DO 2 I ' L . l l
2 NVALIII'0

NTITL-0
DO ! 1 - 1 , 8

i IOENT(II-BLANK

I F I I A I N . G T . 0 1 WRITEdNTER.lOl
10 FORMAT)// " ENTER CALCULATION METHOD I "CHEAO* , "'/HEAD" , "3Tt,AG" . "5T

• O P " ) : '1
I F I I A I N . O T . 0 1 READIIAIN.20 .ENO.3000I CARO
i r i l N . S T . O l REAOI I N , 2 0 , E N D - 1 0 0 0 1 CARD

20 FORMATI90A1I
ICOL-1
tMETHO-IMETO
CALL S U P ! 1 . 0 , 5 2 9 0 0 )
CALL IHTERPIAMETHD,4,5,IMETH)
IF(IMETH.EO.O) GO TO 2900
IF(IMETH,£0.tSETHO) GO TO 25
I F ! I A O U T , S T . 1 ) IAOFLG-1
IFIIOUT.GT.3 ) IOfLO-1

25 CONTINUE
IPdOUT.GT.0 .AND.NLINE.GT.NLINEX) IOFLG-1
tFIIMETH.EQ.41 SO TO SOO

I F ( I A I N . L E . O ) SO TO SO
IFIIMETH.ÊO.I) WRITEIINTER.30)

30 FORMAT!/' " CONSTANT HEAD METHOD - - ' /
• ' ENTER! TITLE,IDENT,OSCREEN.LSCREEN,RATIO,O.HC'I

IF(IMtTH.EO.2> WRITE(INTER,401
40 FORMAT!/' -• VARIABLE HEAD METHOD — ' /

• ' ENTER: TITLE , IOENT.OPIPE.OSCREEW.LSCREEN,RATIO, T l , T2.H1 ,K
• ! ' I

IFIIMtTII.EI3.31 WRITE! INTER,501
50 FORMAT!/' — BASIC TIME LAO KETHOD —'/

• ' ÍNTER I TITLE,IDENT,0PIPE.D9CREEN.LSCREEN,RATIO,TLAG'l
«0 IfIIAtN.GT.OI READ(IAIN,20,END-3000l CARO

i r i l N . 3 T . 0 l R(AS<IN,2O,END'3OOO1 CARD
ICOL-1
CALL l l l P l l . O . i J O t l t l )

70 CALL INTERPIPARA,1),7,IP)
IFIIP.IO. .0) GO TO 3020
I F 1 I P . O I . 1 3 I 30 TO »O
SKIP TO COUAL SION
CALL S K I P I 4 . 1 . 1 ) 0 4 0 1

90 CONTINUE
i r i I P . G T . 1 1 ) SO TO 200

READ PARAMETER VALUE)
NVALdPMO

100 CALL 3 K I P I 2 , l . S 6 0 l
irtCAXDdCOL) .EO.SCOLAH) SO TO 700
CALL ROVALIRIALr.lEXR)
IFdERR.EO. i l GO TO JOSO
UP TO 10 VALUES FOR EACH PARAMETER ARE PSRKITTXO. SKIP REST
ir(NVALdP) ,EO. 101 00 TO 100
NVAL(tPI-NVAL!IPI*L
OATPARlIP.NVAtdP) I'R1ALÍ
SO TO 100

200 CONTINU!
U-IP-11
50TOOOO,400,500,4001 , U

-I0OIT'
300 CONTINU!

NID-0
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CALL S K I P ' I . l , ! 6 0 |
310 NID-NID+L

IDENT(NID) -CARD! ICOt,)
ICOL-ICOL'l
IF( tC0L.GT-30l t!O TO SO
IF(CARO(ICOL) .EO.SCOLANI GO TO TOO
IF(NID.LT.B) GO TO HO
CALL SKIPIÎ.O.SSOI
GO TO 7(30

C
C "TITLE"

400 CONTINUE
CALL SKIP? 3 , 1 , 5 3 0 0 0 ]
CALL 3DTITL
NWTITi-1
CALL 3 K I ? ( 5 , 1 . S 4 0 I
GO TO TOO

C "ÎROC"
500 CONTINUE

IffIOUT.ST.}.AND.*mTITL,EQ,LI IOFLG-l
IFÜAOUT.5T. J.AND.NWTITL.EO.. '.I IAOFLG-1
GOTO!5LO,530,5ÍO> ,:.METH

ÎLQ 00 520 [ - 1 , 5
N-NVCH(11
tF(NVALIN) .'.,£.01 CO TO 3080
IF( IAOUT.GT.0.AND.NVAHN) ,GT, 1) IAOFLG-1

5 20 CONTINUE
CALL CHEAO
GO TO ;

530 00 540 1 - 1 . 8
N*NVVH(I)
[FINVAL(N).LE.O) SOTO 30S0
IFIIAOUT.3T.0.AND.NVAL(NI .GT.1) IAOFLG.1

540 CONTINUE
CALL '/HEAD
CO TO 1

550 DO 5S0 1 - 1 . 5
N-NVBTLiIt
IF (NVAL(N i . -E .0 ) GO TO 30BO
[FÜAOUT.ÍT.O.AND.NVALINI . G T . l ) IAOFLC-1

560 CONTINUE
CALL BTLAC
GO TO 1

C
C "STOP"

500 STOP
c
C, . . . .ADDITIONAL INPUT

700 CALL S K l P I l , L, SSOl
CO TO 70

C
C ERROR MESSAGES

2900 WRITEUNTER, 2910)
291.0 FORMAT!' • ERROR * CALCULATION METHOD BUST 3E sPECIFIIO' l

IMETH-IMETHO
IFÜAIN.GT.Q1 GO TO I
CO TO «000

3000 WRIT![INTER,30101
3010 FORMAT!' * ERROR • UNEXPECTED END OF DATA INPUT')

CO TO 4000
3020 WRITEIINTER,30301
3030 FORMAT!' * ERROR * PARAMETER NAME NOT SECOGNÍZED')

CO TO 4000
3040 HRIT£(INT5R,i0S0l
3050 FORMAT!' • ERROR • KISSING EQUAL SIGN')

GO TO 4000
3040 WRITE!INTER,3070) ICOL
3070 FORMAT!' * ERROR • UNABLE TO READ DATA VALUE AT COLUMN ',I2)

SO TO 4000
3080 WRITEUNTER,30901 (PARA(N,Nl) , N l « 1,7)
3090 FORMAT!' • ERROR • HISSING VALUE FOR PARAMETER ' , 7 A U

tFIIAIN.GT.01 CO TO SO
GO TO «00

4000 CONTINUE
IFI tAIN.CT.a i CO TO Í0
WRITEÍINTER,40101 (CARDÍI) , 1 - 1 , 9 0 1

J010 FORMAT!' LAST CARO READ:",80Al /
EXECUTION TERMINATED')

END

H i * t i « < « < t M « ) » t M I N T E R ? * • • • • * • * • • *

SU8ROUTINS INTER? READS COMMANDS AND PARAMETERS

SUBROUTINE INTERPÍCMNO,NCMND,NMX,ICMND)
CHARACTER*1. CARO, CKNO, BLANK
DIMENSION CMND!NC*ND,NMXI
COMMON / C 2 0 0 0 / CARDIBOI, ICOL

• /C30QO/ SLANK
ICOL POINTS TO FIRST CHARACTER Or PARAMETER OR COMMAND
ICMNO-0
MATCH FIRST CHARACTER OF PARAMETER, THEN MATCH TNI RIST
OF THE PARAMETER
DO 30 I-L.MCMND
IFICAROIICOLl.NE.CMHO(I.l)1 GO TO 30
IfINMX.Ï0 .1I GO TO I !
ICOLO-ICOL
SO 10 J-2.NMX
IF!CMND(I,J),EQ,BLANK) GO TO 10
ICOL-ICOL»1
!F(ICOL,GT.90) GO TO 20
iriCARDIICDLI.NI.CMHSIt .JII GO TO 20

10 CONTtHUE

. . . . H O R S HAS BEEN MATCHES
19 ICMND»!

RETURN

¿OHO HAS NOT SEEN MATCHED
20 ICOL-ICQLO

30 CONTINUE
RETURN
END

" C
c
c
c

••e

SUBROUTINE SUIF SEIPS ILANIS AND/O» CHARACTERS TO LOCATE THE
NEXT CHARACTER TO BE READ.

SUBROUTINE SEIFIISEIP,1AOO1,*l
CHARACTER*1 CARD. LBRACI, RBRACI,
COMMON ,'€2000/ CARD(BO) , ICOL

• 'C3000/ BLANK
• /C3100/ COMMA, SCOLAN

" C
c
c
c
c

••c

c
900

c
c

LOOO

• /C3 2OO/ I.SKACK, R8RACK
DATA EQUALS/!»•/

[SKIP DETERMINES THE CHECKING- PROCEDURE FOR SUBROUTINE SKIP
I3KIP-1 SKIP SLANKS TO FIRST NON-3LANK
ISKIP-2 SKIP SLANKS AND COMMAS TO FISST NON-SLANK
¡SKIP"] SKIP ANT CHARACTER TO A LEFT BRACKET
ISKIF-4 SKIP ANY CHARACTER TO AN EOUAL SICN
ISKIP-1 SKIP ANY CHARACTER TO A SEMICOLAN

. . I A 0 0 1 (0 OR I) MOVES POINTER ICOL lAODl COLUMNS TO A STARTINC-
POINT
ICOL-ICOLftAODl

COTOUOO,200 ,300 ,400 , !aOI ,ISKIP

0 CONTINUE
IF(ICOL.ST.SO) GO TO LOOO
IfICAROIICOLI.NE.BLANK) 50 TO 900
ICOL-ICOL.1
GO TO 100

Û CONTINUE
ÎFltCOL.GT.ÎO) ÜO TO 1000
IFICAROIICOLI .ME.SLANK.ANO.CASO(ICOL) .NE.COMMAI 00 70 900
ICOL-ICOL'l
CO TO 200

3 CONTINUE
IF(ICOL,GT.30! =0 TO 1000
tFICARDIICOLI.EQ.LBRACK) GO TO 900
ICOL.ICOL*1
GO TO Í00

0 CONTINUE
tFIICOL.GT.SOl 00 TO 1000
¡FICARDIICOLI.EO.EOUALS1 GO TO 900
ICOL-ICOL.1
GO TO 400

î CONTINUE
triICOL.GT.SOI GO TO 1000
IFICAROdCOL) .EO.SCOLAN! CO TO 900
ICOL-ICOL»1
GO TO 500

RETURN

END OF DATA ENCOUNTERED
«TURN I
END

C • R D T I T L C
C s
C SUBROUTINE RDTITL READS TITLE OF DATA TABLES :
C ;
c • c

SUBROUTINE RDTITL
CHARACTER* <. CARD, TITLE, 3BRACK, LBRACK, 3LANK
COMMON /Ctaod/ tN, tOUT. lAtN, tAOUT, INTER

• /C2OOO/ CARDI30I, ICOL
• / C 3 0 0 0 / BLANK
• C33OO/ LBRACK, RBRACK
• / C 4 3 0 0 / TITLE(72) , NTITL, NHTITL

C
C CLEAR TITLE VECTOR

00 10 I - L , 7 2
10 TITLE!I)-SLANK

NTITL-0
C
C SKIP TO FIRST CHARACTER OF TITLE

CALL SKÍPU.I.S10O)
C
C «SAD TITLZ

20 tf(tCOL.GT.ÏO.OR.CARtüICOLl.EQ.RBRACKI GO TO 100
NTITL-.ITITL-l
t f (ÜTITL.CT.72) GO TO 10
TITLEINTITLI-CARDIICOL)
tCOL-ICOL-1
<X> TO 20

C
C WARNING MESSAGE

50 XRITEIIS'TER.SO)
to FORMAT!' • WARNING • TITLE HAS BEEN TRUNCATED TO 72 CHARACTERS')

NTITL-73
C

100 RETURN
END

1 U N Í , tQUALS. COMMA, SCOLA»

SUBROUTINE «DVAL READS DATA FROM DATA SOUICE FILE

SUBROUTINE RDVAL (REALF,1ERR1
INTEGER RSIGN.ESIGN.ERSW
CHARACTIR'1 CARD, LBRACK, RBRACK. BLANK, COMMA, SCOLAN,

• PLUS. MINUS, CVEC
COMMON ' C 3 0 0 0 / CARDI801, ICOL

• C 3 0 0 0 / BLANK
/ C 3 1 0 0 / COMMA, SCOLAN
' C 3 2 0 0 / LBRACK, RBRACK

• /C33OO/ C V t C ( U ) , PLUS, HINUS
IERII-0
E3X-1
EXf-O.0
ICT-0
R Ï A L . 0 . 0
R»IGMO
tStON-0

IKCAiOIICOL) .F.O.PLUS) GO TO 5
IFICAROIICOL),NE.MINUS) GO TO LO
RSICN—L

5 ICOL-ICOL'1
IDICOI .ST.BOI GO TO HO

10 1CT»ICT*1

DO 20 1 - 1 , 1 !
RP'I
irtCAROUCOL) .EQ.CVECID) GO TO l g

20 CONTINQI
GO TO 100

30 IFIRP.EO.11 .01 GO TO 70
I P ( I I P . Î O . U . O ) GO TO 90

GOTOMO.SO.tO) ,ISH
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40 REAL-REAL'lO.O'RF-l.O
CO TO 90

50 REAL-KEALMRP-l.O! /LO.0**!?

00 TO 90

40 SXP-EXP'LO.O-RP-l.O
CO TO 90

70 I f ( I S H , G T . l l 00 TO 110
tSW-2
I P - 1
00 TO 90

90 [ P ( I S W . ! a . 3 l 00 TO 110
ISW.3
ICOL-ICOL*I
t P d c o L . G T . î o < ;a T O s i a
I F f C A R O f - C O L , . Z O . ^ W S I , 0 TO 9 0
I F I C A B O I I C S L i . N S . M I N U S ) jO "TO 10
Ï S I G N - - 1

9 0 t C O L - I C O L - l
I F ( I C O L , C T . a Q t CO TO LOS
GO TO 10

L30 I F ( I C T . E Q . 1 . O R . C A R D ( I C O L I .NE."OMHA.ANO.CARO(ICOL) .ME.BLANK.
• AND.CARDIICOM . N E . R8RACK .ANO .CARD! ICOLI .NE.3C0LANI G O T O 11.0

I F ( E S I G N . S Q . - l ) SXP«-EXP
i E x p - e x p
a E A L - R E A L * L 0 . ' 3 - - i e x P
REALF-RIAt,
r C O L - I C O L - l

C
C

LIO
ERROR MESSAGES
IE3R.1
SEÎURN
END

SUBROUTINE ;HEAD CALCULATES HORIIONTAL HYDRAULIC CONDUCTIVITY
JSINC THÊ CONSTANT HEAD METHOD

3USR0UTtNE ÎSIEAO
CHARACTER*! tOENT, TITLE
COHMON / C 1 0 0 0 / IN, ¡OUT, IAIN, [AOUT, INTER

• /C40OO/ IOENTISI, DATPAR( 1 1 . 10) , IVALUU
• /C4JO0/ IMETH, IAOFLG, IOFLS
• /C430O/ T I T L E ( 7 2 | , NTITL, NWTITL
» / C 4 4 0 0 / NLINE, NLINEX

P I » 3 . L4LS93
:5KIP"L
iFdAOFLC.EQ.i.OR.iOFLG.Eg.Li CALL PRTITKTÍI

PERMEAÎtLITÏ CALCULATION
30 200 tî-l,NVAL(2)
IF(12.EO.I.ANO.MVALI3I ,GT. L> ISHP-ISItlP"-!
30 !00 I)'L,NVAL(]I
'.rill.ta. 1.AN0.NVALI3I .ST. II ISKIP«tSKIP*l
BO :00 I W , N V A ( , f 4 )
I F I I 4 . Í 0 . I . A N D . M V A L I 4 I , 0 T . I I [SKIP>ISKIP*L
30 ¡DO I10-1.NVALUOI
¡ F I H O . Î Q . l.AND.MVAL(LO) . C T . l l ISKIP-I5KIP»!
: r ( I S K t P .LE.01 CO TO 175
IFUOUT.GT.OI WRITS; I0UT, l í í l
IF(IAOUT.GT.QI aRITEilAOUT,1*51

165 FORMAT! HI
VLINE*Nt,tXE*l
I5K1P-I3
iriNLINE.LT.NLINex.OR.IOUT.eO.OI GO TO 175
IOPLG-L
:ALL PRTITL;79)

AVOID DIVISION 3Y 3ER0
17 5 CONTINUE

IF;OATPAR(2 , :2> .LE.O.OR.OATPAI) (3 , I3I .LC.1. .OK.DATPARILO,1101 .LE.O)
• GO TO ¡50

3-0ATPAR(H, t ' . 0 ) *.OO000L
0-OATPA«(2,IJI » . 0 l
W-OATPAS(4,I4I " . 5
3L0-WCÜATPAB I 3 ,1 ] | /D
?eHnH»O,*ALOG ( KLD+ ( I , - ( RLO» " 2 . I ) • • . 5 1 / ( 2 . «PI'OATPAR ( 1 ,131 •

• SATPARtLO.UO) )
PERMCM-PtRMM'100.

PRINT RESULTS
[FltOUT.GT.OI ««IT«(IOOT,300) ! lOtNTHI , I " l , « ) ,D»tPAB(2 ,121 ,

• 3ATPAR(3,I3I ,3ATPAR(»,I4I ,DATPA»(U,I LOI ,D»TPAR{LO,ItO) ,
• PSRMM, PEPJICH

NLINE<NLINE>1
ir(UOUT.GT.O) wRITE<tAOUT.300) (IDENT(I) , I-L , S) ,0ATPAR<! , 121 ,

' 3ATPARI3,:!) ,3ATPAR(4,I4I ,0ATPAR( IL , 110) .3HTPAÍU0, < 101 ,
• PIRHH, ?EDMCH

300 ranHATCX.SAl , H , F 5 . 2 , 4 X , r 5 . 2 , i X , P ! . 3 , ! X , r « , l , 2 < , r 7 . 1 .
• 9 X , l p e 8 . 2 , 4 X , l P E I . 2 l
GO TO ¡00

DENOMINATOR EQUALS JIRO. CALCULATION DISCONTINUO
2S0 CONTINUE

IPIIOUT.ST.O) WKITE(IOUT.3!0) ( I D t N T I I ) , I - 1 , S ) . 0 A T P A R ( J , 1 2 1 ,
• DATPAR(],:3I,DATPAR(4,I4),OATPAR(11,11»),OATPAR110.1101

1LINE.MLINS»!
iriIAOUT.GT.01 WRITEIIAOUT.350) <IDEMT(I) ,1*1.*) ,0ATTAR(2,121 ,

• DATPAHIÍ.IJ) ,DATPAR(4,I4) .DATPARI 1 1 , H O ) ,DATPAR(10,1 LOI
3!0 fOBI1AT(lX,3AL, H . f í . J ^ X . F Í . i . í X . H . J . J X . f í . l . J X . r ? . I .

• ' X , ' — ' , J X . ' - - 'I
200 CONTINUE

RETURN
END

SURROUTINE VHEAt) CALCULATES PERMEABILITY USING THI VARIABLE
HEAD METHOD

SUSBOUTlNt. VMEAD
CHARACTER*1 IDEHT, TITLE
COMHOH /ClOOO/ IN, [OUT, IAIN, ¡AOUT. INTH

• / C 4 0 0 0 / IDENTI9I, DATPARI11, LOI . NVAKL1I
* / C 4 2 0 0 / IMITH, IAOFLS, lOfWJ

" C
C
c
c
c

•*c

c , . . .
17Î

c
c

c
180

• /C430O/ TITLEI7ÎI, NTITL, MWTITL
• /C4400/ N U N E , MLINEX

t S i I P - l
IPIIAOrLC.EQ.l .OR.IOFLCEQ.:] CALL PRTITLIÍ7)

..PEKHiAaiLITY CALCULATION
DO 200 [L'L.IVALUI
I F I U . Ï Q , L.ANO.NVALIU .GT. l l I3«tPwISKIP«l
DO 200 12-1,.WALÍ 2)
I F ( I 2 . S 0 . 1 . A N O . N V A L ( i l . S T . 1 ) ISKIP«ISKIP»1
DO 200 I3"1.NVAL(3I
I F ( I ] . e a . l - A N D , S V A L ( 3 ) , 0 T . 1 ! ISKIP-tSKIP»!
DO 200 I4*1,NVAL(4)
IF(t4 .E0.1 .AND.NVAL(4l . 5 7 , 1 1 rSKIPMSKIP'l
DO 200 :S-1 ,NV«L!6)
IFIH.EQ.L.AND.NVALISI .OT.1] tSKIP-ISKIP«l
i r i I S I t I P . H . 0 ) GO TO 175
IF(I™T,OT.OI HRITKIOLT.LSSI
I P ( I A O U T . G T . 3 ) WRITSt lAOUT, LS"31

i F0PJ1ATI1X!
S L I N E » N L I N E * 1
I 5 K I P - 0
I P F N L I N E , L T . N L I N E X . O R . t O U T . S Q . 0 ) Go TO '.75
tOPLO-L
CALL P R T I T L Í 9 7 I

.AVOID D I V I S t O N 9Y IF.RO
CONTINUE
I F ( D A T P A i l ( 3 , 1 2 ) . t . e . 0 . .OR. DATPAR ( 3 . 1 3 1 - L E . 0 . .OR. DATPAR [ 3 , £ 5 ) . L E . 3 ,

' . O R . ( D A T P A R ( 7 , t S I - D A T p A R ( Ç , I 5 M . L E . O . I 0 0 TO 2 5 0
0 P I P E » O A T P A R ( l , I L I * . 0 l
*)-0ATPAR( 2 , 1 2 1 * . 0 1
R « . D A T P A » ( 4 , I 4 I • " . !
R L D - R M ' O A T P A R I 3 , 1 3 1 / 0
:P(«LO,GT.4 . I GO TO ião

.RL/O LESS THAN OP. EQUAL TO 4
? E ! W 1 » [ D P I P E * * 2 . ) ' A L O G ( R L D * ( L . » S L D * * Î . ) • • . • ) / ( 8 . ' D A T P A R 1 3 , 1 1 1 •

• I D A T P A R ( 7 , I S ) - O A T P A R ( 5 , H ) I ) ' A L O G ( D A T P A R ( 9 , 1 5 1 / D A T P A R 1 1 . H I ]
GO TO 1 9 0

.HL/O GREATER THAN 4
P E R M M " ( 0 P t P E * * 2 . ) • A L O O ( 2 . ' R t , O I / l 9 . * D A T P A R ( ] , t l ) • (DATPAR ( 7 , I 6 | -

O A T P A H ( 6 , I 6 ) ) l ' A L O O ( 0 A T P A I I | a , I < ) / D A T P A R I 9 , ; 4 > )

C PRINT RESULTS
190 PIRMCM-PEKMMMOO.

I P I I O U T . G T . O I HRITE1IOUT.3O0I ; I D B N T ( t l , ¡
• D A T P A R I 2 . I 2 ) . O A T P A R I 3 , 1 31 , O A T P A R ( 4 , 1 4 1
• D A T 7 A R I 7 , U l . O A T P A R ( 8 , 1 5 ) . D A T P A R 1 9 , 1 4 )

N L I N t - N L I N E * !
I F I I A O U T . G T . O I TOITE(IAOUT,300I ( I 0 E N T I I !

• OATPARI 2 . 1 2) . O A T P A R I 3 , 1 ) 1 .DATPARI 4 . 1 4 1
• DATPAR I 7 , 1 6 ) , D A T P A R ( S , U | . D A T P A R ( 9 , H I

3 0 0 P O R M A T ( i X , a A l , L X , F 5 . 2 , 2 X , P Î . 2 , 3 X , F 5 . 2 . : x
• 1 X , F Í . 2 , U , F 6 . 2 , I X , F 7 , 2 , 2 X , 1 P E " , 2 ,

SO TO 3 0 0
C
C DENOMINATOR EQUALS ZERO, CALCULATION O t S ;

2 5 0 CONTINUE
I F U O U T . G T . 0 1 W R I T E H O U T . 3 5 0 1 ( l O E N T I t l , :

• DATPAR I 2 , 1 21 .OATPAfll 3 , 131 .DATPAR ( 4 , 1 4 1
• DATPAR 1 7 , I S ) . O A T P A R 1 9 , t i l . O A T P A R 1 9 , ! « l
NiiNE-NL:NE*L
IFIIAOLT.GT.OI «RITE!IAOUT,350) 'lOENTII'

• DATPARI2,I2),DATPAR(3,I3I.3ATPAR(4,14]
• QATPAR<7,H> ,DATPAR(B,IÍ) .3ATPAR (9 , IS)

J50 FORMAT!;x,9AL, 1 X . P Î . 1 , J X . F 5 . 2 , I X , ? 5 . 2 . 2 X ,

200 CONTINL'I
RETURN
SNO

• 1 , 3 ) , 0 A t ? A R ( l , : i l .
D A T P A R ( S . : < ] ,
St.0,PERMH.PERMCM

, E • L, 3 > , DATPAR ( I , [ H ,
3 A T P A S H , £ 5 I ,

l , P E ! , S C
F 5 . J , L X . P 9 . 2 , l X , r 9 . 2 ,
: X . 1 P E « . 2 I

"l,3) ,OATPAR(1,U) ,
DATPAR(S,I * I ,

,I"1,9!,0»TPAH(l,:u ,
OATPARIS,IS),

F5.2,lX.rl.2,lX,P9.2,

3USROUTINÏ BTI>G CALCULATES HORIZONTAL HYDRAULIC CONDUCTIVITY
USING THE 8ASIC TIME LAO HETMOO

SUSROUTItE STLAC
CHARACTER"L USENT, TITLE
COMMON 'C'.OOO/ IN, IOUT, tAIN, IAOUT, INTER

• ^ 4 0 0 0 / IOEMTI8I, OATPARI 1 1 , '.01 , WALILLI
• / C 4 J 0 0 / IMÏTH. IAOPLG, tOFLC
• C4300/ TITLEI72I, NTIT0. NMTITL
• / C 4 4 0 0 / NLINt, NLINEX

ISIIIP-L
IFIIAOrLS.fiQ.L.OR.IOrLG.EQ, 1) CALL PRTITL[92)

PERHIAltLITY CALCULATION
30 200 ::-L.NVALIL)
IFIU.EO.L.AND.NVALIL) .GT. l l :S"IP.ISXIP-1
30 20a : 3 - I , N V A L ¡ : I

IFII2.SQ.1.ANO.NVALÍJI .ST. II 1 3 * I P - I J U P * 1
DO 200 I3'L,NVAI,I3I
IPII3 .W.I .AND.NVALOI ,GT.L) rsKIP-ISXIP* 1
00 200 I4-I.NVALI4I
IP(I4 . :g .L.ANS.NVA(, (4 l .GT. l l
DO Î00 I Ï - l ,NVAL(5 l
IF(I5,£0.1.AHD.NVALI4I .ST.LI
IFIISIII7.LE.0I GO tO 175
IFIIOUT.GT.0,1 WfUT«(IOUT,L8îl
[r i IAOUT.3T.0 l MltTEIIAOirr.LS'l

165 rO-JtATILX)
NLINI-NLISO1
I3XIP-0
If(NLINI.LT.SLIHtX.OK.IOUT.EO.O) GO TO 1 7 '
IOFLS-1
CALL Í S T I T L H ! )

AVOID D i v i s i o n SI HBO
L7t CONTINUE

ir(0ATPAJt(3 . tJ) .LC,0. .OR.OATPAR(3,I3l .LI.0 . .OR.OATPARI!,151 .LE.O.I
• GO TO 250

DPIPIt-OATPAR ( 1 .11) • , 01
O-OATPAJI( í , I2 ) ' .0 l
SM-OAT?IUI(4,I4I'".5
RLD.RM'OATPAR13,131 / 0
t r i R U . G T . t - l GO TO III)

«L/D LES1 THAU OR !O.OAL TO 4
P E M U K O F I F ! " ! . I *AL0<!(RtD*IL.4.Rt,D**2.1 • • . • ! / ( « . *DAÍ» ARI 3 ,1 31*

• DATPAil(5,I5l I
GO TO l > 0

RL/D CRZATIR THAN 4
1)0 P ( « M H - ( O f I P « * " ! . l " A W K ( 2 . ' » L O ) / ( 8 . ' O A T P A R ( 3 , I 3 l ' O A T P A R I * , ! 1 ! I
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I
I
I
1
I
I
I
I
I
I
I
I
I
I
f
I
I
I
I

C
C, . . .

Î50

200

, . P f l I N t RESULTS
O PERMCH-PERMM*LOO,

; F Í r o u T . C T , 0 ) W R I T E t Ï O U T , I O O I t ; D E N T ( D , 1*1 , Í ) ^ A T P A J U I , t u ,
' D A T P A H ( 2 , ; 2 1 D A T P A R ( 3 , 1 3 ) . 3 A T P A R ( 4 , 1 4 ) , D A T P A S ( Í r 1 5 1 , R L O ,
• ?ERMM,P£AMCM

NLINE-NLIME+1.
I P ( I A O U T . G T . a ) « f t I T E < r W Î U T , 3 0 0 ) Í I D E M T U l A*\tf\) H O A T P A H ( 1 , 1 \) .

* D A T P A R ( 2 , I Z l ^ A T p A R í J , ! ] ) .OATPAft ( 4 , t 41 r DATPAR ( S , H ) , RLD ,
* ?ERMM,peftHCM

0 FORMAT( L X ( i A l . î X , F Ï . 2 F Î X , F Î . 2 , 4 X , F 5 . 2 , 2 X , F S . 2 , L ) t , F 1 7 I 2 J 2 X # f 7 . 2 f 2 ) ( 1

* l X r l P E S , 2 , 4 X , l P E 9 , 2 )
GO TQ 2 0 0

.OENOMlNATOft EQUALS I ERO, CALCULAT I Orí DISCONTINUED
CONTINUE
t f ( t O t r t . UT. <J) WRITE (IOUT , 3 5 0 ) ( I 3 E N T ( Î 1 , 1 * 1 , ^ 1 F DATPAR í 1 , 1 \) ,

* D A T P * f t ( 2 F I 2 l , D A T ? A R ( 3 , I 3 ) , D A T ? A R ( A , 1 4 ) , 0 A T P A S ( S , 1 5 )
NLlNE*NLINE+L
: P ( I A O Ü T . G T . 0 ) W R I T E ( I A O U T , 3 5 0 ) ( l O E N T f t ) , 1 * 1 , 3 1 . Û A t P A R ( 1 F I I ) ,

* DATPAR ( 2 , 1 2 ) ,DATPAft ( 3 , 11) ,DATPAR( 4 , 1 4 i , D A T ? A R ( 5 , n t
FORMATf L X , a A l J 3 X , F 5 t 2 , 3 X ( F 5 . 2 t 4 X t F 5 . 2 , 2 X , F f i . 2 , I X , F 7 . 2 , 1 [ X ,

\ 2 X , ' - * *)
CONTINUE
RETURN
EN O

• M t l t l

SUBROUTINE PRTITt. PRINTS THE TITLE OF TABLES

SUBROUTINE FRTtTL(MLTOTI
CHAWCTER'1 TtTLE, A T I T L E U 3 2 I . BLANK
COMMON / C 1 0 0 0 / IN. IOUT, IAIN, IAOUT. INTER

/ C 3 0 0 0 / BLANK
' /C4 2 0 0 / :,1ETH, tAOrLO, lOFLO

/C430O/ T I T L E I 7 2 ) , *TITL, w r i T L
• / C 4 4 0 0 / NLINE, SLINEX

[ f ( t O F L Û . Ï O . î l GO IH 21
NLINEiO
ÜRITEIIOUT.ÍO)

ia FORMAT! UU)

. . . .PRINT MAIN TITLE
20 CONTINUE

rP(IAOFLG.EO.il vmiTtltAOUT.LO)
10 FORMAT!/)

IFINTITL.EO.OI 0 0 TO i t
00 ?0 1 - 1 , 1 3 3

70 ATITLEIII-BLANK
NX1.INLTOT-NTITLI/2
IFÍNX1.LE.0I « x l - 0
N I - 0
NXJ.NXL-NTITL

DO 90 I'NX1,NX2
NI>NI>1

90 ATITLEII ï -TITLEtNI)
I F ( I O F L a . E O . l ) WRITE(IOUT,90) I A T I T L E ( I ) , L I , N X J I
IF(IAOFLO,EQ.1) WRITE(IA0UT,90) (ATITLEIII , I«1 ,M«2I
HLINE*NLINB+4

90 FORMAT(/ /1X,132AI/1

. . . . P R I N T CM.CJLATION METHOD AND APPROPRIATE COLUMN HEADINGS
9 ! CONTINUS

3 O T O ( 1 0 q , 2 0 0 , Í 0 0 ) , I M E T H

,., ."CONSTANT HEAP METHOD"
100 CONTINUE

I F ( I O F L a . E a . l ) WRITS!IOUT,l ia i
IF(IAOFt,H,E(J, l | SRITEIIAOUT.UOI
SO TO ! 0 0

110 rORMATI/ 6X,SaHHOKIZONTAL KÏDRAULIC CONDUCTIVITY IHVORSLEV'3 CONS
TANT HSAO METHODI / /
IX , 'PIEÎO' ,5X, 'OSCREEN' ,JX, 'LSCREEH*,2X,

' R A T I O ' , J X . ' Q ' , 3 X , ' « C ' , 9 X , ' - - " — — PERM ' /
! X , - H O . ' , 7 X , ' ( C M > \ S X , - < M I " , 4 X , ' | H / V > \
3 X . ' ( C C / Î 1 " , J X . ' [ H > ' , 9 I , ' ( M / S ) ' , ' X , ' ( C M / S I " /
U . 7 » ( " - ' l I

.'VARIABLE HtAD METHOD"
CONTINUE
I F ( l O F L Ç . E O . l ) H«ITE(IOUT,210)
l F I I A O F L a . E O . i l W»ITE(IAOUT,210I
GO TO SOO
FORMAT(/15X,SBMHORI!ONTAL HYDRAULIC CONOUCTIVITY IHVORSLEV'S VARt
ABLE HEAD METHO0I / /
U . " P t E I O ' r 4 X . ' D P I P E ' , I X . ' o S C B E E N ' . l X . ' L S C R I E M ' ^ K ,

- RATIO', 4 X , ' T 1 ' , 6 X , - T ! \ 7 X , " H L ' , Î X ; ' H Î ' , 4 X . - . > U . / D - , 2 X ,
" - , PERM * ' /
J X . - N O . - . Î X . ' l C M l ' . l X . - I C M I - . Î X . ' i n i ' ^ X . ' I H / V ) ' , 4 X ,

' (SI ' , ! X , ' 1 S I ' , ( X . " [ M I ' , 4 X , ' ( M I ' . U X . ' I M / S I ' ,
5 X , ' ( C M / S ) ' /

9 7 { * - ' | I

. 'BASIC TIME LAG METHOD"
CONTINU!
IF( I O F L 3 . E 0 . 1) WRITF.ÜOUT. 310)
I F d A O f L O . E Q . l l WRITEIIAOUT.llO!
CO TO 500
FORMAT!'7X,S9HHOHIZONTAL HYDRAULIC CONDUCTIVITY [HVORSLEV'S 9A3IC

• TIME '-ia METHOD) / /
' E ' ' ' '^ . ^ E ^ X ,

' R A T I O ' , Î X . ' T L A O ' . Î X , ' M L / O ' , 4 X . ' PERM ' — '/
JX. " N O . ' ^ X . ' I C M I ' , 4 X , ' ( C H ) ' , « X . ' (Ml ' , 4X, '(M/V) ' ,
3 X , ' ( S I ' , 1 ( X , ' ( « / S I ' , Í X , ' ( C M / S I ' /

i X , « l l ' - * l I

HeSET F-.ACS
CONTINUE
IAOFL3"2
IOFLQ-0
RETURN
ENO



Analysis of Leaky Aquifer Pumping Test Data:
An Automated Numerical Solution
Using Sensitivity Analysis

by P. M. Cobb, C. D. McElwee, and M. A. Butt3

ABSTRACT
The Kansas Geological Survey is pursuing an effort to

automate some of the more common methods of aquifer
pumping-test analysis. This paper discusses the results of
work done on the leaky artesian aquifer as defined by
Hantush and Jacob (1955). The paper covers the basic •
theory of the aquifer type, the numerical solution of the
leaky artesian-well function, and the methodology of
achieving the "best fit" parameters in the least squares'
sense. Several data sets are used to demonstrate the applica-
bility of the proposed technique. These examples indicate
the generally satisfactory results produced by the automated
analysis documented here.

The algorithm has good convergence properties. Initial
estimates for the aquifer parameters may vary by about
three orders of magnitude above or below the correct values.
For typical data sets the rms fitting error should be less
than a few tenths of a foot. If this is not the case, one is
probably noc dealing with a simple leaky aquifer. This
method of pumping-test analysis does not eliminate the
role of an experienced hydrologist to define the local
hydrogeology and aquifer type. However, once the decision
is made as to which aquifer configuration is being observed,
this program will, in a quick and unbiased fashion, give an
accurate assessment of the leaky-aquifer parameters
within the limits of the theoretical approximations and the
data quality.

aKinsas Geological Survey, 1930 Ave. A, Campus W.,
The University of Kansas, Lawrence, Kansas 66044,

Received September 1981, revised January 1982,
accepted January 1982.

Discussion open until November 1, 1982.

INTRODUCTION
The Kansas Geological Survey is in the process

of fabricating a series of computer programs designed
to analyze pumping-test data. The program discussed
in this paper solves the inverse problem for a leaky-
artesian aquifer system proposed by Hantush and
Jacob (1955). The leaky-artesian aquifer problem
considered here is not the most general configura-
tion (see Hantush, 1960; Neuman and Witherspoon,
1969a); however, the limited number of data sets
available for analysis tend to be for this simple case.
The limits of the theory used in this paper are
outlined by Neuman and Witherspoon (1969b).
The automated analysis of the simple confined-
aquifer pumping test has been published previously
by the Survey (McElwee, 1980a). The methodology
used in the present study involves sensitivity
analysis and a least-squares' fitting technique to
analyze the time-drawdown data while satisfying
the equations developed by Hantush and Jacob
(1955). These techniques will be outlined in the
text. More information may be found in McElwee
(1980a, 1980b), McElwee and Yukler (1978), and
Cobb, McElwee and Butt (1978).

Because of the limited number of available
data sets for this aquifer configuration, this tech-
nique is being published after extensive but not
exhaustive testing. However, we have tested it for
several hypothetical data sets and for seven real
data sets readily available to us. At this point, we
feel quite confident in the algorithm's capabilities.
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It is hoped that, by setting this algorithm out for
public scrutiny, new data sets will be tested and
the program more thoroughly verified. A more
detailed report with program listings is available
from the authors. Using the available data sets, we
have been able to establish that, for fairly smooth
data sets (those that conform generally to the
shape of the leaky type curves), the model has
excellent convergence properties. Initial estimates
of the storage coefficient, transmissivity, and
leakage coefficient may be in the range of plus
or minus three orders of magnitude of the
correct value and still obtain successful
convergence.

This method of pumping-test analysis does
not remove the requirement of having an
experienced hydrologist evaluate the local hydro-
geology and pumping-test data to identify the
aquifer type. However, once the decision is made
as to which aquifer configuration is being observed,
this program will, in a quick and unbiased fashion,
give an accurate assessment of the leaky-aquifer
parameters within the limits of the theoretical
approximations. After using this model for the
pumping-test analysis, the hydrologist should
always look at the root-mean-square (rms) deviation
Ín drawdown and the "best fit" drawdowns calcu-
lated by the program. The experimental and
theoretical drawdowns should not differ greatly
anywhere and the rms deviation should be less
than a few tenths of a foot in order to have
confidence in the analysis. If this is not the case,
one is probably not dealing with a simple leaky
aquifer.

THEORY AND ANALYTICAL SOLUTION FOR
THE LEAKY CONFINED AQUIFER PROBLEM

The aquifer system defined by Hantush and
Jacob (1955), as depicted in Figure 1, is composed
of a level, isotropic, homogeneous, porous medium
of infinite areal extent. The lower aquifer boundary
is assumed to be impervious, while the upper bound-
ary is assumed to be a leaky confining bed. A source
bed overlies the leaky confining bed. Water is
derived from the aquifer by elastic expansion of
the water and compression of the aquifer matrix as
pumping occurs. Leakage through the semiconfining
bed is assumed to be proportional to the drawdown
in the semiconfined aquifer. It is assumed that no
water is removed from storage in the semiconfining
unit and that no drawdown occurs in the source
bed.

These assumptions lead to the following
differential equation (Jacob, 1946)

32S 1 ds S ds

where
i

s(r,t) is the drawdown at any distance from the
well at any time,

r is the radial distance measured from the well,

S is the storage coefficient of the artesian aquifer,

T = Km is the transmissivity of the artesian aquifer,

B2 = T/(K7m');and

K and K' are the respective permeabilities of the
artesian aquifer and the semiconfining bed,

m and m' are the respective thicknesses of the
artesian aquifer and the semiconfining bed,

K7m' is the leakancc or specific leakage of the
semiconfining bed (Hantush, 1949); and

Q is the well discharge.

With appropriate boundary conditions, an
analytical solution is obtainable.

s = (Q/4TTT) • ƒ exp(-y-z)/y dy
(2)

u = r2S/4Tt, z = rV4B2y

NUMERICAL SOLUTION PROCEDURE
Our first attempt at evaluating equation (2)

involved the Laguerrc Quadrature formula. Integral
functions of the form

F f (x) e"x dx
o

may be approximated by the method of Laguerre
integration:

LS.

cone of dep.

l e a k a g e ^ ^ ^ ^ ^

radial flow •
—oo

t

W.T?
source bed

non pumping P. S.

Aquitard m

! !
Aquifer i i

i i
i i

m —00

Aquiclude (from Walton, 1970)

Fig. 1 . Diagram of ¡deal leaky aquifer.
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ƒ f(x)e*x dx=* £ w¡f(x¡7
i l

(3)

where the w¡'s are weighting factors, and the XJ'S
correspond to zeros of the n * order Laguerre
polynomials. The values of w¡ and x¡ arc catalogued
in Abramowitz and Stegun (1968).

To perform the integration in equation (2), a
transformation of variables must occur in order to
make the limits of integration compatible with the
Laguerre Quadrature formula, equation (3). This
transformation is a straightforward substitution of
the form y = x + u. The integral takes the form

exp(-x) • dx

and is solved numerically by the appropriate substi-
tutions in the Laguerre integration formula. The
function G(r/B,u) was evaluated by Laguerre inte-
gration of order 15. We found that evaluating
equation (2) with Laguerre integration did not give
the desired accuracy for small values of u. There-
fore, an alternate evaluation scheme had to be
developed.

Hantush and Jacob (1955) give several forms
of the solution to equation (1) for different ranges
of u and r/B. The alternate evaluation scheme we
use involves three equations, which are solved
numerically in order to cover the complete range
of u and r/B. The equations are listed here, along
with the appropriate ranges of u and r/B.

S = Q/(4TTT) • G(r/B,u)

u = r2S/4Tt, u > 1 . 0 , any value of r/B

s-Q/(4ffT)- [2K0(r/B)-G(r/B,p)J

p = T t / S B 2 > l , ( r / B ) 2 > u < 1 . 0

s= Q/4TTT • J2Ko(r/B) + Io(r/B) • Ei(-r2/4B3u)

+ exp(-r2/4B2u) • (0.5772 + ln (u ) - Ei(-u)

- u + u - ( I o(r /B)- l)/(rV4B2)

(4)

(5)

M n (_
S S —

n»l m = l ((n + 2)!)1

(r/B)2 < u < 1
(6)

Ei(x) is the exponential integral; Io and Ko are the
zero order modified Bessel functions of the first and
second kind.

The numerical solution of the exponential
integral, Ei(x), is described in detail by McElwee

(1980b, p. 3). Solutions for the zero-order modi-
fied Bessel functions of the first and second kinds,
I0(x) and K0(x), were obtained by polynomial
approximations. Abramowitz and Stegun (1968)
catalog several forms for each function. Each form
is suitable for a particular range of x. The double
summation in equation (6) is solved numerically
by a truncated summation, since only a finite
number of terms is required to approximate a
convergent series. G(r/B,u) and G(r/B,p) were
evaluated using the Laguerre integration procedure
described earlier. The numerical computational
routines involving these functions were checked by
generating the table published in Walton (1970),
page 146. This table could be produced accurately
to the fourth decimal place.

SENSITIVITY ANALYSIS
Parametric sensitivity analysis is a method of

examining the stability of a mathematical repre-
sentation of a dynamic system with respect to
variations in the values of the system's physical
parameters. The theoretical basis of this technique
is outlined by Tomovic (1962), while the applica-
tion to hydrologie problems has been examined by
Vemuri, et ai (1969), McCuen (1973), Yukler
(1976), and McElwee and Yukler (1978).

In formulating the sensitivity analysis of the
leaky confined aquifer problem, the following
mathematical model was used:

F(hx x ,hy y ,h t ,h;S,T,L,Q) = O

32h d2h , dh
where h x x = - , hy y = - , h t - -

h = hydraulic head,

S =s storage coefficient,

T = transmissivity,

L = inverse leakage coefficient (L = 1/B), and

Q = pumpage.

The solution may be written as

h = h(x,y,t;S,T,L,Q)

Variation of any single parameter such as T
produces a new solution

(7)

y y , Q ) = O (8)

where AT is the incremental change in T and h* is
the perturbed head. The solution to this expression
is of the form h ' = h*(x,y,t; S,T+AT,L,Q). The
stability of the system to small changes in the
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parameter T may be expressed by

A h _ h * - h

A T " AT

If the limit to this expression exists as AT approaches
zero, it may be written as

3h . Ah
UT(x,y,t;S,T,L,Q) = —= lim — (9)

3T AT-*0AT

Also

3h Ah
Us(x,y,t;S,T,L,Q) = —= lim — (10)

3S AS-0 AS

and

3h Ah
UL(x,y,t;S,T,L,Q) = - - = lim — (11)

dL AL-'-O AL

which are, respectively, the sensitivity coefficients
with respect to changes in S and the sensitivity
coefficient with respect to changes in L.

The solution to the flow equation is assumed
to depend analytically upon the independent
parameters, S, T, L, and Q. The function
h*(x,y,t; S.T+AT, L,Q), which is perturbed in the
parameter T, may be expanded in a Taylor's series
(Tomovic, 1962). If AT is small, all nonlinear terms
can be neglected as follows:

h*(x,y,t;S,T+AT,L,Q) = h(x,y,t;S,T,L,Q) + UTAT

(12)

where UT = (3h)/(3T). Thus, new hydraulic heads,
resulting from incremental changes in T, can be
computed directly if the unperturbed head is
known and XJj can be computed. Similar expressions
may be derived for perturbation with respect to
S and L:

h*(x,y,t;S+AS,T,L,Q) = h(x,y,t;S,T,L,Q) + USAS

(13)

h*(x,y,t;S,T,L+AL,Q) = h(x,y,t;S,T,L,Q) + ULAL

(14)

These are correct to first order in AS and AL,
respectively.

For this technique to be useful, it is only neces-
sary to be able to compute V$, Vj, and UL I since
h(x,y,t; S,T,L,Q) may be computed by previously
discussed techniques. This computation may be
done by analytical or numerical techniques. In this
work, it was found to be convenient to obtain
Us and UT by direct analytical means and UL by a
numerical method.

Recall that the basic equation describing the
solution to the leaky confined aquifer is

Q - 1 LV
s = —— ƒ - e x p ( - y - —- ) dy,

4TTT Ü y 4y
(2)

By applying Leibnitz's rule for differentiating an
integral (Hildebrand, 1962), it is easy to obtain the
sensitivity coefficients with respect to S and T:

UT =

1 LV ,
-exp(-u-—— )]
u 4u

1 / L V N A_ e x p ( -y-™ ) dy

LV., s S

(15)

(16)

These equations may be evaluated easily by standard
numerical functions on a high-speed computer once
s is known,

UL was computed by a direct numerical tech-
nique, rather than by formulating an analytical
solution, to conserve program simplicity while
retaining computational accuracy. Note that the
argument of the exponential within the integral of
equation (2) contains the parameter L. Hence,
differentiation will transform the entire function
within the integral and will define

UL = 7 — {exp(-y-LV/4y)/y } dy
u 3L

- " {-Lr2/2y2} exp(-y-L2r2/4y) dy (17)
u

Note that both Us and UT in equations (15)
and (16) can be expressed in such a manner that,
after the drawdown s is computed, no further
numerical integration is required. The sensitivity
with respect to leakage, UL ¡n equation (17), can
be computed only by additional numerical integra-
tion that would involve the formulation of a more
complex subroutine. Therefore, the decision was
made to generate UL by a finite difference
approximation. The approximation

|s(L+AL)-s(L-AL)}/2AL (18)

where

s(L¥AL) *Q/4TTT { - y - r2 /4y [/y • dy

(19)
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The radial dependence of Us is shown in
Figure 4. This coefficient does not diverge at
the well, nor does its sign change. It is inversely
proportional to S. The constancy of algebraic sign
indicates that as S changes there is a general
raising or lowering of the cone of depression.

The time dependence of Us is presented in
Figure 5. Radial variation is indicated by the
presence of three curves. Each curve reaches its
maximum value for U$ at a time directly propor-
tional to its radial value. At some finite value of
time each curve approaches zero in value, indi-
cating that a steady state is achieved. Until steady

becomes increasingly accurate as AL approaches
zero. Satisfactory evaluation of UL occurred for
AL set equal to .01 L. The methodology for com-
puting the sensitivity coefficients is now complete.

DISCUSSION OF THE LEAKY AQUIFER
SENSITIVITY COEFFICIENTS

The radial dependence of U-r is shown in
Figure 2. The function diverges logarithmically
near the well. Uj changes sign at some finite value
of radius. This demonstrates the fact that when T
is changed, the cone of depression deepens in
some areas and shallows in others. (Note that
radial distances in the figures are measured in
thousands of feet. The radius r has been multiplied
by 10"3 to give small integers.)

Figure 3 depicts the time dependence of
positive values of Uj for variations in r and T.
Note that U-r is inversely proportional to T. The
curves represent a transmissiviry of 24,331 ftVday
and ±20% of that value at a radius of 100 feet and
a T of 24,331 ftVday at a radius of 1,000 feet.
Note that all curves flatten after three to four days.
This describes the steady condition caused by
deriving the discharge Q totally from leakage.

400 r
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I 200
ID
c
<a
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D

1OO
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Q = 195979 ft3/day
T s 24331 ft2/day
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0 3 6
r (radial diatanc»), x 10 ' 3 ft

Fig. 4. Effect of changes in S on thi radial dependence of
US.
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1 0 0

state is attained, there is a dual source supplying
the pumpage, namely water released from storage
and leakage. The curves roll over as leakage starts
to dominate the source mechanism. U$ is zero
outside the cone of depression and at any time
after steady state is attained.

Figure 6 shows the radial dependence of U L .
The sensitivity coefficient UL does not diverge at
the well and approaches zero for large values of r.
These are similar to the curves for Us.

The time dependence of UL is shown in
Figure 7 for two values of r. All curves grow with
time until a steady state is achieved where leakage
is supplying the entire discharge Q. The set of
curves labeled L = .0004 ft'1 and ±20% of that
value are of interest. Observe that at t less than
.6 days, UL is directly proportional to L; while for
t greater than .6 days, UL is inversely proportional
to L. As indicated before, Q is supplied by a dual
source in the leaky artesian aquifer—water taken

700 r

kL + 20%
= OOO4 ft

- 20%

-1

t * 0.1 day
S= OO2
T= 24331 f t2 /day
Q= 195979 tt3/day

1 2 3 4
r (radial distance ), in ft x 10"3

Fig. 6. Effect of changes in L on the radial dependence of

from storage in the aquifer and water supplied by
leakage through the aquitard. This dual source
mechanism results in the changing dependence
on L.

THE FITTING PROCEDURE
The objective of any curve-fitting technique,

whether performed manually or by computer, is co
fit a theoretical type curve to an experimental data
set as accurately as possible, evaluating in the
process a corresponding set of physical parameters.
To perform this task successfully, a mechanism is
required for judging the error in the fit. Classical
manual curve-fitting relies basically on the best
"eye ball" fit. The computer method described
here allows the fitting error to be accurately and
meaningfully determined as the rms error.

In order to apply the parametric sensitivity
method to the fitting problem, it is necessary to
define an error function

E = 2 [ s e ( t i ) - s * ( t i ) ] î

i

where E is the summation over i discrete samples
of the squared difference between the experi-
mental drawdown (se) and the updated drawdown
(s*), which is computed from the truncated
Taylor's Series

s* = s

The argument t¡ represents the i* value of time.
Expansion of the squared error function, taking
partial derivatives with respect to the perturbed
parameters, and setting the partial derivatives
equal to zero, yields a set of three simultaneous
linear equations that must be satisfied to obtain
the best fit.
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More specifically, for minimizing E, it is
required that

. p I\Y* 1T?
3 E « 3 E - 3 E

 = 0 (20)
3AT 9AS 3AL

The linear system of equations that results is

2 U2
L 2 ULUS 2 ULUT

i i i

2 USUL 2 U | 2 USUT

i i i

2 UTU, 2 UTUS 2 UT
i i i

AL

AS

AT

=

2 UL(s-se)

2 U s(s-s e)
1

2 UT(s-se)
i

"" (21)

and can be solved explicitly for AL, AS, and AY.
The quantity s is the theoretical drawdown at time
t calculated from the previous values of L, S, and
T. The new values of the parameters are simply

Li+i = Li +ALi

Si+i =Si + AS; (22)

T- i — T• 4- AT-l i + l - M + " * i

Thie nrní1!1!? rnnrinncç linril r he* vahes nf AL:. AS:.

Table 1. Comparison of Aquifer Parameters for
Typical Data Sets Obtained by Graphical Analysis

Data
Source
Code

1

2 '

3

4

and by Automated Analysis

Graphical
A nalysis
Values

T= 182000 gpd/ft
S = .002
B = 2500 ft

a

T = 99400
b S = .0001

B = 2000

c

T - 1500
S = .00020
B = 43O

T = 49000
a S =.000090

B = 4100

T = 41000
b S - .000080

B = 4000

Automated
Analysis

Values

202000 gpd/ft
.002
3 300 ft

99000
a .000097

2000

100000
b .000097

1980
97800

c .0001
1950

1800
.00017
650

44000
.000086
3900

46000
.000084
4800

Auto-
mated

rms Error

.007 ft

.038

.016

.010

.125

.378

.030

and AT; simultaneously satisfy a specified conver-
gence criteria. The goodness of fit obtained at the
termination of the last iteration is indicated by the
value of the rms error

2 (s - se)z

where n is the number of discrete samples of s.
The success of this methodology is dependent

to a degree upon the initial estimates of the param-
eters S, T, and L. However, numerical experiments
conducted with the most recent version of the
computer program indicate that the initial esti-
mates may be as much as three orders of magnitude
above or below the final solution values and con-
vergence will still be obtained.

In order to maintain physical reality and
improve numerical stability, the algorithm requires
that the parameters S, T, and L must always be
positive. Furthermore, the relative increments
AT/T, AS/S, and AL/L are never allowed to exceed
0.5 or be less than -0.2 in any one iteration. This
subterfuge insures that the algorithm proceeds in
an orderly fashion to the minimum error. In the
tests we have run the algorithm converges to the
global minimum; however, it is possible that only a

T = Transmissivity
S * Storage coefficient
B = Leakage coefficient
• The values obtained by graphical analysis represent an

average of three sets of data taken for different values
of radius. Each data set was independently analyzed and
tabulated for the automated analysis-

local minimum will be found. By trying several
initial guesses, it should be possible to find the
global minimum, if there is any doubt.

APPLICATION TO TYPICAL DATA
Table 1 lists the best-fit aquifer parameter

values for several data sets analyzed by fitting
leaky artesian type curves, both graphically and
using the technique discussed here. The data sources
are listed by number in the Appendix. The lower
case letters indicate that data was taken for
different observation wells at the same pumping
test, or that several independent pumping tests
were listed in the same source. The principal feature
of this table is the quite good agreement between
the automated-analysis values and the graphical-
analysis values. All values are well within the
same order of magnitude; in fact the differences
are not over 35% and most of them are in the
10-20% range. The largest rms error is about .4 feet
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for set 4a. The smallest rms error is .007 feet for
data set 1. Note that data sets with the lowest
rms error do not necessarily have the closest
agreement between sets of parameters. This fact
is related to the sensitivities of the various
parameters and the subjectivity of a graphical fit.

Table 2 is a comparison of parameter values
derived from data sets analyzed by a confined
aquifer model and by a leaky artesian model.
Although the rms errors are satisfactory, there is a
discrepancy of several orders of magnitude in the
storage value for example 6. These examples
demonstrate the fact that imperfect data can still
lead to convergence in this algorithm. This points
out that in addition to analyzing the drawdown
curve from an aquifer test one must carefully
examine the hydrogeology of a site because of
the ambiguity of analyzing real data by theoretical
curves. A compilation of the data sources referenced
in Tables 1 and 2 is contained in the Appendix.

DISCUSSION AND SUMMARY
This paper has set forth a methodology for

analyzing the leaky artesian-aquifer pumping test
by using a numerical regression algorithm built on
sensitivity analysis. A by-product is the solution to
the drawdown equation.

The algorithm presented in this paper has
proven consistently its ability to converge to the
"correct" set of aquifer parameters for a typical
data set. In this case "correct" means the values
obtained by manual curve matching methods for
real data, or the values used in generating the
hypothetical data. These best-fit values are achieved
over a range of initial estimates ranging from three
orders of magnitude above to three orders of
magnitude below the converged values. The number
of iterations is reduced as the estimated parameter
values approach the true values. For typical data
sets the rms error tends to be only a few tenths of
a foot, while for fairly idealized sets of data, the

Table 2. Comparison of Data Analyzed
Two Ways (Nonleaky and Leaky)

Data
Source
Code

Confined Aquifer
Values

Leaky Aquifer
Values

Leaky rms
Error

T - 44000 gpd/ft
S = .00046
B = 0 f t

T = 42000
S * .00004
B = 0

T = 42000 gpd/ft
S - .00044
B = 8600 ft
T = 9800
S - .0045
B - 6 5

0.240 ft

.036

rms error is a few hundredths of a foot. Iterations
can be reduced by increasing the size of the
acceptable error criteria, but only at the cost of
increased rms error. Memory size and computing
time are relatively small for this algorithm. The
typical analysis costs only a few dollars or less.

If the data diverges too much from ideal data,
convergence may not occur. In this case, if conver-
gence does occur, the rms error may be unaccep-
table. Although this algorithm gives a unique
solution to any data set for which it can achieve
a converged set of values, it cannot distinguish
absolutely between different types of aquifers.
Since the three degrees of freedom (three aquifer
parameters) give the algorithm considerable latitude
in achieving convergence, an imperfect data set may
be run successfully and a set of values for transmis-
sivity, storage, and leakage produced. This fact
points to several cautions. First, only the best data
available should be analyzed. Second, the geohy-
drology should be examined carefully by experi-
enced personnel to aid in classifying the aquifer
type. Third, if doubt exists about the validity of
the converged values, the rms error value should be
noted and individual best-fit drawdowns should be
compared to the field data for gross deviations.
While this type of automated analysis can ease the
burden of the hydrologist, it does not appear that
it will reduce his role.
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FIELD REPORTS

NUMERICAL METHOD OF PUMPING TEST
ANALYSIS USING MICROCOMPUTERS

by K. S. Rathod and K. R. Rushtona

Abstract, This paper describes how a numerical method of
pumping test analysis, which has proved to be useful in
many practical situations, can be run on microcomputers.
Full details of a program in BASIC and a test problem are
provided. The need to perform all che calculations to a
sufficient accuracy is stressed, and the choice of suitable
mesh spacings and time steps is discussed.

Introduction
A numerical technique of representing the

radial flow towards a pumped well (Rushton and
Redshaw, 1979) has proved to be valuable in
analysing and interpreting pumping test data.
Features that can be included in this approach
include well storage, boundary effects, variable
saturated depth, leakage, delayed yield, variations
in hydraulic conductivity and storage coefficient
with depth or radius, and variable abstraction rates.
Examples of particular studies include gravel
aquifers (Rushton and Booth, 1976), sandstone
aquifers with delayed yield (Rushton and Chan,
1977), artesian overflowing boreholes (Rushton
and Rathod, 1980), test in which data are only
available in the pumped well (Rushton, 1978),
long-term tests lasting up to 70 days (Gonzalez
and Rushton, 1981), and pumping tests in large-
diameter wells (Rushton and Holt, 1981).

The basis of the numerical approach is to
solve the time-variant differential equation using
a finite difference approach in which the radial
dimension is divided into discrete intervals which
increase logarithmically from small values near the
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Birmingham, P.O. Box 363, Birmingham B15 2TT, United
Kingdom,
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well to large values towards the boundary. The
time dimension is also divided into discrete steps
which increase logarithmically. This leads to a set
of simultaneous equations for each time step; these
equations can be solved using an elimination
routine. Details of the technique including a
program in FORTRAN can be found in Rushton
and Redshaw (1979).

With the increasing availability of inexpensive
microcomputer systems, it is advantageous to
transfer this program to run on these computers.
There are, however, certain limitations of these
microcomputers when they are used for complex
scientific calculations. The authors have been in
correspondence with a number of workers who
have attempted to prepare microcomputer
programs for this numerical model, and several
have encountered major difficulties.

This paper presents a version of the numerical
model program written in BASIC. It has been
tested thoroughly on a Radio Shack TRS 80
system but, because there are crucial differences
between the accuracy of working and operation
of the various systems, sufficient information
about a typical problem is presented to enable
independent checks to be made. Possible diffi-
culties in computation are highlighted, and the
importance of small radial mesh spacings and time
increments is discussed.

Numerical Model
In this section a brief summary of the formu-

lation of the numerical model is given-, full details
including a derivation from the differential equa-
tion are given by Rushton and Redshaw (1979).
The symbols used in this section are chosen to
coincide with those used in the BASIC program
(Figure 1).
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0010 R£M:**** • • • • « . . ..,....„,....,„.,,.,,..,..,
0015 REM: :A1MERICAL MODE!. FOR RADIAL FLOW TO A « E U
0020 REM: K.R. RUSHTON.
0025 REM:FOR GIVEN TRIAL PARAMETERS FOR AN AQUIFER,THE MODEL
0030 RIM:CALCULATES DRAWDOWNS IN TIS AQUIFER.WITH THESE
0035 REM;DRAWDOWNS AND FIELD OBSERVATIONS SUCCESSIVELY SETTER
0040 REM: ESTIMATES OF THE AQUI FDR PÁRAMETE»! CAN SE MADE AND
0045 REM:SENSITIVITY ANALYSIS CARRIED OUT. VARIOUS FEATURES
0050 REM: SUCH AS WILL LOSSES,WELL STORAGE, LEAKAGE ETC. CAN IE
0055 RIH:EASILY INCLUDED IN THE MODEL.
0060 «EM:** • • • • • • • . . . * * . • • • • • • •
0065 REM; *** THIS VERSION IS CONTICUREO TO SUITE * • •
0070 REM: **• RADIO SHACK TRS-SO MICROCOMPUTER SYSTEM • • *
0075 K£!l!!! ! ! ! • « • » • ! ! ¡ I ! ! " " " ! ! ! ! ! ! " " " ! ! ! ! ! ! ! ! ! ! !
0080 R&1ÜÜ tNTUT INITIAL CONDITIONS • * • • • • ! ! ! ! !
00S5 SJE.1ÜÜ! <• ! ! ! ! ! • • • • • • ! ! ! ! ! ! ! ! ! ! ! ! • < ! ! ! !
0090 REM:P-PER.1,SI-CONFINED STORACt AND SÏ-UNCONFINED STORACE
0095 REN:R1-WELL RADIUS,19-RACIUS TO OUTER 9ÛUNDARY
0099 OEFINT I,J,K,M,N ; OEFOSL A-H,L,O-Z
0100 INPUT PERM, SCON, SUNC ,RW .¡WAX" ; p , S I , 52.R1.R9
ÜL05 LPAINT USlNC~PERM-«#'."f CUHF-STOR-*»» .«»»»»" ; f , S I ,
0110 IPIUNT USINO" UNCOUF-STOR-HIH.*»»»"^
0115 LPRI..T USINC"RUELL*#».i»»» HWAX-» .lltl ;R1.R9
0130 REM:LOGARITHMIC HESIi. FIVE MESH INTERVALS PER
DUS REM: TEN FOLD INCREASE IN RADIAL DISTANCE.
0130 C-1.584Í932DO0
0 U S R3-R1
QUO N W
0145 Nl-NL+l
0150 R3-R3*C
0155 t f ¡LKR9 THEN COTO 0145
0160 REM:D£CLAKE DIMENSIONS FOR THE VARIABLES.
0165 DIM R ( N l ) . R 2 < N l ) , D ( N l ) , D l ( N l ) , S ( N l ) , I t ( N l ) , q ( N l )
0170 DIM U ( N I ) , V ( N 1 ) , 0 1 ( 4 ) , 0 2 ( 4 )
0175 REM;R«RADtAL DISTANCE, RÎ-R*R, D-DRAUOOUN
0180 REM:Dt«0RAWDOWN FROM PREVIOUS TIME STEP.
01ÍS REM:S»TtME/STORACE COEFF. H-EQUIV. HYD. RESISTANCE.
0190 REÍCQt-RICHARCE. U AND V COEÍF. USE» IN CAUS3IAN
0195 REM: ELIMINATION ROUTINE. 01 AND OJ LOCATION Or FOUR
0200 REM:O>H*S AND DRAWDOWNS AT THESE BOREHOLES.
0205 REM:CALCULATE RADIAL DISTANCES FOR THE MESH POINTS
0210 R ( l ) . R t / C
0115 R 2 ( l ) - R ( l ) * R ( l )
0220 FOR U'l TO Nl
0 « 5 R(N)-C«R(N-t)
0230 R2(N)-R(N)'R(U)
023! NEXT N
0Î40 R(Nl)-R»
0245 R2(Nl)-R9*R»
0250 N2-N1-1
0Î55 Nj-NZ-1
0260 REM: A IS NATURAL LOG OF THE RAT to OF
0265 REM: TUD SUCCESSIVE RADII. A2-A*A
0270 A»4,60317D-Ol
0175 Ai-A*A
0280 REM:Ul-TOP AND Ll-BASE Of AQUIFER;W»WATER LEVELiQl-RECH
0285 INWT "TOP.BASE.IWl.RECH-jUl.Ll.W.gi
OÎ90 REMilNUIALIIE ARRAYS
0295 FOR N-l TO Nl
0300 Q(N)-ql
0305 0(N)-W
03IP Dl(N)-w
O3V5 NEXT N
03J0 LPRINT UStNC"TOP OF AOUIFER- *»#».»»";UI,
0325 LPRINT USING" BASE OF AQUIFER. *itl.H" ;Ll
0330 LPRINT USING'INITIAL UATER LEVEL- *###.»f*;W,
0335 LPRINT USING" RECHARGE' III.HI";0.1
0340 R£M: RJEAD 1 FOR RECHARGE BOU NOA»! OR 2 FOR IMPERMEABLE.
0)45 INPUT 'RECHAKGE BOUNDARY-l.IMTERMEABLE-i'lJl
0350 IF J l - l Th£N LPRINT " * • • • • SECliAROE SOUSDAKt • • • • • "
0355 IF J l O l THEN LFRIUT " IMÍERMEAIU BOUNDARY • • • • • "
0360 REM: INPUT ;.0D£ NOS. OF FOUR OBSERVATION WELLS.
0365 1NTUT "FOUR OBSERVATION NODES' ¡ 0 1 U ) , 0 1 ( 1 ) . 0 1 ( 3 ) , 0 l ( 4 )
0370 R£M:ri-eUMPINC RATE, T9-OPERATION TIME FOR THE PHASE
O37S R£M: DATA FOR NEXT PUMPI.NC PHASE CAN BE PROVtDEO HERE
0380 INfUT "GIVE PUMPING RATE AMD DURATION"¡fl,1)
0385 00SUB 7000
0390 IF PK0.0DOO THEN STOP
0395 R£M:CONVERT PI TO PI FOR USE IN CALCULATIONS
0400 REM: P2-P1 / ( !*PI*A)
0 4 0 ) P2-0.125DOO*Pl/(CDBL(ATN(0.1DOO)*A)
0410 COSUB 3000
0415 REtl:T-CURRENT TIME.T9-TIMÏ FO* WHICH PHASE OPERATES
04J0 REM: 11-100 FOR THE LAST TIME STEP, OTHERWISE U.M.
0423 I I - 0
0430 T-0 .0000
0435 REMiSET INITIAL TIME STEP SUCH THAT U<1.0 AT UELL FACE.
0440 TO«Z.5D-O1*R2(2)*S1/(P*(L1-U1>)
0445 IF TO>1.00-06 THEN TO-l.OD-06
1000 REM:
lOOJ R f M ! ! ! ! ! ! • • * • • • ! ! ! ! ! ! • • • • • • ! ¡ i ! ! ! • • • • • • ! ! ! ! ! ! « • • • • • ! ! ! ! I
1010 R£M!!!!!! CALCULATIONS FOR EACH TIME STEP • • • • • • ! ! ! ! !
1015 RXMI! ! ! ! ! • • • • • • ! ! | ! !!••••••!I I||!••••••!.¡i i¡.•••••!i i i i
1020 R£M:
10Ï5 T-T • TO
1030 IF T<T9 THEM GOTO 2000
1035 REM:TIME STE? JUST BEFORE THE ENO OF THE PHASE IS REACHED.
104O R£M:LAST TIME STEP FOK THE CURRENT PHASE.
1043 TO-W-(T-TO)
1050 T-T»
1033 U-100

1060 REM:LOOP K, K2 TIMES fO* CONVERGENCE .
1063 REM:FOR UNCONflNED CONDITION K2 SHOULD EqUAL FOUR SUT
1070 RÍM:TO ECONOMISE, K2 IS SET TO ONE .
1075 REM:Z - AVERACE SATURATED THICKNESS FOR A NODE.
2000 K2-1
2005 FOR It» I TO a
2010 FOR N-l TO N2
2013 REMSSELECT APPROPRIATE STORAGE COEFF. DEPENDtNC
2020 REM:ON WHETHER THE CONDITION IS CONF. OR UNCOttP.

f H - 0 .50D00*(D(N)+0(N+l ) )
S3-SÍ
If Z < Ul-Ul) THEN GOTO 2050
Î-L1-U1
S3-S1
H(N)-A2/(2*P)
S(N)-T0/(S3*R2(N))

NEXT N
REM:MODIFY COEFFICIENTS TO TAKE tNTO ACCOUNT
REM:WELL STORAGE AMD CONDITION NEAR WELL FACE.
H ( 1 ) - 1 . 0 D - 0 4 • H ( l )
S(W-2.0DOO*TO*A/R2(2)
S (2 ) -J .0000*5(2 )
R£M:MODIFY COEFF.S FOR CONDITION ON OUTER BOUNDARY
H(N2)-(LOG(R(NI)/R(N2)))*(LOG(K(N1)/R(N2)))/(2*F)

2025
2030
2035
2040
204 5
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
U25
3000
3010
3015

30 :o
3025
3030
3035
3040
3045
3046
3050
3051
3055
3056
3060
3070
3075
3080
3083
3090
3095
3100
3103
3U0
3115
3120
JUS
3130

S(N:W.0OO«TO*A/<(R(N1) -R(N2-U)*S3*R(N2) )
S(N1)-2.0DO*TO*A/((R(NU-R(N2))*S3**R(N1))
REM:LARGE STORAGE ON LAST NODE IF IT IS RECH. BOUNDARY
IF J l « l THEN S(N1)-1 .00-10 • S(N1>
REM:
REM; GAUSSIAN ELIMINATION

l.ODOO/SO)
P2

FOR N-2 TO M
U(N)«1.000/H(N-1)+1.0DO/H(N)+1.0DO/S(N)
U(N)-U(N)-(1.0DO/H(N-l))*(1.0DO/H(N-l)) /U(N-l)
V(N).Dl(N)/S(N)-R2(N)*q(:; )+(1.000/H(N-l)*V(N-l) ) /U(N-l)

NEXT N
V ( N : ) - D 1 ( N I ) / S ( N 2 ) - 0 . 5 D O O « I I ( N 2 ) * ( R ( N 1 ) - R ( N 3 ) ) » Q ( S J ) / A
V(N2)-V(NJ)+(V(N3)/H(N3))/U(N3)
U(NI)-l .0D00/ll(K2) - 1.ODOO/S(N1)
U(N1)-U(N1) - (1.0DOO/H(N2))*(U00OO/H(N2))/U(N2)
V(Nl)-Dl(Nl)/S(Nl)-O.5UO0«R(Nl)*(R(M)-R(N2))*q(Nl)/A
V(N1)-V(NI)+(V(NJ)/H(N2))/U(N2)
REM:
REM:
D(Nl)«V(Nl)/U(Nl)
FOR J - l TO N2

N-N2-J+1
D(N)-(V(N)+l,ODO/H(N)*D(lt+l))/U{.S)

NEXT J
REM: IF DRAWDOWN IN THE WELL 8EL0W THE TOP OF AQUIFER
REM:REACHES MORE THAN 901 OF AQUIFER THICKNESS THEN
REMiTXE WELL RUNS DRY AND THE PROGRAM STOPS.
IP D( l )< ( 9 . 0 0 - 0 l * L l + 1.0D-0l*tU) THEN GOTO 3135
LTRINT "*** EXCESSIVt DRAWDOWN **•"
COSUB 9000
STOP

3135 NEXT K
3500 REM:DRAWDOWNS AI FOUR OBSERVATION BOREHOLES
3505 FOR M-t TO 4
3510 Kl-Ot(M)
1515 O2(M)«0(ICl)
3520 NEXT M
3525 LfRINT US1NC"».»»» ; T . D ( 2 ) , 0 2 ( 1 ) , 0 2 ( 2) , 02 ( 3 ) , 0 2 ( 4 ) , D ( N 1 )
3530 REM:TRAMSFEk VALUES OF DRAWDOWNS TO OLD ORAWDOUKS.
3335 FOR !.-l TO Nl
3540 D1(S)-U(N)
3545 NEXT N
3550 REM!
3555 R£M1 ! ! ! ! !••••••! ! ! ! ! ! ! ! ! ! I ! *! M ! ! !••••••! 1 ! ! !
3560 REM!!!!!!*" END OF CALCULATION FOR ONE TIME STEP ! ! ! ! !
3565 RIM! ! !! ! ! • • • • • • ! ! ! ! ! ! • • • • • • ! ! !! ! ! • • « • • ! ! ! ! ! I *•••••! ! ','-'.
3570 REM!
3575 REM:
4 0 0 0 REM:CALCULATE NEW TIME STEP
4005 T0-T*0.5848932DO0
4010 IF 1 1 - 0 THEN GOTO 1025
4015 COSU I 9000
4020 GOTO 0 3 8 0

7 0 0 0 LPRINT
7 0 1 0 LPRINT i;StNC"PUM?tNC RATE- » . » » » CU.METRES/DAY " ; P t ,
7 0 Ï 0 LPRINT USING" FOR » . » » # DAYS ";T9
7 0 3 0 REWWt
8 0 0 0 FOR — I TO 4
8 0 1 0 Kl'
8020 02
8 0 3 0 NEXT ».
8 0 4 0 LPRl.'iT -TIME(OAYS) ' ;
SOSO LPRINT U S I N G " » » » » » . / » » " ; R ( 2 ) . O Î ( 1 ) . O J ( 2 ) , O 2 ( 3 ) , O 2 ( 4 ) . R ( N 1 )
8 0 6 0 RETURN
9 0 0 0 LPRINT
9010 LPRI:;T "NODE RADIUS
9020 LPRl.'iT " TlhS/STORACE
9030 LPRl.'.T " HO
9040 LfRl.^T "COSFFICIEW
9050 FUR : . - ! TO Nl
906O LPRI.1T USINC"»»»";N,
9070 UKINT USINC" # . » » » # " "
9080 NEXT N
9090 RETL-RN

I
I
I
I
I
I
I
I
I

RADIUS

DRAWDOWN'
SQUARED

HORU.HYD";

RESISTANCE

;R(N) ,R2(N) ,H(K) ,S (N) ,01 (N)

Fig. 1. Program in BASIC.
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Discrete Space Mesh
As water is pumped from a well, the water

level in the well falls and the influence within the
aquifer is reflected by reductions in the ground-
water heads. Consequently, in a pumping test,
ground-water heads change with radial distance
from the pumped well and with time.

It is convenient to define ground-water heads
at a series of radial distances from the pumped well
axis. Since rapid changes occur close to the
pumped well with slower changes at larger radii,
the spacing between the mesh (or nodal) points,
where the heads are defined, increases logarith-
mically.

If the radius of the well is 0.15 m, it is
possible to have five mesh intervals between the
well face and 1.5 m. Thus the nodal positions are
0.15 m, 0.2377 m, 0.3768 m, 0.5972 m, 0.9464 m,
and 1.5 m. Between 1.5 m and 15 m there are a
further five intervals, and the same pattern is
repeated between 15m and 150 m, and between
150 m and 1500 m. If the outer boundary is at
2000 m, this is taken as the last nodal point.

In the mesh, each radius is 100 2 times the
preceding one. This mesh can be generated by
statement number 225 of the program

R(N) = C*R(N-1)

where C = 100 2 . In the example to be described •
in detail later, the final nodal point is N = 23,
R = 2000 m. Node N = 1 represents the water
within the well and can be used to simulate the
well storage.

Discrete Time Steps
Just as drawdowns are calculated at a series

of increasing radii from the well, the times at
which the drawdowns are calculated also increase
logarithmically. A very small time increment, TO,
is used initially so that at the well face the standard
parameter u = HS/4Tt = 1.0. In several of the
examples quoted in this paper, five time intervals
for a tenfold increase in time are used.

Lumping Model
It is helpful to introduce a lumping model

which summarizes the numerical technique. Figure
2(a) indicates how the area is divided into a
discrete mesh, and three typical nodes N-l, N and
N+l are drawn schematically in Figure 2(b). The
radial distances from the pumped well to these
nodes are R(N-l), R(N), and R(N+1), respectively.

The resistance to flow caused by the trans-
missivity of the aquifer is represented by equiva-

lent hydraulic resistances H(N-l) and H(N). These
hydraulic resistances can represent both changes in
the saturated depth and variations in hydraulic
conductivities with saturated depth.

In addition to the horizontal flow of water,
another component of the flow balance is the
recharge. This can be simulated as a lumped inflow
with the quantity at node N depending on the
square of the radius.

A further inflow, similar to the recharge, is
the water released from storage. During a time step
from time T to time T + TO where TO is the time
increment (usually written as At), :he drawdown at
node N increases from Dl(N) to D(N). The
quantity of water released from storage depends on
the change in head, the area represented by the
node, the time increment, and the storage coeffi-
cient. Consequently, a time/storage coefficient can
be introduced with S(N) = TO/(S3*R2(N)) where
R2(N) signifies the square of the radius. S3 is the
appropriate storage coefficient, either confined or
unconfined. Since the radii can vary from 0.15 to
2000 m in a typical problem, the factor S(N) varies

mish
subdivisions

water released
train storage

oroundwater head
'during time step

time T DUN) driwdtm i t
previous time step

horizontal
hydraulic
rcsistinci

tin» T * TO

radius

(b)
Fig. 2. Derivation of numerical model (a) section showing
hydraulic problem with mesh subdivisions and (b) equivalent
hydraulic parameters for the discrete model.
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Table 1. Main Sections of the Program

Statement
numbers Section of program

10- 200 Description of program; input of aquifer
dimensions and parameters.

205- 3Ó5 Set up radial mesh; specify initial drawdowns
and condition on outer boundary. Select
observation well positions.

370- 445 Input pumping rate and duration of phase;
calculate initial time step.

1000-2125 Calculation for time increment; determine
saturated depth and equivalent hydraulic
parameters.

3000-3575 Gaussian elimination; stop if drawdown is
excessive; output heads at observation wells.

4000-4020 Either perform calculation for another time
step or at the end of the phase print full
output. Read in data for next phase.

7000-9090 Printing subroutines.

by abouc eight orders of magnitude. This can lead
to computational difficulties.

Further Features
There are many other features that can be

represented in the model including well storage,
well losses, varying abstraction rates, changes
between the confined and unconfined states, leaky
aquifer behaviour, delayed yield, and different
conditions on the outer boundaries. The inclusion
of these features in the numerical model is
described by Rushton and Redshaw (1979).

Solution of Equations
Referring to Figure 2(b), :he drawdowns

D(N-l), D(N), and D(N+1) are unknowns, but the
drawdowns D1(N) were calculated at the previous
time step. Consequently, when a flow balance is
written for node N, there are three unknowns. This
is repeated at each nodal point; therefore, a set of
simultaneous equations result. These equations can
be solved using a simple elimination routine.

The only drawback of this elimination routine
is that errors can occur if the arithmetic is not
carried out to a sufficient accuracy. Consequently,
double precision arithmetic is used which, for this
particular computer, means that variables are
handled in the computer to accuracy of 16
significant figures, whereas single precision only
uses 6 significant figures.

Computer Program
Detailed comments and explanations are

made within the program listing (Figure 1). How-
ever, Table 1 has been prepared to identify the
main sections of the program. The accuracy of the
program will be discussed later.

Particular Example
When ascertaining whether a program is

correct, it is helpful to have an example against
which checks can be made. This section describes
an example which tests most aspects of the
program. Figure 3 sketches the problem.

An aquifer, which is initially confined, has a
well of 0.15 m radius and extends to an outer
recharge boundary at 2000 m. The initial position
of the ground-water head is chosen as datum, and
all depths and drawdowns are measured vertically
downwards. Thus, the confining layer is at 2 m
below the initial ground-water head, and the base
of the aquifer is at 12 m. The hydraulic conductiv-
ity is 65 m/d giving an initial transmissivity of
650 mVd. Due to an abstraction rate of 2500 m3/d,
the ground-water heads fall, and the region in the
vicinity of the well becomes unconfined with the
storage coefficients changing from confined values
of 0.0001 to the specific yield of 0.01.

.2500 m3/d

1.0 100.0 10000

(b)
Fig. 3. Typical problem (a) with change from confined to
unconfined conditions and (b) drawdown results for 1 min
and 7.2 hours plotted against logarithm of radius.
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Table 2. Input Data for Computer Program

6.5ODOl,0.10D-03,0.1OD-Ol,1.5D-01,2.0DOA
2 . 0 D O O , 1 . 2 D 0 1 , O . O D O O , O . O D O O
1
7,12,17,22
2.5ODO3,3.OD-O1
0.00DOO.1.ODO0
-1.0DOO,2.0DO0

Input data to the program is listed in Table 2,
and this is repeated as the first seven lines of the
output in Table 3. Referring to Table 2, the third
and fourth numbers of line two indicate that the
initial drawdown is zero and that there is no
recharge. The third line records that there is a
constant head on the outer boundary which will
provide a varying recharge depending on conditions
within the aquifer. An impermeable boundary is
indicated by J 1=2. The abstraction rate of 2500
m3/d for 0.3 days is followed by a recovery phase
of 1.0 day; this is indicated by lines five and six.
The last line with negative abstraction rate signifies
the end of the calculations. Full details of the
drawdown variation with time arc provided at
nodes 7, 12, 17, and 22 which correspond to the
radial distances of 1.5 m, 15 m, 150 m, and 1500
m from the pumped well.

A complete output of the first phase is
presented as Table 3. The first part of the printout
records the input data; the main section records
time-drawdown data at the well, four observation
wells, and the outer boundary. At the end of the
printout is a detailed record of the coefficients
used in the calculation for the final time step.
Certain important features should be noted.

a. As the drawdown in the well exceeds 2.0 m
after a time of 0.865 X 10"4 day, the storage coeffi-
cient at that node changes from 10"* to 10'J.

b. After a time of 0.3 day, the unconfined
region spreads beyond 37.68 m (see the section at
the bottom of Figure 3). This is reflected by a
discontinuity in the values of the time/storage
coefficient.

c. A consequence of the aquifer becoming
unconfined is that the saturated depth decreases.
This results in increases in the horizontal hydraulic
resistances for nodes 2 to 14. The nonstandard
values at nodes 22 and 23 occur because of the
modification of the mesh intervals at the
boundary.

d. At the outer boundary the condition is zero
drawdown. The drawdown according to the
computer program is 0.146 X 10*9 which, com-

pared to a drawdown of 0.0967 m at the next node
into the aquifer, is effectively zero.

e. As indicated in the sketch of Figure 3, the
well-water level coincides with the level within the
aquifer; therefore, the seepage face is ignored.
However, the effect of the seepage face could be
included by increasing the horizontal hydraulic
resistance between nodes 2 and 3 by a factor of
about five. This can be achieved by including an
extra statement in the program

2077 H(2)= 5.0DOO*H(2)

Table 3. Part of Output from the Program
Using Data of Table 2

PERM» 65.0OO 00NF-5TOR» 0.00010 UNCCNF-STOR: 0.0120
SWOXi 0.1500 S"IAX"0.2000*01
TOP OP AQUIFER» *2.00 BASE OF AQUIFER: ' 12 .00
DUTIAL WATER LEVEL» *0.00 RECHAR0E= 0.000

RECHARGE 30UNDARY

PWFDB RATE= 0.2500*01 CU.íeTRE
TOEtDAÏS) 0.150
O.365D-O9 0.3O60-O1
O.137D-O8 0.185D-O1
0.2170-08 0.769D-O1
O.3I50-08 0.1220-03
O.516O-06 0.1930-03
O.365D-O3 0.3060-03
0.1370-07 O.185D-O3
0.2170-07 0.7680-03
O.315O-O7 0.1220-C2
O.516D-O7 0.1930-02
0.3650-07 0.3050-02
0.137O-O6 O.S81D-O2
0.2170-06 0.7660-02
O.315O-O6 0.121C-01
O.5I6O-O6 0.1920-01
0.3650-06 0.3030-01
0.1370-05 O.J77D-C1
0.3170-05 0.75O0-O1
O.315D-O5 0.1173*00
O.516D-O5 0.1830*00
0.3650-05 0.2833*00
0.1370-01 o.i3ir-*oo
0.2170-01 0.3170*00
0.3150-01 0.916C+00
0.516D-O» 0.1310*01
0.3650-01 O.1822-K31
0.1370-03 O.231C+OI
0.317D-O3 O.28ts*ol
0.315D-03 0.3280*01
O.5"6D-O3 0.36 ' ->Ol
O.365D-03 O.391C*C1
0.1370-02 0.1180*01
0.3170-02 0.11ï0*Cl
0.3150-02 O.163O*C1
0.5160-02 0.1850*01
0.3650-02 0.5050*01
0.1370-01 0.5270*01
0.2170-01 O.5I8E+CI
0 . 3 1 5 > 0 1 0.5700*01
0.5160-01 0.5920*01
0.3650-01 0.6l5O*Ci
0.1370*00 0.6370*01
0.2170*00 0.6580*01
0.3000*00 0.6720*01

NODE RADIUS
NO

1 O.916IO-OI 0.
2 0.15000*00 : .
3 0.23770*00 : .
li 0.37680*00 0.
5 0.59720*00 0 .
6 0.91610*00 I .
7 0.15000*01 0.
a 0.23770*01 : .
9 0.37680*01 0 .

10 0.59720*01 0 .
11 0.91610*01 0.
12 0.15000*02 3 .
13 0.23770*02 0.
11 0.37680*02 I .
15 0.59730*02 0 .
16 0.91610*02 3 .
17 0.15000*03 3.
18 0.23770*03 0.
19 0.37680*03 0.
30 0.59720*03 0.
21 0.91610*03 3.
22 0.15000*01 2.
33 0.30000*01 : .

1.500
0.2200-10
0.5100-10
0.2150-09
0.1110-08
0.1080-07
0.753D-O7
0.1570-OÓ
0.2350-05
0-1020-01
0.371O-01
O.U6D-O3
0.3160-03
O.766D-O3
0.1700-02
0.351O-02
O.686D-O2
0.1290-01
0.2330-01
O-illD-01
0.7O5D-O1
O.II8D+OO
0.1910*00
0.3090*00
0-1770*00
0.7090*00
0.1000*01
0.1310*01
0.1680*01
0.198D»01
0.2230*01
0.21JD*01
0.3600*01
0.2800*01
O.296D*O1
0.31«D*01
0.3290*01
0.317t>*01
0.3630*01
0.3810*01
0.3970*01
0.1150*01
0.1310*01
0.1160*01
0.1550*01

?ADIUS
SQUARED
59570-02
22Ç0C-O1
=â62D-01.
11200*00

99?7D*O0
22500*01
56530^)1
11200*02
35660*02
39570*02
22500*03
56520*03

35660*04

22500*05
56520*05
11200*06
35660*06
39570*06
32500*07
-O00D*O7

S/DAY ?0R 0.3000*00 OAYS
15.000

0.1920-26
0.1180-25
O.338D-25
0.3000-23
0.3030-31
0.1390-19
0.3130-18
O.131O-16
O.183O-I1
0.5350-13
O.179D-U
O.11IO-IO
0.7580-09
0.1130-07
O.13ID-O6
0.1280-05
0.983D-O5
0.6O7D-O1
0.301D-O3
0.1310-02
0.1210-02
0.1220-01
0.3050-01
0.6720-01
0.1330*00
0.236D*OO
0.3810*00
0.5580*00
0.7150*00
0.9380*00
0.1100*01
0.1250*01
0.1110*01
0.1560*01
0.1710*01
0.1810*01
0.2000*01
0.2120*01
0.228D*01
0.210D+01
0.2560*01
0.2680*01
0.2800*01
0.2870*01

HORK.HÏD
RESISTANCE
0.60150-07
0.57600-03
0.53210-03
o!i9730-03
0.16830-03
0.11370-03
0.13270-03
0.10I3O-03
0.388IO-03
0.37370-03
0.36O8O-03
0.31920-03
0.33870-03
0.33910-03
0.32630-03
0.32630-03
0.3263D-O3
0.32630-03
0.32630-03
0.32630-03
0.33630-03
0.12730-03
0.10000*11

150.OCO 1500.000
0.0000*00 O.OOOD*OO
0»0000+00 QiOQCD+QO
0.0000*00 0.0000*00
0.000O*C0 0.3X0*00
0.0000*00 0.00OD*OO
0.000D*00 0.0000*00
0.0000*00 0.0000*00
0.7030-37 0.COOD*OO
O.295D-J1 O.OOOD-OO
O.103D-31 O.OOOD-OO
0.2910-29 0.00OD*OO
0.6780-27 0.0000*00
0.1270-2» 0.0000*00
0.1900-23 O.00OD*OO
O.229D-20 0.0000*00
0.2330-18 0.0O0D*0O
0.1710-16 0.0O0D*O0
0.106D-11 0.=210-35
O.519D-13 0.1090-33
O.2O3D-11 O.139D-X3
O.627D-IO O.13i>37
0.1530-08 0.3300-25
O.29IO-O7 0.Ó12O-23
0.II3O-O6 0.38OD-21
O.5I8O-O5 O.H6D-13
0.1690-01 0.1O7IV16
0.3250-03 O.756>15
0.1720-02 0.-070-13
O.691D-O2 0.1ÍÓD-L1
O.216D-O1 2.5130-10
0.5330-01 0.1300-08
0.1070*00 0.3150-07
0.1850*00 0.3390-06
0.2810*00 0.3200-05
0.3930*00 0.2650-01
0.5120*00 0.1700-03
0.6110*00 0.816D-O3
0.7700*00 0.3350-03
0.9060*00 0.9710-02
0.1010*01 0.227OH31
0.1170*01 O.126D-O1
0.1290*01 0.6550-01
0.1390*01 0.3570-01
0.1110*01 O.967D-O1

2CO0-XO
O.OOCC-00

o.cceooo
0.00OD»OO

o.oœo'co
0.00OD*OO

0.0000*00
0.0COD*0O
O.OOCD-CO
0.0000*00
0.0000*00
0. '0000*00
0.0000*00
O.OOOD+CO
O.XOD-00
•3.000D*aO
0.ecoe-00
o.ccoo*co
0.̂ OOD*CO
Q.O)00*CO
0.0000*00

o.oooc*co
0.0OOD-M
0.37:0-36
O.9C5O-3»
O.17l>31
0.3190-29
O.279D-Î7
O.:i9O-35
Q ^ Í S ^ J - 2 3
O.763>32
0.¿36[>*¿O
O.82L>i9
0' 1520-17
0.3130-16
0.1150-15
0.1350-11
0.3530-13
0.2310-12
0-1120-11
0.113D-11
0*1130-10
O.382O-IO
O.88OO-IO
0.1160-09

T T C / S T O R A J E DRA-D0M4
cQE75'Ic^^.f^
0.3}i>30*01 0
0.731^0*03 0
O.1162D*O3 0
0.582CO*02 0
0.23170*02 0
0.92210*01 0
0.36730*01 0
O.1S62E*O1 0
0.58200*00 0
0.23170*00 0
0.92210-01 0
0.36720-01 0
0.11620-01 0
0-58200-02 0
0.23170*00 0
0.92210-01 0
0.36720-01 0
0.11620-01 0
0.58200-02 0
0.2317O-02 0
0.92210-03 0
0.1815D-O3 0
0.76100-13 0

.57310*01

.¿7310*01

.62250*01

.57660*01

.53370*01

.19320*01

.»5i9O*Ol

.11810*01

. 38310*01

.3199D*O1

. 31770*01

.2365D*O1

.2565D*O1

.22710*01

.19950*01

.17180*01

.;«13D*01

.ll66D*01

.89060*00

.61820*00

.35170*00

.9666D-01

.^580-09
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Accuracy
As with all numerical solutions, errors do arise

and it is not always clear whether the errors arc
acceptable. Errors can arise because the numerical
method is unreliable, because the size of the mesh
intervals or time steps is too large, or because of
limitations due to the computer.

Microcomputer Errors
Microcomputers do not usually have the same

arithmetic accuracy as large computer systems. For
instance, the accuracy of the TRS 80 on single and
double precision is illustrated by the numbers
1.123456 and 1.123456789012345. However, the
accuracy to which arithmetic is performed can vary
from one computer to another. In most micro-
computers the arithmetic is performed by soft-
ware, and information is not usually available
about the accuracy of the software arithmetic. In
particular, it is advisable to avoid the routine which
raises a variable to a power.

Certain problems were solved using single and
double precision. For some of the problems there
was little difference between single and double
precision but for other problems, single precision
produced drawdowns which were only one-third of
those for double precision. Such errors could be
anticipated when note is taken of the wide range
of magnitudes of the time/storage coefficients of
Table 3.

Theis Solution
The exact Theis solution is a good check on

the accuracy of the computer simulation. By
taking a small well radius of, say 0.0001 m, and a
large outer radius of 100 km and ensuring that
confined conditions apply, the assumptions of the
Theis solution can be met in the numerical model.
Comparisons can then be made with the analytical
results. Particular attention should be paid to the
earlier times when the Jacob approximation is not
valid. Errors in W(u) should all be less than 0.1
when there are five mesh intervals for a tenfold
increase in radius and five time steps for a tenfold
increase in time. In practical problems the number
of mesh and time intervals can be crucial.

Mesh and Time Intervals
Certain workers using this numerical model

for pumping test analysis have obtained inadequate
results because they have used radial increments or
time increments that are too large. The increments
used in the program presented here are the maxi-
mum acceptable. For certain problems such as

Tabla 4. Selected Results for a Leaky Aquifer,
Transmissivity 650 mVd, Storage Coefficient 10"*, Well

Radius 0.15 m, Leakage Coefficient 60 m.
Abstraction Rate 2500 m3/d

No. of mesh intervals
per decade

No, of time steps
per decade

Time (days)

8.65 X 10"5

5.46 X 10'4

1.37 X 10"3

3.44 X 10"3

8.65 X 10"3

5.46 X 10"2

1.37 X 10"'

20

20

5

5

Drawdown (m) at 15

0.2317
0.8231
0.9326
0.9438
0.9438
0.9444*
1.698*

pumped well

0.2296
0.8166
0.9407
0.9457'
0.9435*
0.7256'
0.5255'

2.5

2.5

m from

0.2275
0.8188
0.9609'
0.9307'
0.9436'
1.664'
0.5211'

* Values exhibiting instabilities.

large-diameter wells, significant decreases in
saturated depth, leaky aquifers, and delayed yield,
particular care needs to be taken.

Table 4 contains results for a leaky aquifer
solution with a variety of mesh and time intervals.
Before the steady drawdown of 0.9438 is reached
adequate results were obtained, but when there are
only 2.5 intervals per decade in time and space,
instabilities occur quickly. Even with 20 intervals
per decade in time and space, instabilities eventu-
ally arise. These instabilities occur because of the
sensitive balance between the water leaking
through the overlying strata and the abstraction.

For delayed yield problems a response similar
to that of a leaky aquifer occurs with che draw-
down increasing only slightly with time. Using the
approach suggested by Rushton and Redshaw
(1979) for the inclusion of delayed yield, adequate
results can be obtained provided that five mesh
intervals and five time increments are used for each
tenfold increase in radius and time.

To summarize the requirements for adequate
accuracy, the computer program should use double
precision throughout, even for constants such as
1.0. The minimum number of intervals for a
tenfold increase in both space and time should be
five. Only three statements need to be changed to
modify the size of intervals.

1. If n is the number of mesh intervals per
tenfold increase in radius

Statement 130

Statement 270

i od/n)

Gn(10)/n

2. If there are t time intervals per tenfold
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increase in time, the facror in statement 4005 is
modified to 10 (1 / t ) - 1.0.

Conclusions
Provided that sufficient care is taken, it is

possible to carry out a pumping test analysis using
numerical methods on microcomputers. It is
essential, however, to check the program
thoroughly since the accuracy of computation
varies for different microcomputer systems. A
typical problem which is designed to test the
accuracy of the computation is presented.

Details are presented in the references listed
at the end of this paper. The use of this numerical
model is both for the analysis of pumping tests
which are difficult to interpret using conventional
methods, and for the prediction of the likely
response due to extensive pumping from an
aquifer.
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FIELD REPORTS

COMPUTING DRAWDOWN DISTRIBUTIONS
USING MICROCOMPUTERS

by James M. Kinga

Abstract, Using known or estimated values of trans-
missivity and storativity, the distribution of drawdowns at
any time within a discretized flow field can be generated by
applying simple trigonometry and numerical approxima-
tions of the exponential integral to the Theis equation.
Single- and multiple-well systems, as well as image
boundaries, are readily simulated with this method. A
program employing this technique is presented in BASIC
for use with microcomputers. The availability, low cost.
and computational power of many small computers makes
them ideal for this type of application. Their user-oriented
features allow many possible combinations of wells,
boundaries, and hydraulic properties to be analyzed in a
short time.

Introduction
Microcomputers are rapidly filling rhc void

between programmable hand-held calculators and
main-frame systems for many hydrologie applica-
tions. Attractive features of these small computers
are their remarkable computational power, their
use of the BASIC language which facilitates inter-
active programming, and instant screen graphics. In
terms of hydrologie studies, these features
cooperate to allow a large number of analyses to be
made in a short time.

This paper describes an interactive BASIC
program with a great deal of utility for examining
pumping and boundary effects in studies which do
not warrant a more complex numerical model. The
program uses known or estimated aquifer
parameters to compute the drawdown at every
point in a grid representing the area of influence
in a confined aquifer. It determines the drawdown

Staff Hydrogeologist, GAI Consultants, Inc.,
570 Beatty Rd., Monroeville, Pennsylvania 15146.

Received August 1983, revised June 1984, accepted
July 1984.

Discussion open until May 1,1985.

distribution resulting from a single well or the
combined effects of several interfering wells and is
capable of simulating moderately complex
combinations of recharge and discharge boundaries
using image-well theory. The version of the code
listed in the Appendix is efficient, has minimal
memory requirements, and is fully compatible with
TRS-80 Model III and Model 4 microcomputers. It
is useable with many other small computers in its
present form or can be made so with only slight
modifications.

Computational Scheme
The model algorithm is based on the non-

equilibrium equation of Theis (1935) for radial
flow to and from wells that fully penetrate
homogeneous and isotropic confined aquifers;

114.59 Q
s - W(u) (1)

where s is the drawdown in the potentiometric
surface (ft), Q is the constant rate of well discharge
(gpm), and T is the aquifer transmissivity (gpd/ft).
A negative Q may be used in (1) for recharging
wells. W(u) is the exponential integral, the
argument of which is given by

u =
1.87 r 'S

(2)

where r is the radial distance from the pumping
well to a point at which drawdown is measured
(ft), S is the aquifer storativity, and t is the
pumping time (days). There are other forms of
(1) and (2) for use with different units of length,
volume, and time (see, for example, Freeze and
Cherry, 1979, p. 344). The above forms were
chosen because of their compatibility with
practical field units, but the program can be easily
modified to accommodate any set of units.
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Examples of applications using (1) and (2) are
abundant in the literature and are found in most
ground-water hydrology texts.

The solution method requires discretizing the
area of influence into a mesh-centered grid with
either a uniform or variable node spacing. All wells
and observation points are located at the grid
nodes, and the ability to use nonuniform node
ipacings permits more flexibility in locating wells
and boundaries. This feature also allows the nodal
density to be increased or decreased in parts of the
discretized area where differing degrees of
resolution are desired.

The algorithm first determines the argument
u for a given node using (2) in line 350 (see
Appendix). To do this, the radius from the
pumping well to the node is computed using the
Pythagorean theorem (line 330). When the compu-
tational process reaches the node at which the
pumping well is located, the well radius is used.
W(u) is then calculated numerically (lines 1800
to 1870) using polynomial approximations which
are given in Gautschi and Cahill (1964) in
algebraic form. These approximations are also
presented in Huntoon (1980). The determination
of W(u) is expedited for long pumping times
and/or small radii by invoking the approximation
of Cooper and Jacob (1946), plus an additional
term of the infinite series for u < 0.01 (lines 1820
and 1830). The computed W(u) value is then used
in (1) to compute the drawdown at the node (line
370). The algorithm is applied successively until
the drawdown is computed at each node in the
grid.

For multiple wells, including image wells, a
separate solution is computed for each well and
superposed at every node to simulate additive
interference effects. The total drawdown at each
node is thus given by

Table 1. Comparison of Published and
Computed Values of W (u)

Si J.n QmW(u)i,j,m (3)

where Sj^n is the drawdown at the node in row i
and column j of the grid due to n wells, and m is
the well index. The pumping rate Q is well-specific,
and the value of W(u) is dependent on the location
of each node with respect to each well.

The polynomial approximations of W(u) used
in the program are efficient and accumulate less
roundoff error than methods which compute
successive terms of the infinite series within the
exponential integral. The scries methods (see, for
example, Picking, 1979; Dumble and Cullen, 1983)
are theoretically capable of unlimited precision but

u

6.13757 X
3.12209 X
8.83810 X
5.79278 X
3.59957 X
2.87965

10
10
10
10
10

-to
-7

-4

-1

Pitbl. W(u)*

20.6342
14.4025
6.4549
2.3285

7.746 X IO'1

1.524 X10"2

Computed W(u)

20.63421
14.40238
6.454937
2.328442

7.745455 X 10"'
1.521546 X 10"2

* Interpolated from Ferris and others (1962).

are burdened with a large number of multiplications
and divisions which are the slowest arithmetic
operations in most computers. The approximations
used here owe their efficiency to their nested-
multiplication form which requires fewer multipli-
cations and divisions. Even so, the calculation of
W(u) is the slowest part of the algorithm.

The approximating routine for W(u) was
tested over a wide range of function arguments by
comparing computed values with corresponding
interpolated values from Ferris and others (1962,
p. 96). Table 1 shows that the model approxima-
tions compare quite favorably and fall well within
the range of accuracy needed for most hydrologie
applications.

Example Application of the Program
The input and units required by the program

are listed in Table 2 in order of entry. The grid
dimensions, node spacings, hydraulic parameters,
and well information are specified by the user in
response to prompts by the program. Row and
column spacings are entered beginning at the upper
left corner of the grid. As written, the code permits
up to 20 wells and a primary matrix of up to 25
rows and columns (line 40). The dimensions of the
main matrix may be increased or reduced accord-
ing to the problem size and amount of available
memory. The output is a matrix composed of
drawdowns at all nodes within the discretized
region and may be used to generate contour maps.

Table 2. Required Program Inputs in Order of Their Entry

Data, units

1. Title
2. Grid dimensions
3. Mode spacings, ft
4. Storativity
5. Transmissivity, gpd/ft

6. Duration of pumping, days
7. Number of wells
8. Well coordinates
9. Pumping races, gpm

10. Well radii, ft
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Fig. 1. Test schema for the program. Solid circles are image
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Fig. 2. Variable grid representing Figure 1. Numbers at the
top and left are the grid spacing!. OW - observ. well.

To demonstrate simultaneously the simula-
tion of multiple-well systems and the treatment of
boundaries, a hypothetical test situation is
presented in Figure 1. The test scheme consists of
a 12-inch diameter well discharging for 0.5 days at
250 gpm from a confined aquifer with a storarivity
of 2.5 X 10"4 and a transmissivity of 7.8 x 104

gpd/ft. Two mutually perpendicular boundaries are
located within the area of influence—a flow barrier
2,000 ft north of the test well and a fully penetrat-
ing stream 750 ft to the west.

The problem area is represented by the
variable 5X5 grid in Figure 2 with the grid
spacings as shown. Each boundary is represented
by a grid line so that drawdowns at the boundaries
are computed. Three image wells at nodes (1,1),
(1,3), and (4,1) are used to simulate the effects of
the boundaries. The discharge well is at node (4,3).
Note that the number of nodes outside the
problem domain is minimized by extending the
grid only to the image wells and by using a single
large row spacing north of the flow barrier.

The test scheme yields a manually computed
Theis drawdown of 0.56 ft at the observation well
1,600 ft northeast of the pumping site. Simulating
the same scheme using the grid in Figure 2 and the
program results in an identical drawdown at the
observation point (OW) and also provides the draw-
downs at all other nodes south and east of the
boundary intersection. The determination of the
areal distribution of drawdown allowed the map in
Figure 3 to be constructed. Map preparation may
be facilitated by coupling the program to a plotting
routine.

Figure 4 is the model output for the above
example problem from which Figure 3 was
constructed. Drawdowns at nodes corresponding to
wells and boundaries may be noted by comparing
Figures 4 and 2. Note that the drawdown along the
recharge boundary in column 2 is zero. The output
statements in the program may be modified to
route the results to a printer for more flexibility in
formatting. Some tab statements (e.g., line 210)
may also require modification for monitor screens
with 80 columns (the code is based on a monitor
width of 64 columns).

Closing Remarks
If appropriate aquifer conditions exist and

boundaries are adequately representable with
image wells, the program presented here permits
the entire drawdown distribution due to pumping
to be reproduced or predicted. Many possible
combinations of conditions can be examined in a
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Fig. 3. Contour map of the drawdown distribution for the
example problem. Contours are in feat.

PROJECT: EXAMPLE PROBLEM

DATE! 11 JUNE 84

STORATIVITY = 2.5E-04

TRANSMISSIVITY * 78000

NO. OF WELLS = 4

TOTAL DRAWDOWN AFTER .3 DAYS

1 -5.91 0.00 5.91 0.64 0.43

2 -0.31 0.00 0.31 0.49 0.43

short rime since the code allows the number and
locations of wells and boundaries and the hydraulic
properties of the aquifer to be varied easily. The
availability, low cost, and computational
capabilities of microcomputers makes them well
suited for this type of application and the rapid
performance of multiple simulations is enhanced
by interactive BASIC programming.

Regarding practical applications, the program
has been used to define optimal well spacings for
multiple-well dewatering schemes and to delineate
the drawdown distributions of pumping centers
under varying boundary conditions. Using other
simple numerical techniques and function
approximations, the program can be modified to
generate drawdown distributions in leaky and
unconfined aquifers.
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3 -0.50 0.00 0.50 0.56 0.44

4 -5.91 0.00 5.91 0.64 0.43

5 -0.45 0.00 0.45 0.47 0.36

Fig. 4. Output from the example problem.
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Appendix. Program Listing

10 REM DRAWDOWN DISTRIBUTION PROGRAM
20 REM By James M. King
30 REM
40 DIM A(25,25) ,Z(4,20> ,RC!(24) ,CQ(24) : DE
FINT I,J,L,N
30 CLSi INPUT "ENTER THE TITLE OF THE SIM
ULATION";Ai: PRINT
60 INPUT "ENTER THE CURRENT DATE (NO C0MM
AS)";DAT*: PRINT
70 INPUT "ENTER THE NUMBER OF ROWS IN THE
GRID";R: PRINT
80 INPUT "ENTER THE NUMBER OF COLUMNS"?CL
: PRINT
90 PRINT "ENTER EACH ROW SPACING (FT);"
100 FOR I»l TO R-li INPUT RQ ( I ) : NEXT Ii
PRINT
110 PRINT "ENTER EACH COLUMN SPACING (FT)
: "
120 FOR 1=1 TO CL-li INPUT CQ(I): NEXT I:
PRINT
130 INPUT "ENTER THE STORATIVITY & TRANSM
ÏSSIVITY (GFD/FT) (S,T)";S,T: PRINT
140 PRINT "ENTER THE LENGTH OF THE PUMP IN
G PERIOD (DAYS) AND THE NUMBER OF"
150 INPUT "WELLS (TIME,NO.)";TM,NW: PRINT
160 PRINT "ENTER THE GRID COORDINATES, PU
MPING RATES (GPM), AND RADIUS": PRINT "(F
T) OF EACH WELL (R,C,Q,RAD»:"
170 FOR C=l TO NW
ISO INPUT Z(1,C),Z(2,C>,Z(3,C),Z(4,C): NE
XT C
190 ST=1.87#S/(TM*T>: T0=114.39/T
200 CLS: PRINT» PRINT: PRINT; PRINT
210 PRINT TAB(16) "•-•-# COMPUTATIONS IN
PROGRESS •-•-»"
220 FOR C=l TO NW
230 FOR 1=1 TO R: DR=O
240 IF I»Z(1,C) THEN 280
250 IF I < Z(1,C) THEN Q1 = ZU,C)-1: MI = I:
GOTO 270

260 MI=»Z < 1,0 : 01 = 1-1
270 FOR L=MI TO Ql: DR=DR+RQ(L)i NEXT L
280 FOR J=l TO CL: DC=O
290 IF J=Z(2,C) THEN 330
300 IF J < Z(2,O THEN Q2=Z<2,C)-1: NI=J;
GOTO 320

310 NI-Z(2,C): Q2-J-1

320 FOR L»NI TO Q2: DC=DC+CQ(L): NEXT L
330 RD=SQR<DRC2+DCC2)
340 IF RD=O THEN RD=Z(4,C)
3S0 U=ST*RDC2
360 QOSUB 1810
370 D0=TQ*Z(3,C)*WU
3S0 A<I,J)=A<I,J>+DD: NEXT J: NEXT Is NEX
T C
390 REM FR INT ROUTINE
400 CLSi PRINT "PROJECT: "¡Aí: PRINT "
DATE: ";DAT*: PRINT
410 PRINT TAB(10) "STORATIVITY =";S
420 PRINT TAB(7) "TRANSMISSIVITY =";T
430 PRINT TAB(9) "NO. OF WELLS =";NW: PRI
NT! PRINT
440 PRINT "PRESS ANY KEY TO CONTINUE . .

450 D*=INKEY*s IF DÍ-"" GOTO 450 ELSE CLS
460 PRINT "TOTAL DRAWDOWN AFTER ";TM;"DAY
S"
470 FOR 1=1 TO R
480 PRINT: PRINT USING "##";!;
490 FOR J=l TO CL
500 PRINT TAB(J*8-8) USING "####.##";A(I,
J);
310 NEXT J: PRINT: NEXT I
520 PRINT: PRINT "ANOTHER SIMULATION WITH
THE SAME T !Í S? (Y/N) : "

525 FOR 1=1 TO Rs FOR J=l TO CL: A(I,J)=0
: NEXT J: NEXT I
530 D*=INKEYf: IF D*="" GOTO 530
540 CLSi IF D*="Y" THEN 140
530 PRINT "RUN TERMINATED."
560 END
1B00 REM COMPUTE EXPONENTIAL INTEGRAL

1810 IF U > 10 OR U < 0 THEN WU=O; RETURN
1820 TY=-.5772156649-LOG < U)+U*.99999193
1830 IF U <= .01 THEN WU=TY: RETURN
ISSO IF U < 1.0 THEN 1870
1855 E=2.7182S1S2B
1860 WU=(.2677737343+U*(8.6347608925+U»( 1
8.059016973+U*(8.5733287401+U)))>/(U*ECU*
(3.9584969228+U*(21.0996330827+U* < 25.6329
3614a6+U*(9.5733223434-HJ> ) ) ) ) : RETURN
1870 WU=TY-t-UC 2» ( -. 24991055+U* (.05519968+U
•(-.00976004+U*.00107837))): RETURN

NOTE: "[" indicates exponentiation.
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COMPUTER
NOTES

A COMPUTERIZED TECHNIQUE FOR
ESTIMATING THE HYDRAULIC
CONDUCTIVITY OF AQUIFERS FROM
SPECIFIC CAPACITY DATA

by Kenneth R. Bradbury* and Edward R. Rothschildb

Abstract. Specific capacity data obtained from well
construction reports can provide useful estimates of
hydraulic conductivity (K). A simple computer program has
been developed which can correct specific capacity data for
partial penetration and well loss and, using an iterative tech-
nique, provide rapid estimates of K at hundreds of data
points. The program allows easy data handling and is easily
linked with existing statistical programs or contour
mapping routines. The method was tested at two field sites
in Wisconsin, one underlain by a sandy outwash aquifer, the
other by fractured dolomite. In both areas, estimates of K
from corrected specific capacity data agree reasonably well
with data from pumping tests.

Introduction
Hydrogeologists continually seek and res:

simple, quick, and inexpensive methods for deter-
mining aquifer characteristics. The use of specific
capacity tests to determine transmissivity (T), and
ultimately hydraulic conductivity (K), is one such
tool. Although the use of specific capacity data in
estimating aquifer parameters is certainly noc new 41
(Theis et al., 1963;Lohman, 1972), commonly
used estimation techniques (described below) are
somewhat slow and cumbersome. In this paper we
describe a computer program which rapidly and
accurately provides estimates of aquifer transmis-
sivity at hundreds of points where specific capacity
data are available, and we demonstrate that the
technique gives excellent results at two field sites
in Wisconsin. Because the solution is performed
with the use of a computer, data can be manipulat-
ed easily and linked with available graphical and
statistical packages.

aWisconsin Geological and Natural History Survey,
1815 University Avenue, Madison, Wisconsin 53705.

bCH2M Hill. 310 Wisconsin Avenue, Suite 700,
Milwaukee, Wisconsin 53201.

Received December 1983, revised October 1984,
accepted November 1984.

Discussion open until September 1, 1985.

A specific capacity test involves pumping a
well (of known construction) at a known rate and
period of time, and measuring the drawdown
within the well at the end of the test period. The
length of the test is determined by how long it
takes for the water level in the well to reach a state
of apparent equilibrium, that is, when the change
in drawdown is minimal with time. Specific
capacity is defined as the discharge divided by the
drawdown in the well, and the units generally used
are gallons per minute per foot of drawdown
(GPM/FT).

Theis et al. (1963) present a method of esti-
mating transmissivity from specific capacity. They
treat a specific capacity test as a short nonequilibri-
um pumping test, and utilize a graphical solution
to estimate transmissivity. Several other workers,
including Walton (1970), Lohman (1972), and
Gabrysch (1968) have applied Theis' method to
field problems. In this study, we replace the
graphical approach with a short computer program
utilizing an iterative procedure.

Estimating T from specific capacity involves a
series of assumptions. These assumptions include a
known storage coefficient (S), minimal well loss,
full penetration, and a nonleaky, homogeneous and
isotropic, artesian aquifer of infinite areal extent.
(These assumptions are essential to use of the Theis
equation, and are described in many basic texts.)
Fortunately, because specific capacity varies with
the logarithm of 1/S, the solution is not very
sensitive to variations in S, which can be estimated
with sufficient accuracy from previous studies in
an area, or by using representative values for a
given aquifer type. If appropriate data are avail-
able, well loss corrections can be made. Corrections
for partial penetration may be very important
because few wells fully penetrate an aquifer. A
method adopted from Brons and Marting (1961) is
used in this study to correct for partial penetration.

To demonstrate the method, specific capacity-
data were used to estimate hydraulic conductivities
for aquifers in two large field areas in Wisconsin
(see Figure 1). One aquifer is a confined, fractured
dolomite (area A), and the other consists of uncon-
fined, unconsolidated sands and gravels (area B). In
Wisconsin, specific capacity tests arc generally
performed by drillers at the time of well installa-
tion. Reports of the tests, as well as geologic logs
and well construction reports for most wells are
available at the Wisconsin Geological and Natural
History Survey. In this study, we use available
information to determine aquifer transmissivity,
corrected for partial penetration of the wells, and
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Fig, 1. Map of Wisconsin showing locations of field areas A
(fractured dolomite) and B (sand and gravai).

then produce maps of hydraulic conductivity. The
maps agree well with the more limited data
available from pumping tests.

There are many advantages of using specific
capacity information to compute hydraulic con-
ductivity. The data are generally readily available
and abundant: for area A, 224 specific capacity
tests were available versus 5 pumping tests; for area
B, 268 specific capacity tests were available versus
11 pumping tests. Estimates of hydraulic conduc-
tivity, based on specific capacity data, are quick,
easy, and inexpensive, and when used in conjunc-
tion with limited pumping test data, may be the
best method for mapping aquifer characteristics
over large areas.

Computer Program Development
Theis et al. (1963) describe a method for

estimating the transmissivity of an aquifer from the
' specific capacity of wells. Their analysis is based on
the Jacob equation, given in consistent units as:

(1)

where

T = transmissivity (LVt),

Q = discharge (L3/t),

s = drawdown in the well (L),

t = pumping time (t),

S - storage coefficient (dimensionless), and

rw = radius of the well (L).

Because T appears twice, this formula cannot be
solved directly, and Theis et al. (1963) and Walton
(1970) (among others) propose graphical solutions
involving matching the specific capacity data to a
family of curves. The graphical methods have the
disadvantage of requiring a different set of curves
for every possible combination of well radius,
pumping period, and storage coefficient. In addi-
tion, any corrections for partial penetration or well
loss require additional calculations.

Well loss is an increase in drawdown in the
well bore over drawdown in the aquifer adjacent to
the well. It is due to turbulent flow as water enters
the well bore and pump, and depends on the
pumping rate, construction of the well, and
hydraulic properties of the tested aquifer. It is
possible to correct specific capacity data for well
loss using the equation (Csallany and Walton,
1963):

CQa (2)

where

Sw = well loss (L),

C = well loss constant (tVL5), and

Q * discharge (L3/t).

Csallany and Walton present an equation with
which to evaluate C from step-drawdown data.

Most private wells penetrate less than the full
thickness of aquifers. During a specific capacity
test, partially penetrating wells may yield anoma-
lously low values of specific capacity, depending
on the ratio of penetration (L) to aquifer thickness
(b). In Wisconsin, the L/b ratio is sometimes as low
as 0.1. Thus, a correction for partial penetration is
necessary before estimating transmissivity from
specific capacity. For unsteady drawdown in a
partially penetrating well, Sternberg (1973) shows
that

rw
2S

(3)

where sp is a "partial penetration factor" given by
Brons and Marting (1961) as

L/b rw
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where

b = aquifer thickness (L),

L - length of open interval (L), and

G = a function of the L/b ratio.

Brons and Marting evaluate G (L/b) for various
values of (b/rw). In the present study the poly-
nomial equation

G {L/b} = 2.948 - (7.363 L/b) +

11.447 {L/b}--4.675 {L/b}3 (5)

was fitted to the data of Brons and Marting by
multiple regression, with a correlation coefficient
of 0.992. Rewriting equation (3) to incorporate
equation (2), we have

T =
Q

4 T T ( S - S W )
(6)

The solution of equation (6) yields an estimate of
T which is corrected for well loss and partial pene-
tration, and incorporates t, S, and rw .

Figure 2 shows a flow chart for a computer
program which solves equation (6). The program
first reads the data in the inconsistent units
(gallons per minute, inches, feet, etc.) which are
customarily used on driller's logs. After converting

C o n v o r t la C o n i l i t i n t U n i t *

( F a a t . « « c o n d a )

C o r r e c t for Wal l 1.911 ( E g . I )

Corraot (or Part ial Panatratlon
( E g . 4 t t )

t
Solva Ca. » (or TCALC Ualng

Tautss

t
• u t i t i t u t * r c A i c

lor T0UES8 MO —<^Tc*LC3Taue»O>'

ves

Print Raaulta

Fig. 2. Computer program flow chart.
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to consistent units (feet, seconds), the program
solves equations (2), (4), and (5) directly. It then
solves equation (6) iteratively, using an initial
estimate of T (TGUESS) to calculate an updated
estimate (TCALC). The program then substitutes
the updated estimate for the original guess, and
repeats the process until TGUESS and TCALC
agree within a small error criterion (ERR). Finally
the program prints the results.

Appendix A is a simple BASIC computer
code written for an Apple He computer illustrating
the estimation technique for a single well. A
sample output is included in Appendix B. In
practice, we expand this program to do several
hundred estimations. The program is easily modi-
fied to change the types and methods of input and
output. Currently it is designed to accept input
either interactively or via a data file that has been
merged with the program file. By including well
coordinates in the input data, the output can be
used directly in graphics plotting packages, as well
as in statistical routines. The variables ERR and
TGUESS have been assigned values of 0.1E-5 and
0.1, respectively. These can be altered by changing
lines 300 and 320 of the program. The program
also has been written in FORTRAN and is available
from the authors.

Description of Field Sites
The aquifer analysis method described above

was utilized for the two study areas in Wisconsin
shown in Figure 1. The first (area A), called the
Peninsula site, is in Door County, northeastern
Wisconsin, and encompasses 17.8 mi3 (46.1 km2).
The aquifer at the Peninsula site is a highly
fractured Silurian dolomite. Studies of the inter-
actions of ground water at the site with surface
water in adjacent Green Bay used computer
modeling (Bradbury, 1982). The computer models
required extensive data on transmissivity and
hydraulic conductivity of the dolomite aquifer.
Because the results of five available pumping tests
in the area (Sherrill, 1978) might not adequately
describe spatial variability of the fractured
dolomite aquifer, the transmissivity estimation
technique was applied to specific capacity data
from 224 local wells. The use of specific capacity
tests increased the average density of hydraulic
conductivity data from 0.3 to 12.6 points/mi2

(0.78 to 32.6 points/km2).

The second site (area B) encompasses a large
portion of the Central Sand Plain of Wisconsin,
which is underlain by an aquifer of sandy glacial
outwash, and has an area of approximately 612
mi2 (1585 km2). The sand and gravel aquifer in the



Table 1. Statistical Results of Estimates of Hydraulic
Conductivity (K) from Specific Capacity for Two Areas in

Wisconsin. Geometric Means, Standard Deviations (a),
and 95 Percent Confidence Limits Are Given

K (ft/sec)

AREA A: Fractured dolomite (N = 223)

Geometric mean 7.8 X 10~'

a 0.61
95% C.I. 6.5 X 1 0 " 5 - 9 . 3 X 10"5

AREA B: Sandy oucwash (N = 266)
Geometric mean 2.1 X 10"3

o • 0.25
95% C.I. 1.6X 1 0 * 3 - 2 . 2 X 10"3

area is widely utilized for spray irrigation of crops,
especially potatoes. Recent indications of ground-
water contamination by pesticides in the area
(Rothschild et al., 1982) prompted further study
of the aquifer, including computer modeling
(Rothschild, 1982). Specific capacity data for the
area are abundant (268 points) in comparison to
the number of pumping tests (11), and the trans-
missivity estimation technique was used to help
describe the hydraulic characteristics of the
aquifer. By utilizing specific capacity data the
density of data points for transmissivity was
increased from 0.018 points/mi2 (pumping tests)
to 0.44 points per mi2 (0.045 to 1.14 points/km2).

Results
Reliability of Estimates

Results of the computer estimation of
hydraulic conductivities from specific capacity
data agree well with values calculated using full-
scale pumping tests. Table 1 gives a statistical
summary of hydraulic conductivity estimates for
223 wells in fractured dolomite (area A) and 266
wells in sandy outwash (area B). Because hydraulic
conductivity data are generally log-normally
distributed (Freeze, 1975), the geometric mean
gives a good measure of the central tendency of the
data, and sigma (a) represents the standard devia-
tion of the log-transformed data. Table 1 shows
that, using many data points, the specific capacity
estimates give a lower mean hydraulic conductivity
for fractured dolomite (7.8 X 10~s ft/sec) than for
sandy outwash (2.1 X 10"3 ft/sec). Standard devia-
tion values show that the fractured dolomite has
statistically more variation in hydraulic conductiv-
ity than docs the sandy outwash, and that the
range of variation in both materials is small enough
to make the results useful. Freeze (1975) reports
that computer models can give meaningful esti-
mates of hydraulic head when hydraulic conductiv-

ity "o of K" values are less than 0.5, but that
meaningful head predictions are impossible when a
is greater than 2.0. Thus the a values of 0.61 and
0.25 reported here give confidence of reasonable
results when using the data in computer simula-
tions to predict hydraulic heads.

In spite of the well-known difficulties in
estimating hydraulic conductivities from specific
capacity data, the range of values predicted by our
method is relatively small. Figure 3 presents
average hydraulic conductivities for various
materials, and shows the range of values obtained
from our computer estimates. As noted by Winter
(1981) the standard error in estimating values of
hydraulic conductivity is often close to 100
percent or even higher. Thus the ranges of values
shown on Figure 3 are quite narrow when com-
pared to the possible ranges of hydraulic conduc-
tivity values, and the variation in K is less than one
order of magnitude for the sandy outwash and just
over an order of magnitude for the fractured
dolomite.

Comparing estimates from individual wells,
the results of the computer program are surprising-
ly close to data determined by pumping tests (Table
2). In the fractured dolomite of area A (wells 1-5),
specific capacity data give hydraulic conductivity
estimates which are slightly smaller than but of the

Material Rang*

r1

Lié»

Fig. 3. Ranges of hydraulic conductivity (K) for various
geologic materials, showing ranges determined from specific
capacity estimates in this study (after Freeze and Cherry,
1979).

M's«
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-10

-10"

.10

-tá'
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Table 2. Comparison of Values of Hydraulic Conductivity
(K) Obtained from Pumping Tests with Values Estimated

from Specific Capacities for Wells in
Two Different Areas in Wisconsin

Well

AREA A:
1
2
3
4
5

Geometric
a

AREA B:
6
7
8
9

10
11
12
13
14
15
16

Geometric
a

Pumping test
K (ft/sec)

Fractured dolomite
2.8 X 10"*
1.7 X 10^
3.0 X 10"*
8.8 X 10"4

3.9 X 10"*

mean 3.5 X 10"4

0.26

Sandy outwash
2.9 X 10"3

3.4 X 10"3

2.7 X 10"3

2.2 X 10'3

2.8 X 10~3

2.4 X 10~3

2.1 X 10*3

3.3 X 10*3

1.5 X 10'3

2.4 X 10*3

1.5 X 10"3

mean 2.4 X 10"3

0.12

Specific capacity
estimate
K (ft/sec)

7.3 X IO"*
1.0 X 10"s

5.0 X 10~*
2.8 X 10"*
1.0 X 10"4

1.6 X IO"
0.75

1.5 X 10~3

1.5 X 10"3

2.8 X 10"3

1.8 X 10*3

1.8 X 10*3

2.0 X 10"3

1.8 X 10*3

2.7 X 10'3

1.9 X 10*3

2.2 X 10"3

2.8 X 10"3

2.0 X 10*3

0.10

same order of magnitude as values derived from
full-scale pumping tests using identical wells. In the
sandy outwash of area B (wells 6-16), slight varia-
tions in K were also detected by specific capacity
tests. Wells 9-12 in area B are radial collector wells.
These wells are larger in diameter and are more
efficient than the high capacity wells used for
other specific capacity tests (Karnauskas, 1977).
This efficiency difference is evident in consistently
lower K values as determined by specific capacity
tests, and highlights the importance of knowledge
of well construction when interpreting such data.
One of the poorer comparisons is for well 16. Due
to the nature of outwash in this area the observa-
tion wells for the pumping test may not have been
in full hydraulic connection with the pumping
well. Much of the variation in values for the
Central Sand Plain (area B) is explained by poor
depth-to-bedrock control. Due to the high trans-
missivity of the overlying sands and gravels, few
area wells are drilled to bedrock. In general, com-
parisons are poorer for the fractured dolomite of
area A than for the sandy outwash of area B. The
fractured dolomite is less homogeneous than the

outwash, and the fracture system there may not
truly approximate a porous media.

Contour Mapping
Contour maps of hydraulic conductivity for

the two study areas are a valuable product of the
computer program (Figures 4 and 5). The maps are
produced by estimating T from specific capacity,
then calculating K from aquifer thickness. Because
all data are computerized, it is relatively simple to
plot and contour the data using standard software
packages. Interpolation, graphing, and smoothing
packages were used to produce the maps in
Figures 4 and 5 for the two study areas.

Distinct trends and differences are discernible
in both areas. Figure 4 shows the hydraulic con-
ductivity distribution in the fractured dolomite of
the Peninsula area (area A). Because of the log-
arithmic distribution of K in the fractured dolo-
mite the data are contoured by base 10 logs. As
would be expected for a fractured dolomite
aquifer, the areal distribution of K appears almost
random with the exception of an area of higher K
near the center of the area. The likelihood of this
area having a higher K was confirmed by additional
modeling efforts using a parameter estimation
model (Bradbury, 1982).

In the sandy outwash of area B (Figure 5) the
areal variation in K is less, and arithmetic contours
are plotted. Variations in K shown on the map may
be related to known depositional outwash facies in
the area (Rothschild, 1982). The statistical inter-

-4.0

-4.0 -4.0

Fig. 4. Contour plot of hydraulic cogductivity in study area
A bawd on specific capacity and aquifer thickness data.
Base 10 logs are plotted; contour interval is 0.5 log unit.
Locations and log hydraulic conductivity values are shown
for three wells where pumping tests were conducted.
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MAP OF T«ANS«ISSIVITY.

»A$ED OH SPECIFIC CAPACITY DATA.

OF PART OF THE CENTRAI. SANO PLAIN. Wl

Fig. 5. Map of hydraulic conductivity based on f pacific
capacity data for area B.

pretarions of Figures 4 and 5 might be aided by
advanced statistical techniques such as kriging
which are beyond the scope of the present study.

Conclusions
Although the use of specific capacity data for

estimating aquifer characteristics is not new, com-
puter techniques can produce reliable estimates at
more points and with less effort than in the past.
Computers allow the rapid evaluation and manipu-
lation of specific capacity data from large numbers
of data points. The ability to use such data to
describe the transmissivity and hydraulic conduc-
tivity of aquifers statistically or graphically is an
important tool. The method described here has
been successfully tested for sandy outwash and
fractured dolomite aquifers at two field areas in
Wisconsin.
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Appendix A
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TEST IFEETi '
PRINT 'LN - LENGTH OF TEST IH0UR3I"
PRINT "GPH . PUMPING RATE DURING TEST [GALL0NS/M1NUTEI'
PRINT 'AQTHIC • THICKNESS OF 40UIFER (FEET) •
C-R,NT .3 . ESTInSTED OR MEASURED STORAGE COEFFICIENT ,UNITLESS>"
PRINT -u - WELL LOSS COEFFICIENT iirtLTON, 6U1.L «31... JOE I IF uNtNO
WN-
PRINT SC - SPECIFIC CAPACITY CORRECTED FOR « L L LOSS <G4LL0NS/N!NUT
E'FOOTl"
PRINT "T * TRAN9MI33IVITV (FEET • FEE T/SECOND Ï "
PRINT -K . HYDRAULIC CONDUCTIVITY (FEET/SECOND)"
PRINT 'ERR • CONVERGENCE CRITERIA FOR T ESTIMATE [FEET • Fee TV SECOND

PRINT "NO* rtANV WELLS WILL et ANALYZED^1'
INPUT tx
D i n NUHÍ * * l . D I A H U i i , L G T H < * ! < > , LVL it Hi . P U M P t i » > . L N U X ' , GRHUKf , AOTHIC
( XX t
S i n S C i x x t . S i X X I . C . i D . r f Y X K k í X X ) , » - OUNT ( X X t . F L U t i X D . I T E R K X )

ERR . . . . I E - 5
.OUNT • .1
TGUESS • ••• 1

REn
LOOSREH R£AQ [N Rñy DATA In UNÍT5 j l vÇN ON Oft

ften . • • i a t f t * i « t i i i i « * * * a i t a i f t f t i f t È t i t i i i i t t t i i i i « n i * t i i i *
PRINT 'DO ruu wANT TO ÉNTÉ* DATA InTEftACTIvCU/ OR FROn A F t L £ "
PRINT 'ENTER M IF INTCRACTIVKLY Oft 1 IF PRO». F |LË -

tNFUT A
IF a • t THEN GOTO 3 7 *

*•:**.' pün ; • i TO m
410 FfïlNT ^ELt. FAHjneeft-'i IF*UT NUH ( 21
4T'.» Cfi INT 'hELL D I A f * T E R t l N > * " i INPUT O l A H U )
4T0 SRtNT S T A T I C uATEft LEVEL ¡ F T > . - , INPUT L ^ L i Z l
J4O PRINT 'D I^TN TO rfüTËP CURING TEST <F-T»- ' i INPUT F U H P I f l
4 5 0 FRTNT -TMC LENGTH OF THE TEST < M « t - - : INPUT L N < Î !
4i i> F A t N f ' P U f i F l M i RATE (G*PtJM ' t INPUT (jPn ( ; ï
*7<> PRINT T h l C ^ N S I S QF 4QU1FER <FT>» ' i INPUT A O T M I C i : -
43':' PRINT -OfCN iNTEftViiL (FT>« ' ; [«TuT LGTM( ¡1
4^<> PRINT 'STOftAGÊ C O t K ^ I C I C N T - " : ; i * U T S U l
5i.»> PRINT 'UIÈLL UÛS1 COCFFlCIENT» i iNÍ-yT C U )
in.» hiEKT :
zz>:< GOTO ; * o
s."i:i íQfi : • i TO i x

00 ANALYSIS FQR E4L"H WELL

;»o POR r . i ro xx
ó'.».' FLUBiY, * 0: I TER i V)

S 4 0

REn CHANGE I'd CONSISTENT UNITS ANP CALCULATE DSAUOOWH
i £M l l l l l l !„„ IKIIIIIDlllllIlllllMllll

ft * OIAM.VÍ J4.Ü
T I N E * LN(Y ) t
0 ' ãKn,Y' ' 4
DD • - ILVL.V

[F ;D0 * I

* OUNT - ) OUNT

=€n CORRECT DRAWOOkiM FOH -*L,u ^ Û i ( U4tNii THE EUuATIOh 5W-.COO
*£n 3CE WALT Oh, tULi». 4» , PAGC 1 ^
REH £ IS ESTlrtATÇD FftUH 3TEF DHAwDOIüN TESTS.

S C

KEM
REn

CiY
• DO

I 0 > J
SU

CALCULATE AQUIFER TRAMOMISSIvITv USING THC JACO* EQUATION
USING A CORMCTION FOR PAKTIAL PENCTHATIOtl AS ¡ I v l N »v
STERNauKS M 4771

8 ;0 REn FIRST CALCULATE SP PASAMtTE»! PO» UIE. IN THE EQUATION
84i;> REn I4f<itiiiiiti««ffttfait*t«iiiiiiiii*l«<*i*fiffffi«it«tf>ti
920 ft > LGTHfVI / AQTHIC(V)
a*0 IF tf 1.0) GOTO 10*0
07<:> HRy * AQTHICIY) / R
88O I I I « ;.?490 - (7 . : *3 I I I • M l . 447 ' i I I Si - 14.47! I I i t •
WO » > i l l . O . I i / I I I i LOG i«M«> - G»l
•iKi REU 1 UIIIIIIIKIIIIIIIIMKIIIIIIIIMIIIII IIIIIMI
Ilù REn N Q K SOLVE FOR T uIlNS ITIKArtON*

9T0 TOUÏ33 . o. i
**<•> po* u . i TO ;s
930 Ft • a / t*..) t T.141* I DD)
*v> PZ * i ^ . : s t r a u i s i * Ttnc> t i» • * t s t v i t
*7i> TCALC • F l * I LOG (F ; ) + ( Z . 0 I SPi I
930 TEST • AB3 <TCA|.C - TGUCSII
•TO TGUCSt • A H irCALCI
10OO IF ITE3T • ERR) THÏN GOTO 1O»O
1010 »OUNTtV) > H
loro N Í I T w
1UI0 IF IVOUHT(Y) . 13) «NO «TEST ERR) THIN GOTO I03O

» 5 0 T 0 lOftO
Ï [TEBiVf ^ ; i GOTO I 100

*.v*y r ( / } - rcAj_c
0 7 0 K(Y» p T(Y> / AQTHICIV-
oau QOTQ i too
O9O FLUBiVt - i
,OO NEXT Y

REn
PR» 1

PRINT OUTPUT

ISO
1*1.'

I S<,'
19O

210

PRINT 'AQUIFER PROPERTIES dS PETERHINED 6Y ANALYSIS JF •'
^RINT " SPECIFIC CAPACITY TESTS"
PRINT 'illlllMltlllllltnttlllllllllltlllimillllllllllilinii"
PRINT "•
FOR v - 1 TO XX
IF FLU6IV) • I SOTO 17T>>
IF ITER1V) > i ÛOTO 1 -9f,
PRINT '•••

; « 0 P R I N T - W E L L NUMBER " : N u n ( V )
==«-' P R I N T ' S P E C I F I C C A P A C I T Y ( G P P i / F T i p " : S C ( V )

- 7 0 P R I N T •' U S I N G J STORAGE C O E F F I C I E N T M " ¡ s t v !
I S O P R I N T ' NUMBER OF I T E R A T I O N S • " ¡ f O U N T t v i

P R I N T " H Y O R A U L I C C O N D U C T I V I T Y ( F T / S E C ) * ' : f ( V )
NEXT V
PRINT "THE NUMBER OF WELLS IN THIS RECORD IS i IX
50 TO 14;.)
P R I N T '•••

PRINT -WSLL NunBER 'INUN(V)
PRINT "INPUT ERROR. íIÍHEfti'

"io PRINT " I. WATER LEVEL WAS HIGHER OURING TEST THAN 6EF0RE. OR) '

T70 PRINT " ; 4 THE SCREEN LENGTH 13 LONÜÈP THAN THE AQUIFER THICl NE

:8o GOTO i;ix>
;VO FRINT '"
400 PRINT "WÇLL NUMKR "TNUMÍVI
410 PRINT 'SOLUTION DID NOT CONVERGE WITHIN CS ITERATIONS"
• Ï 0 GOTO i ;.;•.;•
4 Til sNO

Appendix B

As an example of computer program inpuc and output, che
following data from area A were input into the interactive
computer program (Appendix A).

Number of wells to be analyzed = 2
Interactive data entry
Well number 1
Well diameter = 6 in.
Static water level = 42 ft
Depth to water during test = 57 ft
Length of test = 8 hr
Pumping rate = 10 gpm
Aquifer thickness = 205 ft
Open interval = 47 ft
Storage coefficient = 0.0002
Well loss coefficient = 32.7
Well number 2
Well diameter = 6 in.
Static water level = 132 ft
Depth to water during tesr = 141 ft
Length of test = 8 hr
Pumping rate =» 10 gpm
Aquifer thickness * 115 ft
Open interval = 68 ft
Storage coefficient = 0.0002
Well loss coefficient = 32.7

Figure Al is the computer output generated by these data.

IlilllltltltltlllllllltltllllllllllllllllUIIIItll
aouifEfl PROPERTIES AS DgTCRnlNeO &v ANALYSIS OF

SPECIFtC CAPACITY TESTS
' llllttllllllllllllllllllltilllllllllllliiiiitllltll

WELL NUMBER 1
SPECIFIC CAPACITY (Gpn/FTI • .46*68871'
TRANSMISSIVITY (FTtPT/SEO • I.9T317103E-03

USING A STORAGE COEFFICIENT -
NUMBER OF ITERATIONS • Z

HYDRAULIC CONDUCTIVITY <PT/SEC> • Z. 894)3

WELL NUfiBCR 2
SPECIFIC CAPACITY (GPM/FT) • 1.11117=33
TRANSnlSSIVITY (FTtFT/SEC) • ». 3*94

USING A STORAGE COEFFICIENT >
NUfigCft OF ITERATIONS • 3

HYDRAULIC CONDUCTIVITY (FT/SEC) - 3.9?:4
THE NUMBER OF WELLS IN THIS RECORD IS 2

Fig. A-1. Example of computer printout.

» 77E-03

ZE-04
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COMPUTER
NOTES

A GENERAL PURPOSE MICROCOMPUTER
AQUIFER TEST EVALUATION TECHNIQUE

by C. J. Hemkera

Abstract. Although determinación of aquifer characteristics
from pumping test data is generally carried out using type
curves or other graphical techniques, a number of computer
methods have been developed recently for this purpose.
Based on the principle of least squares, these methods of
nonlinear regression analysis can be applied to any flow
system for which analytical expressions of the drawdown
distribution are known. In view of the growing general
interest in the application of microcomputers in ground-
water hydrology, a BASIC routine has been developed
for estimating any number of aquifer parameters. The least
squares solution is calculated by Marquardt's algorithm,
using the singular-value decomposition of the Jacobian
matrix. The robust computing method obtained can be
applied to all kinds of pumping tests. Aquifer character-
istics as well as their standard deviations are computed with
optimal speed and accuracy. The technique is demonstrated
by a simple application to steady flow in a leaky aquifer
and an example is provided. Other applications arc easily
implemented and programs for unsteady-state aquifer
tests, recovery tests and multiple aquifer tests are available.

Introduction
Conventional methods of aquifer test analysis

cannot cope with complicating circumstances, as
often encountered in field situations. More sophis-
ticated techniques have to be used in these cases to
obtain reliable results. Since computer methods for
aquifer evaluation, based on the principle of least
squares, can be applied to any flow system for
which analytical expressions for the drawdown
distribution are known (Saleem, 1970), this type
of solution has a large potential.

Superposition of any number of pumping
(injection) wells and pumping schemes, less

institute of Earth Sciences, Free University, P.O.
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common drawdown formulae, e.g. solutions for
systems with storage in semipervious layers
(Hantush, 1964) and multiple aquifer solutions
(Hemker, 1984), all come within reach of practical
aquifer test analysis. Not only the wide range of
possible applications, but also the speed and
accuracy and the possibility to calculate the
reliability of the resulting values are advantages
that contribute to the increasing use of computer
techniques for the identification of aquifer
characteristics.

Positive experiences with parameter estima-
tion from aquifer tests using a main-frame com-
puter, together with the increasing availability of a
spectrum of microcomputer types, raised the
question whether some well-tested algorithms
could be implemented in BASIC to obtain similar
results with relatively inexpensive equipment. In
the Autumn of 1983 the Acorn-BBC microcom-
puter was chosen for this purpose.

In this paper the resulting computing tech-
nique is described and the related complete BASIC
code is presented. The method is demonstrated by
a simple application to steady flow in a leaky
aquifer.

Estimation of Aquifer Parameters
The procedure for computer determination of

numerical values of aquifer characteristics from
pumping test data is in many ways comparable
with the well-known type curve technique. Five
steps may be distinguished:

1. An appropriate drawdown formula (model)
must be selected which considers the type of
aquifer, the kind of flow and other simplifying
assumptions.

2. Starting from some arbitrary position, an
iterative procedure is used to improve the fit
between observed drawdown and theoretical (type
curve) values by adjusting, directly or indirectly,
the values for the unknown aquifer parameters.

3. When adjustments have become sufficiently
small to not influence the corresponding parame-
ters in a sensible way, the iterative process is
stopped. It is possible, however, that many
combinations of parameter values can be found
which result in an equally good fit.

4. Depending on the goodness of fit an
impression of the accuracy of calculated parameter
values is obtained.

5. A decision needs to be made with respect
to how far the calculated values may be regarded as
realistic representations of actual aquifer character-
istics; this depends on a comparison between
results obtained by the fitting procedure and the
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physical reality of model assumptions.
Only steps 2,3, and 4 can be carried out by

computer, leaving both model selection and
interpretation of results to the experience of the
hydrologist.

An important difference between the two
techniques is that in contrast with the judgement
by eye in traditional curve fitting, the computer
method needs a well-defined criterion for goodness
of fit. In similar problems on nonlinear regression
analysis, the sum of squares of differences between
observed and calculated values is generally used. If
a hydrogeologic situation can be represented by an
appropriate drawdown formula and the errors in
measured drawdown values are not influenced by
systematic disturbances, the parameter values
obtained by minimizing this sum of squares may
be regarded as the best estimates.

Several computer methods have been devel-
oped to estimate aquifer characteristics from
pumping test data, based on essentially the same
least squares technique (Saleem, 1970; Labadie and
Helweg, 1975a; Leijnse, 1980, 1982; McElwee,
1980; Chander et ai, 1981). The problem of how
the best estimates are determined is very important
in relation to the efficiency and robustness of the
computing method, but the principle of minimiz-
ing least squares should always yield the same
results when the same data are processed.

Another difference between graphical curve
fitting and the least squares technique is the trans-
formation to logarithmic drawdowns, which makes
the type curve method less sensitive to the deeper
measurements (Labadie and Helweg, 1975b).

Minimization Method
The theory of methods available for finding a

least squares fit of experimental data to a nonlinear
function of several variables has been discussed
extensively in the literature (e.g. Luenberger, 1973;
Bard, 1974; Gill et ai, 1981). The algorithm used
for the Microcomputer Aquifer Test Evaluation
(MATE) programs is a derivative of the ALGOL 60
procedure MARQUARDT from the numerical
program library NUMAL (Hemker, 1981). As the
name of this procedure indicates, it is based on the
method proposed by Marquardt (1963).

By starting with some initial estimate for all
the unknown parameter values XJ (j = 1 n),
the sum of m (m > n) squares F(x) is minimized in
an iterative way. During the k-th iteration step, a
vector dk is defined as the solution of the
equations

where

= step vector by which the new vector of
parameters is calculated: X|<+1 = xjç + d̂  ¡

= m vector of differences between calculated
and observed drawdowns, termed the
residual vector;

= unit matrix;

= Jacobian matrix, an m X n matrix, whose
(i,j)-th element is the partial derivative of f¡
with respect to xj(i = 1, . . . , m); JT is the
transpose of J;

= non-negative scalar for which an appropri-
ate value must be chosen during iteration;

m = number of observations-,

n = number of parameters.

The starting value for X is fixed at 1% of the
sum of eigenvalues of JTJ and this is halved in each
iteration if

F k - F k + i > - l 0 " * d k J k f k ( 2 )

If this condition is not satisfied, X is multiplied by
a factor of 10, more than once if necessary.

Using this strategy, it is possible that equation
(1) has to be solved for more than one value of X.
To do this in an easy way, the singular-value
decomposition of the Jacobian is calculated:

f _ f f « T fi (3;

where

U = m-th order orthonormal matrix;

2

V

the m x n diagonal matrix of singular
values-,

n-th order orthonormal matrix.

•M) - J u f]k Lk (1)

Substituting equation (3) into (1) and rearranging
leads to

dk =-Vk(2^+XkI)M Sk u j fk (4)

which shows that once the singular-value decom-
position has been performed, d is easily calculated
for different values of X. The decomposition can be
further used to derive information about the
statistics of the problem.

The iterative procedure is terminated when
the absolute and relative improvement in sum of
squares is less than a given tolerance.

A detailed description of the ALGOL 60 pro-
cedure MARQUARDT is given by Bus et al.
(1975).
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Application
In this paper only a single application of the

described parameter estimation method for aquifer
test evaluation is presented. The relatively simple
De Glee-Hantush formula has been selected. This
drawdown equation for steady-state well flow in a
semiconfined aquifer can be expressed as

s =
2TTKD

K0(r/L) (5)

where the steady-state drawdown s is a function of
two independent variables: Q (discharge) and
r (distance from the pumped well), and two
aquifer characteristics: KD (transmissivity) and
L (leakage factor). According to the definition of

the leakage factor, L = V K D C , the hydraulic resis-
tance of the semipervious layer (c) and the trans-
missivity of the aquifer (KD) can be chosen as
unknown parameters.

Implementation
The microcomputer program presented

(MATE-DEGLEE) has been written in extended
BASIC and can be run on an Acorn-BBC computer
with 32 K memory. As the complete listing (see
Appendix) contains only few REMark statements,
to keep its length within bounds, additional
information about the program structure and the
algorithms used will be helpful to explain its
operation and allow any required adaptations. No
explanation will be given for specific statements
and other commands available with the BBC-
BASIC language. The user is referred to the BBC
User Guide (Coll, 1982) or other books on this
subject.

The program has been split into a main body
and several separately defined functions and
procedures. The purpose of the main part (lines
100-280) is the interactive input of data and the
dimensioning of arrays, while all computation and
output of results are left to the procedure
PROCCAL. A subroutine is added (300-330) to
enable the user to go back to the start by pressing
the Escape-key, retaining the present values of all
variables. By means of a flexible interactive data
input (500-640) and three successive pages of
information concerning the values requested, all
necessary aquifer test data can be supplied to the
computer with ample possibilities to correct typing
errors. The contents of these pages are shown in
Figures 1 to 3. To find values for the required
starting estimate (page 3), default values are calcu-
lated from the first and last given values of distance

PUMPING TEST ANALYSIS DATA INPUT 1

For a leaky aquifer and steady-state
drawdown data, using De Glee's formula

Two parameters (aquifer characteristics)
will be calculated
- KD : aquifer transmissivity (m2/day)
- c : hydraulic resistance of semi-

pervious layer (day)

Pumping rate (m3/day) = 761

Number of piezometers = 8

Type C (Change data) or SPACE (continue)

Fig. 1, Screen display. Data pumping test "Dalem," page 1.

PUMPING TEST ANALYSIS DATA INPUT 2

Type for each piezometer
- distance to pumping well (m)
- steady state drawdown (cm)

1
2
3
4
5
6
7
3

distance '
distance =
distance =
distance =
distance ••
distance '
distance =
distance =

. 10
• 1 0
= 30
• 30
= 60
• 90
= 120
= 400

drawdown =
drawdown »
drawdown =
drawdown *
drawdown *
drawdown =
drawdown =
drawdown *

31
25.2
23.5
21 .3
1 7
14.7
13.2
5.9

Type C (Change data) or SPACE (continue)

Fig. 2. Screen display. Data pumping test "Dalem," page 2.

PUMPING TEST ANALYSIS DATA INPUT 3

Give an estimate for both unknown
parameters

KD-valu« « 1758

c-value » 367

Type C (Change data) or SPACE (continue)

Fig. 3. Screen display. Calculated initial estimate for both
parameters.
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and drawdown using approximations based on the
well-known equations given by Thiem and
Cooper-Jacob.

Procedure PROCCAL (2000-2170) prints the
input data, calculates the least squares solution
(PROCMARQ) and the standard deviation of the
parameters (PROCS) and finally prints the results
by calling PROCRES and PROCOUT. Five
elements of array " I " are to control the iterative
curve fitting process. 1(1) is a starting value, used
for the relation between the gradient and the
Gauss-Newton direction and 1(2) is the maximum
number of calls of PROCFUN by PROCMARQ.
The iterative process is stopped if the improvement
in the sum of squares is sufficiently small [i.e. less
than 1(3) X (sum of squares) + 1(4) X 1(4)]. A fifth
control parameter is the machine precision, set at
5 10"9 at the start of PROCMARQ.

The De Glee-Hantush formula is implemented
in PROCFUN (3000-3080). To prevent either
parameter from becoming negative in any iteration,
minimum values are chosen: KD > 1 mVday and
c > 1 day. The Bessel function Ko is evaluated in
function FNK (9000-9160) by means of either a
Taylor series approximation (argument < 4) or a
finite Chebyshev scries expansion.

The procedure PROCJAC (7000-7100) yields
the Jacobian matrix obtained using current
estimates of the unknown parameters. Although all
derivatives can be computed analytically in this
case, a forward finite-difference approximation is
applied using intervals of 10"3 of the parameter
value. In this way the procedure is applicable to all
kinds of aquifer tests, provided that the draw-
downs can be computed with sufficient accuracy.

To calculate the singular-value decomposition
of the Jacobian, the matrix is first reduced to
bidiagonal form by Householder's transformation
in PROCHSH (6000-6430). The corresponding
postmultiplying and prcmultiplying matrices are
subsequently computed in the same procedure.
From these intermediate results the complete
decomposition is calculated by PROCQR (6500-
6880). The algorithms used are derived from the
NUMAL procedure QRISNGVALDEC (Hemker,
1981).

When, according to the given stopping
criterion, iterations are completed by
PROCMARQ, the resulting estimated parameters,
together with their standard deviations as deter-
mined by PROCS (8000-8050), are displayed on
the screen by procedure PROCRES (2200-2300).
The same procedure also presents a table with all
calculated, observed and residual drawdowns. A
separate procedure, called PROCOUT (2400-

2500), is used to give additional information on
the iterative process: viz., the sum of squares and
its improvement from the last iteration, the
number of iterations performed and the running
time. The condition number, also shown at this
time, is defined as the ratio of the largest to the
smallest eigenvalue of the matrix JTJ, This number
gives an impression of how well-defined the least
squares solution is. Very large values (> 107)
indicate useless results, such as may be obtained
when the data provided do not contain sufficient
information to determine the parameters required.

The resulting observed and calculated draw-
downs can easily be presented graphically on the
monitor screen, but since several plotting
techniques can be selected, this is left to the user's
preference and no such procedure is included in
the program listing.

Example
Data from the pumping test "Dalem,"

presented by Kruseman and de Ridder (1970) to
illustrate the method of type curves, are used here
as an example of the MATE-program. Figures 1
to 3 show the data input pages as they appear on
the screen and all computer results arc given in
Figure 4. A comparison of the computed param-
eters with those obtained by the graphical method
(KD = 2114 mVday and c = 572 days), shows a
moderate difference, within the calculated
standard deviations. The reason for the rather high
calculated standard deviations can be found in the
heterogeneity of the aquifer, demonstrated by the
difference in drawdown between both piezometers
at 10-meter distance. Apparently only three itera-
tions are required, while the running time is less
than half a minute. Starting with much worse
initial estimates the calculation is almost as quick,
while the results are the same.

Conclusions
Marquardt's algorithm has been successfully

implemented on a microcomputer. The resulting
least squares method can be applied to find aquifer
characteristics and their individual standard
deviations from pumping test data. The micro-
computer appears to be well suited for this
purpose: accurate results may be obtained within a
few minutes depending on the drawdown equation
used and the number of data. The BASIC routine
presented in this paper is applicable to a large
number of aquifer test problems, all of which may
be solved in the same way as long as the
appropriate drawdown formula can be evaluated
with sufficient accuracy.
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Distance
(m)

10.0
10.0
30.0
30.0
60.0
90.0

120.0
400.0

Drawdown
(cm)

31 .0
25.2
23.5
21 .3
17.0
14.7
13.2
5.9

Discharge rate 761.0 m3/day

Results of successive iterations

KD-value
(m2/d)

1758.0
1910.7
1941 .8
1945.8

c-value
(day)

367.0
363.2
380.9
385.6

THE CALCULATED LEAST SQUARES SOLUTION

Parameter va lue + Standard d e v i a t i o n

KD-value
c-value

Calculated

28.49
28.49
21 .66
21 .66
17.37
1 4.87
13.12
6.17

1945 +
385 +

Observed

31 .00
25.20
23.50
21 .30
17.00
1 4.70
1 3.20
5.90

197 ( 10% )
222 ( 57% )

Cal-Obs

-2.51
3.29

-1 .84
0.36
0.37
0.17
-0.08
0.27

The sum of squares i s 20.9
Improvement l a s t i t e r a t i o n 4.1E-8
Number of i t e r a t i o n s 3
Condi t ion number 27.3
Running time 0.279 minutes

Fig. 4. Result* pumping test "Dalem," as obtained by the
computer program MATE-DEGLEE.

Acknowledgments
Appreciation is expressed to Dr. P. W.

Hemker, who provided valuable support on che
application of NUMAL procedures and to
Professor N. A. de Ridder and Professor I. Simmers
for reading and amending the manuscript.

Note
Considerable effort has been expended in an

attempt to provide an error-free program, but the
author, being a ground-water hydrologist rather
than a programmer, does not accept responsibility
for the consequences of any errors that may have
been overlooked.

A floppy disk for the BBC-computer (40/80
tracks), containing programs for the analysis of
steady and unsteady-state aquifer tests, recovery
tests, and multiple aquifer tests is available from
the author at duplication and mailing costs.
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Appendix. Program Listing MATE-DEGLEE

10
20
30
40
50

100
no
120
130
140
150
160
170
180
190
200
210
220
230
250
260
290
300
310
320
330
350
500
510
520
530
540
550
560
570
590
600
610
620
630
640
660
700
720
900
910
920
930

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
130O
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1600
1610

REM Microcomputer Aquifer Tes t Evaluat ion
REM for s t e a d y - s t a t e s e m i - c o n f i n é flow
REM by O i r i s t i a a n J.Hemker 1983
REM l a s t update 6-5-1984

• • MATE • •
* DBGLEE *

fCDE7;D%=0:N%*2:ON ERROR GOTO 250
M%x15:MX%.20:Q»800:REM Defaul t va lúas
fl%»440A:K%=0:REPEAT PROCH(1)¡PRCCPAGEI:K%.1¡UNTIL FNS©
IF M%<N% THEN PRINT'Insuff ic ient data Try again" :END
IF D%>0 THEN GOTO 160 ELSE D%»1
DIM P<2),PÍ(2),PD$<2),R(MX%),5(MX%>
H%=(M%-1)DIV10:FOR L%»0 TO H%

K%=0:REPEAT PROCH(L%+2):PRCCPAGE2(L%):K%»1¡UNTIL FNEND
NEXT :K%=«0 ¡REPEAT PRCCH(H%+3) :PROCPAGE3:K%»1 :UNTIL FNEND

IF D%>3 THEN GOTO 220 n-<&- D%«4
DIM A(MX%,N%),B(N%),C(N%),D(N%>,E(7),F(MX%),G(MX%)
DIM I(4),O(7),Q(N*),V(N%,N%),Z(N%)
PROCCALsREM C a l c u l a t i o n and output

IF ERR=17 OR ERR»0 THEN GOTO 300 ELSE REPCRT
END

REM Subroutine to r e - s t a r t by p r e s s i n g ESCAPE
PRINT'" Stop o r Repeat? (S/R)"
A$«GETS:IF AÎ>"S" THEN PRINT:END
IF A$="R" THEN GOTO 120 ET SB GOTO 320

REM Function for i n t e r a c t i v e data input
DEF FNP(M%,LL*,L%,PS,V)¡LOCAL P%,V*,VJ
PRINTTAB(LL%,L%);P$;" = ";V;
IF M»>0 THEN PRINT' ? ";:P%»POS:V%»VPOS
PRINT SPC(40); : IF M%»0 THEN *V
INPUT TAB(P%,V%) V$
IF LEN(V$)>0 THEN V=VAL(VJ) ELSE M%-0
GOTO 520

REM Function end page
DEF FNEND:LOCAL AS
PRINTTAB(0,23)"Type C (Oiange data) or SPACE (cont inue)";
A$=GET$:IF A$=" " THEN =TRUE
IF AÎ»"C" THEN =FALSE ELSE GOTO 630

DEF FNMAX(A,B):IF B>A THEN =B ELSE =A

DEF PRCCH(I%):R£M heading
CLS:PRINT'"PUMPING TEST ANALYSIS
ENDPROC

DATA INPUT ";I%

DEF PROCPAGE1 ¡REM Read data page 1
PRINT'""For a leaky aquifer arid steady-state"
PRINT'draudown data, using De Glee's formula"
PRINT'"Tuo parameters (aquifer characteristics)";
PRINT'will be calculated"
PRINT" - KD : aquifer transmissivity (m2/day)"
PRINT' - c : hydraulic resistance of semi-"
PRINT" pervious layer (day)"
Q«FNP(K%,0,15,"Pumping rate (m3/day)",Q)
M*«FNP(K%,o, 18,"Number of piezometers",M%)
IF D%=0 THEM MX%>FNHAX(MX»,M%)
IF M%<=MX* THEN ENDPROC
PRINTTAB(0,17)"lf number>";MX*;" s top and s t a r t again"
GOTO 1090

DEF PRCCPAGE2(L%);REM Reed data page 2+
IF K%+L%»0»>1 THEN GOTO 1330
FOR I%»1 TO M%:R(I%|-10*I»:S(I»)-1:NE!ir:D%-2
PRINT Type foe each piezometer"
PRINT"- d i s tance t o pumping w e l l (m)"
PRINT'- steady s t a t e drawdown (cm)"
J%»0:REPEAT J%-J%*1:I%=L%*10+J%

PRIMTAB<0,9+J%);I%
R(I%).FNP(K%, 4,9*J%,"distance" ,R( I D )
S(I%)«FNP(K%,21,9-KJ%, "drawdown",S(I%))
UNTIL J%»1Q CR I%«M%

ENDPROC
DEF PROCPiee3:LOCAL T,L:REM Read s t a r t i n g guess
IF K*«1 OR D%>2 THEN GOTO 1670 EXSE D%»3

1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
3000
3010
3020
3030
3040
30S0
3060
3070
3060
3090
5000
5010
5015
5020
5025
5030
5040
50S0
5060
5070
5080
5090
5100

PS(1)="KD-value":PD$(1)="(m2/d)"
Pî(2)=" c-value":PD$(2)="(day>"
T=ULN(R(M%)/R(1))»50*Q/(1+PI*(S(1)-S(M%)))
L=R(1 )»EXP(PI*T*SM ) / (50*Q)) / l .123
P(1)=INT(T):P(2)=1•INTfL'L/T)
PRINT''''"Give an est imate for both unknown"
PRINT" parameters"
P(1)=FNP(K%,2,11,P$(1),P(D)
P(2)=FNP(K%,2,13,Pi(2),P(2))
ENDPROC

DEF ETOCCALîREM wr i te input , c a l c u l a t e and wr i t e output
LOCAL I%,Ai:CLS:@%=.420lOB
PRINT'" Distance Drawdown"
PRINT' (m) (an)"'
FOR I%-1 TO M*:PRINT R(I»),S(I%)

IF I%MOD10=0 THEN A$«INKEV$(500)¡PRINT
NECTcPR-TRUE.-TIMEsO

PRINT"1 Discharge rate ";Q;" m3/day""
PRINT" Resu l t s of succes s ive i t e r a t i o n s ' "
PRINTTAB(3)PÍ(1)TAB(14)PS(2)'TAB(5)PDI(1 )SPC(6)PD$(2)'
1(1 )*0.01:REM value used for the ca l cu la t ion of labda
1(2)«50: REM max number of i t e r a t i o n s
I(3)»1E-4:R£M r e l a t i v e stopping c r i t e r i o n
I(4)=1E-4:REM abso lute stopping c r i t e r i o n
PRCCMARQîPROCS
TM=TIME:SOUND 1 , - 1 4 , 2 0 0 , 1 0
IF 0(1 ) - 0 THEN PROGRES:PROCDUr ELSE PROCOUT:PROGRES
ENDPROC

DEF PROCRESîREM w r i t e s o l u t i o n
PRINT''"THE CALCULATED LEAST SQUARES SOLUTION"
PRINT'"Parameter va lue " Standard d e v i a t i o n ' "
POR I%«1 TO N%:@%.48:PRINTP$(I%),INT(P(I%));

£%»S3:PRINT" ~ ",INT(Z(I%))TAB<27)"(";
PRINT INT(2(I%)*100/ABS(P(I%)))"* )":NEW

*FX 15,1
A$=GBT$: PRINT " " C a l c u l a t e d Observed Cal-Obs'"
@%»42020A:FOR I%»1 TO M%

PRINT(S(I%)-K3(I%) ) ,S(I%),G(I%) :NEXT:A$=GETÎ
ENDPROC

DEF PROCOUT:REM w r i t e a d d i t i o n a l information
3%=4308:IF 0 ( 1 ) ' 0 THEN GOTO 2440
PRINT" "Nonlinear regression c a l c u l a t i o n "
PRINT'has been BROKEN OFF"
PRINr'"The sum of squares i s ";O(2)*O(2)
PRlNT"Improv«ment l a s t i t e r a t i o n ";O(6)*O(6)
PRINT'Number of i t e r a t i o n s ";0(5>
PRINT'Condition number ";O(7)
PRINT"Running time ";TM/6000;" minutes"
ASxGETS
ENDPROC

DEF PRCCFUN:REM DeGlee 's formula
LOCAL I%,B
IF P(1)<1 THEN P(1)=i1:REM t r a n s m i s s i v i t y
IF P(2)<1 THEN P(2)-1:REM hydraul ic r e s i s t a n c e
IF PR THEN FOR I%«1 TO N%:PRINT P( I » ) ; ¡NEXT:PRINT
FOR I*»1 TO M%

B-R(I%)/SQB(P<2)*P(D)
G(I%)-Q*FNK(B)»50/(PI»P(1))-S(I%):NEXT

EDDPROC

DEF PROCMABQ:REM Marquardt's a lgorithm
iflCAL E%,P%,G%,I%,J%,K%,P%,Q%rS%
DXAL A,B,E,F,L,M,R,S,V,W,X,Ï,Z
V»10:W«0.5:M«0.01
I(0)«5E-9:REM machine p r e c i s i o n
IF I (1)<1E-7 THEN Y-1E-8 ELSE Y - K D / 1 0

%-1:S%-0:P%»0
Q%—1NT(LCX3(Y*I(O)))
FOR I%-1 TO N%:Q(I%)-P(I%):NEXT
PROCFW
GOSUB 5SOO:F-Z:0(3)«SOR(F)
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5110 S%=S%+1
5120 PROCJACiREM c a l c u l a t e ] a c o b i a n
5125 PROCHSH:EWXCP:R£M S i n g u l a r - v a l u e d e c o m p o s i t i o n
5130 IF S%«1 THEN GOSUB 5510:L»I(1)*Z:GOTO 5140
5135 IF P%=0 THEN L»L*W ELSE P%=0
5140 FOR r%al TO N%:Z=0:FOR K%=1 TO M%
5150 2»A(K%,I%)*G(K%)+Z:NEXT
5160 C(I%)*D(I%)*Z:NEXT
5170 FOR I%=1 TO N* :Z( I%)=C( I%) / (D( I ï )*D( I* ) tL ) :NEXr
5180 FCR I%=1 TO N%:Z=0:FOR K%=1 TO N%
5190 Z=V(I%,K%)*Z(K%)+Z:NEXT
5200 P(I%)*QU%)-Z:NEXT
5210 F%=F**l:IF F%>*G% THEN E%=1¡GOTO 5300
5220 PROCFUN
5230 GOSUB 55OO:S-Z:R-F-Z
5240 GOSUB 5520:IF R>M*Z THEN GOTO 5280
5250 P%=P%+1¡L»V«L
5260 IF P%=1 THEN GOSUB 5510:E=Y*Z;IF L<E THEN L=E
5270 IF P%<Q% THEN GOTO 5170 ELSE E%=4:GOTO 5300
5280 FOR I%=1 TO N%:Q(Iï)=P(I%):NEXT:F=S
5290 IF F>A AND R>B*F+A THEN GOTO 5110
5300 FOR I%=1 TO N%:X=D(I%)+I(0)
5310 FCR K%=1 TO N%:A(K%,I%)»V(K%,I%)/X:NDfr:NEXT •
5320 FOR I%=1 TO N*:FOR J%*1 TO I%:Z=0
5330 FOR K%H1 TO N%:Z«A(I%,K%)*A(J%,K%)+Z:NEXT
5340 V(I%,J%)=Z:V(J%,I%)»Z:NEXT:NEXT
5350 E=D(1):L=E:IF N%=1 THEN GOTO 5380
5360 FOR I1-2 TO N%
5370 IF D(I%)>L THEN L=D(I%) ELSE IF D(I%)<Ë THEN E=D(I%)
5375 NEXT
5380 ZxL/(E+I(0)):O(7)=Z*Z
5390 O(2WSQR(F):Z*R+F:IF Z>0 THEN O(6)-SQR(Z)-OI2)
5400 0(4)=F%:0(5)-S%:0(1)=E%
5420 ENDPROC
5500 Z=0:FOR K%a1 TO M%:X=G<K%>:Z=X*X+Z:NEXT:RETURN
5510 Z=0:FOR K%=1 TO NÏ:X*D(K%>:Z=X*XtZ:NEXT:RETURN
5520 Z=0:FOR K%=1 TO N%:Z=C(K»)*Z(K%)+Z:NEXT:RETURN
5530
6000 DEF PROCHSH
6010 LOCAL I%,J%,H%,T%,C,F,G,H,R,S,V,W
6020 R=0:FOR H.1 TO M%:W=0
6030 FOR J%=1 TO N%:W.ABS(A(I%,J%))*W:NEXT
6040 IF W>R THEN R=W
6050 NEXT:C«£(0)*R:E(l)=R
6060 FOR I%»1 TO N%:H%=I%+1:S=0
6070 IF H%>M% THEN GOTO 6090
6080 FOR T%.H% TO M%:V=A(T%,I%) :S=S+V*V:NEXT •
6090 IF S«C THEN D(I%)»A(I%,I%):GOTO 6170
6100 F=A(!%,!%):S*F*F+S
6110 IF F<0 THEN G=SCR(S) ELSE G=-SQR(S)
6120 D(I%)»G:H»F*G-S:A(I%,I%)=F-G
6130 IF fft>N% THEN GOTO 6170
6140 FCR J%*H% TO N%:S=0
6150 FOR T*»I% TO M%:S=S+A(T%,I%)*A(T%,J%):NEXT:S»S/H
6160 FOR T%.I% TO M%
6165 Am,J%)=A(T%,J%)+Am,I%)*S:NEXr:NEXT
6170 IF I%=N% THEN GOTO 6270
6180 S=0:IF H%«N% THEN GOTO 6200
6190 FCR T^.HÏ+1 TO N%:S=S*AU*,T%)*A(I%,T%> :NEXT
6200 IF S<C THEN B(IÎ)«A(I%,H%):GCTO 6270
6210 F*A(I%,H%):S=F*F+S
6220 IF F<0 THEN G=SQR(S) ELSE G=-SCR(S>
6230 B(I%)^:H=F»G-S:A(I»,H%)»F-G
6240 FOR J%»H% TO M%:S-0
6250 FOR T%«H% TO N%;S»S+A(I%,T%)*A<J*,TÍ):NEXT:S=S/H
6260 FOR T%»H% TO N%:A(J%,T»)»A(J%,T%)+A(I%,T%)*S:NEXT
6265 NEXT
6270 ĴEXT
6280 H%=N*:V(N%,N%)»1
6290 FOR I%=N%-1 TO I STEP -1
6300 H«B(I%)*A(I%,H%):IF H>»0 THEN GOTO 6350
6310 FCR J%=H% TO N%:V(J*,I%)-A(I%,J%)/H:NEXT
6320 FOR J%»H* TO N%:S-0:FOR T%-H% TO N%
6330 SïS+A(I%,T%)*V(T%,J%):NE!a1

6340 FOR T%»H% TO N%:V(T»,J%).V(T%,J%)+V(T%,I%)*S:NEXT
6345 NEXT •
6350 FOR J%«H» TO N%:V(I%,J%)»0:V(J*,I%)=0:NEXT
6360 V(I%,I%)«1:H%»I%:NEXT
6370 FOR I%.N% TO 1 STEP -1
6380 H%«I%+1:G-D(I%):H=G*A(!%,!%)
6390 IF HV.N% THEN FOR J*=H% TO N*:A(I%,J»)»0:NEXT
6400 IF H>=0 THEN GOTO 6460
6410 IF H%>N% THEN GOTO 6450
6420 FCR J%=H% TO N%:S-0:FOR T%=H% TO M% '
6430 S»S+A(T%,I%)*A(T%,J%):NEXT:S-S/H
6440 FCR T%«I% TO M%:A(T%,J%)=A(T%,J*)*A(T%,I%)*S:NEXT

6445 NEXT
6450 FOR J%=I% TO M%:A(J%,I%)=A(J%,I%)/G:NEXT:GOTO 6470
6460 FOR J%»I% TO M%:A(J%,I%)=0:NEXT
6470 A(I%,I%)»A(I4,I%)+1:NEXT
6480 ENDPROC
6500 DEF PROCQR
6510 LOCAL C*,I%,J%,K%fL»,R%,T%,U%,VS,X%
6515 LOCAL B,C,F,G,H,M,S,T,V,W,X,Y,Z
6520 T=E(2)*E(1 ):C%=0:B=0:X%=E(4):M=Ë(6):R%=N*:U%=N%
6530 K%=U%:V»-U%-1
6540 K%=K%-1:IF K*=0 THEN GOTO 6650
6550 IF ABS(B(K%))>T THEN GOTO 6580
6560 IF ABS(B(K%))>B THEN B=ABS(B(K%))
6570 GOTO 6650
6580 IF ABS(D(K%))>T THEN GOTO 6540
6590 C=0:S-1
6600 FOR I%=K% TO V%:F*S*8<I t ) :B( I%)=CB(1%):J*=I ï* i
6610 IF ABSIFXT THEN I%»V*:GOTO 6640
6620 G=D(J%):H=SQR(F*F+G*G):D(J%UH:C=G/H:S=-F/H
6630 FOR T%=1 TO M%:V=A(T%,K%) :WWMT%,J%)
6635 A(T%,K%)=V*C+W*S:A(T%,J*)*W*C-V»S:NEXT
6640 NEXT
6650 IF K%oV% THEN GOTO 6690
6660 IF D(U%X0 THEN D(U%)*-D(U%) ELSE GOTO 6670
6665 FOR I%=1 TO N%:V(I%,U%)»-V(I%,U%):NEXT .
6670 TF D(U%)<M THEN R%=R%-1
6680 U%=V%:GOTO 6660
6690 C%=C%+1:IF C%>X% THEN GOTO 6870
6700 L%=K%*1:Z=D(U%):X=D(L%):Y=D(V%)
6710 IF V%=1 THEN G=0 ELSE G=B(V%-1)
6720 H=B(v%):F=((Y-Z)*(Y+ZMG-H)*(G+H))/(2*H*Y)
6730 G=SQR(F»F*1)
6740 IF F<0 THEN C=F-G ELSE C=F*G
6750 F=((X-Z)*(X+Z)*H*(Y/C-H))/X:C=1:S»1
6760 FOR I%aL%+1 TO U%:J%=I%-1:G=B(J%)
6770 Y»D<I%):H»S»G:G=C*G
6780 Z-SQR(F*F+H*H):C»F/Z:S=H/Z
6790 IF J%<>L% THEN B(J%-1)«Z
6800 F=X*C+G*S:G=G*C-X*S:H=Y«S:Y«Y*C
6810 FOR T%»1 TO N%:V=V(T%,J%):W»V(T*,I%)
6815 VCn,J%)»V*C+W*S:V(T%,I%)=W*C-V»S:NEXT
6820 Z=SQRIF»F+H*H):D(J*)»Z:C=F/Z:S=H/Z
6830 F=C*G+S»Y:X=CY-S*G
6840 FOR T%-1 TO M%:V=A(T%,J%):W.A(T%,I%)
6845 A(T%,J%)=V*C+W*S:A(T%,I*)«W*C-V*S:.MEXT:NEXT
6850 B(V%)«F:D(U%)=X
6860 IF U%>0 THEN GOTO 6530
6870 E(3)«B:E(5)«C*:£(7)=R%
6880 ENDPROC
6890
7000 DEF PROCJAC:REM calculate jacobian
7010 LOCAL I%,J%,D,P:PR=FALSE
7020 FOR I%=1 TO M%:F(I%)*G(I*):NEXT
7030 FOR J%=1 TO Nl:D=P(J%)*1.001:E
7040 P(J%)=D:PROCFUN:P(J%)=P
7050 FOR I%=1 TO M%
7060 A(I%
7070 NEXT
7080 FOR I%»1
7090 PR»TRUE
7100 ENDPROC
7110
8000 DEF PRCCS:REM statistics
3010 LOCAL Z:IF M%=N» THEN ZxO:GOIO 8030
8020 Z-SCB((O<2)*O(2))/(M»-N%I)
8030 FOR 11-1 TO N%:Z(I%)-Z*SQR(V(I%,I%))
8040 NEXT
8050 ENOPROC
3060
9000 DEF FNK(B):REM Bassel function K0
9010 LOCAL K%,U,V,W,X,Y,Z
9020 IF B>4 THEN GOTO 9100
9030 IF B O E - 3 7 THEN B-1E-37
9040 X»LN<2/B)-.S77215665:U-X
9050 V.1;W«1:Y-B»B/4:K%-0

9070 V.1/(K%+l):Z«WnJ:X=X+Z
9080 IF ABS(Z/X)>5E-8 THEN GOTO 9060
9090 -X
9100 Y»10/B-1:Z-Y+Y:U*-4.5E-8
9110 W=Z*U+6.32575E-7:V=U:U-W
9120 W.Z*U-V-1.1106685E-S:V-U:U=W
9130 W=Z*U-V+2.6953261E-4:V»U:U=W
9140 W.Z*U-V-1.1310504E-2:V»U:U=W
9150 X=SCÍ»(PI/(2*B))«EXI>(-B)
9160 *X»(Y*U-V+0.988408174)

TO M%:G(I%)=F(I*):NEXT
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COM P U T E R
N O T E S

SPEEDING IT UP IN BASIC

by John Logan a

Abstract. Execution time of many programs can be
markedly shortened by (a) defining frequently used
constants in assignment statements or placing them in
arrays and by (b) avoiding or minimizing the use of
exponentials.

Microcomputers work so rapidly that it is
often of little concern whether a problem is solved
in two seconds or in one. However, there may be
hundreds of calls to lengthy algorithms in certain
programs, and shortening of execution time can
become important. Examples include the develop-
ment of drawdown distributions around a well
field, sensitivity analyses, regional flow models and
investigations of optimization. In such problems, a
well function—particularly our old friends W(u)
and W(u, r/B)—may be solved by polynomial
approximation, and attention to a few simple
programing procedures can have a material effect
upon execution time.

Consider the following example of a polyno-
mial contrived to represent the type we often use:

x = .0011 u + .0022 u2 + .003 3 u3 + .0044 u4

Let us do this 1000 times with different values of u
and accumulate the total:

10 SX=0
20 FOR U=l TO 1000
30X=.0011*U+.0O22*Ut2+.0033*Ut3+.O044*Ut4
40 SX=SX+X
50 NEXT U
60 PRINT SX
70 END . . . . ( 1 )

Line 30 directly tracks the equation, and this style
appears in many published programs. My micro
requires 244 seconds to run this example.

Exponentiation is rather slow. By eliminating
that operation and rewriting line 30 to

3OX=.OOll*U+.0O22*U*U+.0O3 3
+.0044*U*U*U*U . . . .(2)

aConsulting Geologist, P.O. Box 2096, Carmel,
California 93921.
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382

execution lowers to 92 seconds.
As the program cycles through the

FOR/NEXT loop, each of the four constants must
be "translated" to machine language 1000 times. It
is much faster that this be done only once through
the use of assignment statement. We may add line
15 and modify line 30 as follows:

15 Cl=.0011:C2=.OO22:C3=.0033:C4=.OO44
30X=Cl'U+C2*U*U+C3*U*U*U+C4*U*U*U*U

. . . . ( 3 )

Execution time reduces to 39 seconds, a dramatic
improvement over the original 244.

Sample program (1) above is simplified almost
to the point of absurdity: our usual problems are
much more complex. My program for determining
W(u, r/B) uses 38 constants and exponentiations tò
the power of 12. In such conditions, the methods
of example (3)—although rapid—require tortuous
programing. The constants should be placed in an
array that is loaded with READ/DATA statements
and the repetitive multiplications can best be
handled by assignments as in line 25 below. With
those modifications, the program of the example
becomes:

10DIMC(4): SX=0
15 FOR J=l TO 4: READ C(J): NEXT
20 FOR U=l TO 1000
25 U1=U:U2=U*U:U3=U2*U:U4=U3*U
3OX=C(1)*U1+C(2)*U2+C(3)*U3+C(4)*U4
40 SX=SX+X
50 NEXT
60 PRINT SX
70 END
80 DATA ,0Oll,.0O22,.0O33,.0O44

This version runs in 54 seconds and is an acceptable
compromise between minimum execution time and
practical programing.

These suggestions may not work on all micros
nor will the stated running times be the same.
However, persons interested in shortening the
execution of complex programs might try placing
frequently used constants in arrays (or in assign-
ment statements) and eliminating (or at least
minimizing) exponentiations.

John Logan began working in the ground^water
specialty in the Upper Neolithic. Following employment
•with the Bureau of Reclamation, the Agency for Inter-
national Development, the United Nations, UNESCO, and
county government, he decided to make an honest living
and has been a consulting geologist for the last ten years.
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An Automated Numerical Evaluation
of Slug Test Data

by M. W. Kemblowski and C. L. Klein_a

ABSTRACT
Development of a numerical algorithm to analyze slug

test data is described. This type of test is very popular for
aquifer testing, primarily because of its simplicity. Many
such tests are performed to estimate the hydraulic conduc-
tivity values of ground-water-bearing formations. Those
values in turn arc used to calculate pore-water velocities.
The algorithm was coded and successfully tested for a
hypothetical data set. It has also been applied at a number
of field locations. One such application is presented.

INTRODUCTION
This paper is a summary of the development

and testing of a numerical algorithm designed to
analyze slug test data. This type of test is very
popular for aquifer testing, primarily because of its
simplicity. Many such tests are performed as part
of hydrogeologic assessments. The algorithm utilizes
the slug test analysis presented by Bouwer and Rice
(1976) and uses a sensitivity analysis for parameter
estimation (McElwee, 1985).

THEORY AND ANALYTICAL SOLUTION
OF THE SLUG TEST PROBLEM

The theory of the slug test problem is based
on the Thiem equation which describes the
relationship between the inflow into the borehole
and the drawdown.

aShell Development Company, Westhollow Research
Center, P.O. Box 1380, Houston, Texas 77001.

Received June 1987, revised November 1987,
accepted November 1987.

Discussion open until January 1, 1989.

Q =
27rKLe(h-hw)

ln(r/rw)
(1)

where hw = piezometric head in the well (ft);
h = piezometric head at distance r (ft);
rw = effective radius of the well, including the
gravel pack (ft); r = distance from the well center
(ft); K =? hydraulic conductivity (ft/day);
Q = inflow into the borehole (ftVday); and
Le = effective aquifer thickness, in this case, height
of open section of well (ft).

The rate at which the well-water level will rise
depends on the inflow into the well and may be
expressed as;

dt TIT;
(2)

where rc = internal radius of the well; and
y = drawdown at the well. Assuming that at some
distance R (radius of influence), the drawdown is
dissipated (h = 0), one can substitute equation (1)
into equation (2) and solve the resulting equation
for y to obtain:

exp[--
2KLet

'l ln(R/rw)

r*ln(R/rw) y0
K. = ' in —

2Let y t

(3)

(3a)

where R = effective radial distance at which the
drawdown is dissipated; y0 = drawdown in well at
time zero; yt = drawdown in well at time t; and
t = time since y0.
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Fig. 1. Geometry and symbols of slug test.

Values of R were experimentally determined
(Bouwer and Rice, 1976) for different values of
rw, Le, Lw , and H (see Figure 1 ). For a partially
penetrating well, the following empirical equation
was developed:

rw In(Lw / rw)

B ln ( (H-L w ) / r w )

(Le/rw)
(4)

where A and B are dimensionless parameters shown
in Figure 2 as functions of L e / rw . The experiments
indicated the effective upper limit of
In ((H - Lw)/rw) is 6. This upper limit is included in
the program.

For a fully penetrating well (H = Lw), R is
calculated using the following relation:

R
I n — =

rw

1.1

ln(L w / r w ) (Le/rw)
] (5)

where C is a dimensionless coefficient shown in
Figure 2 as a function of L e / rw .

PARAMETER ESTIMATION BY
SENSITIVITY ANALYSIS

For simplicity, equation (3) is rewritten as
follows:

where D =
r¿ln(R/rw)

2L¡

(6a)

(6b)

D is a known constant for a given test. Using
equation (6a), we can express drawdown yc as a
function of time and hydraulic conductivity.

-Kt/D (7)

The basic idea of parameter estimation technique is
to calculate a value of K that would minimize the
difference between observed and calculated values
of drawdown. This is done by iterations. After
each iteration, the "old" value of K is updated.

K* = K + AK (8)

The sensitivity analysis provides a tool to calculate
AK.

Using the Taylor expansion and neglecting the
terms of the order higher than one, we can estimate
the value of drawdown y t(K + AK) as a function of
y t(K).

y t(K + AK) = y t(K) + % AK =

-Kt/D .-Kt/D = y r (K) ( l - -AK) (9)

Using equation (9), we may now develop an
expression for the total square error between the
observed drawdown y? and the drawdown calcu-
lated by equation, y* = yt(K + AK) (subscript i
refers to time).

N

¡»1

A&C -

I
I
I
1
I

I
I
1
I
I

100
L« / rw

Fig. 2. Curves relating coefficient! A, B, and C to L,/rw M
(after Bouwer and Rice, 1976). •



where N is the number of observations.
This total square error may be minimized with

respect to AK.

Equation (11) is used to estimate the conductivity
correction.

s [(yf-y i)y it i j / s yf tf (12)

The numerical algorithm consists of the following
steps:

1. Read the input data.
2. Calculate the effective radius using

equation (4) (partially penetrating well) or (5)
(fully penetrating well).

3. Calculate D [equation (6b)].
4. Calculate simulated drawdown {y¡}

[equation (7)].
5. Calculate the conductivity correction

[equation (12)].
6. Calculate "new" conductivity [equation

(8)].
7. Calculate total square error [equation

(10)].
8. Estimate the standard deviation a using the

following expression:

(13)

9. If the number of iterations < NITER, go
back to step 4 (NITER = maximum number of
iterations).

10. Print out the results.
11.Stop.
This algorithm was coded in FORTRAN for

IBM PC. In order to use it, the user has to provide
the test geometry and drawdown data, and estimate
parameters A and B or parameter C using Figure 2.
The program does not have a weighing system that
would consider early data more important than the
late ones (Bouwer, 1978). However, the user can
limit the number of data points.

MODEL TESTING
The numerical solution was tested using a

computer-generated data set. This set of drawdown
data was calculated for a fully penetrating, partially
screened well of the internal radius rc = 0.05 m,
and the external radius rw = . 1 m. The initial
saturated thickness of the aquifer was Lw = 15 m,
and the screen height was Le = 10 m. For these

Fig. 3. Model testing.

conditions, dimensionless parameter C was esti-
mated from Figure 2 to be C = 1.5. To generate the
drawdown data using equation (7), the value of the
hydraulic conductivity was assumed to be K = .288
m/day (.0002 m/min). The initial drawdown was
y0 = 1 m. The drawdown values were calculated for
10 minutes, with a one-minute interval (Figure 3).
This data set was then used to calculate the
hydraulic conductivity of the system using the
developed numerical procedure. The initial
estimated value of hydraulic conductivity was
.0144 m/day (0.00001 m/min). It took the
program five iterations to calculate the correct
value of hydraulic conductivity (Figure 3 ). Table 1
shows the results for the five iterations.

MODEL APPLICATION
The automated evaluation procedure has been

used successfully at a number of locations to inter-
pret slug test data. One recent application was
done to estimate the hydraulic conductivity at a

Tabla 1. Model Application and Results

Iteration

0

1

2

3

4

S

6

K
(m/min)

0.100E-04

0.779E-04

0.144E-03

0.1S8E-03

0.199E-03

0.200E-03

0.200E-03

aim)

0.79

0.031

0.01

0.0018

0.0007

0.00003

0.00003



site in Kalkaska, Michigan. The field test was per-
formed using a partially penetrating well with inner
radius rc = 0.104 ft and external radius rw = 0.281
ft. The well penetration depth Lw was equal to
3.115 ft. The length of the screen under the water
table Le was equal to Lw. The total saturated
thickness was estimated to be 100 ft. The dimen-
sionless parameters A and B, estimated from Figure
2, were 1.8 and 0.25, respectively. The test was
performed by submerging a closed bailer into the
well, thus creating a negative drawdown. The initial
value of the negative drawdown was 0.68 ft. Figure
4 shows the field data and the simulated drawdown
for the estimated hydraulic conductivity
K = 0.000611 ft/sec which was obtained after five
iterations. It can be seen that the simulated results
fit the field data quite well.

SUMMARY
An automated numerical procedure was

developed to analyze slug test data. The procedure
is based on the sensitivity analysis for parameter
estimation. The solution was validated using
computer-generated data. It also has been used
successfully at a number of locations. One such
application at a Kalkaska, Michigan site is
described.
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A Method to Determine the Formation Constants of Leaky Aquifers,
and Its Application to Pumping Test Data

by F. Kohlbeck1 and A. Alvarezb

Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test
data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the
sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and
Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given.
Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River
Valley, Colombia.

I
I

I

Introduction
A great number of computer programs exist for the

calculation of aquifer parameters from pumping test data.
The parameters are found by fitting theoretical drawdowns
as a function of time to measured values. Most of the
programs use the Theis (1935) equation for confined aqui-
fers. An overview can be taken from Yeh (1987). Only a few
methods use the more general equation of Hantush and
Jacob (1955) for leaky aquifers.

The first program for this purpose was published by
Saleem (1970). He used standard routines of a FORTRAN
library on an IBM mainframe to perform a nonlinear least-
squares approach. These routines are not available for per-
sonal computers. The methods used within these subrou-
tines are not described in the publication. The program does
not contain special features for treating the specific shape of
Hantush equation. Cobb et al. (1982) used the gradient

*Tcchn. Univ. Vienna, Abt. Geophysics, Gusshausstrasse
27-29, A1040 Vienna, Austria.

b Universidad Nacional de Colombia, Dpto. de Geociencias,
Apartado Aereo 14490, Bogotá D.E., Colombia.
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(Newtonian) method for the optimization. This method fails
if the normal equations are ill-conditioned. Chander et al.
(1981a) fit an approximation of the well function for leaky
aquifers to experimental data. The approximation was first
published by Hantush (1956) and does not match well at
early time values to the exact solution. The optimization is
performed by a quasi-Newtonian method (Marquardt algo-
rithm) for solving with nonlinear least squares. This method
is superior to the simple Newtonian approach. The same
authors (1981b) also used Kalman filtering with success.
Another method has been given by §en ( 1986) who used the
slopes of successive data points to calculate the parameters
directly from Hantush approximation.

The result of a nonlinear least-squares procedure fre-
quently is not the optimum solution of the problem. It may
happen that the calculation terminates at a local minimum.
In this case, another starting point can lead to another
solution. However, a good program should always result in
the best solution one can obtain from the data. Therefore,
one has to test extensively with real and with perturbed data
to determine whether the final solution depends on the
starting point or not.

The method presented in this paper is based on the
Hantush and Jacob (1955) equation for leaky aquifers. This
equation does not account for storage in the leaking unit
as was treated later by Hantush (1960) and Neuman and
Witherspoon (1969a). The method uses special techniques of

».»» »» - 425



Table 1. Comparison of Results from Examples of Yeh (1988), Walton (1962), and Saleem (1970) with the Presented Method

Author

Yeh original
present

Walton orig.
Saleem
present

Transmiss.
T

m2ld

1139
1134 ±2
gal/d/ft

1510
1801
1856 ± 16

Stor. coeff.
S

E'04

1.93
1.94 ± 0.02

£-04

2.
1.8
1.66 ±0.1

Vert. perm.

E-03 mid

0.27 ± 0.20

&02g/d/ft2

11.0
6.6
6.0 ±0.4

Stand, dev.
a

m

0.00547
0.00557

ft
0.200
0.156
0.147

nonlinear least-squares fitting to obtain the best fit inde-
pendent of the starting point. The case of a nonleaky aquifer
is considered a special case of a leaky aquifer with leakage
trending towards zero.

Computer Program
The program is written in FORTRAN 77 and contains

more than 3600 lines of source code. The majority of the
subroutines are taken from CERNLIB and are described in
detail by James and Roos (1971). The tests were performed
on an AT-compatible personal computer with math copro-
cessor. The computation time increases approximately lin-
early with the number of data pairs and takes less than two
minutes on AT-compatible computer with 8 MHz clock and
60 data pairs. The input data consist of a text line, a line with
the code for the units, and a line that contains the distance r,
the pumping rate Q, and the thickness of the semiconfining
bed b'. Further lines contain the observation times and
drawdowns. No starting values for the parameters are
needed. A further option calculates the theoretical draw-
downs for given values of storage coefficient S, transmissiv-
ity T, and permeability K' at given times.

The output contains the input data, the calculated
values for S, T, and K', with their standard errors and a table
of calculated and observed drawdowns.

The errors of the parameters S, T, and K' are calculated
with the assumption that the differences between calculated
and observed drawdowns are random errors with normal
distribution. In practical cases the assumptions for the valid-
ity of the well function for leaky aquifers [see equation (1)
later in this context] are not fulfilled exactly, and the errors
consist of a systematic and a random part. Therefore, the
calculated standard errors of the parameters can be seen as a
lower limit. The real errors will be much higher in most of
the cases.

Examples
Published Data

The program was tested with already published data
for the purpose of comparison with known methods and
with unpublished data to demonstrate the practical
application.

The published data of weU 19 from Walton (1962) and
from Yeh (1987) who used Todd (1980) values were used to

test the program. The results are compared in Table 1. The
calculations of Yeh are based on nonleaky aquifers.

For reasons of compatibility, the thickness of the semi-
confining bed b' has been set to 10 m, so vertical permeabil-
ity K' could be calculated. The standard deviation a in Table
1 is defined by:

a = \/G/(N - n)

with G the sum of squares of the differences between calcu-
lated and measured values of drawdown (s), the number of
observations (N), and the number of parameters (n). For the
leaky aquifer n — 3, while for the nonleaky case n = 2.
Therefore, a is less for the calculation of Yeh than with the
present calculation because n is smaller for Yeh's method.

Data from Cauca River Valley
Practical examples were taken from measurements at

the Cauca River Valley, Colombia, which covers an area of
4,600 km2. The tests were performed in the southern part of
the valley and are reported by Alvarez and Tenjo (1971).
Data are presented here (Table 2) to provide published data
from a leaky system that other researchers can use when
comparing computer programs.

The Cauca River Valley has a tectonic origin and is
underlain with alluvial sediments that have become the
richest aquifers of the Colombian Andean zone. The total
thickness of the alluvium is unknown. However, it has been
classified in three hydrogeological units with the following
characteristics:

Unit A is from the surface to 110 m depth. Its upper 70
m are largely clay and silt, individual lenses of which can
reach 36 m of thickness. The lower 40 m are composed of
sand and gravel with some lenses of clay. This lower part
contains several types of aquifers, i.e., free, confined, and
leaky aquifers. The yields range from 10 to 264 1/s, with a
median yield of 130 1/s. The measured specific capacities
range from 4 to 13 l/(sm), with a median value of 8 1/ (sm).
The transmissivities range from 300 to 2800 m2 per day,
while the storage coefficients range from 7 X 10"* to 1.05 X
10"2. For the leaky aquifers, the leaky coefficients range
from 5.03 X 10"4 to 3.9 X 10"2 per day.

Unit B underlies unit A. It is mainly composed of clay
with a thickness of about 80 m, and is considered as the
confining bed.
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Table 2a. Computer Evaluation of Colombian Pumping
Te*t Data: Pumping Test No. 1

Table 2b. Computer Evaluation of Colombian Pumping
Tett Data: Pumping Test No. 2

Input parameters:

r(m)

Value 105.0

Calculated parameters:

T(m2!d)

Qfl/s)

145.0

Value 1994. 0.I379E-02
Error 2.538 0.1073E-04

Observed (s0) and calculated (sc) drawdowns:

Time
min.

So

m
Je
m

b'fm)

1.000

K(mld)

0.2913E-02
0.3134E-04

s 0 - Sc
m

1.000 (
2.000 1
3.000 (
4.000 (
5.000 (
6.000 (
7.000 1
8.000 (
9.000 (

10.00 (
16.00 (
20.00 (
25.00 (
30.00 (
35.00
40.00 !
43.00
45.00
50.00
55.00
60.00
70.00
80.00
90.00 ;

100.0
110.0 i
120.0
150.0
180.0 !
210.0 :
240.0 i
270.0 1
300.0 1
330.0 1
347.0 1
360.0 ¡
420.0 1
454.0 ;
480.0 :
510.0 :
540.0
560.0 :
600.0 :
615.0 ;
660.0 :
720.0 ;
780.0 ;
840.0 :
900.0 :
910.0 :
960.0 :

1020.
1080. :
1140. :
1260. :
1320. :
1380. :
1410. :

3.1000E-01 (
).5000E-01 (
3.1100 (
5.1800 (
3.2400 (
3.2900 (
3.3500 (
3.3900 (
3.4400 (
3.4800 (
3.6500 (
3.7700 (
3.8600 (
3.9500 (
1.020 1
1.060 1
1.100 1
1.140 1
1.170 1
1.220 1
1.260 !
1.320 1
1.380 1
1.420 1
1.470 ]
1.510 1
1.520 I
1.620 1
1.690 !
1.740 I
1.780 1
1.820 i
1.860 1
1.890 i
1.880 1
1.920 1
1.970 ]
1.970 I
î.000 ;
î.oio ;
2.030 :
Î . 0 4 0 ;

2.070 :
Î . 0 6 0 :
2.090 ;
M îo ;
2.130 ;
2.150 ;
2.140 :
2.150 :
2.160 ;
2.160 ;
2.160 ;
2.150 :
2.150 ;
2.150 ;
2.150 ;
2.150 ;

3.9O13E-O2
3.6041E-01
3.1263
3.1910
3.2510
3.3057
3.3557
3.4014
3.4435
3.4824
3.6677
3.7609
3.8564
).9355
1.003
1.062
1.094
1.114
1.160
1.202
1.240
1.307
1.365
1.415
1.460
1.499
1.535
1.625
1.696
1.753
1.800
1.840
1.875
1.904
1.919
1.930
1.974
1.994
>.008
î.023
î.036
ï.044
2.058
'..063
2.077
2.093
2.106-
¡.118
2.127
î.129
2.135
2.143
2.149
2.154
2.163
2.166
2.169
2.171

0.9870E-03
-0.1041E-01
-0.I631E-01
-0.1104E-01
-0.1099E-01
-O.1575E-O1
-0.5708E-02
-0.1145E-01
-0.3522E-02
-0.2410E-02
-0.1772E-01

0.9101E-02
0.3646E-02
0.1445E-01
0.1694E-01

-0.1774E-02
0.6384E-02
0.2637E-01
0.9997E-02
0.1813E-OI
0.2001E-01
0.1285E-01
0.1519E-O1
0.4855E-02
0.1033E-01
0.1054E-01

-O.I535E-01
-0.5092E-02
-0.5515E-02
-0.1264E-01
-0.2008E-01
-0.2017E-01
-0.1454E-01
-0.1431E-01
-0.3947E-01
-0.1034E-01
-0.3594E-02
-0.2398E-01
-O.7933E-O2
-0.1252E-01
-0.5689E-02
-0.3765E-02

0.U56E-0!
-0.3479E-02

0.1271E-0I
0.1695E-01
0.2366E-0I
0.3239E-01
0.1279E-01
O.2133E-O1
0.2456E-01
0.1747E-01
0.1136E-O1

-0.3941 E-02
-0.1255E-01
-0.1606E-01
-0.1912E-01
-0.2051E-0I

Input parameters:

r(m)

Value 109.0

Calculated parameters:

T(m2¡d)

QO/s)

123.0

S

Value 1086. 0.3571 E-02
Error 3.257 0.4137E-04

Observed (so) and calculated (sç) drawdowns:

Time
min.

So
m

Sc
m

b'(m)

1.000

K(mld)

0.7116E-O2
0.1166E-03

SQ — Se
m

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
6.000
7.000-
8.000
9.000

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
70.00
80.00
90.00

100.0
110.0
120.0
150.0
180.0
210.0
240.0
270,0
300.0
330.0
360.0
420,0
480.0
540.0
600.0
660.0
720.0
780.0
840.0
900.0
960.0

1020.
1080.
1140.
1200.
1260.
1320.
1380.
1440.
1500.
1560.
1620. .
1680.
1681.

O.lOOOE-01
0.1500E-01
0.2000E-01
0.3000E-01
0.4000E-01
0.5000E-01
0.6000E-01
0.7000E-01
0.8000E-01
0.1000
0.1150
0.1300
0.1500
0.1500
0.2500
0.3200
0.3900
0.4500
0.5200
0.5800
0.6350
0.6900
0.7400
0.7900
0.8750
0.9500
1.025
1.090
1.150
1.210
1.350
1.460
1.545
1.620
(.680
1.740
1.785
1.820
1.890
1.950
1.995
2.040
2.070
2.100
2.130
2.145
2.160
2.170
2.175
2.175
2.175
2.180
2.185
2.185
2.190
2.190
2.190
2.185
2.180
2.180
2.180

0.0000
0.0000
0.6206E-04
0.4054E-03
0.1261E-02
0.2840E-02
0.5269E-02
0.8596E-02
0.1281E-01
0.2367E-01
0.3729E-01
0.5302E-01
0.7031E-01
O.887OE-O1
0.1872
0.2843
0.3741
0.4559
0.5302
0.5980
0.6601
0.7172
0.7700
0.8190
0.9074
0.9851
1.054
1.116
1.172
1.224
1.353
1.457
1.543
1.614
1.675
1.728
1.774
1.814
1.882
1.936
1.980
2.016
2.047
2.072 .
2.094
2.113
2.128
2.142
2.154
2.164
2.173
2.181
2.188
2.194
2.199
2.204
2.208
2.212
2.215
2.218
2.218

0.1000E-01
0.1500E-01
0.1994E-01
0.2959E-01
0.3874E-01
0.4716E-01
0.5473E-01
0.6140E-01
0.6719E-O1
0.7633E-01
0.7771E-O1
0.7698E-01
0.7969E-01
0.6130E-01
0.6275E-O1
0.3570E-01
0.1592E-01

-0.5857E-02
-0.1021E-01
-O.18O2E-O1
-0.2511E-01
-O.2723E-OI
-O.3O03E-O1
-0.2903 E-01
-0.3236E-01
-0.3506E-01
-0.2917E-01
-0.2622E-01
-0.2236E-01
-O.1351E-O1
-0.3431 E-02

0.2757E-O2
0.2438E-02
0.5848E-02
0.4822E-02
0.1215E-01
0.1122E-01
0.5843E-02
0.8252E-02
0.1411E-01
0.1501E-01
0.2359E-01
0.2321E-01
0.2763E-01
0.3594E-01
0.3244E-01
Û.3156E-01
0.2788E-01
O.2I05E-O1
0.1077E-01
0.I817E-O2

-0.1006E-02
-0.2857E-02
-0.8872E-02
-0.9165E-02
-O.1382E-O1
-0.1795E-01
-0.2659E-01
-0.3482E-01
-0.3769E-01
-0.3773E-0I
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Unit C underlies unit B. It is composed of sand, gravel,
and some clay of unknown thickness. It is a confined aquifer
tapped by several flowing artesian wells. Below unit C follow
sedimentary, metamorphic, and igneous rocks.

In the pumping tests presented in this paper, leakage
was obtained from unit A.

The constants of five different pumping tests are pre-
sented in Table 3. The calculation of hydraulic parameters
was carried out with the type curve method, with the inflec-
tion point method after Hantush (1956) and with the com-
puter program. The results are listed in Table 3.

It can be seen that the computer method compares well
with the conventional methods and that the standard devia-
tion is always lowest with the computer's least-squares
approximation. Furthermore, the computer method has
incorporated an error estimation for the parameters. As
already mentioned, these error estimates have little practical
relevance because they assume that the data are distributed
normally around the well function. However, the assump-
tions for a leaky aquifer made by Hantush and Jacob ( 1955)
are not fulfilled completely in any one of the examples. This
can be gathered from the Tables 2a and 2b which show a
partial output of the computer program for two pumping
tests of the Cauca Valley. One recognizes that the differences
between measured and calculated drawdowns (last column)
are not randomly distributed over the time scale: one can
divide the series of measurements into sections that contain
exclusively positive or negative differences. The series of
pumping test No. 1 (Table 2a) consists of five and that of No.
2 (Table 2b) consists of four such sections. This bias cannot
be removed by selecting other aquifer parameters but only
by applying another, more realistic well function as dis-
cussed by Neuman and Witherspoon (1969b).

Method
The drawdown, s, in an observation well caused by a

constant pumping rate Q in a production well can be written
as (Hantush and Jacob, 1955):

= Zi • F(t ;z 2 , z3) (la)

with

F(t; ti, zj) = ƒ ( l /x) • e x p [ - x - 0.25(z>)2/x]dx (lb)
Zî/t

The constants Zi, zj, z3 are related to the transmissivity
T, the aquifer storage coefficient S, and the vertical perme-
ability of the semiconfined bed K' by:

z, = a - Q / T

zi - S • 0 - r2/T (2)

(zj)2 = K' • r2/(b' • T)

in which r — distance between the observation well and the
pumping well; b' = saturated thickness of the semiconfin-
ing bed; and a and 0 are constants whose values are depen-
dent on the units used. For metric units, a — 1./(4JT), and
0 = 0.25, This formula holds only for certain restrictions on
the parameters (see Walton, 1979).

Table 3. Comparison of Results from Type Curve
Interpretation (T), Hantush (1956)

Inflection Point Evaluation (I), and Least-Squares
Calculation (C) with Examples of Field Measurements

Pumping
test
no.

Transmits.
T

m2/d

Star, coeff.
S

E-03

Leakance Stand, dev.
JC/b' a2

E-03/d E-03 m

I

2

3

4

5

T
I
C
T
I
C

T
I
C

T
C

T
C

1847
1900
1994

1302
1037
1086

1408
1400
1321

2807
3088

893
907

±

±

±

±

±

3

3

4

8

2

1.54
1.44
1.38
3.62
3.76
3.57

2.35
2.27
2.36

1.47
1.27

2.53
2.37

±

±

±

±

±

0.01

0.04

0.04

0.01

0.02

3.77
3.88
2.91 ±0.03

7.82
5.78
7.12 ±0.12

3.17
1.69
4.00 ±0.13

0.169
0.00 ± 0.00

1.03
1.04 ±0.03

26
28
16

38
111
35

24
50
20

56
35
39
28

If one has a series of observed drawdowns so(ti) at
observation times t¡, optimal estimates zi, zj, h for the
parameters zi to Z3 can be determined by minimizing the
sum of squares

G = X í¡3 (3a)

of the differences

e¡ = So (ti) - Se (t¡) (3b)

between calculated and measured values of s. From equa-
tion (2), T and S can be calculated from ZL and z}. With a
known value for b ' also, K' can be calculated from zj.
Because equation (1) obviously is not a linear combination
of zi to z3, a simple linear least-squares technique cannot be
used for obtaining the optimum values. The program uses a
nonlinear optimization procedure as follows:

Starting with arbitrary estimates for z¿ and Zj and
substituting equations (1) into equation (3b) one obtains:

y¡ — zi a¡ + e¡ (4)

with known values of a¡ = F(t»; zi, zj); and y¡ — so(t¡).
From equation (4), one obtains the normal equation

2 (y¡ - zi a¡) a¡ = 0
i

and the optimal estimate 1\ (z2, z¡) for zi :

2y¡a¡
Zl(Z2,Z3) -

2a¡a¡
(5)

Equation (5) reduces the three-dimensional nonlinear
optimization problem to a two-dimensional one, whereby
computation effort is considerably shortened.

The nonlinear optimization searches for the minimum
of G from equation (3a) with respect to z2 and z3, and uses
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zi = Zi from equation (5). It is first carried out with a Monte
Carlo method to give rough estimates of Zi and z3 and then
continues with the simplex method of Nelder and Mead
(1965). Both methods are described by James (1972). They
offer some advantages compared with the conventional
Newtonian and variable metric methods that are most fre-
quently used for function minimization. The matrix of nor-
mal equations that is used with the Newtonian methods
frequently is ill-conditioned, and the algorithm will diverge
in this case (Marquardt, 1963). The presented method will
find the best solution also when the Newtonian ends at a
local minimum.

The integral of equation ( 1 b) is solved numerically by a
modified Romberg algorithm. The direct application of
numerical integration to the integral is not favorable,
because the intermediate values which are necessary for
integration are not selected properly by usual methods.
With the substitution of x = exp (y), equation (lb) can be
written:

F ( t ; z ï , z i ) = ƒ
ln<zi/t)

• exp [-exp (y) - 0.25 • (z3)
2- exp(-y)]dy (6)

which is integrated much faster and with higher accuracy
than expression (lb). The upper bound for x in equation
(lb) can be taken from Hantush (1956) to be 8 instead of
infinite with sufficient accuracy. The lower bound is taken to
be u = 0.5 • (zj)1/ [b +1 In(z2/t) |] where b denotes a con-
stant (a proper value is 4) which depends on the accuracy of
the calculations. The lower boundary u is selected only when
u < z2/t.

The speed of calculation of the whole number of inte-
grations for different time values t¡ can be increased further
if the areas beyond the integral overlap each other for differ-
ent time values. It follows that equation (6) can also be
written:

+ ƒ
ln(Z2/t¡+i)

• exp[-exp(y) - 0.25 • (z,)2- exp(-y)]dy

The second part of the right side is computed much faster
than the whole integral equation (6). The first part, F(t¡), is
already known from the previous calculation.

Errors
The basic statistical formula for calculating the random

errors of the parameters z, can be taken from Linnik ( 1961 ).

ôzi = vu VG/(N - n)

where 5z¡ = standard error of z¡; N = number of observa-
tions; n = number of parameters (n = 3); G — sum of
squared differences between calculated and measured draw-
downs [from equation (3a)]; v¡¡ = diagonal element of vari-
ance matrix V; V = W ; and wik = (<32G)/(3zi <9zk), cle-
ment of matrix W. The derivatives are calculated by finite
differences of function values.

Availability
Authorized users of CERNLIB may obtain a copy of

the program by request to one of the authors. Permission for
using CERNLIB can be obtained by writing to Program
Library Division DD, CERN, CH-1211, Geneve 23,
Switzerland with reference to program package D506
Minuit.
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A Computer Program for a Trilinear Diagram Plot
and Analysis of Water Mixing Systems'

by Michael D. Morris, Jeffrey A. Berk,
Joseph W. Krulik, and Yoram Ecksteinb

ABSTRACT
The Piper (1953) trilinear diagram has been widely

used to graphically represent the dissolved constituents of
natural waters and to test for apparent mixtures of waters
from different sources. Because of the time required to plot
points and calculate the proportional values of mixing, this
treatment of data was often quite tedious, particularly in
studies involving large numbers of chemical analyses. The
PIPER program was written in BASIC to be run on a
Hewlett-Packard desktop computer with an X-Y plotter.
Data input is in ppm units. The program plots points in all
three fields of the trilinear diagram, draws at each point
within the central diamond field a circle with a radius
correspondent to the concentrations expressed in meq/1,
checks for points that fall on a straight line (or within a
predetermined tolerance of a straight line) representing
postulated mixtures with two end members, and/or within
a triangle representing mixtures of three end members.
Finally, the program does a numerical analysis of the
mixing ratios of the constituents for postulated mixing
systems according to the methodology as presented by
Piper (1953).
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INTRODUCTION
In a graphical treatment of chemical analyses

of ground water developed by Piper (1953), the
character of a ground water can be expressed by
three points located in three different fields. The
points represent: (1) percentage-reacting equiva-
lents of three major cation constituents (Mg**, N'a*
and Ca**) in a cation triangular field; (2) percent-
age-reacting equivalents of three major anion
constituents (Cf, SOr and HCO3) in an anion
triangular field; and (3) the point in the diamond-
shaped field representing the overall chemical
character of the solution. The last point is plotted
at the intersection of rays projected from the
points in the anion and cation triangular fields into
the diamond field (Figure 1).

Piper's graphical treatment of the chemical
analysis allows for an easy discrimination of
distinct water types by their plottings in various
subarcas of the diamond field (Figure 2). Piper
(1953) also suggested that water analysis repre-
sented by points aligning along a straight line in
all three fields should be tested for the possibility
that they represent a part of a mixing system. A
solution produced by a mixture of two end
members is represented in each of the three fields
as a point which is located on a straight line in
between the points representing the two end
members. Moreover, the individual ionic constitu-
ents in the mixture will all have been mixed in the
same proportions. Similarly, in the case of a
mixture from three sources, the solution will be
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Fig. I . Piper's (1953) trilinaar diagram.

represented in each of the three fields by a point
located inside a triangle defined by the three
end members. Again, all the ionic constituents will
have been mixed in the same proportions.

When only a few points are plotted on a cri-
linear diagram, it is rather easy to discern and con-
firm a binary mixing by "eyeballing" of three
points aligned on a straight line in all three fields
and to make the appropriate computations (Piper,
1953). To discern and confirm a ternary mixing
system is more complex. When the number of
chemical analyses involved is large, the task of

Fig. 2. Wam typas on a trilinaar diagram:
area 1 - (Ca+2 + Mg+Î) > (Na* + K*);
area 2 - (Ca*2 + M g ^ K (Na* + K+);
area 3 - (HCOj + CO^2) > (CI" + SO;*);
area 4 - (HCOj + CO?) < (Cf + SO;');
area 5 - carbonate hardness (secondary alkalinity) > 50%;
area 6 — noncarbonate hardness (secondary salinity) > 50%;
area 7 - noncarbonate alkali (primary salinity) > 50%;
area 8 - carbonate alkali (primary alkalinity) > 80%;
area 9 — no dominant cation-anion pair.

singling out all possible mixing systems and testing
each for validity is extremely tedious, as well as
is the mere task of production of a trilinear
diagram for a large number of analyses. The follow-
ing computer program is designed to plot up to
100 chemical analyses on a trilinear diagram and
then scan simultaneously all the analyses, testing
for all the possible combinations in binary and
ternary mixing systems.

The program was designed to place points in
all three fields and to calculate and test the pro-
portions needed to postulate possible mixing
relationships. Although this program produces
reliable calculations for a wide variety of chemical
compositions, the user is cautioned that the
results can be significantly affected by the selec-
tion of input values and certain user-specified
options. The user is further cautioned that
interpretations must reflect the specific field
conditions and locations from which the water
samples were collected.

Our computer program is based on Piper's
(1953) original assumptions:

1. All of the major constituents have been
included in the calculations.

2. All ions are assumed to remain in solution.

3. All the Fe, Al, and Si are present in the
water in a colloidal state as oxides and are not in
chemical equilibrium with the ionized constituents.
Therefore, these elements are not included in
calculations of total concentration.

4. Minor constituents of ground water are
summed with the six major constituents to which
they are respectively related in chemical properties.

5. Water consisting of substantial quantities
of free acid cannot be fully represented on the
diagram.

The program was written in Hewlett-Packard
enhanced BASIC for use on a HP 9845A desktop
computer with an optional 9872B X-Y plotter.
Options within the program allow graphics to be
produced on the cathode-ray-tube (CRT) display,
the thermal printer, or the X-Y plotter. Minor
variations should allow this program to be adapted
to other computers using BASIC. Due to memory
limitations on the HP 9845A, the program is
actually subdivided into two smaller routines
linked together. "PIPER," the first portion of the
program, is used to input and store data, compute
unit conversions and to plot the resulting percent-
age values on the trilinear diagram. The mixing
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calculations may then be performed by the second
portion of the program named "MIXING." The
transfer of control to the second routine is accom-
plished in line 3680 of "PIPER" utilizing the LINK
command in order to conserve all variables defined
earlier. Depending on the computer capabilities
that the program is going to be adapted to, it may
be stored as one long program or several smaller
routines. A flow diagram of the program is shown
in Figure 3. •

PIPER

INPUT OF RAW DATA
Input concentrations of various constituents

must be in units of parts per million (ppm). The
program will convert these units to mcq/1, and
further to percentage of total dissolved solids.

The program asks for the six major constitu-
ents: (Ca*\ Mg", Na*. Cl", SOr and HCO"3) and
only K+, CO'i and NOÎ as second-rank constitu-
ents. Other second-rank constituents can be added
with only minor changes in the program. In a
single run of the program, data from a maximum
of 100 sources may be entered, stored, plotted and
tested for mixing trends.

Data input can come from keyboard or data
previously stored on a data file. Creation of a data
file after input from the keyboard is a user's option.

PLOTTING AND COMPUTATIONAL
PROCEDURES

The plotting of points and the drawing of the
outline of the triangles and diamond both are done
in cartesian coordinates on the H-P graphics system.
All trilinear coordinates must be converted to X-Y
coordinates. The units used are millimeters for the
CRT and will vary on the X-Y plotter depending
on the size of the plot. The plotting field is 184.47
by 149.82 units. The primary trilinear diagram is
an equilateral triangle with sides divided into 100
units. For ease in reading, cation and anion sub-
triangles are offset from the upper diamond. The
subtriangles are equilateral with sides of 50 units
representing a range of 0 to 100% of a specified
constituent.

The height of a triangle (Figure 4) is calcu-
lated in the following manner:

100% <— c« o%

Fig. 3. Flow chart of "PIPER" and "MIXING."

25 unit» 29 unto

Fig. 4. Dimensional relationship in a triangular field of a
trilinear diagram.
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tan 60° = AY/(50/2)

AY = 25 (tan 60°)

AYs£ 43.30 units

In similar fashion, the dimensions of the
diamond field are found to be 50 units wide and
86.60 units in height.

Points within the cation triangle, if plotted by
hand, are based on the percentage-reacting values
of Ca*2, Mg*\ Na* and K'; if plotted by this
program, the points (Figure 5) arc based on the
percentage of Ca*2 and Mg+Î compared to the total
cations. Points within the anion triangle are calcu-
lated and plotted in a similar fashion based on the
percentages of SO? and HCO3. The relevant
equations are as follows:

r

Fig, 5. Coordinate system in the triangular fields of a
trilinear diagram.

Y'

25(tan 60°) 100

100 Y' = 25 tan 60° Mg*2 (%)

Y" so; 2 (%)
25 (tan 60°) 100

100 Y" = 25 tan 60° SO;2(%)

4 4

tan 60° = Y'/X' tan 60° = Y"/X"

X' = Y'/tan 60" X" = Y'Vtan 60°

Recalling the conversion: 2% ion concentration - 1 unit on the plotting field

X
K * Q ' -

Ca*2 (%) Y'

tan 60°

X K = X Q ' -

XK = XQ' -

Ca*2 (%) tan 60° Mg*2 (%)/4

2 tan 60°

Ca*1 (%) Mg+2 (%)

2%

HCO3 (%) Y"
R 2 tan 60°

HCO3 (%) tan 60° SO;2 (%)/4

2 tan 60°

K

YK » YQ' + tan 60

Y'

0Mg*2

Y, = YR + tan 60

2 4

R + Y "

o SO?(%)

The location of points in the diamond is at the intersection of rays projected from points in the anion
and cation triangles. In the computer program it is calculated and plotted based on the reacting percentages
of HC0*3 and (Na*) + (K+) (Figure 6).

To plot the point in the diamond field as shown in Figure 6, the following equations were derived:

XR ' - Xp' = 100 units

X s - = (Na* + K*)(%)
1 unit

2%
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:R ' - Xu = H C O 3 (%)
1 unit

2%

u - XT) = (XT - X s ) = V4 [(XR' - Xp') - <XR' - Xu) - (Xs - Xp')]

/v v N en HCO*,\%) (Na* + K*)(%)
(XT - X s) = 50 —

Xj * XT = Xp' + (XR' - Xp') - (XR' - Xu) - (XT - X s)

H C 0 ' '100 - - [50 -

v c r t HCO3(%) (Na*
= Xp' + 50 + •

4

4 TSJ = 60°

Yi - YT
tan 60° = J

A-p — Ag

- YT = t a n 6 0 ° ( X T - X s )

¿ r t0 r e A HCOj(%)
= tan 60° [50

tan 60°
[200 - HCO3 (%) - (Na* + K+)(%)]

= 86 .60- .4330 [HCO"3(%) + (Na* + K*)(%)]

= YQ'» + 86 .60- .4330[HCO"3(%) + (Na* + K+)(%)]

Analyses may be plotted with a point, an
identification number, or by choice of five other

Fig. 6. Coordinan system in tha diamond field of a tril¡near
diagram.

symbols. There has not been a provision for over-
prints.

Piper proposed using circles, whose areas are
proportional to the absolute concentrations of the
sources, plotted around points in the central
diamond field. Our program plots circles whose
radii are based on the sum of meq/1 and are propor-
tionally represented with either an arithmetic scale
at a user-defined proportion or a logarithmic scale.

DETERMINATION OF MIXING BETWEEN
TWO END MEMBERS

Primary criterion for ground-water mixing is
that the flow directions must physically bring
waters from two sources together. This criterion
cannot be judged by the computer program and
must not be overlooked by the operator. The
second criterion for determination of a binary
mixing system is based on the assumption that
when two waters mix in any proportion and all
products remain in solution, the mixture will plot
somewhere on a straight line between the two end
members in all three fields of the trilinear diagram.
The total concentration for the mixture in the
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diamond field must be intermediate between the
total concentration of the two end members,
whereas the concentration of the mixture (the
absolute concentration and the concentration of
the specific constituents) must all be in equal
proportionate volumes (Figure 7; Piper, 1953). Our
computer program analyzes all the elements of this
criterion and either confirms or disproves apparent
mixtures.

One of the most important decisions required
from the user of this program is to determine the
acceptable tolerance away from a straight line
for a group of any three points being considered
as a possible mixing combination. A user-specified

a —
Fig. 7. Binary mixing system in the diamond field of the
trilinear diagram.

a/b - (Vb X Eb)/(V, X E.)

V„/Vb-(bXEb)/(aXE,)

Em - [E. X Eb X (a + b)] /[(a X E.) + (b X Ëb)]

Vt = (bXEb)/[(aXE.)

Vb»(aXE.)/[(aXE,)-

Cm - (C, X V,) + (Cb X Vb)

where:

a,b

E«. Eb.

V,

— distances measured on the diagram;

— concentrations of respective waters having
compositions A, B and M;

— proportionate volume in mixture M of water
having composition A;

— proportionate volume in mixture M of water
having composition B;

— calculated concentration of the mixture M.

tolerance away from a true straight line is incorpo-
rated. Based on an acceptable analytical error, a
five percent tolerance is normally used. Deviation
allowed away from a straight line is a function of
the length of that line and the user-specified
tolerance. Possible mixing points must fit inside a
tolerance window. If a point falls more than the
preset percentage away from the straight line, the
tested combination of three points is rejected as
not a mixing system. For example, when a five
percent tolerance has been specified, a mixing
point on a line seven units long would be con-
sidered if the point was within .35 units off the
line. In clusters of points (i.e., very short lines)
even very small analytical errors would cause mix-
tures to be disqualified. All points representing a
postulated mixing system may deviate from their
plotted positions. The maximum amount they may
deviate is assumed to be the same as the user-de-
fined percent tolerance. If both end points in a
binary mixing system have maximum variance in
opposing directions, the line is either lengthened or
shortened. The length of the line is compared to
the maximum possible variation. If that amount of
possible variance is greater than the length of the
line, the program considers these points a cluster.
The allowed tolerance away from the cluster of
points, representing similar percentage of reacting
concentrations, is equal to the user-specified
percentage.

To test for possible mixtures, all points are
considered in all combinations of pairs as end
members, and the remaining points are tested to
see if they fit within a "tolerance window" around
the line. The limits of the window are the maxi-
mum plus the tolerance, and the minimum minus
the tolerance for both the X and Y values of the
end points (Figure 8). The window is further
limited within two parallel lines on either side of,
and at the specified tolerance away from the line
under consideration.

The user should be cautioned that the mixing
systems identified by the computer program con-
form with the mathematical criteria only (Piper,
1953).

THREE-WAY MIXING
Piper also suggested a method to check for a

ternary mixture resulting from three end members.
This technique treats the three end-member com-
positions, when plotted, as apexes of a hypo-
thetical triangle in each plotting field. The first
criterion for a hypothetical mixture point for the
program to consider is that it must plot within the
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Fig. 8. Coordinate system for the experimental error
tolerance in a binary mixing system.

COS 0 " v/Vy COS <t> » V/Vx

triangles in all three fields. The second criterion is
that its total concentration must be less than the
total concentration of the most saline end member
and more than the least saline end member. Any
source that meets the above criteria has its
individual ions compared then to a theoretical
mixture based on the correct proportions for its
location.

The theoretical perfect mixture is calculated
in the following manner. A line is drawn from one
of the end members (Point A, Figure 9) through
the point of the hypothetical mixture (point M).
The point (M') where this Une intersects the
opposite side of the triangle on the line CB is con-
sidered an intermediate mixing point between end

<— c*

Fig. 9. Ternary mixing system.

ci —>

members C and B. The program calculates the
theoretical concentrations for this intermediate
point M' based on its proportional distance from
points B and C in the same manner as used in the
two-end-member mixing. The calculated concentra-
tions for M' and the concentrations for point A are
used as end points for the calculations of values for
a theoretical mixture located at point M. These
calculated values of a theoretical mixing point for
the three end members are then compared to the
actual values of M. If the calculations demonstrate
that mixing between the three end members may
produce the mixing point examined, the results are
included in the output. If this point fails to meet
the graphical or analytical criteria, the program
proceeds to another set of end points.

OUTPUT
The Piper trilinear diagram can be produced

on the CRT, thermal printer, or the X-Y plotter.
Plotting on the CRT is the fastest and can be used
in preliminary work where no hard copy is
required. If a hard copy is required, a thermal
printer copy may be produced after using the CRT.
The thermal printer copy is limited in size, clarity
and accuracy of point locations. These are merely
limits on the display of the diagram and do not
affect the accuracy of the mixing tests. Plotting on
the X-Y plotter may produce diagrams in a wide
variety of sizes and colors with high accuracy of
point locations. Overhead projection transparencies
may also be produced with an optional pen set.
Overprints of several different sets of data may be
run with different symbols or colors. Concentra-
tion circles are optional and may be left off some
copies for simplification and clarity.

Hard copies of the input data along with
percentage-reacting values, absolute concentrations
and analytical error may be obtained as an output.
Binary mixing systems are represented in an output
as a series of tables listing the points lying on
straight lines in all three fields, the preset per-
centage tolerance and a percentage error computed
from the difference between the concentrations
(total and of individual constituents) in the water
plotted as the intermediate point and a theoretical
perfect mixture for that point.

The output of a ternary mixing system is also
given as a table, listing all the points representing
all the mixing systems. The tables display the com-
parisons for absolute and individual constituent
concentrations. A complete listing of the program
is given in Appendix I, and an example of input
and output is shown in Appendix II.
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APPENDIX I. PROGRAM LISTING*
m SSWIÏD ' íPI?ER> ipt*>r: O-22-nJ.rj
I ' OPTIO» BASF 1
12 COH l a a ï . C ' i t n r ' ̂ " . r >-.c 3 u e a í . * , í f f e x t r * * j » , 3 a v e l
20 PRI»TER 13 'S
40 P»I»T PAGE:"THIS PRCGRA1 "A3 DEVELOPED POR KSII DÍPT. OP GRUOCr"
50 PRTUT "TRI3 fSOGRAi 13 OF.StSNKt) TO:"
60 PRI»T • ( I I CALCULATE "'UIE0l'TV»L£»T3 A»T> PPRCFSTASB3"
' 0 PRTNT " (2) PICT IACH SfWRC! O» A ?:?ER 5IAGRA*"
«0 PRI»T " 11) CHECK POR '03SIBLP StXÎURES"
ao WATT 1000
'CO PPTST ?*GE
i I0 ICPUT "la tht PtPEB overlay on t i t icfyaTVSlwatf
'20 IP S u e i l H I ' T ! ? - TV!» 1M
•10 PRINT "ta *.1*> printed 3uïpui froa trtla sroírt» to be printed on "hf
1 prlntar" : LINf ' 1 :"or -l*e eiteirial ortntar ('AGÍI-E' larainal ) ' "
• ' 0 PfllfT l t ï ( " . T A B f " ) | , ' ; s ? » l l » « L i . î A B I ' ( l l
0) , " i 1 •*
'SO IMPOT O u t p r ' n t e r
• ' 0 PRINT PAOE

! .TAB'I"),"ÎXTTPSAL"; TAPI J

f LET'IRS ) " . T 1 ' 1 » »•SO INPUT "«HAT tS -HF TTTL?. 3F YOUR PROJECT
•"O PPINTÍR tS Cutprin'.er
200 PStNT 'UTTO 220
220 r»AOE 8 0 Í - • " '
240 TKAGE 2

760 PRINT 'JFtNO 220
2 ' 0 ?»TNTER tS '6
'00 OSO
"O DIS ?»»( 100 > . » • • ( l O C ? . ? í s k " O O I . ? i o í ' Í O ! . P r l ( i o o ) , ? h - o i " 1 )
MO D!H I q f í d O O M q e a í ' O O l . í q i t c í l O O h e q i i a í i n O l . í q k ' d O O l . E a n í O Í ' < m ) , ! a e l '
^aodOO) , T q n ö d 0 0 1 .Eqpoí 'OOI ,Sqeo( 'no l
'60 31* Cat ion) ,.*<£( i'OOl ,Saí 1001 ,<( '00) ,Hco' '00) . C l d o o ï ,3e ( ion) .Moi 100) , c
'TO 3H0RT I d C C O l . ï d M O O l . X f t d O O I . Y r t d O O I . X i r l ' O O . Y i r t ' O O )
ISO JIH P o ( l O O ) . ï r r l ' O O I , F e d C n i . ! ) l f ( ' 0 O ) . " ! Í 100)
" O D:H Tot nall( 1 0 0 ) . T o t r ! ( 1 0 0 ) . Totncoí 100 ) . TeatdCO) .Tan lodOO' ,Cnt ( 100)
400 DIS T í l l d 0 0 ) . . 1 i u « d 0 0 ) . A i i l í '001
410 TKPUT -DATA ÎNTRT TOlEií'EiríOARn' ' I OR SATA .»!LE:»1 A'2 )" .3
420 O» O GOTO «10,410
424 PRUT "IMPROPER RESPONSE ---try afim"
425 WAIT !000
426
no
4 4 1

450
4fit
455

í?0
4 Í 0
4 0 0

100
S I O

512

i 20
= 10
s m
5*0
5 ( 0
S ' 0
5*0
S í O
Õ 0 0
6 1 0

í 'Ó
^ 4 0

Î S O

$ 4 0

purprr ?AGF
!*Jl3S 3TCRACÏ ÜS ":714"
, 'HPtP -VRA? : ? DATA FTLS tJAMÎ?" , P í 1 » n

l»f ePHOR 3 0 ' ? 1 2 4
A'S'dljí »*i **o • ' 1*
CFP ÍRROR ' ' ' -
PEAO * 1 l i n a !

P.EÃD • ' Í C f t : ) , . " •

BEIT I
RP.WtSD
GOTO 670
INPUT * ?R0* ÍCW N
PRUT "»UM»ER .'? 3
FOR : . 1 TO l u l l

PRIKTER 13 ' f
PETST -IIVE TOUR
T^F'IT "VALUE OP
tilPUT -'ÎALÏE OP
I»PUf "VALUE I P
t.HPUT "VALI'E CF
tVPU* "VALUE OP
[ÜPUT "'/ALO! OF
THP'IT -VALUE OP
IÍPUT -VALUE OF
t»PUT "VALUÍ OF
'ÍPUT -VALU? CP
rripuT -VALUE ^p

.'^XT l '
ÎOJUB Li» t

Hane l

' t l . . 1 a d l , i ( r ! , H c o ' I

A»T 3CURCP3 DO Toil »
0"RCS5 - - : I n a i

VALUES ?0H SOURCE i
Ca ' " Cik' ' 1
•.* >*!*«•;!!

Sa " . ü a í t )

Hf 0 < T » .HSÇl' I )

C O ' ' ' " . - O í ' )
504 ' - . F o í l l
t l •" • .CLÍII
1 0 ' - - . i t o i n
P04 ' " . P o í l l
31 ' " . 3 t ; ' l

' * " ' ' '

"TP"" -ARE YC'R VALUFS ALL CORRECT",3
t7 3 S . - Y Í S " TSO! 1
PP'fTSR 'S •«

OTO ' .^00

' i o ? R : » T - W H I - H t o n DO ynu WAÍIT TO CHA»IÎF ' " ¡ t . t » f ? ) : T A P f a i

A B d O ) : - C a " ; T A ! l ' 0 i : ' ' - : T A B I '01 : " • » " : T A Í ( ' 0 1 ; "2"
- A B d r ' ; " l a - : T A B t ' O '

V ¡ " S - ; T A B Í 1 0 ! ••••. _
' S O ?RT»T : A S I ? 0 ) : " " " : T A ! I Í I O ) ¡ " Í O ' '

" - 0 íwp'fT "Tyn* -.1 "Ke number C5rr<
' » 0 'RIIT ?AG!

t'IPUT

IP
t o n . 4 •»?.» tSP
* 3 n .
t 3n*
t 7 n .

f>2C

S4Õ

'60

«00 tF ton .10 TSE» tSPU"
?on TÎ t o n . " -HP» 'IP'"
*^0 tF t s n . 1 2 THÏ» tNPtJ"

-SE* VALU:
"Mï« VAUT
".•uw Y*L:;E
•'^Ew -,'ALLf*

ÏAl i lü
VAlSt

A S ¡ r
" ¡ T A P I ' O ' ; " ?

ïH» :on îo

• ICB- lTABCO);-»- : -

'AP Í IO) ! "»CO' - :TA ! "
H IO I ; "304 " :
• ; T A B ' 2 O ) L " ' 0 - : T A B '

.Tl f Tl
,Soft ' .

Î AlSt , «
-i t !» ïAiuf. •>-.??( r
"VEW VALEI* " " . P # í :
MIFW VALUE **"* . Í l f Î

EI T p i » f
PÍIIIT l H ( : ; , - S o u r c « i l "- ; I ; I.THÍ I )
PRPIT " .íOtfPC? Ca *g

140
1=0

PRiyT 'ISTMO >4
?P.!ST - SOORC? 5 0 4

I , * a f D . K
Cl

USI»O : i O : t . ? o d l . C l ' r i , » » ( I l , P o ( I ! . 3 í í T ) . F » Í T )
í ' 0 PRTCTER ¡3 i«
0"C tílPtlT "AHÏ "CSE -3RR!CTT0»a * ( í í ! / « 0 ) " , 3 »
300 TF OS."YES" TfEI '20
• 000 I.1PKT "ta printout of tita l a t a p.qutraiC {YW/S0I- .5J
' T O IF 3»."YES" THÏ» Î03UB L u t
1020 T»PUT "PO YOU WAft* TOUR TATA STQREP I» A OA'A PT1E
1010 'T C«."TÍP" -HE» GOSUS Data
'O'l POR t . l TO rm««
'040 f«i -a(I) .?RrU'tt l (C«dl*.O4' l3 , -2) ! COCHITES »!0 PROU PP»
1 OSO rana-< 11 • pmMl»B( » • ( n ' . •ÏB22S, • * )

ii'O íqltí 11 .PRCI/S1K K( 11 • !o2ÍS7,-2l

• 0"0 !qoodl .PR00»t l (<; i i í I l» . ; Í i" , -2)

MIO •q«o(I).PROIJ«Ç(3Õ(Í;*!2J?"í'"'!

• i 2 ' » í t f r
I'2(1 mPtiT "Afí tna Jtq/1 valuaa -o ot prlntad- (ÏÏS/IIO)-,0u»atl
" 2 9 tt OuaitS.'IO" TBF» COTO '14?

" Copies of the program may be obtained on disc
(single, or double density) or tape-cassette for a nominal
fee by contacting Dr. Yoram Eckstein, Department of
Geology, Kent State University, Kent, Ohio 44242.
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wn
11ÇT

PRTÍTIR tS '-•jtprinter
PFtt»T LT»(2) ;-EOnTVALE»TP "Fu *'LI.IOf(; ' ; LT«f ' )
P R U T "SOURCE C a « , J . K « , ; „ .
POR T . t TO t a a i

PRI.1T 'ISTJO 1 1 4 2 : 1 , F q c a ' I ) . t q « f ' ! ! , S q n a í I ) , * q < ( T 1 , í q h o o / 1 )

PRINT "SOURCE CO CL 3 0 4 SO' ?C4"

POR I . ' TO taa i

I.'AOE 2 1 , 1 0 , 5 ' T I , 4 0 - 7 0 )

INPUT "Aft th# pareant v a l u t ! to bt p r i n t e d ' (YES/NO)",31
IP 3I.-YES" TñE» PRINTER t3 Outppirttei"
IF 3IO-YES" THÏ» PRIK'ER 13 14
PRINT LI»'2)¡"PERCEHÍ TF TD3:ÎEÛ.';L[N(1 !

i PFIMT "SOURCE «ca «Hi '»a-K ICI «SO *HCO APS.CC»C. IPR"

TOR I"l TO T i m ' COBPUTAtTOr OF <t

I

1
'100
•200
' 2 ' 0
1220
'250
'240
12TO
'260
12'0
'JBO
1290
• TOO

mo
'-Î20
i f lO
"40
"SO
p e l ' :
1'?O
1400
'410
•4 '0
1440
1450
'4Í0
14-0
1490
1400
•SOO
H'0
UTO
i«W
1510
•560

Tot nao •' I) «Toheo? I1 *-F.qpo( I )* íaoo í I)

Tan lo ( INTo^hcofr)*EqjoiT)*Tot"l(T)
Cat ( I )"Ca(I )*Hí l ' I )»»a í : ! . í : ( D « F e i t !

î d a ( : ) " c » t ( î ! . A n U T ! ' ' '
1 i u « d : « ; ; a ! ' I I - T » n l o í II

IP ! t i i i ! ) ( ! B H | ! l THF.» í i r d l . T a ñ í a ' I I - » - » t ( t '
IF T c í t í D í T a n l o d ) THE» !rr( I ) . i l f ( 11 /Hauaí 11 •• I
Pnaï(D«Totnalt(T)/Taat(I)*'00

P!ica!t)-Tottico(:)/T«ni"a(li*'00

»ÉÍT T '
PRÍSTÍR 13 16
PRINT PA0E:"íOW S B O U L O THE P O U T * 3 t PLOTTfP'
PRtST " HÜHBBR D I 3 P U Ï .«ETHOn
PStKT " 1
PRINT " 2
PRÍÜT • 1
PRINT " 4
P«:»T " 5
PRINT " 6

B i S R S

. ' O Ü T S Í . I "
ASTTRt3l tS ' ¥ l *
P L U ? " ! ' • ) "
'OtlXV 3 t f . » ' » ) "
L E T T ! » T ! ( ! ) •

I
PRÜIT P A 0 E : " ? 3 T E R PLOTTER DEVIC» KUBBER AS IN0ICAT5D
PRINT " HtlHBUR

moo
1602
'60"
.3a*
'«06
160T
1610
16'O
1640
15<O
'SÍÍ)
'S'0
1680
•poo
I'CO
•-10

f

PtïSD o

t»PUT P l o t t y p ^

t? P l o t t y a » - ' "Hf» 1*70

tp '3» . -Ñ0" TíEStlOTO 'SOO

CRT ' i cr» .
PLOTTÎR"

'?ET Pf» 3PFFT1 ?T ' W m / n i
•SET PEN ?P!E9 -C •'Cnm/aac

IP Oa«."»0- TS!» OUTPUT "Of:'VS'S-
IP Î « » . " t î 3 - TSE» OUTPUT •'O'l-VS'S
PRUT PAH»
tp P t o t t r p m TÏE» r.OTO '6fO

t»P'JT "!»TE!I ;|7TRBER OP TH» PEN T^ SE U3FH IN PLCVtSG ?-•"-»". Pena
INP'JT "P»TEP 'SE 1ITWBBR OP THE PF.» TO SB ','SED t i DRAWtV, "UE -,PAPH-.?enb
I? P l o t t y p a . i THÎ» PLOTTER tS '1,"5EAPÜTCS"
IF ? l o t t y p » . 2 THE» PLOTTER 13 - , t . " M ' ! A "
JRAPHICS
CSI3! 2 . . 1 • Cpaniea :ht B.IH1- -0 wii- ' ' ra-10 of s U a h e
TF ;?enb.O' A*?* ( P l o t t y p t . 2 ) THEN ",0TO 2620
PIN Penb
WV! ' 0 . 1 ' fRAWS -RTANf.LES
LT.IE TTPÍ '
FOR T r i a n d o ' TO 2

T? T r i a n g l » ' THE» «OVE ' O . '
: • T r : i n ( l - . J TH!» «OVE ' 0 , 1

I
I

- 5 0
COO
a 10

•»20
i^O
mo
fliO

'4^0
• 9'0

^ CO

i aao
JCO

• o iO
020

•O'O
' 5 4 0

ofo
o'O
1 8 0
o<)0

200"
2010
2020
20'0
2040

20S0
20->0
JOPO

2100
Jl tO
2120
2'TO
2140
'1 50
J'60
2' ' 0
2 ' W
2' 00
22ÕO
22'fl
2220
!21"0
2240
2250
2260
22'0
22SO
22<W
2100
2 H 0
2120
î ' 1 0
2140

1 . - 2 . S
• * 0

' ? T . ' THTt
IP T»2 TV?*

MRS 2
PCR I . ' —

wHERf X-T
PPAW T;~t
;p '•,'•
IF ; : . *
I? 'T.2
IF ( - . 2 '

'P (T«T

^ ' l X;t:

•IEXT T
Î'PXT - î - i a n a l f
.•OVÏ ía , 1 •

POR T.I TO i
t.Jn.2 .1
* * 4 , 1 1
' F ( T * 1 ) CP

p'"R i . t : : " •

DRAV X a o c e
• T [mm1> ^

:F ÍT.!1 :
JEXT t

NEXT T
LMR 0

LORO '
«OVE ' 0 . Î
¡.ABfl "<— Ca"
10VE * 3 , 2
LABEL "Cl — > -
LOrR 1 0 0
KJVE 5 0 . 1 0
UIEL " ! • * ( —
•WVE ' Î . W
LAP-E1 "<— Ci
MCV! ' 1 0 , 1 0
WPEl •<— K-
CSI'F. 2
LABEL - 4 - i
CSIIE '
U1TR *0
BOÏE ' 0 , H
uBEt "<— * : :
cs i :s 2
LA>W "i";
CSIZI 1

« •

* 1

. 4 (

¿rir
A;.D
t i l

*"i
;.iö
- i *

r y

l p
!

1"!

door
YÍ"OO

Tri*
f
(

f
l

t.

• • »

-1

í«-is '
R f

i*L

;

>** :

* i

;

• ;

Tril
Tria
-ria
Tria
Ycoo

rd+M
\tlt
nxle
^JflA
l'ia
ie*t 4
m i e
rd>'

TUS» L.

a 1

. 2
g >

,2
. <
• 2

2.
T«B» K.-4

' ) THE»
• m i ) THÍM

THS»
THEN
THE»
THE»
TH!»
THE»

3RAWS

•ï-t

LABEL
LABEL
LABFL
LAPSL
LABEL
LABP.L

DIACO

LABÎL U3I10 - ï
LABEL USIKS "f

LABfL

J 3 t S D
i'3t»n
yí r»o
us rio
USINO
l'ÍIBO

n

¡A"
: "/"

DIAORtU

K":"
t":-
ï";-

i t " : 1

r-:-
r" ! "

I
I

1
I



2"O
Î^O
2170
2*80
2"O
2*00
2410
2*20
2110
2440
2450
2460
2470
2180
2490

:^oo
2510
2 = ÎO
!5*e
2540
2í<0
2560

2561

:«ao
2590

600

•OÍE ' • ' . 2 7
LABEL - • CO";
CSIZE 2
LABEL - 1 * :
CSI2E '
NOYE 4 0 , ' O
LABEL -30":
CSIZE 2
LABÍL - 1 " ;
CSIZE i
HOVE 4 2 , 7 1
LABEL " . CL — V :
WYE ' 5 . 2 0
LABEL "N« . - > " •
LDIR 1

C3IZE ?
LORO 2
LABEL 'ISING ' T " : ? l t !
PS» ?*n*
P l o t . P l o t . l
7? P l o t » ! THEM COTO
PR1ST PACE

P r i n t t i t l t o f p l o t .

2610
2620
2521
26TCJ
2S40

7 « l n . l

ÍO'1 2610
I1PUT "At
P!» P -ns
INPUT "At >
FOR : • ; • ! •

THE»

*• o b a f f f v a t i o n s h o u l d r.*\* p l o t t i n g

7iai1

2660
2600
j'oo
2710

2̂ -!0
2^40
2~5O
2-M
2«S
2-90
2̂ 30
2900
2310
2920
2"0
2840

0

«OYE Ilíd).Tlf(I)
CStíí 2

PLOTS POINTS LE7T TRIAW.LE
CALCULATES t *•"" «iff • I ' P ' S E T
CALCULATE? X ?R0* « f « . Ca* - 3PPSE7

PLOTS ?0 !»T3 CN '75VT -R7AN0LE
CALCULATES Y ?RCN 3 0 4 * - OEÎSET
CALCULATES X 'ROM 501 • HC01«*0PPS*.T

PLOTS ?07*TS 71 DTAKONO
CALCULATES X ?S0« HCO.Na-K*
CALCULAT?? Y 'ROS HCO.1»»** - 'PPSET

2970

2980
2990
.'300
2910

2370

Y' 2)

MR : . r « i n TO ! u i l
Yrt l I ) . ? t o ( 7 • * . 4 7 i " ' - i

*OVS Xrt( 7 ) ,"f r t l D

P O R I - r . i n TO ¡ a m i

ÍOYÉ I d l h . Y a l t )

NEIT !
PEN 0
PEEP
PAUSE

IP Plottypa-1 -HEB INPUT "50 YOU WABT A CDPY ON •«» I1TIR1AL PRINTER?",DU«J

IP Dunpl."YES" 7E!» DV«P 7.RAPKICS
IP DuupJ.-YES" THE» PSIITIT LINI5)
PRINTER 13 16
PRINT ?AOE
INPUT -no YOU VANT TO DRAW CONCENTRATION CIRCLES ? - . C 1 - Í
IP C l r i . - N n - THE» '&20
IT C i r t o - Y E 3 " 7HÏ» l"10
I? P l o t t y p « . 2 THEN 7'I?UT "WHAT PPS ÜUNBER Í 0 YOU WISH 70 5RAW TH» CIRCLES •>

HPIIt -50 ÏOU WI3H THÍ

:.» Ana*' rtEK 12a0

LOT«ÏD ARITBBATICAL'.Y" I OR

' ; r ; l e . L 0 T ' : t J U « . ( I ! W

?0R A n « l t . Ó T " ' i 6 0 3TEP ' 0
DRAW *1f l U C i r o i f l ' S I H t An*!* 1 ,Ydf 7) -C i re l e 'COS I An»:»'

ippO "CVg '05 . ^
'030 LORO 4
'IOC LABEL "SCALE .'• CONCENTRATIOH CIRCLE S

'2 n L7HÏ TYPÉ a

'220
'2'0
'240
^250

'2P0

'"0
1140

1400
•410
1110
'440

'160

'480
1490

'540
1550
1560

16S0
1590

1601
'610
TS20
'610
1640
'150
1660
'670
1671

"S72
) i - 4 '

LABEL
*OVE 1
LABEL
10YE !
LABÍL
"OVE '
LABEL
C-CTO

' • -
0<î*4*LCT( 10) ,92
" ' 0 "

O V A » L 3 * M o n n > , B 2
-'ClOO"

AO
71PJT VHAT 7F 7 Í ! •?!>(. IBS. 7"!!ICÎ3?JATrn>lt»Hl) TO 3» '.'SES-.Aítn
IS PUT 'WHAT 7S - I E SAX. AB3. -OÜCrüTRATÏIIK.lEO) TO !E 'I3E3-,A««I

WYE H O . Ï i i r )
POS AinU'0 W '60 3TÍ» \O
3RAW Xfl(7!*Con»*3I!l(Annl.!,»d{7!«COB«*COSIAn(Ht)

ÍEXT Ami»
SEXT I
«OVE i l í . S t
LORO 4
LABEL "SCALE OP COWCEIITRAfTO» CIRCLE SAOIK»»!!)-
.10»E 05,11
LINE TYPE a

POR Í .0 TO *" STEP 6
3RAW 9Í -1 ,9?

NEXT 7
LIHE ÎTPE 1
LOSG 2
PITED 0
?0B l»0 TO Í

WÏYÏ 9^*1*6,80
LABEL T"'»»«I-««tn><i)*Alun

KIIT i
PE» O
PAUSE
IP Plott /pt"< THÍH tUPUT "3fl you n»fd A hard copy?( YES'BOl. " g u i l t s
ÍP 'au,.t»t>"TES") 0» !P l3 t ty»«<>' ) THIS 1S20
3UHP GRAPHICS
PRISTES 13 0
PRUT LI»! 5)
INPUT -I« i i u t l t i r s l o t or - n n u » dst> i n l i l ? ( Y I S / 1 0 1 - , ? ] o t l
!P Ploti<>"«0" TFE» SOTO t40O
EXIT ORAPHICS
PW1TTEF 13 Ia OÍP
PLOTTER 7.Î 13 OPP
PHIMTÍP !3 i i
PRIKT PAOE;-Wh>t muid J3U Uk» ÎO il now?- ; L U Í ! ) :TA»( 10) ;"PlnJ f l l l l m l i n
AB(10) ;" i - ; ÎA«( lO); -eorr«ct • 4« i« V«1Q« * Ptplot";TABU0);"3'
PRUT TAI(IO)¡-3tor« 4 l t « " :TAl(40) ¡ " " :TAP.( 10) ; "Dr«w 3 t l f f d l u r i H * :TAB(40
¡TAÍ(IO);-Eni( pro«rw*iTAB(4) i*

' 6 7 ' ;,ipi)T 3

'631 COTO T671
'''OO Efid:3T0P
1710 STOP
" S O LORO 5
i " 7 0 ;? 7 > . a r t » p « . l TKE5 LABEL 'JSIN5 ' ? - ; '
T * 4 0 7» CharTip»"1 T»E» LABEL IIS'IIO " < - ; • • •
?"ÍO 7? C f , a r t y p a . 4 THE» LABÍL ÜSI15 " K - j " . "
1^60 ; ? 7 h a r t y p « « 5 THE» LABEL 'JSIMQ " < - ; * # -
" I O ' 7 C h « r t y p a « 6 THE» LABEL U3I[ï(î - * : - ; " 0 -
T'80 LORO 4
1790 •? : h » r t y p « ' 2 THEN LABEL 'JSIÜO - Ï - : - . -
7800 RSTUR»
T86O Data:ISPUT "DATA WILL BE STORED II 1:14,13 THERE A "APE II -:14",Ans!
'S1*!) I? Ani».-TIS- THt» '930
1890 ÜASS 3T0RAOP- 73 ":T14-
'300 INPUT -JILÏ 1ABI TO 3T0RE DATA?", ?! 1* I I H I
1 9 1 0 CREATE P l l « r . u . J . I N T I t n » l * . 4*1 )
1 3 2 0 AS37O» II TO" Hit n » « « |
" 1 0 p e i i T E H 73 16
? « ' ! PRINT * t ; I » i
! 9 i o POR L i TO ¡ a »
' 9 5 0 PRINT *1 ; C » ( t ) , . 1 « ( I ) , , N a ( 7 ! , K I ! ) , H i ! o ( ! ) . C o m , c l ( n , 3 o ( I ) . V o i I l . ? n ( ! ; , ? • • I )
. S l ( 7 1
' 0 6 0 NEXT I
" 9 6 5 PRINT "SOURCE Cl 3 0 4 tIO' P04 ?» S i "
7 9 7 0 ?0R I . I TO ( « >
7 9 9 0 P R U T USING J l O l 1 , 5 l ( I ! , 3 o ( I ! . S o ' I' , Pol ! 1 . ? • ( I ) . S i ( I !
4 0 0 0 NEIT 1
4010 PR75TÎR 13 Cutprlnttr
10Î0 PRINT Tltl«Ii" DATA 3T0RE0 AS-,fila a«M«;"--contalnln« ":7«ax:" 10u'3»t"
1070 PRINTER 73 16
4040 D ISP "PFaaa SOntLnue to ppoeaad. 70»'-
40*0 PAUSE
1060 PET'JR»
1070 L i s t : ! THIS SUBROUTINE LIST -HE ??» VALUES
1080 INPUT ' I I th» dat» to ^e p n n t a d on th# prlnri t i*" .QueatS
1090 !? : u » i t « " ' Ï E S " THEN PRIHTER 73 Outprintár
1100 7? í u a a t í . ' N O " THE» PRINTER 73 16
1101 PRINT Ll»( 1 i ¡"PARTS PER MILLION: - :L7ît( 1 )
l ' 0 5 PRINT - SOURCE Ca if Sa Ï ITO' 7C

4110 NÏIT*Ï
4150 PHUT LIN(l )
H 5 5 P5I1T " 30URCÏ «1 301 TOI P04 ?* 3 i "
J i60 ÎOR 1.1 TO 7 m
4!90 PRINT U3IN0 240-, 1,011 11 . Soi I ) .Nol I ) , Pol I ) ,P»( I) ,S l( I :

4210 RE-'.'R»" '
4220 3V3EN0

4210 : s ;

!C t n '
10 PEW7SH - :T'«"
40 77*. lOaz.OutPrintar.Conc quvatS.Err t x t r a a a . S a v e j
50 "VÎPLAP
«0 ? ! • .11?)

?0 ? » H T E R ' 7 3 i* ' " " " '
aO 3'3'JB Output opi lona
! ^0 I * ^ S 90f - - T

120 7? "i«':yp».2 THE» Two way
" 0 7? V.xtypa*' THEN Tur»» way
'40 -?T? 70
'50 TrfO_way: IHPÍ7T "WHAT «TOL'.RANCE AWAY PROU A STRAIGHT LÍ1E 7S '7 3E ILLCV^S'"

'•"0 ;? ' u t p r i Ü - í r . í l THEN'PRIÍTTR 73 "•i -pf i lUír .WIirHli iEl 'AO-II'S"? 7?» A3:ï î
WIDTH

3 P 0 ? » ÍTRAI5H* : : « ! S 7N ALL THREE ?7?LD3 WT^klf I":Tol ;"«-

200 C' l .Tol / '^O

T>.n "••?. 3-A T^ 73»»
2'C ?^3 7.1 TO 7;ax
740 '~ 1 .3 7V57T =^0
250 77 C-A! ?" ?.3> THE» 5 ' n
260 " . s - .PMCIc ír - I íTol , X 4 ' • ! .Ydf • ) .A .3 .C ' ' CHTflJtp ^tAi*^VD

2Q0 I? " » l t « : 7"TN 560
' 0 0 • f a t . P » C « ï V - ' ? o l , X r t < * i . T r t " ) 1 A , B , C ) ' • CHECK3 I t ~?mlir,l*

' 40 L ¡ í ^ 3 Ó R ( ! T : ; ' A ) - l ! l f ' C ) ) ' . 2 * ' Y - . f Í A l - ' " . f ( C ! ) A 2 ) ' ' ¡ IDS 3 71 1'PT 737
*Ç0 ' Ï " * 3 Q R ( ' T l f ' 3 ) - T l f (C) )A2*( Ylf f B ) - Y l f IC) )rti) ' PTKOS li 7N L7PT *P'
" 0 l l . - - .SORI'T-- 'A)-Xrt(C~: '>2->(Yr' : !A)-Yr > IC))A2! ' 'TIP* « I PT. " ' •
' - 0 :>r;.30«( ' X r t i B J - X r t l c l l ^ î . l ï r t l J l - Y r i l O M ! ) ! priOS » 7N »T, '»•
'90 Yi-L!in*J«u= S' ' YOL!""» IP I 71 7
*on '.•«•Lan*!taiii!'A> ' J J 1 " " 1 P , > ,','• '•

J10 ?íi7a/Yooiat ' *Á 3P ".IX 7
4Î0 ?^-n/1saat ' *B OP "TX C
4'C Ti.PROIÎVD; í:f4inf A)*1aua(B)*II,ad+LDÍ ) / í L(ut**íua( A)*Lbrt*Naualí M . - 2 ^ ' PTlIIi3 fN
440 "-rroi*»a«' Ts-ivimlC ) ) /»aua í C ) » i f i ' ' 77NDS < FPS^R TM

4*iT ' a l - . L h l . - ^ t u o i B ) 'I Lal f *^BUlt A)+Llilf**luBt Bl ) ' • i ' ip!' VA 7N LP 7 ? '
160 •;;•.:.Ulí*1JH«(A)/IUl».Nau»IA).LMf»!llu»(B1) ' PI'03 »B 71 L? "V
17!? '.->rt>L»ri*trMt9)/'l«rt*!(aaa(«ulbrr>>aua(P)) ' PI""S ''a IH PT TP.ï
l»0 •.»r-«tart"llu»IA)'II,»ft>l'au«(Al.Lbrt'»liUM(I)) ' ?'»HS Vi 'V =T - • -
4O0 - - - - t l t t . P R — ^ r H T o t M U c ( A ) - Y « l f - * o t n , | c l ? , | ' Y * l f . - 2 ) ' PISOS Ca O" »a» ï
=00 7- - - l í .PPC"":ITotol lA)*Yart*»ot = '-IB1 .»bF':.-2) ' °!1"S Cu ' ? Cl
«'O - :--ot.??,C'. I7'rlTotnoo(A)»Yart»Tothcol3l*Yl1rt,-!) ' PINOS C. 7» *:j*»CO

*'0 Ijs**•PRO'*1ií'í^aítí A) *v»If+P^a»l 3)*Vblf , - 2 } ' ?T»D? Cm ''? T'
54.1 íílot.PPC'VtT' TqíOÍ AÍ.Viri-^PqaoíBt'Vbrt . - 2 ) ' ?TNDP Cal "7 ?~1
550 "Í7.L Í* l5 sinlTotnnltt.Totrlt.TstíOi-.Eacufl.fqBMU.Sqaoc^a.Parropnwk. ?»rrorea
.^aur • ' ,Tat(íl~* .Toínakí* 1 .Tathcol *) T?.qií4(»! .Eq««l*l ,Eqt3Í - ^ A . H . C . Í . Í . P i t . ' t . 0 )
^60 "*3P "S»»r-.-.rn* oonp l t t td on p o i n t l ! * : A ; - and ":3
•j'C- tTIT C
'so vriT s
S30 1EIT A
600 " I N ? L 7 f 7V :*ABÍ 10) 1-N/A • Ho*i a p n l í e n M » no two íioaponpnt a u l f l * " : LT1( ' )
610 :»71T -ÍEA?7» IS COHHE'ED-
620 'P7NTÏP. 7? ' i
4'(> ,i-iT pAO'!"Wh»t would you I l k » -o 10 now?- ;LtN' ! ) : 'AJ(IOl : - '2 -W«» i i « n » - : *
ABÍ1™1 :""*:?A3' ' 7 ' ;-"'*¥*• B l l i n * " ; TAP 140' :"2":"»B( !0 ) :"S^O|*# •!?••." :*ABHA 1 :
*40 ?»í»IT "1":?Aï i 101 :-Enrf pro^raB-jTABdO) :"4-;TAP( 10) ;"Chnn»i* output ^pi-iona"
¡TAJÍiC 1 ! -»"
Í50 7NPUT g
660 ' 1 fl OnTC Two wny,*hr#* w - y ^ t o r ^ . T n d . i u ' - p u i :
í ' C T*.i: 9?0P

Í3C ÎC7? SÎO
' 0 0 "r^^put: 'rCS^Î Outpu" o p t i o n a

75



-'O *>>rse_«ay: P!X!O O
"40 Typa.'
-so PP'IT'R :? outprlntef . ï I 5 * R ( " 2 l
-60 POR *•' TO l«iii-3

-90 TOR
•"HO
'00
aio

360

910
930

3Q0
'000
;nio
loso
'010
•010
1050
'0ÍO
'O^O
10S0
'090
1 '00
I' 10
" 2 0

10
40
50
50
70
90
«

'200
'3'0
1220
l!*0
1240
'250
'260
IJ-'O

T3S0
'290
1?OO
1710
1730
ITO
1740
1750
MÍO

P ' 0 . » ) ^P ( 5 . 3 ) ?V!B ' 4 5 0
re» :« i "O : a « i

THRPff ?9T1T *TTÍ*rt

P M n t s A,3 snfl O aatte-ue
th» "-tantrl f . Point -
la b e i n * t e a t e d .

ï ï i t HSH 4 0
í iLL í n t - r a a - t l o n ' ' A , 3 , í . • * , ' • " « , . ! •» y . T o ' • >
l a » * i . V Í » i

:*<i«70*f ( XTTA)-Ü«wd < ) ^ 2 * ^ 1 ' A UHevd y W )
£ b i ! « S Q R ( ' I d ! 5 l - ! « i w < l ~ « W - ' 1 ï - ! Î P . l - ! C e » O w :

* H - « ? ü » l l " ! X r i ' * ; , f r t ! S ' , t r ' . Í3) , t r t ! : i , r r *
:? T « a t . ' -HE» ' l ' O

()

-ha 'ín • variable

! d . n o t e s flha í e a r d .
' 3 f ' h ' r r o j a c t a d p t .

) , ï f t ( B \ f r t l O h l r t l Í M

•/b.I.ad*Ssumi'AI
CALL Interaeeti
lewrt i.Se» i

y ,Xrtí *l , ï r t f -

:» T m . ' TUF»
SALI rnurssct . : , 'H» i,»»» ¡ r , t l f ( * i . T ] * ' * ' i

üblf.S0R(!Ilf(31-S«wif"l)*2-:Tlf!B)-ll.wlf_yl*3)
i .a t , , ' , . ,
7bl'¡laLÍ*»l"¡<A)/ÍL«lfMl"«ÍA).Lblf»»*ii«(B|)

7br"'.tarí#»aua(A)/(í»rt»ÍliuaiíAI»Líf!*!I«in(5)l

J!T.P!tOUHDÍTotnaK(A>*ííl.'-?atnakíB)*Vbir.-2)! TVESE ARÏ "»P C5KC.
•" l*7brt , - í l ! AT -HI PRO.J

3 ) * v í r t . - 2 ) ' I I ( P0IST3
•ïbif.-s'

)

"SIUO ?9C

•ri » p r» t

ï a r l b r t I a / d i i u a i D I l » )
Vbrt -UrtM»m( 0) / ( L»rt»ll»ua( D WLbrf * î« )

( S ¡ ) i d " l í

TotoltPROirailTocKD^triXnrt,
*atfiat«PR0I7TfD( îotheof D) #7»rt+Totcot#Tbf t , -2 )

U l t D ( í í l ) l f I V 1 t I )

" Ï 3 I ABI ÎR1 COltC.
ÏXPSCTED AI n . c

alxiT
:

a l i r t E q i . J )
Ji^tTatelt.Taccat,Eqctt>Sqaff^.*qiat,Ja,Pvrrornmk,P
( # ) . T o t M o ( ' > , ! ( 5 a f » ! . ! q M l • > . ! ( » ' • ' . * • ' . 5 . » . ' . »

c o a p l t t t d an p o i n t a : " ; A , 3 , D

1780
1790 B
1400 Si
1 4 ' O I'
'420 CALL
,Ssua( • ) .TOtcH
U 7 0 HÎIT :
1440 DI3F "3
1450 HBET D
1460 HlXt 3
' 4 7 0 SÎXT A
'480 nt.t
1490 OOTO 610
1500 E»0
1510 !
1520 Output apttons:?RIÍT PACÍ-.-Do you *ant thoaa t ib ia* whara "ü* lonoantratlon
of tha mixture point la too high ut too low to ba conalíarírt a at ï tura ";

'5 '0 PRIKT T a a u l t i n , f r a . ! M »nd aaabara In the printed autpiit? (TÎ3/»0)-
'540 INPUT Cano quMts
1550 PRIKT ?AOE7"Do yeu want Individual Ian coneentratiena printed along with th
ñ f ç tj|£ îOnotfrtîraiÇtonaT^ ' TE3 / WO I **
'560 HP0Ï Sav.J
1570 PHIKT PACE:"What sdauld tha cutaff « l u e ba Tor aailnua aoneentraUon arror

'580 I1PUT ',rr e i treaa
'590 PfltS? PAOÏfVhat output device ahould ba uaad for prln+e<t output. (AOItE 1'
.tharaftl artdter O"

1610 HKTflfl»
1630 STOP
1 6 7 0 ü a t e i I S P ' J T " D A T A W i l t S í S T O H Ï » i l T : ' 4 . I 3 T R Ï R I A T A U : • 7 : 1 4 " . A n a »
1640 I? Ana*.»"ï!S" TH?H 1660
1650 :t AnaiO'TES" THM 'S70
1660 MA33 STORAM 13 ":T'4"
'670 THP'JT "PILI KAHÏ TO STORÏ DATA7- .?Ua n a » *
'680 CRP.Att P i l a naaeS,IHT' ! a » i » - 4 » l )
16°0 A3310» (' TO" Pila naaaS
'700 PRIKTER ;S 16
1710 pRr*T 't : laai
'720 PRIHT • 300RCÍ Î1 •* "a K
r
1770 TOR I.I TO :««t

,31(1)
1750 PRUT'jaiHO i'o;:,:»(n .f«(i),Ha(:).ir(i).i!oo(i).co(i)
'760 I B ! I
1770 PRIKT " SOURCE Cl 304 '05 P01
1790 POR T.I TO "aai
1790 PHIHT U3IK8 110;[,Cl(I),3a(I),Io(I).Po(I).P»(D,3l(I)
'800 «EXT I
1810 PRtHTER 13 Outprintar
'830 PRIKT "DATA *!*3tOHID A3".PUa naaal!"— aantiinlnf ";
1870 P«t»TIR 13 16
1840 3I3P "Praaa cont inua to pracaad. COKT*
11450 PAUSE

NC05

Pa Hi"

i960
1870 (IEP PKCltíptKTal.SHORT
"MO DM
1890 Teat.3
1900 t .0
19'0 IP X(A)*Ï(J)) *Rt» An^l<
1930 IF K A ) . X ( B ) THE» H.99'
1970 IT X ( A I . I O ) TIIIK 'WO
<940 IF T U ) . I ' , B ) THE» A n « l a r . 0
1950 IP T ( A ) . Í Í J ) TREK 11ÃO
1960

) , M A I A,)>,C)

I9TO Anclar.AÎK(.I)
1990 H.r (A) -»«T(A)

3000 An»lai.oíl-ABS(Anula»)
ïOio IF ABilaT-90 T » ™ Ttal-Tol-t

76

nataralnaa If solfie c
tc l i t i « on lina AB

BtCEPTIO» W« 90 3WPÍ
fltCIPTtO" PHR 90 SW«(t
PUCEPTTOR MR 90 3L0PP
JICIP-IO» POR O 310PÍ
¡ICÜP'tO" MR 0 SLOPE

' I S aiOPJA O
7tRD3 AH1LI OP 3V>n

TP RCrP
PtKOS LKROTH Of it»»
PtKDS COUP- AK0L1
HCIDS /O

2020 IF An(lay«90 THî» 2040
2070 ïtoNTol'l /COSIAnslay) ' PTVDS r TOLPÍABC!
2040 IP An/çlay.0 THE» ttol«?al*L • AVCTDS O
2050 IP Anil«y-0 THEK 207(1
3C6O Xtol*7ol*L/C08(Anilaa) ' ?r^D3 X T0L7.RAHCÏ
20-0 I? ^i?al»T6.6O TH?K Ttal*Tal*41.iO • CHyOT? CL;rS**R
2080 I? Li?al*9.6.60 "HP» I l a l . * » l » l « . 1 0 ' CHECKS 71,1'ST'P
3000 IP X' í )>!IAI¡«¡A) .I ¡B)) .X«l THEK Tej-.I • 5ET3 t 'AT 3F WHpnï
2'00 IP ríCKKIKÍxÍAl . l lBÍl .xtal *HSÏ Ttat.l • Í3TH ï » ! • -? íUDÇw
at 10 : P Y'c'>«AX(T[A).r!B))*rtoi THEK ra j t . i • arrs r »AX 1? wsoow
2'2O 1? f:c; iMtHCf(A).r(B))-rta! THTK r-5>,i < s™5 r « T ' n? «TÍCPW
2110 r? Anglay»90 WF.il 2140 ' AVOIDS '0
2110 :? r t c i i n ' T t c l ' H ' ï t o i :KEK T » H « I • CH!Cir3 r ^TSTAIICS TROC : m
2150 ;? »(3)f"»ï(C)-K-Ttol THTK T»at.l 1 CÍECK? ï 3TS"Aílcí PROU LTSK
3160 IP AnjHv.0 THE» 21CO ' AVPt33 '0
¡fO ".f X¡Í !>*r(C)-») /S . I ta l TBJ!» T n t . l ' SHSnCS T l)'ST«»Ct ?»3C i l l !
2190 '.1 X(CX(T(C)-V)/"-Xtol TîtEt Te j í . ' • CHSCKS Y 313-AHCÎ ?RH« ir«P.
2190 ÎSTOR" T»at
2 200 MTHÍ
22'O 3UB rnteraacMan(A,S .D ,C, ! t»w i . i av_r .2H0RT ! ( • ) , » ( • ) ) ' Subrout ine ruina -h»
2230 OPTIO» BASE 1 ' l i i i f u c t ' . o n e f 2 Linea.

¡ 2 4 0 IP X'AIOXÍB) THÜK 0 , n o » b « X ( AI -X(3 l ' Avoidj I t v i s i o n ty zero
:25O !P ( ' ! ! ( ) I I D ) TÏÎS Oanoael-xtc1-XIOI ' «nd i n f i n i t a a l o p . a .
3360 IP Î(A)<1T(B) T ' I t « u a « b . r ( A ! - r ( 3 >
33 7 0 IP r ! t ) » T ( [ ) THSK Ku»5d.Y(C )-T( D)

3700 B j i i — i M ! t l « T ( A ) . ï ( » ) )

2 7 ' O B Í 2 ! — i « ' 3 ) * X ( D I - r ( D ) S
3'3O Naw i . / 3 ( l ) - 3 (2 ) l / ; . « f2 ) - » ( l ) ) : I n X-T coordmtes
277" » « • > . . « ( 2 ) * » a « H-BÍ2)
3 '40 5113SVD
2750 DF.P PHHUÎtSHORT Xl.XJ . l l i . i l . ï i . ï j . T ï . ï l ) \ De ter i ln i ia i f 1 point C
2760 Slopacî i tekf ' 1-Xl-Xj ' '.a Located w i t n n a
27TO S l o p a o n a a l t ( 2 ) - T l - ï i • t r i ^ n « l « roraed hy pta
2780 3lopaohaok(7)*IJ-Xk : A , ! J 3

2400 3lopacnack(5)'Xk'Xl

2420 FOR Í.I TO 5 STEP 2
2170 :ipfl«d«O
2440 :F 'siapasnaekCOOOl A«P (slopacsaoKH*! l o o ) TÍS» îOS'.'B Pea
2450 I? Zappad.l THSK 25iO ' Zapped la tat -a one ;n
3460 I» 31opaonaolt(»)aO TKEK 50SU» 7»rt ' th» lubrouttna if •»•
24-0 t? Zappad.i THÎK 25'O ' point : ia lu t ï lde -h»
2480 :7 S'.opaohackl^H.O -Hï» 0031/3 "or ! rrlanî la ABD.
3190 ;? :«ppad.i ÍHTK 3510
2=00 ,ïH7 1
25'O SÍT'ÍPH ^appad
2520 Foar !f.3lapaohack(1ï*.i )/31ap*ïehacK("*) • "oaparaa saint "! vi*n a

3540 'Û HI7 THP» 50*0 35»O >. inî'poln* • ?*•:ne'"by'"
2550 Bllna..(S*Xk.fV) ! anaainma -h . T ln-.roapta
2560 Bcoap.-i••XJ-ÏJ)
3570 MT0 3«'0
35*0 Bllna—!.««XJ.Ï1)

2600 30T0 2670

2620 Beoap.-iVXk-rk)
2670 Staat—'««Xl-Tll
3640 It •••Jtííliru) A»0 'BcoapOlin»! T°*lt :>ppad'<
2650 IF ')!.it<)ln>I AKD ( BooipJBllna) THES Cippad.'
2660 RITORÜ
3670 fart : :p K.1 THIK Bllna.Xl ! 3a»a. bu' with v«r t l -a l ' i ™
Í680 IF ï . i THBI Boaaa.Xk
2690 I» KV TBEK Bllna.X)
3-00 TF M. ' TM» 3ooa».I l
3710 IP ••< "»IK Bcoop.Jti
2720 !• «.« THÎX 3U.1Í.XÍ
3770 IP ITKBllna) A.fl) I3coap>31lna) TÍE» :appad.l
2740 IP ÍXl>9Xtna) ASO (»eo«p<Bllna) Î3ÎK lappad.i•
27Í0 RETUR»
27«0 Har: :* • • ' T"ÍK Bl lna .r i ' i u i . buî «ttn hoMzonul : i l l l
27-0 IP K.' TSF.» 3ooa=.ïk
27«0 I» "•" TSE» Blina-Tl
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APPENDIX II. INPUT AND OUTPUT
The data analyzed by Piper (1953) was

chosen as a test problem to evaluate the validity of
the computer program. Both graphical and compu-
tational results were compared. Table 1 lists the
water chemistry of the eight water samples as
presented by Piper (1953). The sample notation
used in Piper (1953) and the computer program
sample numbers are both listed.

We could not discern any difference in loca-
tions of points on the manually produced graph by
Piper (1953) and the computer plotted graph
(Figure 10). Comparison of percent-reacting values
tabulated by Piper (Table 2) with the values ob-
tained as an output of the computer program
(Table 3) shows very minor discrepancies, caused
by difference between the values of atomic weight
used by Piper in 1953 and more accurate values

Fig. 10. Graphic output. Numbers correspond with
"Source" in Table 3.

Table 1. Chemical Constituents Analyzed by Piper (1953) - Input

Constituent (ppm)
Piper identifier: Al Bl b l A2
Program identifier: 1 2 3 4

a2
5

B2
6

b2
7

C
8

Calcium (Ca)
Magnesium (Mg)
Sodium (Na)
Potassium (K)

Bicarbonate (HCO3 )
Sulfate (SO4)
Chloride (Cl)

39
10

47

204
24
16

40
10

52

207
21
32

39
11

56

204
26
32

102
19
54

3.6

203
6.7

199

42
22

152

203
49

199

466
77

255

166
0

1346

65
98

808

199
207

1346

393
1228

10220
353

139
2560

18360

Table 2. Percent-Reacting Values Computed by Piper (1953)

Constituent Al Bl b l A2 a2 B2 b2

Calcium 40.4 39.3 36.8 56.0 19.9 57.2 7.0 3.4
Magnesium 17.1 16.2 17.1 17.2 17.2 15.6 17.3 17.6
Sodium + Potassium 42.5 44.5 46.1 26.8 62.9 27.2 75.7 79.0

TOTALS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Bicarbonate 77.9 71.7 69.9 36.7 33.4 6.7 7.1 0.4
Sulfate 11.6 9.2 11.3 1.5 10.2 0 9.5 9.3
Chloride 10.5 19.1 18.8 61.8 56.4 93.3 83.4 90.3

TOTALS

Source % Ca**

100.0

Table

» M , -

100.0 100.0 100.0

3. Percent-Reacting Values Computed

%<Na* + K*) % Cf % SO¡'

100.0

by the PIPER

% HCOj

100.0 100.0

Program

Absolute
Cone. (TDS. mg/1)

100.0

% Error

1
2
3
4
5
6
7
8

40.54
39.37
36.86
56.00
19.96
57.17

6.98
3.42

17.05
16.14
17.01
17.16
17.21
15.56
17.35
17.59

42.41
44.49
46.12
26.84
62.83
27.27
75.67
78.99

10.49
19.03
18.83
61.78
56.33
93.32
83.38
90.31

11.66
9.30

11.30
1.54

10.24
0.00
9.46
9.29

77.86
71.67
69.87
36.67
33.43
6.68
7.16

.40

9.10
9.81

10.07
18.17
20.48
81.36
91.99

1147.75

5.71
3.57
5.06

.06
2.73

.02

.99

.06
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Table 4. A Portion of the Computer Output of the Test for Mixing Systems
CHECK FOR MIXTURES FROM 2 SOURCES
THESE SOURCES FORM STRAIGHT LINES IN ALL THREE FIELDS WITHIN ±2%

Ion

CONC.
Mg
Ca
Na+K
HCO3+CO3
SO4
Cl
Mixing Factors

Ion

CONC.
Mg
Ca
Na+K
HCO3+CO3
S04

ci
Mixing Factors

Ion

CONC.
Mg
Ca
Na+K
HCO3+CO3
S04
CI
Mixing Factors

Point #i

9.10
.82

1.95
2.04
3.34

.50

.45
99.91%

Point # /

9.10
.82

1.95
2.04
3.34

.50
.45

98.94%

Point #1

9.10
.82

1.95
2.04
3.34

.50

.45
92.34%

Point #»

1147.75
101.02

19.61
453.60

2.28
53.30

517.94
.09%

Point #8

1147.75
101.02

19.61
453.60

2.28
53.30

517.94
1.06%

Point #8

1147.75
101.02
19.61

453.60
2.28

53.30
517.94

7.66%

Point #ƒ

N/A
N/A
N/A
N/A
N/A
N/A
N/A

Point #1

N/A
N/A
N/A
N/A
N/A
N/A
N/A

Point #1

N/A
N/A
N/A
N/A
N/A
N/A
N/A

Calculated
mix

10.14
.91

1.97
2.44
3.34

.55

.92

Calculated
mix

21.12
1.81
2.12
6.48
3.33
1.06
5.92

Calculated
mix

96.32
7.97
3.21

34.27
3.26
4.55

40.18

Point m

10.07
.90

1.95
2.44
3.34

.54

.90

Point #5

20.48
1.81
2.10
6.61
3.33
1.02
5.61

Point #7

91.99
8.06
3.24

35.15
3.26
4.31

37.97

% Error

.70
1.11
1.03
0.00
0.00
1.85
2.22

% Error

3.13
0.00

.95
-1.97

0.00
3.92
5.53

% Error

4.71
-1.12

-.93
-2.50
0.00
5,57
5.82

N/A => Not applicable to two component mixing
SEARCH IS COMPLETED

used in present computations. These discrepancies
are also due to differences in precision of calcula-
tions of the percentage-reaction values. Table 4
shows an output example of evaluation of a
mixing system.
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C O M P U T E R
N O T E S

TRILINEAR DIAGRAM REVISITED:
APPLICATION, LIMITATION, AND AN
ELECTRONIC SPREADSHEET PROGRAM

by Songlin Chenga

I

Abstract. The trilinear diagram has been used extensively
in hydrochemical studies. The concept of hydrochemical
facies based on che crilinear diagram can effectively charac-
terize the chemical composition of water in a qualitative
manner. However, its application is rather limited for
quantitative and precise study, because it is difficult, if
not impossible, to distinguish various mechanisms that may
cause similar change in water chemistry by this diagram
alone. This limitation is illustrated with various hypotheti-
cal water-rock interactions and mixing trends plotted on
the trilinear diagram.

Introduction
The trilinear diagram (Hill, 1940; Piper, 1944)

has been used extensively in hydrochemical studies.
It effectively delineates the change of water types
as the water migrates from one region of an aquifer
to the other. In case of mixing between waters, the
data distribution on the diagram may reveal the
end members of the intermediate mixtures. Simple
mixing between two end members should result in
a straight line in all three fields of the trilinear dia-
gram, provided all ions remain in the solution.
However, the assumption that all ions remain in
the solution may not be valid in most ground-water
systems. For example, dissolution and precipita-
tion of minerals are rather common in ground-

a Laboratory of Isotope Geochemistry, Department of
Gcosciences, University of Arizona, Tucson, Arizona 85721.

Received April 1987, revised December 1987,
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water systems. Any post-mixing reaction may
cause deviation from a straight mixing line. Besides,
a straight line may be caused by reaction, rather
than mixing. Therefore, identifying a mixing situa-
tion from straight alignment on a trilinear diagram
is not an accurate approach. In this paper, the data
distribution on the trilinear diagram as a result of
water-rock interactions and mixing will be
illustrated.

The speed and accuracy of computer plotting
can relieve the tedium and remove the chance of
error of hand plotting. Morris et al. (1983) pub-
lished a BASIC program for plotting data on the
trilinear diagram. This program also checks for the
possibility of mixing. They applied the tangent
function to convert a tertiary system to X-Y
coordinates. In this paper, a sine and cosine
function set for coordinate conversion are pre-
sented. This approach has the advantage of
assigning 100 units to the side length of triangles of
the trilinear diagram and easily scaling the diagram
on the X-Y coordinate system.

As it is becoming increasingly common to
maintain chemical databases on electronic spread-
sheets, it is desirable to be able to use the same
database for various applications and manipula-
tions. Based on these considerations and available
programs on our computer the LOTUS 1-2-3 (TM)
is ideal for trilinear application, as it has the
spreadsheet, plotting routines, and capability for
programming. The macros on a floppy diskette and
users' instructions are available from the author
upon request.



sot+ci

No+K HCO3+C03 Cl

Fig. 1. The trilinear diagram. The cation and anion ratios of
each sample are plotted in the cation (lower left) and anion
(lower right) triangles (points a and b, respectively). The
data point in the center diamond field is the intersection of
the lines extended from the ion ratios and parallel to the
sides of the triangles.

The Geometry of Trilinear Diagram
Hill and Piper's trilinear diagram (Figure 1)

consists of a cation triangle on the lower left, an
anion triangle on the lower right, and a diamond
field in the center. The equivalent percentage of
cations and anions are plotted first on the corre-
spondent triangles (points a and b, respectively).
Lines parallel to the sides of the triangles are drawn
through these percentage points and extended into
the diamond field. The intersection (point c)
represents the sample in the diamond field.

Referring to Figure 2, if the triangles of the
trilinear diagram are drawn as equilateral, the
mathematics of computation will be simple. If a,
b, and c on Figure 2 are sample points on the tri-
linear diagram, then the triangle cde is equilateral.
The tertiary system can be converted easily to two-
dimensional X-Y coordination. The data points in
cation and anion triangles, and in the diamond
field are then located by correspondent (Xi,Yi)
pairs. If the lower left apex of the cation triangle,
f, Ís located on (20,20), the X-axis runs parallel to
the base of the triangle, and the Y-axis is perpen-
dicular to the X-axis; then, ion ratios and (Xi,Yi)'s
on the new X-Y coordination system have the
following mathematical relationship (assuming side
length equals 100 units and spacing between
triangles is 10 units):

Cation triangle:
XI = 20 + fg = 20 + fd + dg = 20 + fd + ad X sin30°

= 20 + fd + fh X sin30°
= 20 + (Na + K%) + (Mg%) X sin 30°

Yl = 20 + ag = 20 + adX cos30° = 20 +fh X cos30a

= 20 + (Mg%) X cos30°

Anion triangle:
X2 = 20 + (side length) + (spacing) + ij + bj X sin30°

= 20 + (side length) + (spacing) + ij + ik X sin30°
= 20 + 100 + 10 + (Cl%) + (SO4%) X sin30°

Y2 = 20 + bjXcos30"
= 20 + ki X cos30°
= 20 + (SO4%) X cos30°

Diamond field:
cd =

X3 =

Y3 =

de (equilateral triangle)
[(side length) - fd] + (spacing) + ie
[100- (Na + K%)] + 10

+ [100- (HCO3 +CO3%)|
[100 - (Na + K%)] + 10 + [SO4% + Cl%]
20 + fd + cdX sin30°
20 + (Na + K%) + cd X sin30°
20 + cdXcos30°

Fig. 2. The tertiary plot of trilinear diagram can be converted
to X-Y plot by trigonometric function (see text for detail).

The apex, f, can be any convenient location
on the X-Y coordinate system. The trilinear
diagram macro locates this apex on (20,20), and
therefore, 20 units is included in each of the above
equations for calculating (Xi.Yi). The spacing
between triangles can be other than the 10 units
selected here.

Application of Trilinear Diagram
Many graphic methods are commonly used

for representing hydrochemical data, such as the
Schoeller diagram, Stiff diagram, and Hill and
Piper's trilinear diagram. The trilinear diagram has
the advantage of representing multiple parameters



Table 1. Chemical Compositions of Water Generated from Computer Simulation with the Program PHREEQE
[See text section "Application of Trilinear Diagram: I. Gypsum Dissolution" for detail. Ion concentrations are in meq/l.

This table also includes the column designation (alphabetic) and row number (numeric) of the worksheet.]

1:
2:
•i .
j •

4:
5:
6:
7:
8:
9:
10:
1 1 :
12:
13:
14:
15:
16:
17 :

A

SAMPLE It

END MEMBER
A+GYP1
A+GYP2
A+GYP3
END MEMBER

END MEMBER
MIX1
MIX2
MIX3
MIX4
MIX5
END MEMBER

A

B

A

B

B C

.TEMP(°C)

22.50
22.50
22. 50
22.50
22.50

22.50
22.50
22.50
22.50
22. 50
22.50
22. 50

D

PH

7.40
7.46
7.42
7.39
7. 36

7. 40
7.39
7.38
7.38
7.37
7. 37
7.36

E

ALKAL.

2.82
2.88
2.85
2.82
2.79

2.82
2.81
2.81
2.80
2.80
2.80
2. 79

F

S102

0.55
0.55
0.55
0.55
0.55

0.55
0.55
0.55
0.55
0.55
0.55
0.55

G

Ca

2.54
3. 10
3. 57
4.04
4.51

2. 54
2.94
3.33
3.53
3.73
4. 12
4.51

H

Mg

0. 34
0.34
0.34
0.34
0.34

0.34
0.34
0.34
0.34
0.34
0.34
0.34

I

Na

1. 16
1.16
1. 16
1. 16
1. 16

1. 16
1. 16
1.16
1. 16
1. 16
1. 16
1. 16

J

K

0.04
0.04
0.04
0.04
0.04

0.04
0.04
0.04
0.04
0.04
0.04
0.04

K

Cl

0.23
0.23
0.23
0.23
0.23

0.23
0.23
0.23
0.23
0.23
0.23
0.23

L

S04

0.66
1. 16
1.66
2. 16
2.66

0.66
1.06
1.46
1.66
1.86
2.26
2.66

M

N03

0. 11
0. H
0. M
0. il
0.11

0. 1 1
0. 11
0. 11
0. 11
0. Il
0. 11
0. 11

of a quantity of data on the same graph without
losing clarity of data points; therefore, it is the
most frequently used graphic method for hydro-
chemical study.

Because the locations of the data points in the
trilinear diagram reflect the chemical characteristics
of the water, the concept of hydrochemical facies
is frequently used to describe the chemical
property of water. This concept has been discussed
in many hydrogcology textbooks. The concept of
hydrochemical facies is very useful to illustrate the
change in chemical characteristics as water migrates
down the hydraulic gradient. The trend observed
on the trilinear diagram would give an indication of
the type of reactions that are responsible for the
change in a qualitative way. For example, dissolu-
tion of gypsum (CaSO4*2H2O) may change a
Ca-HCO3 type water to a Ca-SO4 water. However,
it is dangerous to define the mechanism responsible
for the change of water type solely by the trend
observed on the trilinear diagram. Alternative
mechanisms should be considered and tested by
other means.

In addition to the concept of hydrochemical
facies, a straight line on the trilinear diagram may
indicate a mixing system. Recently, Morris et al.
(1983) published a program in BASIC which plots
a trilinear diagram and tests for the possibility of
mixing. The two end-members mixing line bears
the assumption that all the ions remain in the solu-
tion after mixing. Therefore, a mixing line conclu-
sion hinges on the validity of this assumption. Pre-
cipitation, dissolution of minerals, and ion
exchange reaction are very common in natural

water, and they may cause deviation from a
straight line. Therefore, it is risky to base a mixing
conclusion on a straight line on the trilinear dia-
gram. Besides, pure mineral dissolution can also
result in a straight line on the trilinear diagram, i.e.
a straight line on the trilinear diagram may not
definitely indicate mixing. Therefore, this
approach should be used with great care when
searching for mixing in a ground-water system.

In order to illustrate the above generalized
statements, we used the computer program
PHREEQE (Parkhurst, Thorstenson, and Plummer,
1980) to generate a series of water compositions
along mixing and/or reaction trends. Two mixing/
reaction paths will be examined in the next two
sections.

/. Gypsum Dissolution
Gypsum (CaSO4- 2H2O) is a common mineral

in most ground-water systems and dissolution of
gypsum may cause calcite to precipitate. For
example, Back et al. (1983) found that dolomite
dissolution and concurrent precipitation of calcite
in the Mississippian Pahasapa Limestone aquifer is
driven by gypsum dissolution. Table 1 lists the
results of computer simulation with PHREEQE.
One mmole/liter of gypsum is added to end
member A in four equal steps to generate end
member B. Calcite equilibrium is maintained at
each step. Intermediate waters are designated
A+GYP1, A+GYP2, and A+GYP3. Table 1 also
lists intermediate mixtures (MIX1 through MIX5)
between end members A and B. Both products of
gypsum dissolution (D) and mixtures (+) between



(B)

N . + * HCOJ+CO1

Fig. 3. (A): Trilinear diagram of water A with progressive gypsum dissolution to B (symbol D) . Intermediate mixtures
between A and B are also plotted (symbol +).

(B): Same as Figure 3(A). Mixing trend is shown as a line by redefining the plotting format. The X-Y coordination was
eliminated by specifying different colors for grid and by not loading the pen during plotting. However, this trick cannot be
used if a dot matrix printer is used rather than a pen plotter.

end members A and B as listed in Table 1 are
plotted on Figure 3. Figure 3 (A) is the trilinear
diagram generated from LOTUS 1-2-3 macros.
Figure 3 (B) is generated by redefining the plotting
format of Figure 3 (A). The mixing trend between
end members A and B is plotted as a line on
Figure 3 (B). It is clear from this figure that a
straight line on the trilinear diagram does not prove
"mixing." The mixing line is indistinguishable from
the gypsum-dissolution-calcite equilibrium trend.

//, Ca-Na Ion Exchange Reaction
Ca-Na ion exchange reaction is a common and

important reaction in many aquifers. In the central
San Juan Basin, New Mexico, dissolution of calcite
driven by Ca-Na ion exchange explain the high Na,
low Ca, high alkalinity, and high pH óf the water
(Phillips et ai, 1987). Similar reaction has been
observed in Maryland (Chapelle and Knobel,
1983).

Table 2 lists a computer-simulated chemical

Table 2. Chemical Compositions of Water Generated from Computer Simulation with the Program PHREEQE
[See text section "Application of Trilinear Diagram: II. Ca-Na Ion Exchange Reaction" for detail. Ion concentrations are

in meq/l. This table also includes column designation (alphabetic) and row number (numeric) of the worksheet.]

1 :
2:
J ,

4 :
5:
6:
7 :
8:
9:

10:
1 1 •
11!
12:
13:
14:
15:
16:
17:
18:

1 9 :
20:
21:
22:
2 3:
24:
25:
26:

A

SAMPLE //

END MEMBER
A+EXCH I
A+EXCH2
A+EXCH3
A+EXCH4
END MEMBER

END MEMBER
MIX1+CALC.
MIX2+CALC.
MIX3+CALC.
MIX4+CALC.
MIX5+CALC.
END MEMBER

END MEMBER
MIX1
MIX2
MXX3
MIX4
MIX5
END MEMBER

B

A

B

A
-EQ
-EQ
-EQ
-EQ
-EQ
B

A

B

C

TEMP(°C)

22. 50
22. 50
22.50
22.50
22. 50
22.50

22. 50
22.50
•22.50
22.50
22.50
22.50
22. 50

22. 50
22.50
22. 50
22.50
22. 50
22.50
22.50

D

PK

7.40
8.32
8.72
9. 12
9.46
9.76

7. 40
7.71
8. 17
8.69
9. 15
9.55
9.76

7.40
8.60
9. 16
9.31
9.43
9.62
9.76

E

ALKAL.

2.82
3.33
3.54
3.98
4.87
6.47

2.82
3.06
3.27
3.52
4.04
5.24
6.47

2.82
3.55
4.28
4.64
5.01
5.74
6.47

F

S102

0.55
0. 55
0. 55
0. 55
0. 55
0.55

0. 55
0. 55
0. 55
0. 55
0. 55
0. 55
0. 55

0. 55
0.55
0. 55
0. 55
0. 55
0.55
0. 55

G

Ca

2.54
0.37
0. 15
0.07
0.03
0.02

2. 54
1.55
0.52
0. 16
0.06
0.03
0.02

2.54
2.04
1.54
1.23
1.03
0.53
0.02

H

Mg

0.34
0.34
0.34
0. 34
0.34
0.34

0.34
0.34
0.34
0.34
0.34
0.34
0.34

0.34
0.34
0,34
0.34
0.34
0.34
0.34

I

Na

1. 16
3.84
4.27
4.80
5.72
7.33

1. 16
2.39
3.63
4.24
4.86
6. 10
7.33

1. 16
2.39
3.63
4.24
4.36
6.10
7.33

J

K

0.04
0.04
0.04
0.04
0.04
0.04

0.04
0.04
0.04
0.04
0.04
0.04
0.04

0.04
0.04
0.04
0.04
0.04
0.04
0.04

K

Cl

0. 23
0. 23
0.23
0.23
0.23
0.23

0. 23
0.23
0. 23
0. 23
0.23
0. 23
0.23

0. 23
0. 23
0.23
0.23
0.23
0.23
0. 23

I

S04

0.66
0.66
0.66
0.66
0.66
0.66

0.66
0.66
0.66
0.66
0.66
0.66
0.66

0.66
0. 66
0. 66
0.66
0.66
0.66
0.66

M

N03

0. 1
0. 1
0. 1
0. 1
0. 1
0. 1

0. 1
0. 1
0. 1
0. 1
0. 1
0. I
0. 1

0. 1
0. 1
0. I
0. 1
0. 1
0. I
0. 1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
I
I
I
I
1



S04+CI Co+Hg

(A)

Cd Na-fK HC03+C05

S04+CI Ca+Mg

Cl

(B)

Ca Ha+K HCO3+C03

Fig. 4. (A): Trilinear diagram of water A with progressivo
Ca-Na ion exchange reaction (symbol D ) . Various mixtures
between A and B are represented by symbol 0. Post-mixing
equilibration with calcite (symbol +) would deviate the
mixing trend from the original straight line and become
indistinguishable from the Ca-Na ion exchange reaction.
Calcite equilibrium is maintained during the Ca-Na ion
exchange reaction.

(B): Same as Figure 4(A). The Ca-Na ion exchange
trend is represented as a line by redefining the graph format

composition of water. End member B is generated
by progressive Ca-Na ion exchange while main-
taining calcite-equilibrium (rows 5 through 10,
Table 2). Also listed in Table 2 are chemical com-
position of mixtures between end members A and
B. Calcite-equilibrium is maintained for the waters
on rows 13 through 17.

Figure 4 is a trilinear diagram of the three
groups of water listed in Table 2. Although simple
mixing (symbol 0) is distinguishable from a Ca-Na
ion exchange trend (symbol G ), post-mixing equil-

. ibration with calcite deviates from a simple mixing

line (symbol +). Therefore, mixing may also rake
place in a series of waters plotted on a curved line
on the trilinear diagram.

In this example, the similarity in chemical
composition between a Ca-Na ion exchange trend
(first group, Table 2) and post-mixing calcite-
equilibration trend (second group, Table 2) does
not mean that it is impossible to identify the
correct mechanism. Other parameters, such as
stable isotopes of hydrogen, oxygen, carbon, and
sulfur, should help solve the puzzle.

Summary and Conclusions
Hill and Piper's trilinear diagram is a valuable

graphic tool for representing hydrochemical data.
It effectively illustrates the chemical characteristics
of a ground-water system from recharge to the
deeper portion of the aquifer. The tedious plotting
task can be greatly reduced if one takes advantage
of the speed and accuracy of a computer. A set of
simple equations is presented to transfer the tertiary
system of the trilinear diagram to X-Y coordination
and electronic spreadsheet macros for plotting a
trilinear diagram.

The concept of hydrochemical facies is useful
in characterization of the chemical nature of water.
However, it can be misleading to define hydrogeo-
chemical reactions based on changes in hydro-
chemical facies.

Although mixing may be a common phenom-
enon, post-mixing reactions may obscure the
mixing trend on a trilinear diagram. Reactions such
as dissolution, precipitation, ion exchange reaction,
and even COj outgassing, are common in natural
waters. The assumption that all ions remain in
solution after mixing for a linear mixing Une on a
trilinear diagram cannot be adopted uncondition-
ally. On the other hand, simple mineral dissolution
may result in a straight line on a trilinear diagram,
and therefore, a straight line on the diagram does
not necessarily indicate mixing. In reality, due to
the heterogeneity of most ground-water systems,
the chemical composition of the end member may
not be well defined. Analytical errors may introduce
additional uncertainty. All of these would make it
difficult to recognize a mixing line on a trilinear
diagram.

Based on the above considerations, the
trilinear diagram is a useful tool to characterize the
chemical composition of a ground-water system,
that is, hydrochemical study. However, for detailed
hydrogeochemical investigations, such as water-rock
interaction, quantitative hydrogeochemical study,
one should include efforts such as consideration of
the isotopic composition, mineralogy, and reaction



path simulation for screening hypotheses. The real
mechanism (s) that is (are) operating in a ground-
water system may elude the researcher if these
hydrogeochemical approaches are ignored.
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An Idealized Ground-Water Flow and
Chemical Transport Model (S-PATHS)

by Phil L. Oberlander and R. W. Nelson1

ABSTRACT
The number of studies on the actual and potential

environmental consequences of contaminated ground water
is growing. One means of studying these consequences is
through an idealized flow and transport model, S-PATHS,
which allows the hydrologist to determine the salient
features of contaminant migration with a minimum of data.

The transport of contaminants by ground water from
many waste disposal sites can be geometrically idealized as
flow between a line and a circle. The flow system adjacent
to the disposal site can be represented as a contaminant line
source, and a downgradient pumping well as a circular sink.
To study waste disposal sites on a larger, scale the model
geometry is reversed and the disposal site is represented as
a circular source, and a river or other convenient line of
evaluation is represented as a line sink. This idealization
allows S-PATHS to describe the flow and transport process
directly by a single partial differential expression. S-PATHS
considers transmissivity, effective porosity, sorption, source
strength, source concentration, decay, potentiometric
gradient, circle size, and distance to the line. Coding for the
model is not lengthy and can be run on a large-capacity,
hand-held calculator.

INTRODUCTION
The environmental consequences of ground-

water contamination are being studied more often
today as actual and potential waste sites are
identified. To assess the environmental conse-
quences at a disposal site, we must identify the
time- and location-dependent flow rate of the
contaminant into the biosphere. We can determine
these values approximately, without using a
complex digital model, by considering an idealized
flow system and by using analytical expressions.

aGeosciences Research and Engineering Department,
Battelle-Northwesr Laboratories, P.O: Box 999, Richland,
Washington 99352.
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An evaluation of contaminant transport by
ground water can often be geometrically simplified
by considering the transport as migration between
a circle and a line. For example, the regional
movement of contaminant from a leaking tank or
landfill to a nearby river can be conceptualized as
flow from a circular source to a line sink. Likewise,
the local movement of contaminant from a linear
disposal pit to a pumping well can be considered as
flow from a line source to a circular sink. This
idealization of the ground-water flow system
allows the hydrologist to perform preliminary
calculations that describe the location of the
contaminant plume and to determine quantities of
contaminant reaching the biosphere. This approach
is also useful for parameter sensitivity studies and
when a lack of field data does not justify a more
complex model.

We idealize the transport process by assuming
that a uniform potentiometric gradient normal to
the line (source-sink) exists before pumping or
injection, as well as steady-state, two-dimensional
flow. The hydrologie zone receiving the contami-
nant is characterized as a medium of a constant
thickness that is isotropic and homogeneous. Con-
taminant retardation along the flow path by
sorption is assumed to take place under chemical
equilibrium conditions. The contaminant is
assumed to be vertically mixed in the hydrologie
unit receiving the waste material. We also use the
diameter of the circle, distance between the line
and the circle, head at the circle, initial concentra-
tion, and decay to describe the contaminant
migration. The hydrologie unit is assumed to be
infinite in the direction normal to the gradient.
The given boundary conditions result in a simple
mathematical description of the flow system. The
flow description also provides a maximum contam-
inant arrival flux because contaminant spreading
by inhomogeneous, anisotropic media and
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dispersion is not considered. In unfractured and
nonkarstic aquifers, this level of analysis can often
be used to determine the environmental severity of
a liquid release and the need for further modeling.

In this article we present the analytical
expressions for flow and transport, but do not
necessarily detail the numerous intermediate steps.
These expressions define the contaminant plume
and answer the three essential questions concerning
contaminants entering the biosphere: where, when,
and how much.'Model results are plotted as
location-, time-, and quantity-dependent graphs
that characterize the contaminant arrival at the
discharge location (Nelson, 1978). S-PATHS
performs the necessary calculations on a hand-held
calculator which allows simple use and rapid access
to the model.

TWO-DIMENSIONAL FLOW EQUATIONS
The beginning point for this development is a

reduced form of equation (A-l) found in Nelson
and Schur (1980). The dimensional potential, 0', is
given as:

A convenient set of dimensionless variables

ln(R/ró)
In I ] (D

where

Ho =

Uo =

R »

0'(x',y') is the potential energy head
function that satisfies Laplace's equation,

the head in the circular source-sink of
approximate radius ró with center at the
origin,

the uniform lateral flow gradient in the
positive x direction,

the distance from the center of the circle
to the Une boundary,

the dimensional approximate radius of the
circular source-sink located at the origin,
and

the dimensional Cartesian coordinates of
an arbitrary point with the origin at the
center of the circular source-sink.

Equation (1) is based on the boundary conditions
presented in the introduction. Conceptually,
equation (1) describes a two-dimensional potential
surface by combining the potential formed by the
regional gradient and the potential formed by
injection or withdrawal at the circle. The geometry
of the flow system is illustrated in Figure 1 as flow
from a circular source to a line sink.

x',y'

for this flow system is:

x = x ' y' r = r i

where

Hn

KQHO

R2 (2)

x,y = the dimensionless Cartesian coordinates,

t' = the dimensional time,

t = the dimensionless rime, and

Ko = the hydraulic conductivity of the confined
porous stratum.

Use of the expressions from equations (1) and (2)
gives the dimensionless potential, 0, as:

Ho X~ln(l/r0)

. V x 2 + y%

] (3)

The expression for potential given in equation (3)
was derived by making two approximations. The
circle and the line are used as equipotentials, which
under some circumstances require that limits be
imposed on model use. In most field studies,
however, the limits do not preclude the use of the
model.

The first approximation for which a limit is
needed involves the circular equipotential at the
origin. Equation (3) introduces some distortion to
the potentiometric surface in that the equipo-
tential at approximate radius, r0, is not always a
circle. We describe the amount of distortion at the
circle by considering the shape of the actual
equipotential as compared to a circle with radius,

CONTAMINANT
SOURCE-

UNIFORM
GRADIENT

Ho= HEAO
ABOVE/BELOW

REGIONAL GRACIENT

MATERIAL OF
HYDRAULIC CONDUCTIVITY. K.
POROSITY. P lEFFECTIVE)
BULK DENSITY « Bd
EQUILIBRIUM DISTRIBUTION
COEFFICIENT = Kd

Fig. 1. Illuttration of modal geometry and example stream-
line*. Shown at flow from a circular source to a lina sink.
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EQUIVALENT EQUIPOTENTIAL SHAPE
2.0

ALPHA IS 0.01
ALPHA IS 0 2 0

-2.0
-3 -2.5 0.5-2 -1.5 -1 -0.5 '

Xoo

Fig. 2. Distortion of circle as a function of parameter scale
factors. The shape is considered essentially circular when
alpha is < 0.2.

r0. If we let 0 = 1 and allow xóo, yóo to denote the
coordinates defining the approximate equipotential
representing the circle, then:

where

±Vexp[-a(xoo/ro)] -

2 U0roln(R/r0)
a = Hn

(4)

(5)

which expresses the shape of the equipotential
boundary only as a function of a.

Figure 2 shows the shape of the equipotential
boundary for different values of a. The results in
the figure show that when ot < 0.2 the boundary is
essentially circular, but the center is displaced
upgradient or to the left from the a - 0 or exact
boundary. The displacement upgradient effectively
provides slightly longer flow paths to a discharge
location and hence slightly longer calculated travel
times than pathlines originating at a = 0. For this
reason, equation (3) is a good approximation of $
for all a < 0.2. The distortion at the circle
increases with large values of Uo (gradient) and r0

(circle size) and with small values of Ho (head).
The second approximation occurs along the

line boundary because the line is not precisely an
equipotential. We describe the relative distortion
by dividing the model-predicted potential along the
y axis by the exact potential at x - R, y = 0, using

equation (3). The distortion factor increases
exponentially with distance along the y axis under
conditions of small R (distance to line), Ho, Uo,
and large ró. However, as long as the relative
distortion is less than 1.10, the effect to calculated
travel times and outflow locations is negligible.
Setting the relative distortion limit at 1.10 and
solving for y¡ with equation (3) gives:

/ f /
y 'V { c C (

-1 .10U 0 R

which is the maximum distance (dimensionless)
along the line boundary for which the model will
produce reliable results. Our model checks for
potentiometric distortion at the circle and the line,
and prints a message to the user when the limita-
tions are exceeded.

THE STREAM FUNCTION
We use the stream function to obtain path-

lines and travel times for this flow system. The
stream function describes steady-state flow, and is
available as the complex conjugate of the previous-
ly defined potential in equation (3), specifically:

UQR 1__
Ho

 y ~ l n ( l / r 0 )
arctan ( — )

x
(7)

The terms on the right-hand side of the equation
are the imaginary parts of the complex potential
<t> = p + if, which satisfies the Laplace equation.
Furthermore, the Cauchy-Riemann condition:

— = and — = — (8)
dx dy by dx

is satisfied. This verifies that equation (7) is
analytic (Boas, 1966).

The stream function is conveniently expressed
as the fraction of the total outflow from the
discharge location. This is possible because the
idealized flow system is symmetric about the x
axis. Half of the flow will occur in the positive y
quadrants and the other half will occur in the
negative y quadrants with the x axis functioning
as the line of symmetry. The contaminant plume is
bounded by the outermost streamlines ( | max)
which surround the entire flow between the source
and the sink. The flow problem is simplified when
we consider the flow only in the positive y
quadrants, with the remainder of the solution
available as the mirror image. This allows the
substitution of fm = % max/2. Expressing the ratio
of the positive y source outflow flux in dimension-
less form as the ratio * = £/$m gives:
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where

y 1 y
+ — arctan ( —

2ny 2ir x
Ho

U0Rln(l/r0)

(9)

(10)

The stream function ^ defines a steady pathline
location, and also pro vides the ratio of the outflow
flux as:

Q T
(ID

where

^i = a particular streamline,

Q¡ = cumulative flow from Y = 0 to a particular
streamline %, and

QT = total flow at circular source-sink.

The flow at the circle is defined as:

2n Do Ko Ho

ln(l/r0)
(12)

where Do = thickness of contaminated zone,
Ko = hydraulic conductivity, and other terms are as
previously defined. A revised form of equation (12)
which solves for Ho can be used when the flow rate
(Q-p) is known. Our model uses either a known
flow rate or a known head at the circle as input
and then calculates and displays the remaining
parameter. The zero relative head occurs on the
regional gradient at the circle before a hydraulic
source-sink is imposed.

A discussion of the physical significance of
equation (9) may be helpful. Physically, * is the
cumulative fraction of the entire source flux
obtained by integrating all of the flow crossing
any line connecting a point on the positive x axis,
with the specific point having coordinates (x,y)
appearing in the right-hand side of equation (9).
At any point, ^ equals a constant, is perpendicular
to the potential function, and traces out the entire
streamline. By selecting a range of x00 and y00

values on the circle and calculating corresponding
values of * ¡ , the steady-state pathlines are defined
for the entire flow field.

STREAMLINE LOCATION AT THE
LINE BOUNDARY

The streamline terminates at two locations: a
point on the circle and at the line boundary. The
maximum value of y for any streamline *¡ occurs
at the line boundary. Substitution of y = ym and
x = 1 into equation (9) yields:

(13)

Equation (13) does not algebraically solve for ym ;

therefore, the ym roo,t is extracted using a simple
iterative method. We obtain an initial estimate for
ym by setting the tangent of a small angle approxi-
mately equal to the angle in radians; therefore:

2 T T ( - (H)

and the improvement expression is:

(15)

——+ — arctan(ym,k)
2ny 2TT

The hydraulic flux for a streamline can be
computed once we know ym, and is defined as:

q = D 0 K 0 U 0 f l + ( - - ^ ) ] (16)
1 +ym2

The hydraulic flux (LVT) is used to compute
the contaminant outflow flux (M/LT), which is
given as:

m = qC0(2' t /§)' (17)

where

Co = contaminant concentration or radionuclide
activity at source,

t = contaminant travel time to discharge
location, and

§ = radioactive half life.

The cumulative contaminant outflow rate
(M/T) is given as:

Mc =*iQC0(2*c/§) (18)

The concentration of contaminant at the. source
can be expressed as either a mass per volume or a
radiological activity per volume. For nonradioactive
sources the half-life is assumed to be large (1 X 10"),
and decay is essentially zero. The mass outflow
flux provides the basis for computing the mass of
contaminant being discharged to the biosphere. We
can determine the outflow mass by integrating the
mass outflow flux over the length of the line.

TRAVEL TIME FROM SOURCE TO SINK
To determine travel time we integrate the x

and y components of velocity with time. By
expressing as a ratio the shortest travel time (ts)
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where y = 0, to the travel time for streamlines (tj),
wc determine the dimensionless travel time. The
resultant equation is presented without develop-
ment as:

r0 + 7

+ 7 M (19)

where yo¡ - y position on circle boundary for
streamline (*¡), and ym¡ = y position on line
boundary for streamline (^¡).

Equation (19) is used to calculate the fluid
travel time for varying values of y for each stream-
line. A reduced form of this equation can also be
used to locate contaminant position between the
circle and the line boundaries. By choosing a time
t and solving for x and y, the position of the con-
taminant plume is defined with time. This allows
us to observe the advance of contaminant and
illustrates the time-dependence of contaminant
quantity at the discharge boundary. The time that
contaminant will arrive at a known point between
the source and the sink can be determined by
successive estimations of t. A reduced form of
equation (19) is solved for y by the Regula Falsi
iWethod (Rektorys, 1969) of successive iteration
given as:

Zk+2 -
Zkf(Zk + 1)-(Zk + 1)f(Zk)

f(Zk + 1)-f(Zk)
(20)

where

Zk+2 = 0 at a root (y),

Zk = root estimates, and

f(Zk) = sin(2ff*i--)/
7

-
7

When Zk+2 4 0, Zk+2 is used to replace either Zk or
Zk + i , depending on whether the sign of f (Zk) or
f (Zk+2) is respectively positive or negative. Con-

vergence is usually slow with this method. Solving
equation (9) for x gives:

where

x ~ y cot(2jr*¡ — )
7

n y IT
- < ( 2 i r * i - ^ ) < -
2 7 2

(21)

The restriction on equation (21) is needed to allow
the cotangent to be defined.

CHEMICAL RETARDATION
Contaminants that are in chemical equilibrium

and sorbed on the porous media are retarded with
respect to water travel time. The retardation factor
(S) is defined in Freeze and Cherrv (1979) as:

(22)

where

Bd s mass bulk density,

Kd = equilibrium distribution coefficient, and

P = effective porosity.

The retardation factor is a constant multiplier
to the kinematic equations already presented. The
contaminant travel time is defined as:

Stv (23)

where tc = travel time for a particular contaminant,
and tw = water travel time as defined by equation
(18). If the contaminant transport is water-coinci-
dent and not solute-sorbed, then K¿ = 0, and the
problem reduces to equation (18).

MODELS-PATHS
The equations presented above have been

combined to form the ground-water model
S-PATHS. As noted previously the analytical
expressions are symmetrical about the x axis. The
coding for the model S-PATHS calculates the
positive y portion of the problem. The negative y
results are available as the mirror image. Flow
quantities and fluxes are therefore given with
respect to the positive y axis and are not the total
flow from the source. The program has a user-
interactive format that allows several input and
output options. Table 1 details the options and
also serves as an input worksheet and model
illustration.

Upon final data input, the program generates
14 representative streamlines and calculates the
time, location, and quantity of contaminant reach-
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Table 1, Two-Dimensional Steady-State Analytical Flow and Transport Model

Parameters must be in consistent units. Flow is either from circular source to line sink, or from line source to circular sink.
Program generates streamlines and calculates flow paths, travel times, and discharge quantities. Enter values, then press R/S.
Memory size = 033, and calculator is in radians mode.

1,
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.

13.

, 1 or 0 = Flow is from 0 = line to well, 1 = well to line.
DIA = Well diameter (L).

Uo = Uniform regional gradient (L/L).
R ~ Distance between well and line boundary (L).
P = Effective porosity of aquifer (L3/L3).
Ko = Hydraulic conductivity (L/T).
Do = Thickness of contaminant zone (L).
1 or 0 ~ Known flow rate Q(L3/T) enter 1, known head at circle Ho(L) enter 0. Program calculates

and prints nonentercd value.
(K(j)(BD) = Equilibrium distribution coefficient times bulk mass density. For zero sorption enter 0.
Co = Contaminant concentration at source (M/L3).
Decay = Radioactive half life (T), enter 0 for nonradioactive contaminants.
1 or 0 = Contaminant position 1 = Yes, 0 = No. At times , ,

enter 0 for unwated times.
1 or 0 = Potentiomerric heads at times from No. 12 above? To initiate next model run enter

GTO 0 0 , then R/S.

CONTAMINANT
SOURCE

UNIFORM
GRADIENT = U a

^ H.= HEAD
ABOVE/BELOW

REGIONAL GRADIENT

MATERIAL OF
HYDRAULIC CONDUCTIVITY. Ko

POROSITY. P (EFFECTIVE)
SULK DENSITY = Bd
EQUIU>RIUM DISTRIBUTION
COEFFICIENT - Kd

ing the biosphere. Program running time ranges
from 5 to 25 minutes depending on the complexity
of the output options. The coding presented in
Appendix A is written for a Hewlett-Packard
41-CV hand calculator and a peripheral printer
(product brand name is used for purposes of
identification only; it does not represent endorse-
ment by Battelle-Northwest Laboratories.) A set of
test data and results are provided in Tables 2 and 3
to help the user verify keypunch accuracy.

As with all ground-water models, the accuracy
of the predictions is directly related to the quality
of input data and the validity of the simplifying

assumptions. Areal two-dimensional contaminant
transport models, such as S-PATHS, are sensitive to
the thickness of the hydrologie unit. Ideally, the
thickness of the contaminant zone (Do) is the same
as that of a distinct hydrologie unit. In cases where
Do is a fraction of the total aquifer thickness, the
computed values may not be representative. For
example, assuming all of the water being dis-
charged from a well comes from a thin contami-
nated layer may result in an unrealistic value of
drawdown. Model results should be interpreted by
the hydrologist as an approximate solution to a
complex real-world situation.
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Table 2. Input Verification Data

Worksheet
line no. Input parameters Input data

1
2
3
4
5
ó

8
9

10
11
12

13

Flow direction (flow is toward line)
DIA (circle diameter)
(Jo (gradient)
R (distance to line)
P (effective porosity)
Ko (hydraulic conductivity)
Do (contaminated zone thickness)
At well (known flow race)
QT (discharge rate)
(Kj Bd) (Distribution coef bulk density)
Co (concentration)
Half life
Contaminant position? (Yes)
Tl
T2
T3
Potential at time T? (Yes)

1
0.5
0.005

1850
0.2

1425
200

1
1.4063 X10*
0,95

500
30.23
1

210
400
0
1

INTERPRETATION OF MODEL RESULTS
The combination of model output parameters

allows a variety of interpretive graphs to be
constructed. A complete description of these tech-
niques using the output available from S-PATHS is
presented in Nelson (1978). One analysis useful to
the hydrologist is the determination of time and
quantity of peak contaminant outflow. This is .
accomplished by plotting the cumulative contami-
nated outflow rate versus arrival time as shown in

Figure 3. The figure shows the cumulative arrival
of a contaminant of constant concentration at the
discharge location. Of importance are :he delay
time, which is the time from contaminant release
to the first contaminant outflow, and the spread
time, which is the time period over which the
leading edge of the plume is discharged. The maxi-
mum outflow rate occurs at 25 years in Figure 3.

A contaminant source often enters the
ground-water flow system for a time period (Tx)

Table 3. Model Output

Calculated value Streamline 1

0.250
1.118X10"

1850
0.065

234.008
7.127 X10"5

100.223
234.254

1545.984
3613.481
210.000

0.064
1688.031

-8.368
400.000

"Point beyond
discharge location"

Mo outnur

- Sample streamlines
Streamline 14

-0.250
1.118 X10"4

1850
455.454
457.885

0.500
703050.096

9690.38
1539.070

21.214
210.000
296.524

97.457
0.910

400.000
446.718

1459.569
-7.147

X at circle
Y at circle
Y at line
Y at line
Time to discharge location
Q/QT (from Y = 0 to Y) = *¡
2Q(from Y = 0 to Y)L"3/T
S contaminant (from Y = 0 to Y)M/T
Hydraulic flux (at Y)L**2/T
Contaminant flux (at Y)M/TL
At time

Head equals
At time

Head equals
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Fig. 3. Cumulative contaminant outflow versus time for an
instantaneous source. The contaminant arrives over a period
of tima due to hydraulic spreading.

which is less than the spread time. These cases are
analyzed by replotting the contaminant outflow
rate versus time curve shifted along the x-axis a
positive distance of T x . This procedure is shown in
Figure 4 in which the left-most curve represents
the arrival of the leading edge of the contaminant
plume and the shifted curve (solid line) represents
the trailing edge. The time of contaminant flow at
any point is limited to the time Tx . Therefore, the
contaminant outflow rate becomes the difference
between the first arrival curve and the last arrival
curve. The resultant contaminant outflow rate is
shown as the dashed line in Figure 4. The maxi-
mum discharge rate now occurs at the delay time
plus Tx and then attenuates as shown. When radio-
nuclides are modeled, the peak outflow rate is
affected by decay, and the curve representing the
trailing edge of the contaminant plume must be
modified to account for decay during time Tx .
Knowing the contaminant outflow rate with time
allows the calculation of contaminant mass out-
flow by graphically determining the area under the
curve (shaded area) in Figure 4. The mass outflow
with time is particularly useful when evaluating
concentration of contaminant in a downgradient
surface-water body.

The above example is based on the contami-
nant outflow rate and time variables. The analysis
could be continued by examining contaminant
outflow flux with respect to location. It becomes
obvious that by combining the linking variables of
time, location, cumulative relative water-discharge
rate (Q/QT), cumulative water-flow rate (ZQ),
location-dependent water-discharge flux (Q flux),
cumulative contaminant outflow rate (2 Contam),
and location-dependent contaminant outflow flux
(Contam Flux), a suite of analyses can be per-
formed that will provide a technical description of

contaminants entering the environment. Our
experience in the application of this technique has
demonstrated its flexibility, simplicity, and ability
to facilitate communication between the technical
evaluator and the decision maker.
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COMPUTER
NOTES

MOC SOLUTIONS OF
CONVECTIVE-OISPERSION PROBLEMS

by Raz Khaleel* and Donald L. Reddell5

Abstract. The method of characteristics is used to solve the
one- and two-dimensional convectivc-dispersion equations
in steady, uniform flow fields. Fully documented listings of
the FORTRAN programs are presented. Comparison of
numerical results with existing analytical solutions show
excellent agreement.

Introduction
When convection and dispersion are considered

simultaneously, conventional finite-difference tech-
niques introduce artificial numerical dispersion
(Peaceman and Rachford, 1962). The artificial
dispersion may dominate low physical dispersion
especially if dispersivities are small. Garder et al.
(1964) developed the method of characteristics
(MOC) to overcome the numerical dispersion
problem. The MOC does not introduce numerical
dispersion and has been widely used for solving
miscible displacement problems (e.g., Reddell and
Sunada, 1970; Bredehoeft and Finder, 1973;
Konikow and Bredehoeft, 1974, 1978). On the
other hand, a number of researchers (e.g., Lam,
1977; van Genuchten,' 1977; Huyakorn and Taylor,
1977) have shown that in certain convection-
dominated flow systems, the standard Galerkin
finite-element formulation will produce excessive
numerical dispersion and/or oscillation even if
higher order elements are used.

In this paper, MOC solutions of one- and two-
dimensional convective-dispersion equations for a
conservative tracer are presented for steady,
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b Professor of Agricultural Engineering, Texas A&M
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accepted April 1986.
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uniform flow fields. Fully documented listings of
the FORTRAN programs are presented and
numerical examples are included to illustrate the
basic use of the MOC. The accuracy of the
computer codes is tested by comparison with
available analytical solutions.

Numerical Model
The convective-dispersion equation for a

conservative tracer in fluid flow through a saturated
porous medium is given as (Scheidegger, 1961):

3C 3 3 3C
— + — ( V ¡ C ) = — ( D ¡ j —
ot 3x¡ dx¡ 3xj

i = 1 and 3 (1)

where C = tracer concentration (ML"3);
V¿ = components of velocity vector (LT"1 ) in a
Cartesian coordinate system of x¡¡ D¡j = coefficient
of hydrodynamic dispersion, a second rank tensor
(L :T"' ); and t = time (T). The double summation
convention of tensor notation is implied in the use
of equation (1), The coefficient of hydrodynamic
dispersion, Djj, depends on the flow pattern and
medium characteristics. It is formed from the
contraction of a fourth rank tensor and a second
rank tensor which is a function of flow (Bear, 1972):

*ijmn
VmVr

IVI
(2)

where a¡jmn = dispersivity of the medium, a fourth
rank tensor (L); V m , Vn = velocity components in
the m and n directions, respectively (LT*1 ); and
I V| = magnitude of velocity (LT*1 ).

Scheidegger (1961) showed that for an
isotropic medium, the longitudinal and lateral
dispersion coefficients (DL and D j , respectively)
are related to the dispersivities by

and

DL

DT

(3a)

(3b)
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Combining equations (2) and (3), the tensorial
forms of the dispersion coefficient for two-dimen-
sional flow in an isotropic aquifer are (Konikow
and Bredehoeft, 1978):

DM =

D33 =

D,, = = (DL-DT :

(4a)

(4b)

(4c)

The MOC algorithm is not described here in
detail because it has already been discussed in the
literature (Garder et al., 1964). Briefly, equation
(1) approaches a hyperbolic equation as the second-
order dispersion term becomes small with respect
to the convective term. According to the MOC, we
can associate with a given hyperbolic equation a
simplified system of equations in terms of an
arbitrary curve parameter, the solutions of which
are called the characteristic curves of the differ-
ential equation. Detailed derivations of character-
istic curves for a homogeneous, linear partial
differential equation and for a nonlinear,
nonhomogeneous partial differential equation were
given by Garder et al. (1964).

In the MOC, in addition to the usual división
of the flow region into a grid system, a set of
moving points is introduced into the numerical
solution. The location of each moving point is
specified by its coordinates in the finite-difference
grid. Initially, the moving points are uniformly
distributed throughout the grid system. The initial
concentration assigned to each point is the initial
concentration associated with the stationary node
of the grid block containing the point. At each
time interval, the moving points in a two-dimen-
sional system are relocated using:

t+At _ i
' 2 ~ S

and

+ At

. A .

rt + áZ

/t + At

(5a)

(5b)

where t + At = new time level; t = old time level;
At = time increment; x,e atid x3g = coordinates of
the 2-th moving point in the Xi and x3 directions;
and V,p and V3p = velocities of the 2-th moving
point in the Xi and x3 directions. When all the
moving points have been relocated, each block in
the grid system is temporarily assigned a concen-
tration, Cc+£\ which is the average of the concen-

trations Ĉ 1" of all the moving points lying inside
the grid block at time t + At. Next, the change in
concentration due to dispersion, AC, is calculated
using an explicit, centered-in-spacc finite-difference
approximation to the dispersive term on the right-
hand side of equation (1). Each moving point is
then assigned a concentration according to:

t+Ac r t + A AC. (6)

To complete the step from time t to t + At, the
solute concentration at the stationary grid nodes
is calculated according to

(7)

Computer Programs
Listings of the MOC programs for solving one-

dimensional and two-dimensional tracer flow
problems are given in Appendices A and B,
respectively. The following steps in the MOC
procedure are valid for both one- and two-
dimensional problems.

Step 7: In addition to assigning nodal coordi-
nates and concentrations, initial coordinates and
concentrations are assigned to the moving points in
each grid block.

Step 2: Determine which grid block the
moving point is located in, and relocate the point
using the assigned flow velocity. Also, if during a
time step, any point moves out of the system, it is
reentered at an inflow boundary with the appropri-
ate boundary concentration and coordinates.
Minor changes in the programs must be made when
boundary conditions are changed to allow for the
proper removal and reintroduction of the moving
points. After the moving points have been
relocated, a count is made of the number of
moving points in each grid block.

Step 3: A temporary concentration equal to
the average of the concentrations of moving points
inside the grid block is assigned to each grid block.

Step 4: A change in grid block concentration
due to dispersion is calculated based on the tempo-
rary grid block concentration calculated in Step 3.

Step 5: Each grid block concentration is
updated based on the change in concentration
calculated in Step 4.

Step 6: Each moving point concentration is
also updated based on the change in concentration
calculated in Step 4.

Steps 2 through 6 are repeated for each simu-
lated time step. Each step is clearly identified in
both programs in Appendices A and B.
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Fig. 1. Comparison of analytical and numerical solutions to
the longitudinal dispersion problem in one-dimensional
flow.

Numerical Tasting
Longitudinal Dispersion in One-Dimensional Flow

Numerical simulation results based on the
computer code in Appendix A were compared with
those obtained from the solution of the following
form of the convective-dispersion equation:

dC ò2C 3C
V

bx\ 3x3

The appropriate initial and boundary conditions
for the problem considered are:

C ( X j , 0 ) » 0 - , xj > 0

C ( 0 , t ) - C o ; t > 0

C ( « , t ) = O; t > 0 .

(9)

Ogata and Banks (1961) used Laplace transforms
with equation (8) to obtain the solution

C r f
_ = Vi erfc

x 3 - V , t

2(DL0W

V3X3

} +

V3X3 x3 + V3 t
exp { —î-i } erfc {— — } .

DL 2(DLt)l/2

(10)

A numerical solution was obtained using the
following data for the one-dimensional program
(Appendix A):

number of grid blocks (NR) = 49.
total number of moving points (NP1) = 196.
number of moving points per grid block (NPZ) = 4.
maximum number of time steps (MAXST) = 18.

simulation finish time (FINTIM) = 1710 sec.
time increment, At (DELT) = 100 sec.
spatial increment, Ax3 (DELZ) = 3.81 cm.
total depth of model, e3 (TZ) = 182.88 cm.

longitudinal dispersion coefficient,
DL(DL) = 2.94X l<r3 c m V .

seepage velocity, V3 (VEL) = 0.01411 cms"1,
dimensionless concentration (C/Co ) at input

boundary (CO) = 1.0.
dimensionless initial concentration,

C/Co (CINTL) = 0.0.

Note that the required number of grid blocks for a
total length of 182.88 cm is 48. However, in the
input data, NR has been increased by one to
accommodate the upper boundary condition. This
also resulted in an increase in the total number of
moving points. The results shown in Figure 1
indicate excellent agreement between the
numerical and analytical solutions.

Longitudinal Dispersion in Two-Dimensional Flow
To check the numerical solution using the

tensorial form of the dispersion coefficient
[equation (4)], a coordinate transformation was
performed (Figure 2). The coordinate axes were
rotated so that an angle of 45° existed between
the velocity vector and the transformed coordinate
axes. The problem was solved numerically in the
rotated coordinate system (x\, x3). This forced the
numerical model to use the tensor transformation
for the dispersion coefficient. However, the physics
of the problem was not changed, and equation ( 10)
still provides an analytical solution to the problem
in the (x,, x3) coordinate system.

Fig. 2. Schematic diagram of coordinate axes rotation used
for comparing numerical and analytical solutions of the
longitudinal dispersion problem in two-dimensional f low.
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A rectangular region, 0 *; x3 < ?3 and
0 < X! < 2,, was considered in which the flow is
along the x3 axis with a steady, uniform seepage
velocity, V3 (Figure 2). With the coordinates rotated
45 degrees with respect to the velocity vector V31

the numerical solution was carried out in the
rectangular region defined by 0 < x'3 < i'3 and
0 < xj < 2\. A steady, uniform seepage velocity
with components V'3 = 0.707 V3 and V', = 0.707 V3

existed in the transformed region. A fluid with a
relative concentration of C/Co = 1.0 was injected
across the entire interface 0 < x, < S,. Data used
to numerically solve the problem (Figure 2) were:
Ax3 = 0.4 cm, Ax', = 0.4 cm, At = 2 sec,
V3 = 0.071 cm sec'1, V; = 0.071 cm sec'1,
V3 = 0.10 cm sec*1, grid dimensions = 20 X 20,
DL = 0.01 cm- sec"1, DT = 0.001 cm2 sec'1,
23 = 5.66 cm, i[ =5.66 cm, and the number of
moving points per grid block = 4. Some modifica-
tions to the code listed in Appendix A were
necessary to run the longitudinal dispersion
problem with and without the tensor transforma-
tion in two-dimensional flow. The modified code
is not listed because the modifications are minor.
It is available on request from the authors.

Two solutions were obtained for this problem;
one solution used the tensorial transformations for
the dispersion coefficients, D L and D T , given by
equations (4), and the other solution used no
tensor transformation. With the tensor transforma-
tion, the longitudinal dispersion coefficient (D33) is
oriented parallel to the velocity vector (V3) and
the lateral dispersion coefficient ( D u ) is oriented
perpendicular to the velocity vector (V3). For the
case with no tensor transformation, the longitudinal
dispersion coefficient (D33) is oriented parallel to
the x'3 coordinate axis and the lateral dispersion
coefficient (D,, ) is oriented parallel to the xi
coordinate axis.

The results from the numerical solution of
this longitudinal dispersion problem with and
without the tensor transformation are shown in
Figure 3. The analytical solution as given by
equation (10) is also plotted. The results indicate
an excellent agreement between the numerical and
analytical solution when the tensor transformation
is used. The solution without the tensor transforma-
tion yielded a steeper concentration profile than
the analytical solution. Thus, a significant error
results in the numerical solution of the dispersion
equation when the tensor transformation is not
used and the cross-derivative terms in equation (4)
are ignored.

Figure 4 shows the lateral concentration

Fig. 3. Comparison of longitudinal concentration distribu-
tion calculated with and without the tensor transformation
for the longitudinal dispersion problem in two-dimensional
flow.

distribution after 0.71 pore volumes of fluid were
injected. Again, the numerical solution using the
tensor transformation provides more accurate

l.o

0.9

o.a

0.7

o.s

~ 0.5

s
«3 0 .4

0.3

0.2

0.1

x3 / l3-0.10

• f • * t • • *
I x3/t3-0.6O

Analytical solution

A Numerical solution without tensor

• Numerical solution using tensor

Al l solutions are for V3t/i3»0.71

r—x

0 O.Z 0.4 0.S 0.8 1.0

Fractional distance, x^ / t j

Fig. 4. Comparison of lateral concentration distribution
with and without the tensor transformation for the longitu-
dinal dispersion problem in two-dimensional f low.

801



results than that without che tensor transformation.
Some error in the numerical solution occurs near
the boundaries (xt = 0 and x, = ? t). This occurs
because the straight boundaries of the column in
the (x,, x3) coordinate system must be approxi-
mated by a series of rectangles or squares in the
rotated coordinate system (xi, x'3) (Figure 2). As
áx\ and Ax3 become very small, a better approxi-
mation of the boundary conditions can be
expected. The numerical results for any value of
X3/Î3 were generally the same for 0.3 <Xi/£i < 0.7.
No dispersion (or mass flow) was allowed to occur
across the boundary columns X! = 0 and xt = 2i.
This condition was approximated numerically by
setting the dispersion coefficients equal to zero
for all nodes on these two boundaries.

Longitudinal and Lateral Dispersion in
One-Dimensional Flow

If a rectangular column (0 < x3 < 23,
0 < X! < 2, ) is used and a tracer source is
maintained over a portion of the input area
(0 < X! < b) as shown on Figure 5, then both
longitudinal and lateral dispersion will occur.
Assuming a homogeneous and isotropic saturated
medium with unidirectional flow in the x3

direction and 3C/3xi =0, equation (1) becomes

3C 32C
— = Dr
dt dx/

3C
—
dt

32C 3C
DT - Vj

dxt
2 òx}

— . ( ID

The initial and boundary conditions are given by

C(x,,O, t) = Coi 0 < x , < b ; t > 0

C(x,,0, t ) « 0 i

dC
— (0, x 3 l t ) = O,
3x,

3C
— (i„x„t)-O,
ax,

C(xi , <*>, t) = Bounded

C ( x , , x 3 , 0 ) = 0

b < xi < e t ; t > 0

t> o

t > 0

x3 > 0. (12)

Harleman and Rumer (1963) gave the following
approximate steady-state solution to equations
(11) and (12).

— = Vz erf c
Co

x , - b

2VDTx,/V3

(13)

A problem of longitudinal and lateral disper-
sion in unidirectional flow was run using the code
in Appendix B and the following data:

t • 0

Fig. 5. Schematic diagram of longitudinal and lateral
dispersion problem in one-dimensional flow.

number of grid blocks (rows) in the vertical (x3)
direction (NR) = 26.

total number of moving points in vertical (x3)
direction (NP1) = 52.

number of moving points/grid block in x3 direction
(NPZ) = 2.

number of grid blocks (columns) in horizontal (xi )
direction (NC) = 20.

total number of moving points in horizontal (X( )
direction (NP2) = 40.

number of moving points/block in x, direction
(NPX) = 2.

maximum number of time steps (MAXST) = 100.
initial value of counter for printing numerical

solution (KPRINT) = 1.
number of intervals at which results are printed

(IFAC) = 100.

simulation finish time (FINTIM) = 200 sec.
time increment, At (DELT) = 2.0 sec.
vertical spatial increment, Ax3 (DELZ) = 0.40 cm.
total depth of model in x3 direction,

«3 (TZ) = 10.0 cm.
horizontal spatial increment,.

àx 1 (DELX) = 0.20 cm.
total width of model in Xi direction,

2, (TX) = 4.0cm.

longitudinal dispersion coefficient,
DL (DL) = 0.01 cm2 sec'1,

lateral dispersion coefficient,
DT (DT)- 0.001 cm : sec*1,

length of tracer source in x, direction,
b(B) = 2.20 cm.

velocity in x3 direction, V3 (VEL) = 0.10 cm sec'1.
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dimcnsionless concentration (C/Co) at input
boundary (CO) = 1.0.

dimcnsionless initial concentration,
C/Co (CINTL) = 0.0.

As in the one-dimensional program, NR was
increased by one to accommodate the upper
boundary condition.

The results from the numerical solution of
the longitudinal and lateral dispersion problem
are shown in Figures 6 and 7, at t = 200 sec and
after an approximate steady-state condition was
achieved. For comparison, the approximate
analytical solutions for the steady-state case as
determined from (13) are also plotted in Figures
6 and 7 as the solid lines. In general, the accuracy
of the numerical solution is excellent. The region
close to the source, i.e., x3 = 0, is a problem area
where the accuracy is not as good. This occurs
because of the very steep concentration gradient
in the Xi direction which approaches a step
function. Reddell and Sunada (1970) discussed
the problem of achieving accurate numerical
solutions along steep concentration profiles or
when step-input functions are used. They
reported that much smaller grid dimensions are
necessary to obtain accurate results in these
areas. It should also be noted that equation (13)
is only an approximate analytical solution and
not an exact one. Also, equation (13) is a steady-
state solution, but the numerical solutions are
transient. The numerical solutions were termi-
nated after 200 sec of simulation, and the results

Fig. 7. Comparison of longitudinal concentration distribu-
tion at steady state as calculated numerically and by an
approximate analytical solution for the two-dimensional
dispersion problem in one-dimensional flow.

were changing only slightly with each additional
time step, and a true steady state had not been
achieved.

Longitudinal and Lateral Dispersion in
Two-Dimensional Flow

A longitudinal and lateral dispersion problem
was also solved numerically in the rotated
coordinate system (x1,, xi) as shown in Figure 8. A
fluid with a relative concentration of C/Co = 1.0

Fig. 6. Comparison of lateral concentration distribution at
steady state as calculated numerically and by an approxi-
mate analytical solution for the two-dimensional dispersion
problem in one-dimensional flow.

Fig. 8. Schematic diagram of coordinate axes rotation used
for comparing numerical and analytical solutions of the
longitudinal and lateral dispersion problem in two-
dimensional flow.

803



tlptUll tfllft. it
dy stiti
i, ïOln. «/o l#n«r>

n, loin, *»ih i*ntOP

— v-i-"-*

0.1 0.2 O.Í O.$ 0.4 0.7 0 .1 O.f 1.0

Fig. 9. Comparison of lateral concentration distribution at
x3 /£3 = 0.2 as calculated by using the tensor transformation,
without the tensor transformation, and by an approximate
analytical solution for steady-state conditions for the two-
dimensional dispersion and flow problem.

was injected over the interval a < X[ < b and fluid
with a relative concentration of C/Co =0.0 was
injected over the intervals 0 < Xi < a and
b < Xi < ?,. Data used to numerically solve this
problem were the same as for the previously
described longitudinal dispersion problem.

Again, some minor modifications to the code
listed in Appendix B were necessary to run the
longitudinal and lateral dispersion problem with
and without the tensor transformation in two-
dimensional flow. The modified code is available
on request from the authors.

The results from the numerical solution of the
longitudinal and lateral dispersion problem with
and without the tensor transformation are shown
in Figures 9 through 12 after 2.1 pore volumes of
fluid were injected and an approximate steady-state
condition was achieved. For comparison, the
approximate analytical solution for the steady case
as determined from equation (13) is also plotted.

Figure 12 shows that the numerical solutions
obtained using the tensor transformation are much
closer to the analytical solution than those without
the tensor transformation. However, the accuracy
of the numerical solution is not as good as was
achieved in the longitudinal dispersion problem
described earlier. As discussed earlier, this occurs
because of the very steep concentration gradient in
the X! direction.

The concentration profiles as plotted do not
show any "overshoot" or "undershoot." However,
overshoot and undershoot did occur but were
generally on the order of 10"3 to 10"4 C/Co. Since
the numerical solution without the tensor trans-
formation did not produce any overshoot, the use
of a "nine-star" grid pattern to estimate the cross
derivatives for the tensor transformation is
believed to be the source of this small amount of
overshoot.

a:
". o.i
t

.j/.,.0.

»«tlyttçil loin, i t
Itttdv t t i t t

* tun. «

* tun. .talr». - I l l '.»ntoi>

Fig. 11. Comparison of lateral concentration distribution at
X3/C3 =• 0.8 as calculated by using the tensor transformation,
without the tensor transformation, and by an approximate
analytical solution for steady-state conditions for the two-
dimensional dispersion and flow problem.
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Fig. 10. Comparison of lateral concentration distribution
at X3/63 - 0.5 as calculated by using the tensor transforma-
tion, without the tensor transformation, and by an approxi-
mate analytical solution for steady-state conditions for the
two-dimensional dispersion and flow problem.
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Summary and Conclusions
Four different convective-dispersion problems

were considered: (1) longitudinal dispersion in
one-dimensional flow; (2) longitudinal dispersion
with and without the tensor transformation in two-
dimensional flow; (3) longitudinal and lateral dis-
persion in unidirectional flow-, and (4) longitudinal
and lateral dispersion with and without the tensor
transformation in two-dimensional flow. A steady,
uniform flow field was assumed and the porous
medium was homogeneous and isotropic. A
coordinate transformation was necessary to check
the numerical solution using the tensorial form of
the dispersion coefficient. The MOC was used to
solve the convective-dispersion equations. The
results from the numerical solutions of the
dispersion problems were compared with available
analytical solutions. Excellent agreement was
obtained between the numerical and analytical
solutions when the tensor transformation was used.
This provides strong evidence for the accuracy of
the MOC and the numerical tensor transformation
used.

The MOC appears to be capable of solving
the longitudinal dispersion as well as the longitudi-
nal and lateral dispersion problems. No problems
with overshoot occurred and no numerical
dispersion resulted from the numerical process.
The small amount of overshoot that occurred in
the numerical solution is believed to be the result
of using a nine-star grid pattern to estimate the
cross derivatives for the tensor transformation.

The FORTRAN programs presented in the
paper are intended to illustrate the basic use of the
MOC in solving convective-dispersion problems for
a conservative tracer in a saturated porous medium.
For specific applications to real-world field
problems involving fluid sources and sinks in
confined/unconfined heterogeneous aquifers, other
FORTRAN programs (e.g., Konikow and
Bredehocft, 1978) are available.
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Appendix A. Solution of One-Dimensional Convective-
Dispersion Equation by the Method of Characteristics

• • • N O T E i TO RUN PROGRAM YOU MUST USE THE COHMANDi
EX MOC.rOR. S Y S : I M S L I B / L I B

un * N U M B E R o r C R I O S ( f i a w s t I S T H E V E R T I C A L I X J I D I R E C T I O N
« P L - .lUriflER Or MOVING POINTS IN THE VERTICAL DIRECTION
s u - NUMBER or .«VING 7OINTS/GRIO IS XJ OLHICTIOH
MAXST- .MAXIMUM NUMBER 3P TIME STEPS

FINTIM- SIMULATION FINISH TIKE IN SECONDS
3£L7 * TIME INCREMENT IN SECONDS
OELZ - SPATIAL INCREMENT I» CM.
TÏ - TOTAL DEPTH Or MOOEL IM X3 DIRECTION

OL - LONGITUDINAL DISPERSION COEFFICIENT IN CM"2/35C.
VEL- VELOCITY IS x i DIRECTION.
CO . DtMJSSIONLESS CONCENTRATION. AT THE INPUT BOUNDARY
CINTL - DIMENSIONES* INITIAL CONCENTRATION

* • * • * » # • « • PROGRAM VARIABLES " " • • " "

ALENZ • TCfAL LENGTH IS XJ DIRECTION
MAXST • MAX. SO. OF TIME STEPS DURING SIMULATION
¡ C I J • X3 COORDINATE AT CRIO CENTER
I I ) • XJ COORDINATE OF MOVING POINT»
CI ) - CONCENTRATION Of MOVING POINT»
V( ) * VELOCITY OP EACH MOVING POINT
SUHC( I * SUMMATION OF CONCENTRATION OF MOVING POINTS IN A GRID
COUNT! ) - A COUNT Ç-F NUMBER OF MOVING POINTS IN A GRID
CAVG t ) - AVERAGE CONCENTRATION OF TRACER FOR A CHID ASD IS

DETERMINED A i SUMC/COUNT
DELC I ) • CHANCE IS CONCENTRATION FOR A GRID DUE TO DISPERSION
CCOAI ) • OIMtHSIONLESS CONCENTRATION BY ANALYTICAL SOLUTION
NIL • ROW NUMBER OF SRIO IS WHICH MOVING POINT IS LOCATED
DOG - INCREMENTING FACTOR USED IN DO-LOOP

1NTESER TSTEP
DIMENSION I l l H I , CAVG I 491 . COUNT ( 4 9 ) ,SUMCI 4 9 ) , V ( L Ï S J . D E L C l i i * I

S C C O A ( 4 9 I , C I L 9 6 I . Z C ( 4 9 )
DATA JÍPffíífT. IPRÍWT, NATAD/3 , 5 . 5 /
WRITS [ I P A t N T . LOO)
FORMAT I / . 2 X . ' THE FOLLOWING VAP.IAËLE5 HAVE I ! FORMATS1.

S / . 2 X . 1 3 I V É VALUES FOP.: NR. NFL. S P Z , M A X S T ' , / I
READ INREAO.II NR. NPL. NFZ, MAXST
WRITS ( N P R t N T . i l SR, NPL, N P Î . MAXST
•WRITS ( I P R t N T , 2 0 0 )
FORMAT I / . Î X , ' Î H 1 NEXT 4 VARIABLES HAVE FREE F O R M A T S ' . / ,

Í 2X, GIVE VALUES FOR FINTIM, ÛELT. DELZ, T Z ' , / 1
REAO ( N R E A O . - I F I N T l M , 3 t L T , D E L Z . T Z
WRITE 1 I P R I N T . 3 0 0 1
FORMAT 1 / . 2 X , ' THE LAST FOUR VARIABLES HAVE FREE F O R M A T S ' , / ,

S 2X. ' G i v e VALUES FOR DL, VEL. CO. C I N T L 1 , / / ]
RIAD ( N R E A O . ' l DL. VEL, CO. CINTL
WRITE 1 I P R I N T . « 0 0 1
FORMAT I / / . 2 X , 1 OUTPUT DISPOSED TO LINE PRINTER 1»
WRITE INPP-INT.41 FINTIM. SELT, OELZ. '.%, DL, VEL. CO. CINTL
PZ - FLOAT!NPZ)
AD - DELT'OL/DELZ/DELZ
ALENZ • O E U * rLOAT(NR)
ADISZ - DELZ/PZ
NRML • NR - L

TIAL COORDINATES AN» CONCENTRATIONS TO
MOV1NQ POINTS • • *

SOO
:OOO

ZC(I) • 0 . 0
ICI 2) - DELZ/2.
DO SO 1 • ] , NR
: c ( i i - z c i i - D • OELZ
DO 67 I * u NR
S U H C 1 I ) * 0 , 0
C O U N T ) I I • 0 . 0

3 E L C I I ) « 0 . 0
M 1Q I M . NPL
DOG - FLOAT ! I - L)
21 I ) - ¡ D E L Z / P Z ] • l O . i • ODG1
C( 1 ) - CINTL
IF I I . L E - NPZI C ( I I • 1 . 0

NIL - Z( I I , DELZ *• L . 0
S U M C ( N I I ! • 5UMCINILI * C ( t >
C O U N T I N I L I - C O U H T I N I l l * 1 . 0
CONTINUE

DO LL I - L.NR
IF ; c o u w T ( I ) . E Q . 0 . ) C O U N T ! I I - L - 0
CAVCUJ « SUHCt I l /COUNTl II
CONTINUE

PRINT I N I T I A L CONCENTRATION. FOR EACH GRID POIMT

TSTEP • 0
TIME - 0 . 0
WRITS ( N P R 1 S T , L7)
DO * 0 0 I » L.NR
WRITS I SPRINT. L6) I , 5 U M C U ) . COUHTt I ) , D E L C I I ) . C A V S U )
CONTINUE

START SIMULATION OVEH TIME STEPS

TSTEP • TSTSP * L
It (TIME - DELT .GT. FIVTIHt OSLT * FINTIH • TIME
TIME - TIME • 0ÍLT

STEP 2t DETERMINES MHICH GRID THt MOVING POINT IS LOCATED, AHO
SIL0CATS3 THt FOUIT L 1 U S A U I G U O fUM VELOCITY . - - - - -

DO 20 I - L. NPL
NIL « s( Il/DELZ * 1.0
Z( II • Zl II • D i t T ' v d l
CONTINUE

*IF DURING A TIMf STEP, AMY MOVING FOIafT MOVES OUT Of THt SYSTEM, IT IS
RE-ENTERED AT THE INFLOU BOUIDk«Y; ASSIGNED ArrUDÜlUATE COORDINAttS A«D

DO 6 4 1 . L. SP1
IF I Z I I I . L T . A U V I I G O T O i t
NPH1 • NPl - L
DO 52 J - I . NPMI
NH • NPV + L - J
Z(NNt - Z1NN - LI
VI SHI • VINN - LI
C( MUI - ctNV • Í)
COHTMUI
¡ I I I - 2 ( 2 ) - ADISZ
I F ( Z ( L ) . L T . O.OLI Z ( ; l • 0 . 0 1
VI LI - VEL
Cl LI - CO
cotrflNut

54
C

40
C--
C--
c

I N I T I A L I Z E THE SUMC AHD COUNT ARRAYS

DO Î 4 I - L, SA
SUMC ( I ) • 0 . 0
COUNTtI ] « 0 . 0
CONTINUE

*• COMPUTf SUMC AUD COUNT FOR MOVING POINTS IN A GRID

DO 4 0 I • L. NP1
NIL • I F I X ( Z f l l / D E L Z * L . 0 )
SUMC ( S I L I • SUMC ( N U I . t i l l
COUNT ( N I L I - C0UKT H I D - 1 , 0
CONTINUE

JO
C - -
c
c

39
C--
c
c

- S T t » 31 A S S t C » A TEMPORARY CONCENTRATION TO EACH GRID. EQUAL TO THE
AVERAGE OF CONCENTRATIONS OF MOVING POINTS INSIDE THE G R I D - -

DO 30 Í • L. NR
IF I C O U N T U I -EQ. O.I COUNTt II • L . 0
CAVO(I) • S U H C t I ) / C O U N T ( I )
CONTINUE

STEP 4 i COMPUTE CHANCE IN GRID CONCENTRATION DUE TO DISPERSION

DO I I I • 2 . SAM1
DELCII ) - AD • ( C A V G Í I - L ) - 3 , ' C A V G ( t l • C A V G I I v L l l
DELCINRI i AD • ( C A V G I N R - l l - CAVGIHRII
CONTINUE

3 T S P 1: UPDATE ÚP.1D POINT CONC- aASED ON DELC

DO 48 I - L. NR
CAVG(I) • CAVCIII " DELCIII
COMTINUE

22
C--
C "
c

STEP 4 : .MODIFY MOVING POINT CQHC. BASED DM DELC

DO 2 2 I - L, NPL
N i l • 2 | I l / D E L Z • 1 . 0
c m - c m • oet-ciNui
CONTINUÉ

3L
C - -

ERROR FUNCTION ANALYTICAL SOLUTION • * • •

A . I .*SQP.TIDL*TIMei
DO 31 I * L, SR
31 • E R T C I ( Z C ( 1 I - V ( I ) " T I M E I / A I
32 • E R T C I U C I 1 | . V | I ) ' T I M E I / A I
CCOA(I]•O.S't S1+EXP(VIII'ZCII) Stl'3 21
COST1NUE

• • PRINTS SIMULATION RESULTS " * • "
C

WRITE < N P R I N T , 3 O 3 ) TIMS
WRITE I N P R I N T . 3 2 1
WRITE I N P R I N T , 3 D ! I , 2 C ( I ) . C A V G I I I , C C O A { I I . I - L . N R I
IP (TSTEP . E O . MAXSTI STOP
GO TO LOOO

1 F O R M A T ( 4 1 I S ) I
2 F O R M A T ( / L X . 1 N R - ' . I 5 , 3 X . ' « V I N S P T 3 . I N 2 - D I B I C T I O B . ' .

J I S / 1 X . ' W V I N S P O I N T S P E R B R I O . . ¡ S . 3 X . 1 M A X . T I M E S T E P S - ' . t !
S 1

1 F O R M A T ( 4 < r i O . 2 l l
4 F O I H A T I / 1 X . ' F I I I T I W . H O . I , IX,' D E L T . . F L O . 2 , 3 X .

S ' Û S L I . ' , P L O . 2 . 3 X . 1 C - ' , F 1 O , 3 , 3 X . ' D L « . E 1 O . J ,
» 3 X . ' V E L * ' . S I » . 9 , 3 X , • C O . ' , P L O . J / L X . ' C I N I T I A L » ' . F L O . 3 1

i PORMAT 1 2 ( 7 1 0 . 6 1 1
17 FORMAT | / B X , — — — . . . . . . . . r o n TH« SRIO P O I N T S — • • - » ' .

S . . . . . . . . . . ' , / 7 x , ' I ' , S X ,
S ' S U M C ' . f l X , 1 COUNT'. 7 X . 1 0 E L C . 7 X . 1 CAVG'/ I

LS FORMAT I IX . 1 8 , 4 I E I 4 . 4 I I
32 FORMAT I / 4 X . ' I ' . 3 X . ' I C I I ) ' , 5 X , ' C C O ( I I ' , 7X,'CCOAt C) ' . S X . I ' , 3X.

S ICI II , S X . ' C C O I I I ' . 7 x , • C C 0 A I I 1 ' . 4 X , ' I ' . 3 X . ' ICI l ! . S x , CCO1II ' .
Í 7X. ' C C O A d l V I SX. ' ( NUMERICAL! ' , 2 X , ' I ANALYTICAL! . 14X.
S ' ( N U M E R I C A L ! ' . 3 X . ' ( A N A L Y T I C A L ) ' . L 4 X . L(NUMERICAL) ' . 3 X ,
! (ASALYTtCALI ' )

31 FORMAT I 3 I 2 X , I 3 . F 1 . 2 . 2 E L 4 . 4 1 )
3 0 3 FORMAT I / L X . ' SIMULATION Tt.MS • . E L O . 3 / 1

STOP
CND

Appendix B. Solution of Two-Dimensional Convectiva-
Dispersion Equation by the Method of Characteristics

INPUT INFORMATION

" * NOTSi TO RUN THE PROGRAM YOU MUST USE THE COMMAND:
EX M O C 2 D . F O R . 3 Y S i I M S L I > / L I B

. NR - NO. OF GRIDS(HOWSI IN THt VERTICALIX3I DIRECTION
ÜFL • NO, Ot MQVINa POINTS IN VERTICALIX3) DIRECTION
-1PZ • NO. Or MOVING POINTS PER GRID ¡N X ] DIRECTION
NC • NO. OF CRIDStCOLUMHS) IN HORIZONTAL (XL) DIRECTION
NP2 • NO. o f MOVIHa POINTS IN HORIZONTAL (XL) DIRECTION
SPX - NO. Dr MOVING POtWTJ PER GRID IN XI DIRECTION
MAXIT • MAXIMUM NO. Or TIME STEPS USED IN SIMULATION
K P R I N T - I N I T I A L COUNTER POt PRÍSTINO NUMERICAL SOLUTION
IPACaNUMVER Or INTERVALS AT WHICH HISULTS ARE PRINTED

- P I N T » • 3IHULATUM F I N I S H TIME IN 3SC0HD1
DELT - TIME [ » C l t H t K IN SECONDS
3 Í Í . Í • ' / E i f f l O U f t J I SPATIAL .'NCREMEWT IN CM.
TZ • TOTAL DEPTH Or HODS!, IN VERTICAL 1X3) DIRECTION
DELX - HORIZONTAL ( X I I SPATIAL'INCREMENT tN CM.
TX • TOTAL WIDTH Or MODEL IN H o t l t O H T A L 1X11 DIRECTION

Db • LONOXTUD1NAL DISP. COErF. ICH**2/SSC)
DT • LATERAL Kit, COtrr. ICH**2/SECI
3 • U H O T H Or TRACER SOURCE IK XI DIRECTIOil IN CM.
V i t • VELOCITT IN VERTICAL 1X11 D t R t C T t I M {CM/SECI
CO • D l f l f N S t e i l L E l t CIWC. AT WPUT lOUHDART
CIHTL • D I M E H I O N L E S S I N I T I A L COHC.

PMOGHAM VARIABLES

ALESZ - TOTAL LENCTH OF MODEL I» VtRTICAL IXJI DIRECTION
2 • V E R I C A L ( X 3 ) COORDINATE Or HDVINS P O I « T 1
X • HOUttOVTAL 1X1) COORDlHATt OF HIVING POINT*
c • ointstiaiLE» coNc. or MOVUIO paurs
V . VELOCITY Or EACH M0VM0 P o t » !
DOGI, DQGX - UlCllCMEWriMG FACTORS UStD IH DO LOOTS
3UMC • iUMHATtW Of CDHCIBTRATION or MDVIHS POInTS M A GRID
COURT • A COUNT 0» NO. af HOVING POINTS III A « I D
N i l ' ROW HO. Or A GRID IN WHICH A W i n d POINT IS LOCATED
NI2 • C3LUMM HO. Ot A 9IID ID MUCH A MOV UTO POINT IS LOCATED
DELC » CHAjaE 1U CONCENTRATION rOR A CRIO DUE TO DISPERSION

INTIMR TSTtí
aiMtsis ica z( ! : i , C A V O ( 2 t , 211 . D I S P I I t . 211 .COUMTI it.211
D t H t m a s 3 U M B ( 2 « , 2 1 I , V ( S 2 I , D ( L C ( 2 < . 2 I I . C » ( 2 < , 2 1 I . C < 1 ] , 4 } ;
OlHElUtaü ZCI21I,CCOA(2S.2II.XC(!L),X(4J)

DAT* »»*IJT. IPRlNT.NRtAD/J.J.S/
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'rfRITEl üPmalT. 100]
ÍQRHATt/ . 2 * . ' THE fOLLÜWÍNO VARIABLES HAVE IS FORMAT'/.2X,
1 GIVE VALUES 'Oft; NR, MPI, ¿PZ. MC, X?2. NPX .iiAXST, KPRINT. IÍAC' . / i
READ! «READ. DHR, MPI. NPÏ. üC. NP?, NPX, MAXST, KFfclKT. IFAC
WRITE(«PR1NT,2)NR, .<*P1, NPI, MC, ÜP2, HPX, HAMT, KF«NT, IfAC
WRiTE(IpRINT.200)
FORMATl/,2X,: THE NÏXT 4 VARIABLES HAVE FR£Ï FORMAT',/,
2X, ' GIVE VALUES FOR FÏWTIH. QELT, QELZ. T l , OELX. TX" , / )
REA0{ü«Afl.->FIOTIM, ÛELT, OELZ. TI , MLJE, TK
WRITE(IPRINT,}0Q)
fOHHAT(/,2X,' THÍ LAST 4 VARIABLES HAVE PUE FORMAT*,/,
2X, ' GIVE VALUES FORi 3L, OT, i, VEL, CO, C I ï O ' L 1 , / / !
R£AD<NRtAD,«f DL, DT, 8, VÏL, CO, CINTL
WHITE1IPR1NT.4Û0)
FOftNATl// ,2X, CJUTPUT 3í5PQS<0 TO LINE PRINTER' )
WRITS!NPRIMT,4lFt!tTlH,DELT,DÉLl,Tï,DL,VEL,QÍLX,TX,OT,B,
CO. CINTL

INITIALI2E VARIABUES — - - - •*- —

AQÏ-DELT
AOX-OÍLT

PX)
ÛL/DELl/DELZ
ÜT/DCLX/DELX

NCBL-NCB * i
MPXfl-IFIX(B»SPX/DELX)
MPXB1>NPXB + L
ALENZ*DEL2 * FLOATER)
ADISZ-DELZ/P2
«RM1>HR - L
NCH1-NC - L

COORDINATES FOR STATIONARY GRID SYSTEM

ZC(3) * DELS/2.
« i l » - ÛEUI/3-
JO 90 I*í,tIR
E C I I I - Z C I t - l ) * 0EL2
DO 91 I*Ï.NC
X = ( I ) - X C ( I - U * 5ELX

00 «7 J - l .i*C

sunct t,J) • o.
COU«T(t,J)
DELCtl.JÍ

0.

C - - $TEP U A45I0H INITIAL COORDINATES AW 0 •CqWCB-fTSAT lOtfS TO
C

m lo J»IF«P2
DO 10 £*L,NPL
OOCZ-FLOATU-1)

î ( I ) - (DELZ/PZ)
X[J)>(ptLX/PX)
CiI.J1-C1NTL
I ? ( I .UE, NPZ

Z)
* 10,S • DOGXJ

AND. J .LE. NPXll C(1,J)«CO

INITIAL VALUES OF SUHC AND COUNT

J/DELZ -L-0)

ASSIGN INITIAL CONCENTRATIONS TO STATIONARY ÖRID PÛÎMÎ5 —*^*

DO U J - l . N C
DO LI I-L..SR
[FlCOUNTt l . J ) ,£Q. 0 , t COUNT!I.J) *L.0
CAVQtI,J)«SUHC(I,J)/COUNT(I,JJ
CONTINUE
ÎSTEF-Q
TIME«0.

•- PRINT INITIAL CONCENTRATIONS FOR EACH QRIO POINT — " * * - * *

WRITÍtNFRtNT,L7]
DO 500 I-l-.-JR
DÛ SOU j-L.NC
WRITE!SPRINT, í6)L,JtSUMC(I,J),^3UNT( I .J) .OELCII,J} .CAVGÍI. J)
CONTINUE

SIMULATION STARTS

T5TEF - TSTEP *l
ÏF( TlMt + DELT -ST. FINTIÍII DELT-FINTIrt-TlPl
TI«E - TIME *OELT

2, DETERMINE WHICH ORID EACH tOvlHG
USINÚ VELOCITT ----*•* + *

DO 20 I-L.NPL
t(I) >Z(I) - OELT " V[I)

t3 tU, WÛ RELOCATE

- RC-AâStGN COORDINATES AND CONCENTRATION* TO HQVIV« POIHtS WHICH
HAVE MOVED OUT Of THE SYSTEM. i . « . , INPUT THEM AGAIH AT THE
INFLOW BOUN&AAT —..-,*.*' .• .

M 66 > L , ^Pl
I f ( E ( U ,LT. ALfNZ) SOTO 64
^PHL-NPl - 1

DO 6* K«l,NpMl
HN-NP1 * L - K
HHIH) * 3( UH-L1
CONTINUE

DO 61 J>L.NP2
DO 6* K«L,NPHl
NN'NfL * I 'K
C1NH.J) • CC4N-1,J)

c

Z ( L ) - ï ( 2 ) - AÛISt
i r ( Z ( 1 ) .LT, .Dl) Z(L)*,Ql

Û0 65 J-L.NPX
C ( 1 , J ) • CO
i r t J -GT. NPXB) CtL.Jl-CINTL
CONTINUE

RESET SUHC AND COUNT

DO 54 > l , ! I R
00 34 J-L.tJC
SUhC(t.J)-J.
COUHTtI,J)>0.

FOR ÏACH CR1D. SUM "JP ?HE TOTAL
^U-IBCR 3r «OVINO pOtPlTS [COUNT]

00 40 J-L.NP2
X 40 1*1.NPl
! ( I l i r i X ( I { I ] / D E L Z
x : : - i n x ( x i J I / D E L X * L . 0 )

— - ST2P Î ! ZALCULATÍ A TEMPORARY AVERAGE CÛHCt.fTRAf ICJH FROH 3UMC AND COUNT

QQ JQ J > i , N C
DO 30 > L . N R
IFl COUNT t I , M'1 . E Q . Ö . ) C 0 U N T ( I , J ) • L . 0
¿ A V ã { l , J l * S U H C ( 1, J ) / C O Ü H T l I . J )

0 CONTINUE

40

C

STEP 4 : CALCULATE CHANSt IN CONCENTRATION 3UE TO DISPERSION
• • * * • INTERIOR GRIDS " * *

M 39 J - 2 , N C H 1
M JS I*2,NRML
Î B L C H . J I - A D X # ( C A V C ( I . J - l ) - 2 . *

S C A V Ü ( I , J ) - CAVCt I , J * U 1 * AOZ * ( C A V G I I - l . J l
S - 2 , - C A V a a . J ) + C A V G I I + U J J !

•"** 3 I 0 Ï 9OUNÛARIES ' • • *

0 0 70 I - Î . N I W 1
7 S L C ( I i L ] - AOZ • ! C A V Ö ( I - l . 1 1 - 2 , ' C A V G t l . U *

J C \ V C ( l + l , l . n + AUX • ' C A V Q t l . î J - C A V Ü ( I . l í )
3 E L C ( I , N C ) * AOZ - ( C A V G ( I - t , N C ) - 2 , • C A V G [ I , O Q ) +

S C A V q ( t * U « C j ) *• AUX * ICAVOt I . N C - 1 ) - CAVC(I , .SCM

# # # # LOWER BOUNDARY " " *

SO T2 J*2.NCML
:ELC(NR,J]-ADZ * ICAVO(NR-L.JI -CAVGI^R.^)] * A

3 iCAVOINR. J-L) - I- ' CAVG(Hft,J! + CAVGl-VR, J + L ] i

DELCÍNR.NCt - AOX * ÍCAVC(NR.NC-LI -
^AVGÍNR.NOí * AD2 • ( CAVG( «R- I, HC )

• ELCtNR, I) • Ap2 * {CAVGINR. 1) - ¿AVG(SR-1. i ) I - ADX •
S !CAV0(NR, 2; - CAVGfNR, IM

¿TEP 4i UPDATE CONCENTRATIONS FOR STATIONARY 5*10 POINTS

70 49 J"L,NC
DO 48 I «I.MR
CAVaU,J)-CAVG([.J> * OELC(I,Jt
CCO(I.J]-CAVGII,J| /CO

400
Í.UI

STEP 4 ; UPDATE COHCENTRATIWS FOR MQVISG POINTS

DÛ 22 J-L.NP2
DO i î I*L.NPL
« U - i r i X i Z I U / B t L I * L.Q)
N I Î - l F I X U t Jt/DELX * LOI
C'C.J) • C I l . J l * DELCI«H,NI2I
¿ONT IHUt

" TlMl STEP MAS BtEN CSiiPLÏTSO • • • • • •

'flllTE OUT INTERMEDIATE STEPS — , - » - . - -

IF t TSTEP .NE. KPRÍNTMFACI GO TO oúl
KPRlNTuKPRINTM
wRITEt NPRINT. 7S8J '. XC ( J) . J" I. MCI
fORMATUx, I X - , * 0 p * . 2 / )
riRlTElNPRlST.J03) TIME
WRITEINCRINT.AOO) (ZCI I ) . ICCO(1 .J ) .J -1 ,NCI . 1*1.*
fORHATI U . 2 i f 6 . 3 )

- . . COMPARE Aj^LYTICAL AND N U W H J C A L SOLUTIONS

IFtrSTEP ,EQ. rtAXSTJ COTO Í0
ÜOTO 41

. * * • • • A."iALYT;CAL SOLUTION • * • • • •

DO 93 J'i.HC
» 33 t " i , S R
CCOAd.JJ-O.S • BKfCMXCfJ) - 8 1 / ( 2 . • SQRTID

DO 75 J - i . S C
I f ( J .LE. MCI) CCOA(1.J)-CO
IF(J , 3 T . SCÍI) CCOAt1 ,J )C

riRlTE( SPRINT-9B0)
rORMATl/.. . 3 X , ' f I.SAL T î « S T E P 1 / / / )

CONTINUE

• * * ' CHECK If MAXIMUM NUMBER OF TIME STEPS IS EXCEEDED

IF(TSTEP - ÏQ. MUST) Ï « P
GOTO LOOQ

S? -F PRINT JTATÍ«E!<TS

! 3 S S T ; ! í NU - M 4 . Í X . ' « V I N O P T S . W I - O l r t « l « - • ,
U . K . ' W i N f l POINT* P " CM0 - M 3 / / . 1 X . ' MC - * " «
' MOVI» ?TS. IN X-3IRJCCTI0N - M4.3X." W J
ÛRIB - "3 IX. -AX. NO* Of TIME STÏM • M Î Z / I X .
' P R I N T i X C ' c á u i ™ - M S . 3 X . - F Í U N T I N O IHTÍÍVAL - M S »

JT8. ?ER

« " v t i . • , r t . i / / . a . ' OíUt . . n . J . K . T X - •-

n . l . M . '3T r , H O . J, W . ' • - ' . M . 2 / / . I X . SO - ,

MC'.'X.1 C9UÍT-.7I.1 OÍLC •. « . ' «VS'/IL6
32

PO««IT!3' IX.J
t m . - . 1 1 0 . 3 / )

ST»
END
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Applying the USGS Mass-Transport Model (MOC)

to Remedial Actions by Recovery Wells
byAly I. El-Kadia

ABSTRACT
The USGS two-dimensional mass-transport model

(MOC) is widely used in the analysis of ground-water
contamination problems. A need exists to examine the
accuracy of the code in situations dominated by radially
convergent and divergent flow around wells. The model is
applied here to situations that commonly exist in remedial
actions involving recovery wells. The cases simulated are a
recharge/recovery single well, a recharge/recovery doublet,
and plume capture by one or two production wells. The
results were tested against analytical and semianalytical
solutions. Inaccuracies in model results occurred especially
for the doublet case under continued long-time simulation.
Inaccuracies are caused not only by the mainly radial-flow
situation, or by the curvature nature of streamlines, but
also by the arrival of contamination at the sink nodes.
Better agreement of numerical and analytical solutions was
obtained for the single-well and plume-capture situations.
However, a large mass-balance error exists for the single-well
case. Inaccuracies can be reduced by modifying the code
and reducing the finite-difference mesh (e.g., Erickson,
1985). However, the use of a very fine mesh (i.e., on the
order of a few feet) may prevent the use of the code in
large-scale problems. Care must be taken in applying the
model to situations where production or injection wells are
close to each other.

INTRODUCTION
The U.S. Geological Survey two-dimensional

mass-transport model, known also as MOC and
developed originally by Konikow and Bredehoeft
(1978), utilizes the method of characteristics and
the finite-difference approach in the solution of
the mass-transport problem. The model has under-
gone numerous modifications and revisions (e.g.,
Sanford and Konikow, 1985). It has been applied
in a large number of field studies (e.g., Bouvettc,
198 3; Chapelle, 1986; and Sophocleous, 1984) and
tested against analytical and alternative numerical
approaches (e.g., Sophocleous et al, 1982). The
well-documented code is relatively easy to use.
Various options can be applied to describe different

a Associate Director for Research, Water Sciences
Program, Holcomb Research Institute, Butler University,
4600 Sunset Avenue, Indianapolis, Indiana 46208.

Received May 1987, revised October 1987, accepted
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Discussion open until November 1, 1988.

hydrological conditions. The recent introduction
of a microcomputer version and a preprocessor for
input data preparation has increased the popularity
of the code.

The model is tested here in situations
dominated by radially convergent and divergent
flow around wells. The authors of the code do not
encourage the application of the model to such
problems, especially when using a grid that is too
coarse (L. Konikow, pers. comm., 1987). However,
some applications of the code to similar situations
have been reported in the literature (e.g., Freeberg
et ai, 1987). Erickson (1985), realizing that
problems arise in the use of MOC for these
situations, modified the code for use in the analysis
of single-well tracer tests. The major changes include
simulating the converging/diverging flow field
resulting from wells; eliminating the hydrodynamic
dispersion in the well during the pumping phase;
changing the manner in which particle concentration
is estimated from node concentration; changing the
way mass is removed by pumpage-, and adding new
particles before the pumping phase. A finer mesh
(one square foot) was also used. Better accuracy as
well as better mass conservation was obtained
following these changes.

Note, however, that the use of such a fine
mesh is impractical due to the limited area that can
be handled by the code in this case. If we consider
the large number of particles that must be. handled
and the limit imposed on the size of the time step,
computational costs could be prohibitive. A need
exists to examine the suitability of the code in the
analysis of relatively large problems of a practical
nature.

In general, accuracy of numerical results can
be judged using various criteria relevant to the
purpose of model application and the expected use
of results. For example, when professional judg-
ment is needed, an order-of-magnitude analysis of
concentration values or travel times is generally
acceptable, especially under uncertainty in data
and processes involved. On the other hand, more
accurate estimates are needed in some situations
involving, for example, the assessment of exposure
levels of toxic chemicals in the environment. In the
present analysis, both visual inspection and esti-



mates oí root-mean-squared error are used to assess
the accuracy of the model. "Reasonable" or
"good" results are defined in practical terms;
"unacceptable" results are based on severe
fluctuations.

The objective for the study is to verify MOC
for situations pertinent to remedial actions by
recovery wells. The cases simulated are a recharge/
recovery single well, a recharge/recovery doublet,
and plume capture by one or two production wells.
The model is not completely tested in the terms
described, for example, by van der Heijde et ai
(1985). These authors define a three-level testing
approach that ranges between testing against
analytical solutions and history matching.

REMEDIAL ACTIONS
Remedial actions include the use of systems

to contain spilled or leaked contaminants and to
recover and treat ground water. [For details of
different techniques see, e.g., U.S. Environmental
Protection Agency (1985) and Ehrenfeld and Bass
(1984).] Containment systems interfere with
transport mechanisms by means of hydraulic
barriers such as recovery wells, interceptor trenches,
grout curtains, and slurry walls. Treatment systems
include the use of physical, chemical, and biological
activities. Physical/chemical processes include in
situ air stripping and activated carbon absorption;
both are effective in reducing volatile organic
compounds. Air stripping helps remove volatile
chemicals from the soil by drawing or venting air
through the unsaturated soil layer. Another form
of air stripping passes contaminated water through
a packed column or tower with counter flowing air
and water. The effectiveness of carbon absorption
depends on the type of competing compounds
(e.g., Engineering-Science, 1986).

Aboveground and in situ biological methods
have been employed recently in the treatment of
contaminated ground water. Aboveground processes
include fixed film treatment such as trickling filters,
or suspended-growth systems such as activated
sludge (Jensen et ai, 1986). In situ biodégradation
can be performed by using existing soil micro-
organisms or by adding microorganisms and
nutrients to the contaminated aquifer. Such treat-
ment is presently in the experimental stage; its
effectiveness depends on a number of factors such
as type and concentration of contaminants, hydro-
geology, nutrient availability, dissolved oxygen, pH,
temperature, and salinity (Engineering-Science,
1986).

Recovery wells are the most commonly used

remediation techniques. In aquifer cleanup, they
extract the polluted ground water and cither
reinject it after treatment or release it to a surface-
water body. In some cases, recovery wells are
combined with injection wells to improve recovery
by altering the hydraulic gradient. The recovery
well system should be designed to intercept the
contaminant plume such that no further degradation
of the aquifer occurs. Modeling is a very useful tool
in the design of such systems (Boutwell et ai, 1985).

TESTING THE MODEL
Case 1: A Recharge/Recovery Single Well

A recharge-pumping cycle for a fully penetrat-
ing well in a confined aquifer is used to test MOC.
Water of a known concentration (Co) is injected
into the well. After some time, the flow is reversed
and the contaminated water is pumped out. Such a
process can be used in field work to define the
dispersive properties of aquifers (see e.g., Giiven
et ai, 1985). The situation may also represent a
cleanup process following extended contamination.

Gelhar and Collins (1971) derived an approxi-
mate analytical solution for the distribution of the
relative concentration in the well during the with-
drawal period. By neglecting the effects of well
radius and molecular diffusion, this expression
reads:

— = Vt erfc {
Co

V

T^
•} (1)

With i = 1 and 2 representing the indices for the
recharge and discharge period, respectively, V is
given by:

V= 1 - — (2)

where V¡ == Q¡t¡ is the recharge or discharge volume
of water, Q¡ is the recharge or discharge rate, and
tj is time. In equation (1), a is the radial dispersiv-
ity, erfc is the complementary error function, and
R, is given by:

Ri
jrnB

(3)

where B is the aquifer thickness (assumed constant),
and n is porosity. For the special case of Ch = Q2,
equation (2) reduces to:

v—i
tl

(4)

in which t = t, + ti is the total time.



Tabla 1. Common Parameters for Test Cases VA, 1.B, 1.C, and l.D

Parameter Symbol Value Units

Saturated conductivity
Aquifer thickness
Porosity
Ratio of longitudinal to transverse dispersivity
Mesh increments in x direction
Mesh increments in y direction
Number of increments in x direction
Number of increments in y direction
Initial concentration
Concentration of injected water

K
B
n

a t/ag
Ax
Ay

0.005
20.0
0.30
1.0

900.
900.

9
11
0.0

100.

ft/s
ft

ft
ft

uu-

75-

50-

2 9 -

Q-

& \ \
A \

4 \
A \

A\

A\

1

Analytical
& Numarical

l

V
\ ^A

\ AA

\ A

\ A A A

1 2 3 4 9 6 7
Tim* (years)

10

Fig. 1. Tims change of relative concentration in the wall at
estimated both numerically and analytically for case 1.A.

Case

Table 2. Values of û£, t,, Q, (• Q2 ) for
Test Cases l.A, l.B, 1.C, and 1.D

11 (year) Qi = Qi(efs)

l.A
l.B
l.C
l.D

100.
100.

0.001
100.

2.5
1.0
2.5
2.5

1.0
1.0
1.0
0.5

A number of hypothetical experiments were
simulated, and the results were compared to the
analytical solution as given by equation (1). The
input data for MOC are shown in Tables 1 and 2.

Figures 1 through 4 illustrate results of the
analysis for experiments l.A to l.D. The root-
mean-squared error for the four cases is, respectively,
1.9, 2.9, 3.4, and 1.4. Despite the severity of the
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Fig. 2. Time change of relative concentration in the well as
estimated both numerically and analytically for cat* l.B.
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Fig. 3. Tim* change of relative concentration in the well as
estimated both numerically and analytically for case 1.C.
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Fig. 4. Tima change of relative concentration in the well as
estimated both numerically and analytically for case 1.D.

test, a radiai flow case, reasonable match can be
observed for all cases. Some fluctuations can be
noticed, yet the overall behavior of the numerical
results is good. The largest deviation of the
numerical results from the analytical solution exists
for case l.C. The deviations appear in the form of
numerical dispersion; errors are most severe for
larger well fluxes or longer injection periods. The
inclusion of large physical dispersion (Figure 1 )
did not mask the numerical dispersion effects,
suggesting that most of the error is due to poor
representation of radial flow near the well rather
than to numerical dispersion, i.e., by inaccuracies
in predicting the flow field, rather than inaccuracies
in estimating the advection term. The percentage
mass-balance error is illustrated for all cases in
Figure 5 as a function of time. The maximum value
of error is about -16%, -22%, -23%, and -13%
for cases l.A, I.B, l.C, and l.D, respectively.

Considering the reasonably good results shown
in Figures 1 through 4, it seems that, as explained
by Konikow and Bredehoeft (197$), the large mass
error is caused also by the method of estimating
the solute mass removed from the aquifer at sink
nodes during each time increment. It appears also
that the radial flow does not cause serious problems
for MOC in the single-well test, e.g., in terms of
large fluctuations leading to unacceptable results.
Continuous injection, simulated earlier by
Konikow and Bredehoeft (1978), also shows good
accuracy. For a similar experiment (results not
shown here), the relative mass error ranged approxi-

mately between +12% to -19%. It can be concluded
that, for practical purposes, MOC is reasonably
accurate for continuous injection and for the
recharge-pumping cycle. However, the mass
conservation in the model should be improved. The
introduction of a large number of particles as well
as the use of a smaller grid size did not improve the
mass error encountered. (The results of these
simulations are not shown here.)

Case 2: A Recharge/Recovery Doublet
The second MOC test involved application to

a recharge/recovery doublet. A semianalytical
solution to the purely convective transport case
was introduced and programmed by Javandel et al.
(1984). The model, called RESSQ, uses the complex
velocity potential to estimate the concentration
distribution in the aquifer. The technique is applica-
ble to a two-dimensional flow in a homogeneous
confined aquifer in the absence of dispersion and
diffusion effects. The calculation steps are as
follows (Javandel et ai, 1984):

The technique identifies, first, simple flow
components such as sources and sinks. Second, the
overall complex velocity potential of the system is
obtained by combining the expressions for each
individual component. Third, the velocity field is
identified by taking the derivative of the velocity
potential. Fourth, locations of contaminant fronts
and flow patterns are estimated at various values of
time. Finally, stream function of the system is used
to calculate the time variation of the rate at which

-16

-20

-34

Casa 1.A
C«s« 18
Cas* l.C

1.0

2 3 4 3 S 7
Tin* (yaarsJ

10

I

Fig. 5. Relative mass-balance error for cases 1.A, I.B, 1.C,
and 1.0, as function of tima.
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Fig. 6. The aquifer model for the recharge/discharge
doublet.

a contaminant reaches any desired outflow
boundary.

Figure 6 illustrates the aquifer model for the
test problem simulated. Model parameters arc given
in Table 1. The values of ag and a t were set equal
to zero. The rate of withdrawal or recharge was
taken as 1.0 cfs.

Figure 7 compares the time change of concen-
tration in the withdrawal well estimated using
MOC, with that estimated using RESSQ. The figure
shows reasonable match for a short time period
(less than 2.0 years). The two models predicted
the same value for the time at which the contami-
nant reaches the production well (about 1.5 years).
This value agrees with the available analytical
solution (Javandel et al, 1984). For a time larger
than 2.0 years, the numerical solution is not
accurate and shows large fluctuations for which the
analytical solution represents the upper envelope.
The time change of concentration in two observa-
tion wells is also shown in Figure 8. The concentra-
tion in the well upstream of the production well

90

80

70-

60-

S «<H

30-

20-

10-

Analytical

Numerical

3 4 5 6
Tim» (years)

10

Fig. 7. Time change of relative concentration in the produc-
tion well for the aquifer model shown in Figure 5.

[at node (5,6)] shows much less fluctuation than
the concentration for the well immediately to the
left of the production well [at node (4,7)j. The
relative mass-balance error was reasonably small,
approximately between -10% to +2%. The error
fluctuates between -10% and +2% to reach mini-
mum at about 2.0 years, and then grows :o about
-8%. It can be concluded that MOC is accurate in
dealing with similar problems for a relatively short
time; the accuracy then declines as the simulation

3 4 5 6
Tia* (y«ar»|

Fig. 8. Tima changa of relative concentration in the two
observation wells shown in Figure S.



continues for longer times due to the arrival of
contamination at the sinks. Again, as indicated by
Konikow and Bredehoeft (1978), the decline in
accuracy is a direct effect of the manner in which
concentrations are computed at sink nodes and the
method of estimating the mass of solute removed
from the aquifer at sink nodes during each time
increment.

Case 3: Plume Capture
Plume capture is a technique that prevents

further degradation of the aquifer by using a
number of pumping wells. The optimum number
of pumping wells and their discharge rates and
locations must be specified in advance. Recently,
Javandel and Tsang (1986) introduced a technique,
based on the complex potential theory, to define
the equations for the streamlines separating the
capture zone of one or more pumping wells from
the rest of the aquifer. The cases of a single well
and of two wells are used here to test MOC.

For the single-well case, assuming that the
well is located at the origin, the equation of the
dividing streamlines reads (Javandel and Tsang,
1986):

2BU 2irBU tan"» (5)

in which y and x are locations on the dividing
streamline, Q is well flux, B is aquifer thickness,
and U is Darcy's velocity for the regional flow. The
test problem for this case is illustrated in Figure 9.
The parameters used are given in Table 1. The
simulation considers only convective transport. A
number of problems were simulated considering
different values for AH = H, - H2, with H, fixed
at 100 ft. [H, and H^ are the values of the hydraulic
head at the upper and lower constant-head bound-
aries, respectively (Figure 9).] Equation (5) can be
used to estimate the minimum value of Q to capture
the plume. The velocity U can be estimated using
the head gradient and the hydraulic conductivity.
In this case the values x and y represent the coordi-
nate of the right (or left) corner of the landfill
relative to the well location.

With a steady-state flow situation, the
numerical model was run long enough to represent
the steady-state condition for mass transport. An
iterative procedure was needed to estimate the well
flux. Figure 10 illustrates the node concentrations,
as obtained numerically, superimposed on the
analytical solution representing the dividing
streamlines as calculated using equation (5). The
concentrations shown were estimated for the case

yfy No-flow boundary

fff] Constant-head boundary

si Constant-head boundary
^ and contaminant source

O Withdrawal well

Fig. 9. The aquifer model for plume capture by a single
production well.
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with AH = 50 ft. The figure shows that MOC is
capable of approximating the capture area for this
case and also for all values of AH considered.

Figure 11 compares the well flux obtained
analytically [via equation (5)] with that estimated
numerically using MOC for different values of AH.
The numerical model predicted higher values for
well flux over the entire range of AH. The value
needed to capture the plume numerically was
about 1.5 times the respective analytical value.
Sensitivity of results to the mesh size was not
studied; it is expected, however, that closer agree-
ment can be achieved as the mesh size decreases.

Figure 12 illustrates the time change of the
relative concentration in the well for three selected
values of AH: 20, 50, and 90 ft. Some fluctuations
exist, yet their extent is not severe.

The case of a plume capture by two wells also
was simulated for AH = 20 ft. The case is repre-
sented by Figure 9, with two wells located at nodes
(4,5) and (5,6). The landfill extended over five
nodes, (3,2) to (7,2). The theoretical discharge as
estimated analytically by the equation of Javandel
and Tsang (1986) is about 1.8 cfs. Although MOC
was also able to approximate the capture area,
larger fluctuations in the pumping wells were
observed. The well flux, 2.3 cfs for this case, was
also larger than the theoretical value.

MOC is, in general, accurate in simulating
plume capture by recovery wells. The relative mass
error for all cases considered was acceptable, with a
value between -2.7% to -6.4%.

5-

3 3-

Analytical

10 30 30 40 SO SO
OH (ft )

70 ao 90 100

Fig. 11. Comparison between the well flux needed to
capture the pluma obtained numerically and analytically
for different AH » H, - H2 .
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Fig. 12. Time change of relative concentration in the well
for three selected values of AH (20, 50, and 90 ft).

CONCLUSIONS
The study examined the application of the

USGS two-dimensional mass-transport model MOC
in the analysis of some remedial actions involving
recovery wells. Three situations were examined.- a
recharge/recovery single well, a recharge/recovery
doublet, and plume capture by one or two wells.
Solutions were compared to available analytical or
semianalytical solutions. The cases considered
involve mainly radial flow and curved flow lines;
these arc considered to be severe tests tor the
model. However, due to the popularity of the
model, it was felt necessary to quantify the errors
that may arise during its application to remedial
actions.

The study indicates that the results are
acceptable in situations involving a recovery/
recharge single well. The radial flow nature caused
some inaccuracies and fluctuations in the well-
concentration estimates, with relatively high mass-
balance errors; yet the overall behavior of results is
reasonable. Some inaccuracies are also attributable—
as Konikow and Bredehoeft indicated—to the
manner in which concentrations are computed at
sink nodes. Acceptable results also were obtained
for plume capture where the cases involved a single
well or two wells. In these cases, the model over-
estimated the value of well flux needed to capture
the plume. However, for practical purposes, the
model can be used in the analysis of such situations,
especially under cases where analytical solutions
do not exist, as under heterogeneous conditions or
physical dispersion.



The analysis of a recharge/recovery doublet
indicates that the model is accurate only for a
short time after the start of the simulation. The
results are not acceptable for larger simulation
times.

Efforts are presently underway to improve on
the mass-balance calculations (L. Konikow, pers.
comm., 1987; see also Sanford and Konikow,
1985). In addition, improvement of model predic-
tion for radially convergent and divergent flows has
been considered (e.g., Erickson, 1985). Major
modifications include the simulation of the
converging/diverging flow field around the well,
and changing the way mass is removed by pumping.
A reduced mesh size is needed because the area of
the cell should approximate that of the well (on
the order of one foot). However, such discretization
will reduce drastically the application of the model
to large problems. Considering the coarse mesh
used here, and the possible trade-off between
computer costs and accuracy, the results obtained
for the single-well case and for the plume capture
case appear quite reasonable.

ACKNOWLEDGMENT
The author acknowledges the input of

Dr. L. Konikow of the USGS, Reston, Virginia,
who reviewed an earlier version of this manuscript.

REFERENCES
Boutwell, S. HM S. M. Brown, B. R. Roberts, and Atwood

Anderson-Nichols St Co., Inc. 1985. Modeling
remedial actions at uncontrolled hazardous waste
sites. Office of Solid Waste and Emergency Response,
U.S. Environmental Protection Agency, Washington,
DC.

Bouvctte, T. C. 1983. The characterization of hazardous
waste sites with analytical and numerical models.
M.S. thesis, Rice University, Houston, TX.

Chapelle, F. H. 1986. A solute transport simulation of
brackish water intrusion near Baltimore, Maryland.
Ground Water, v. 24, no. ó, pp. 741-751.

Ehrenfcld, J. and J. Bass. 1984. Evaluation of Remedial
Action Unit Operations at Hazardous Waste Disposal
Sites. Noyes Publications, Park Ridge, NJ. Pollution
Technology Review No. 10. 434 pp.

Engineering-Science. 1986. Cost model for selected technol-
ogies for removal of gasoline components from
groundwater. Health and Environ. Sciences Dept.,
American Petroleum Inst., Washington, DC. API Pub.
No. 4422.

Erickson, J. R, 1985. Parameter-estimation technique for
the analysis of single-well tracer tests. M.Sc. thesis,
Colorado State University, Fort Collins, CO.

Freeberg, K. M., P. B. Bedient, and J. A. Connor. 1987.
Modeling of TCE contamination and recovery in a
shallow sand aquifer. Ground Water, v. 25, no. 1,
pp. 70-80.

Gclhar, L. W. and M. A. Collins. 1971. General analysis of
'longitudinal dispersion in nonuniform flow. Water
Resources Research, v. 7, no. 6, pp. 1511-1521.

Giiven, O., R. W. Felta, F. J. Molz, and J. G. Melville. 1985.
Analysis and interpretation of single-well tracer tests
in stratified aquifers. Water Resources Research.
v. 21, no. 5, pp. 676-684.

Javandel, I,, C. Doughty, and C. F. Tsang. 1984. Ground-
water Transport: Handbook of Mathematical Models.
American Geophysical Union, Washington, DC.
Water Resources Monograph 10. 228 pp.

Javandel, I. and C. F. Tsang. 1986. Capture-zone type
curves: A tool for aquifer cleanup. Ground Water,
v. 24, no. 5, pp. 616-625.

Jensen, B., E. Arvin, and A. T. Gundersen. 1986. The
degradation of aromatic hydrocarbons with bacteria
from oil-contaminated aquifers. Proc. of Petroleum
Hydrocarbons and Organic Chemicals in Ground
Water Prevention, Detection, and Restoration.
National Water Well Association, Dublin, OH.

Konikow, L. F. and J. D. Bredehoeft. 1978. Computer
model of two-dimensional solute transport and
dispersion in ground water. U.S. Geological Survey,
Techniques of Water-Resources Investigation. Bk. 7,
Ch.C2.

Sanford, W. E. and L. F. Konikow. 1985. A two-constituent
solute-transport model for ground water having
variable density. U.S. Geological Survey, Water-
Resources Investigations Report 85-4270. Denver, CO.

Sophocleous, M. A. 1984. Groundwater flow parameter
estimation and quality modeling of the equus beds
aquifer in Kansas, U.S.A. J. Hydrology, v. 69,
pp. 197-222.

Sophocleous, M. A., M. Hcidari, and C. D. McElwee. 1982.
Water quality modeling of the equus beds aquifer in
south-central Kansas. Techn. Completion Rep.,
Kansas Water Resources Research Institute, Univ. of
Kansas, Lawrence, KS.

U.S. Environmental Protection Agency. 1985. Remedial
action at waste disposal sites. (Revised). Office of
Emergency and Remedial Response, U.S. Environ-
mental Protection Agency, Washington, DC.

van der Heijde, P.K.M., P. S. Huyakorn, and J. W. Mercer.
1985. Testing and validation of ground water models.
Proc. Practical Applications of Ground Water
Modeling, National Water Well Assoc, Columbus, OH.

Aly I. El-Kadi is Associate Director for Research in
Holcomb Research Institute's Water Sciences Program,
Butler University. He received his B.$. and MS. degrees in
Civil Engineering from Ain Shams University, Cairo, Egypt,
and his Ph.D. degree in Ground'Water Hydrology from
Cornell University in 1982. His current research includes
modeling the effects o f parameter variability on mass
transport in soil and ground water, and the transport of
contaminants in partially frozen soil. He has authored or
coauthored papers on saturated and unsaturated flow in
uniform and fractured porous media, and on stochastic
analysis of flow in heterogeneous porous media. His
publications include state-of-the-art reports on modeling
infiltration and variability studies as they apply to ground-
water systems.



Modifying the USGS Solute Transport
Computer Model to Predict High-Density
Hydrocarbon Migration

by M. Akhter Hossain and M. Yavuz Corapcioglu:

ABSTRACT
Chlorinated hydrocarbons, such as trichlorocthylene

(TCE), trichloroethane (TCA), tctrachloroethylene (PCE),
chloroform, and carbon tetrachloride, enter soils and
ground water from chemical waste disposal sites and from
accidents. The migration of such high-density hydrocarbons
in a natural gradient unconfined gravel aquifer is studied.
The Buckley-Leverett approach is extended to a two-dimen-
sional case to simulate a high-density immiscible hydro-
carbon displacing ground water in a gravity-driven system.
Governing equations that were developed earlier by
Corapcioglu and Hossain (1988) arc solved by modifying
the U.S.G.S. solute transport model (Konikow and
Bredehoeft, 1978). The modification incorporates the
fractional flow curves of water and their saturation deriva-
tives in vertical and horizontal directions as functions of
degree of water saturation. The details of the modification
techniques arc given, and the numerical results arc
presented for a hydrocarbon spill. Numerical results show
that high-density, low-viscosity immiscible chlorinated
hydrocarbons can travel deeper and further in contrast to
lower-density, higher-viscosity compounds, and that the
migration is dominated by gravity largely uncoupled from
the horizontal component until the plume reaches the
lower boundary.

INTRODUCTION
Chlorinated hydrocarbons are widely used in

the chemical industry as metal degreasers and dry
cleaning compounds among other uses. As a result
of spills or past mismanagement, they are frequently
encountered as contaminants in ground water.
Dense chlorinated hydrocarbon groups include
halogenated aliphatics such as trichloroethylene
(TCE) with specific gravities from 1.2 to 2.2. In
contrast to light hydrocarbons like gasoline that
float on the water table, dense hydrocarbons sink
into the aquifer and remain at the bottom for
extended periods of time. The migration of these
hydrocarbons is generally governed by the vertical
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component instead of lateral advecrivc transport
as for low-density hydrocarbons (Corapcioglu and
Baehr, 1987). Limited solubility of high-density
hydrocarbons furthermore poses a greater potential
risk allowing the compound to dissolve into the
ground water over a very long period of time.
Meanwhile, the residual amount of hydrocarbon
left in the pores during the downward migration
continues to leach. Byer et al. (1981) provide an
overview of the problem and note that the limited
solubility allows chlorinated hydrocarbons to stay
on the bottom for extended periods of time.
Villaume (1985) describes various case histories
involving dense nonaqueous phase liquids (NAPLs)
such as coal tar and PCBs.

In this research, we study the migration of a
high-density hydrocarbon in an unconfined gravel
aquifer. In other words, the transport of an
immiscible phase in a natural gradient gravity-
driven system is investigated. Any chemical (e.g.,
adsorption, dissolution) or biological (e.g., bio-
degradation, biotransformation) processes are
neglected in favor of studying density and viscosity
effects. These objectives are achieved by presenting
the system of equations for modeling dense hydro-
carbon contaminant migration in a water-saturated
porous medium. Then, governing equations are
solved by modifying the solute transport model
developed by Konikow and Bredehoeft (1978) at
the U.S. Geological Survey. The main emphasis of
this paper is to present the modifications introduced
into the software for study of high-density immis-
cible hydrocarbon migration in an unconfined
aquifer. Since the USGS program is well-docu-
mented and widely available for use in PCs, such a
modification to study a timely, but a problem of
different nature, would be a welcoming convenience
for the practicing hydrogeologist.

TRANSPORT EQUATIONS OF
HIGH-DENSITY HYDROCARBONS

Corapcioglu and Hossain (1988) developed
the governing equations for high-density hydro-
carbon migration in ground water. They assumed



that in contamination of gravity-driven natural
gradient systems by dense hydrocarbons (pnw > Pw),
the volumetric rate of ground-water flow is much
larger than that of hydrocarbons. In such a system,
ground-water flow is essentially horizontal along
the impervious bed, and the flow of dense hydro-
carbon contaminant is dominated by a sinking
mechanism due to density difference. The contami-
nant penetrates the aquifer essentially in the
vertical direction. This conclusion is confirmed by
observations of Schwille (1981) and Faust (1985)
who states that "For an immiscible fluid more
dense than water, we expect gravity effects to be
dominant. As a consequence we might anticipate
downward migration of the contaminant in both
the unsaturated zone and below the water table."
Furthermore, Corapcioglu and Hossain (1986)
reported the migration of a TCE plume in a plexi-
glass laboratory flume of 30 inches deep, and note
the development of the plume essentially in the
vertical direction, independent of lateral flow
component. Their results show that it takes around
11 hours to reach the lower boundary.

Corapcioglu and Hossain (1988) obtained the
governing equation for two-dimensional flow of
high-density hydrocarbons in a homogeneous
inclined reservoir with uniform properties (see
Figure 1 ). Ground-water contamination by a dense
hydrocarbon can be formulated by a two-phase
fluid flow in a porous medium. TCE (hydrocarbon)
is referred as the immiscible (nonwetting) phase
and the water as the miscible (wetting) phase. In
their formulations, Corapcioglu and Hossain
neglected capillary pressures, liquid and soil
compressibilities to obtain

9t"wx

3x

9rwz

dz
(1)

where qx and qz are the total (water plus hydro-
carbon) volumetric flow rates in lateral and vertical
directions, respectively. Fractional flow expressions
rwx and rwz in the lateral and vertical directions,
respectively, are defined as

'wx rwz
(2)

where qwx and qwz are the volumetric flow rate of
water in the lateral and vertical directions. In terms
of degree of water saturations Sw

1
rwx

1 +•

1

rWz =-

(nw Ww

kw A'nw

g cos a

(3)

1 +
knw Mw

(4)

Fig. 1. Definition sketch of the problem.

where kw and knw are the relative permeabilities of
water and hydrocarbon, respectively;
Mw andjUnw are respective viscosities;
Ap is the density difference (= pw - p n w ) ; and
n is the porosity of the aquifer.

We note that in equations (3) and (4), capillary-
pressure differences are neglected, and in equation
(3), the gravity term due to the magnitude of angle
of inclination, a, of aquifers in nature is neglected.
Since our purpose is to model the migration of
TCE spill in a highly pervious gravel aquifer, we
can assume capillary pressure gradients have a
negligible effect on the flow. However, in other
types of aquifers, capillary pressure gradients may
be important. Furthermore, Corapcioglu and
Hossain (1988) showed qx drwx/dx and qz 3rwz/3z
to be larger than rwx dqx/9x and rwz 3qz/dz,
respectively, to obtain equation (1). We should also
note that for an instantaneous hydrocarbon spill of
relatively small quantity, the volumetric flow rate
of water would be much larger than that of
hydrocarbon.

Permeability terms knw and kw, in equations
(3) and (4) are functions of degree of water satura-
tion, Sw. Permeability expressions kw (Sw) and
knw (Snw) are obtained from laboratory experi-
merits under no-flow conditions. For example,
Lin et al. (1982) obtained relative permeability
data for the case of trichloroethylene imbibition in
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a TCE-water system. We fitted the following relative
permeability expressions to Lin's data. Curves of
similar forms were also employed by Faust (1985).
Thus, the permeability expressions are

k _<Sw-O-331)3

r W~ (1-O.331)3

It is known that'

kw = kok rw ,

(0.83-
vnw (0.83)2. Í

(5)

(6)

where k0 is the porous medium's intrinsic perme-
ability. Therefore, fractional water flow expressions
rw x and rw z are functions of degree of water
saturation Sw only. The viscosity ratio (Mw/Mnw) is
assumed to be constant at isothermal soil conditions.
Furthermore, (Apg cos a/qz) in equation (4) is taken
constant based on the assumption of constant
vertical flow due to gravity dominance. Then, we
can rewrite equation (1 ) as

qz drwz 3SW

n dSw 3z
= 0 (7)

Equation (7) is a quasi-linear first-order partial
differential equation with a single variable Sw . For
a one-dimensional case (horizontal x-direction), it
reduces to the Buckley-Leverett (1942) equation.
Buckley and Leverett addressed the oil production
problem encountered as a result of linear displace-
ment of oil in the reservoir by water. They con-
sidered a homogeneous inclined reservoir with
uniform, constant thickness, and solved the
governing equation for one-dimensional flow by
neglecting capillary pressures, gravity, and liquid
compressibilities.

By definition, the material derivative of Sw is

dS w 3SW 3SW dx 3SW dz
= + — + (8)

dt dt 3x dt dz dt

A comparison of equations (7) and (8) shows that

dx
dt

dz

dt
Sw

qx
n

qz
n

drWx
dSw

drwz

dSw

(9)

Sw

(10)

Note that dx/dt lsw and dz/dt 1*^ are velocity
components of an advancing surface of a given value
of the degree of water saturation. On curves x * x (t)
and z = z (t) which coincide with moving curves of
constant Sw, x(t) and z(t) are called characteristic
curves of equation (7). Then, equation (7) yields

dt
(11)

The solution of equation (11) can be obtained
by employing the method of characteristics. This
method was successfully used by Konikow and
Bredehoeft (1978) to solve the conventional solute
transport equation.

REVIEW OF USGS MODEL
Konikow and Bredehoeft (1978) developed a

two-dimensional digital computer model to predict
the concentration of a dissolved chemical species in
flowing ground water. In addition to concentration
values, the program simultaneously calculates
ground-water velocities in two lateral directions.
The program solves two coupling partial differential
equations, the ground-water flow equation (in terms
of head distribution in the aquifer) and the solute
transport equation (in terms of mass concentration).

Konikow and Bredehoeft express the solute
transport equation as

b

where F = •

dy

dh 3b
—+ W-e — )-C'W
dt 3t

(13)

and C is the mass concentration of the dissolved
chemical species; D¡j is the coefficient of hydro-
dynamic dispersion; b is the saturated thickness of
the aquifer; and C' is the mass concentration of the
dissolved chemical in a source or sink fluid. Vx and
Vy are components of velocity ín the x and y
directions, respectively; h is the hydraulic head;
S is the storage coefficient; t is the time;
W = W(x,y, t) is the volume flux per unit area; and
x¡ and Xj are the Cartesian coordinates. W(x,y,t) can
be expressed as W(x,y,t) = Q(x,y,t)- KZ(HS- h)/m
where Q is the rate of withdrawal or recharge;
Kz is the vertical hydraulic conductivity of the
confining layer, streambed, or lakebed; m is the
thickness of the confining layer; e is the porosity;
and Hs is the hydraulic head in the source bed,
stream, or lake. The material derivative of concen-
tration is defined by

(14)

A comparison of the second and third terms on the
right-hand side of equation (14) with the second
and third terms on the right-hand side of equation
(12) shows that

dC
dt

3C

~ 17"
3C

'"dx
dx
dt"'

3C

'ay
dy
dt



Table 1. Correspondence Between Equations
in Our Model and USGS Model

Equation # for high-density
hydrocarbon migration Equation $for USGS model

(1)
F = 0

(8)
(9)

(10)
(11)

(12)
(13)
(14)
(15)
(16)
(17)

Vx = dx/dt

Vy = dy/dt

(15)

(16)

Substitution of equations (15), (16), and (12) into
equation (14) gives

dC 1 3 ,. 3C
— » - — (DD i j r -
dt b 3x¡ 3x

(17)

Fig. 2. Water saturation profiles for ¿¿„/¿(„w * 1 -7 2 - a n d

Pnw " 1-46 g/cm3 (TCE) at three years with initial slug
injection. Note that S n w - 1 - S w .

Solutions to equations (15)-(17) can be expressed
in a general form as x = x (t), y = y (t), and C = C (t)
which are called the characteristic curves of
equation (12). A comparison of equation (17) with

'equation (11) shows that the right-hand side of
equation (17) is equal to zero for an identical
match. Correspondence between equations in our
model and USGS model is summarized in Table 1.
The general solution technique by the method of
characteristics is given by Konikow and Bredehoeft
(1978), and the reader is referred to this reference
for a more detailed discussion.

In this study, we use an IBM-PC version of the
USGS program that is marketed by Scientific
Publications Company. Their version incorporates
several changes that were necessary to accommodate
the main-frame program in the IBM-PC. The details
of the modification of the USGS model are given
in the Appendix.

RESULTS AND CONCLUSIONS
The numerical model was applied to simulate

the formation of a TCE plume in a gravel aquifer
due to an instantaneous spill from a buried source
in the saturated zone (e.g., storage tank rupture), A
spill of a relatively small volume of contaminant
can be modeled as a slug injection (i.e., pulse
source) into a sloping natural gradient unconfined
aquifer. The aquifer is 700 ft thick and 1600 ft
wide, inclined at an angle of 10° to the horizontal.
The domain includes 162 nodes spaced 100 ft apart
in each direction. Note that die figure illustrating
the results (Figure 2) shows only a portion of the
domain which is 700 ft duck and 800 ft wide. The
initial conditions included the assumption of 100%
water saturation throughout the domain.

Figure 2 shows the contour plot of die water
saturation distribution at three years using data
given in Table 2. The results clearly indicate die
dominance of gravity effects in the vertical direc-
tion; due to the high density of the contaminant,

Table 2. Model Parameters Used

Density of water Pw = 1 g/cm3

Density of TCE Pnw = 1 4 6 g/cm3

Density difference Ap = p w - p n w = -0.46 g/cm3

Dynamic viscosity of water Mw 3 1-0019 X 10 poise
Dynamic viscosity of TCE i*nw = °-58 X 10"2 poise
Intrinsic permeability of soil ko * 5.823 X 10 cm2

Porosity of soil n * 0.4
Angle of inclination a » 10°
Residual saturation of water in a water-TCE system Swr = 0.331
Residual saturation of TCE in a water-TCE system Swnr « 0.170
Shock front saturation or cutoff saturation S»- = 0.675
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spreading takes place only after the TCE plume
reaches the bottom.

In summary, we study the migration of a high-
density hydrocarbon in an unconfined aquifer. The
Buckley-Leverett approach is extended to a two-
dimensional case to simulate a high-density
immiscible hydrocarbon displacing ground water in
a gravity-driven natural gradient aquifer. Governing
equations are solved by modifying the USGS solute
transport model developed by Konikow and
Bredehoeft (1978). The modification incorporated
the fractional flow curves of water and their
saturation derivatives in vertical and horizontal
directions as functions of degree of water satura-
tion. Results show that high-density, low-viscosity
immiscible chlorinated hydrocarbons can travel
deeper and further in contrast to lower-density,
higher-viscosity compounds, and that the migration
is dominated by gravity largely uncoupled from the
horizontal component until the plume reaches the
lower boundary,

APPENDIX - MODIFICATIONS OF
THE USGS PROGRAM

In this appendix, we continuously refer to
Konikow and Bredehoeft (1978) by indicating
specific page and program line numbers. Therefore,
the reader should obtain an original copy of that
publication to follow the modifications needed for
modeling high-density hydrocarbon migration.

First, the two-dimensional areal problem is
modified to run for a two-dimensional vertical one.
Vertical z-coordinate replaces the lateral y-coordi-
nate. To achieve this, the input data are modified
as shown in Attachment IV on page 79 of
Konikow and Bredehoeft (1978). In the original
program (20.0) in Data Set 4 for test problem
number 3 stands for the vertical thickness of the
aquifer (THCK = 20 ft). To rotate the flow field,
we take a unit width in the lateral direction normal
to the plane of paper. Thus, (20.0) is replaced by
(1.00) (see Table 3). Then, on the same page (p. 79)
in Data Set 3, VPRM = (0.1), which is a dummy
variable in our case, is replaced by an arbitrary
constant, e.g., 2 X 10*5 ft/sec.

In the program, the subroutine VELO calcu-
lates the flow velocities at nodes and cell boundaries,
dispersion coefficients and the minimum number
of particle moves required to solve the solute
transport equation. In our modified version of
VELO, we calculate dx/dt and dz/dt at a given Sw

as expressed by equations (9) and (10). Note that
in equations (9) and (10), we enter the values of qx

and qz calculated by considering gravity terms only.
The changes made at VELO are on page 55 between

lines E410 and E460. Lines E410-E460 are
replaced by

IÏ (C0NC(IX,IY).GE.32.9) C0NC(IX,IY)M2.9
ir (C0MC(ix,iY).Le.33.j) conc(ix,rY)-33.i
WRITE(»,*)'CONC(IX,IY)"',CO(IC(IX,IY)
B8-(O.83)«*2.S
AA-(0.669)"3

KKW(RKK(IX,IY)((0.830.01CONC(IX,IY))
WRITE (•,»)'KIOn*(IX,IY)-',RKi(W(IX,IY)
RKW(IX,IY)-((0.01*CONC(IX,lY)-0.;m)«:J>/AA
WRITE(»,*)'RKW(IX,IY)»',RKW(IX,IY)
DKRNW(IX,IY)—3.S/B8»((0.a3-0.01«COl«:(IX,IY))**l..S)
OKRWtlXIYJ-VAAMfOO^CONCflX^YlOJJl)*»!)
ALPHA-.17S
grdx—SIN (ALPHA)
writ» ( * , * ) ' griix- ' , grdii
DENMX(IX,IY)-RKW(IX,IY)+l.7î*RKNV(IX,IY)
WRITE(*,*)'DIHMX(IX,IY)-',0ENMX(IX,IY)
DDENMX(IX,IY)-DKRW(IX,IY)+1.72*DKRJIW(IX,IY)
DRWX(IX,IY)-(DENMX(IX,IY)*DKRW(IX,IY)-RKW(IX,IY)*DDEN»tt(IX,

1IY) ) / (DENNXUX, IY) **2)
WRITE(•,*)'DRWX(IX,IY)»',DRWX(IX,IY)

VX(IX,IY)-PERM(IX,IY)*GRDX*PORINV*DRWX(IX,IY)
WRITE{*,*)'VX-',VX(IX,IY)

to calculate dx/dt as given by equation (9). Note
that the parameter grdx (which calculates the
hydraulic gradient in the x-direction) is equal to
-sin a, since the hydraulic gradient can be assumed
to be constant in a gravity-driven natural gradient
system. Furthermore, the first and second lines of
this new program segment keep the water satura-
tion values above the residual water saturation
Swr = 0.33 and below Swc = 0.67 behind the front
as explained by Corapcioglu and Hossain (1986).
Note that this restriction on Sw is imposed only in
this program segment while calculating drwx/dSw

and not while calculating Sw by subroutine CNCON
which computes the change in water saturation in
the aquifer. Since this restriction is imposed at the
very beginning, it also applies to calculate
drwz/dSw which is handled by the program segment
given below. Such a restriction allows us to avoid
the existence of double water saturation at the
saturation front due to bulbous saturation profile.
A discussion of this phenomenon has been explained
by Corapcioglu and Hossain (1986).

One should note that Konikow and Bredehoeft
solved the solute transport problem in terms of
concentration, C. In this study we solve the high-
density hydrocarbon migration problem in terms
of water saturation, Sw. Thus, the parameter termed
CONC (IX, IY) in the USGS program denotes the
degree of water saturation, Sw in o u r modification.

Similarly, drwz/dSw and dz/dt are calculated
by

DRO--0.485
QZ-O.0Î»
UMHW-0.009»
CT- ( S. 71E-4 ) «COS (ALPHA) «DRO/ (QZ*UmM)
WRIT1(«, • ) ' « • ' , «

WRITE(*,*)'OP->',UP(IX,IY)
DUP(IX, IY) -DKRW(IX, IY) -CT* (RJQt«(IX, IY) *DKRH(IX, IY)

]>R1CH(1X, IY) *DKRHW(IX, IY) )
IYWRITE(*,*)'0H»',DM(IX,IY)

DDN(IX,IY)-0KRM(IX,IY)*l.?3«DKRNW(IX,IY)
0RKZ(IX,IY)-(DN(IX.IY)*DUF(XX,IY)-UP(IX,IY)>D0M(IX,IY))/

3(DN(IX,IY)«2>

'0RVZ(IX,IY)-',DRWZ(IX,IY)
VY( IX, IY) -PERM(IX, IY) •GRDY*WRINV*ANFCTR«ORWI ( IX, IY)



Table 3. Input Data for the Problem Studied
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0 .
0 .
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0 .
0 .
0 .
0 .
0 .
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which replace lines E500-E540 on pages 55 and 56
in Konikow and Bredehoeft (1978). Note that dz/dt
is expressed by equation (10), and DRO = Ap (in
g/cm3), UMNW = Mnw (in poise), and QZ = qz (in
ft/sec). Similar to grdx, in a gravity-driven natural
gradient system, grdz = cos a. In the program seg-
ments given above, we take p n w = 1.46 g/cm3 and
MŵMnw a 1.72. We keep the hydraulic gradient
and velocities at the cell boundaries constant by
replacing E59O, E610, E620, and E640 on page 56
with

t 980
C VTLOCITIIS AT CZLL BOUNMRIZS

S R O X - * IN (ALPHA)
VXBO¥(IX,iY)•ptPMx*ata>x*foniHV*ûKwx(is, it)

ijrdy-COS (ALPHA)

Additional DIMENSION statements are added
between lines E200-E210 to include new variables
in the program

DIMENSION RKMW(3O,3O) ,8X11(20,20) ,DKHMWt JO, JO) ,DKRW(20,20) ,
1DEHMX(3O,JO) ,DDENNX(20,20) ,UP(20,I0) ,DUF(20,
230),DN(2O,2O),DDN(20,20),DRWX(J0,30),DKMZ(20, 20)

Furthermore, the Data Sets given in Table 3 include
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proper initial conditions for the problem studied.
Note that Konikow and Bredehoeft (1978) consider
an initially clear (i.e., C = 0 at t = 0) aquifer. This
would correspond to 100% water saturation in our
problem (i.e., Sw = 100) as given by the last block
of numbers and Data Set 9 in Table 3. In Data Set
6, two 1 's in the third row refer to the referral
code of pulse source points. The 0's in Data Set 6
indicate Sw = 100%. In Data Set 7, Table 3 shows

1 Referral code to source point
1.0 Code for leakance from the source

83.0 Source concentration (Swr = 0.83)
0.0 Diffusive recharge
0 OVERRD
In the case of pulse source, a slug of hydro-

carbon initially (t = 0) was injected into the aquifer
at a concentration Sw = 0.33; input modifications
are shown in Data Set 9. In Data Set 7, the source
concentration is taken as 0.83 since after t = 0,
some hydrocarbon will remain in the pores at a
level Sor = 0.17 so Sw = 1 - Sor = 0.83. After an
initial pulse, water saturation will go back to 83%
at the source nodes. Similarly, initial conditions are
placed on the second row (Swr = 33%) instead of
the first one. Figure 13 on page 29 of Konikow
and Bredehoeft (1978), shows the location of a
slug of tracer for a pulse source.

As we do not include observation wells, we
eliminate Data Set 1 by setting NUMOBS (number •
of observation points) equal to zero. We also do
not include pumping wells so we eliminate Data
Set 2 by setting NREC (number of pumping or
injection wells) equal to zero. Thus, the coordinates
of observation and pumping wells in Data Sets 1
and 2 are eliminated.

With these modifications to subroutine VELO
and Input Data, we use subroutine CNCON and
other subroutines of the program without changes.
Subroutine CNCON, in this case, computes the
change in water saturation at each node and at
each particle for the given time increment. Note
that in the original Konikow and Bredehoeft (1978)
program, CNCON computed solute concentrations.
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COMPUTER
N O T E S

APPROXIMATE AND ANALYTICAL
SOLUTIONS FOR SOLUTE TRANSPORT
FROM AN INJECTION WELL INTO
A SINGLE FRACTURE

by Chia-Shyun Chena and S. R. Yatesb

Introduction
In dealing with problems related to land-based

nuclear waste management, a number or" analytical
and approximate solutions were developed to
quantify radionuclide transport through fractures
contained in the porous formation (e.g., Neretnieks,
1980; Rasmuson and Neretnieks, 1981 ; Tang et ai,
1981 ; Sudicky and Frind, 1982; Barker, 1982;
Hodgkinson and Lever, 1983; Rasmuson, 1984;
Neretnieks and Rasmuson, 1984; Chen, 1986). By
treating the radioactive decay constant as the
appropriate first-order rate constant, these solutions
also can be used to study injection problems of a
similar nature subject to first-order chemical or
biological reactions. In these works, the fracture is
idealized by a pair of parallel, smooth plates
separated by an aperture of constant thickness.
Using this macroscopic approach, Chen (1986)
gave solutions to different cases regarding the
injection of radioactive material into a fractured
formation. The planar fracture was assumed to
have a constant aperture thickness, 2b, and inter-
sect the well with a radius r0 (see Figure 1). Water
containing radioactive constituents was discharged
into the fracture through the well under a constant
flow rate of Q. The injected radionuclides moved
primarily through the fracture in a steady, radial
flow field where the velocity as a function of radial
distance, r, is described by

V(r)-A/r (1)

where A = Q/(47rb) as the advection parameter.
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bU.S. Salinity Laboratory, USDA/ARS, Department
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Received October 1987, revised April 1988, accepted
April 1988.

Discussion open until July 1, 1989.

Ground water was assumed to be immobile in
the underlying and overlying porous formations due
to their low permeabilities, flowever, the injected
radionuclides were able to move from the fracture
into the porous matrix by molecular diffusion (the
matrix diffusion) due to possible concentration
gradients across the interface between the fracture
and the porous matrix (i.e., at z = 0). Two models
(Models I and II) were studied by Chen (1986).
Model I assumed advection and longitudinal dis-
persion as the transport mechanisms in the fracture,
while Model II considered only advection. Both
models included matrix diffusion. Solutions of
these two models are different under transient
conditions but converge to the same solution at
steady state for commonly occurring conditions.
Compared to the steady-state solutions of Model I,
the steady-state solutions of Model II are mathe-
matically simpler and thus are recommended for
use when dealing with steady-state conditions of
the stated problem. In addition to quantifying a
"worst case" scenario, the steady-state solutions
can be used to determine the maximum transport
distance of the injected radionuclides in the
fracture. For time-dependent conditions, however,
the transient solutions of Model I are suggested
because they are more generalized in the sense that
the longitudinal dispersion process in the fracture
is taken into account.

These transient and steady-state solutions
have potential usefulness for quantitative study of
problems where radioactive material is injected
into a fractured formation for disposal or for tracer
tests. They also can be employed to check the
accuracy of portions of pertinent three-dimensional
numerical codes; for axial symmetric systems the
radial dimension is a combination of the horizontal
x and y Cartesian dimension (i.e., r1 = x2 + y1),
and the matrix diffusion normal to the radial direc-

— 0. Constant Injection Rita

Poroui Matrix

Planar Fractura with

a Constant Aparacura

Matrix Diffusion

Radial AdvectLon and
Longitudnal Dltpariion

r - 0

Fig. 1. Schematic of radionuclida transport from an
injection well into a single, planar fracture situated in
poroui formation.



tion adds the third dimension, z. Consequently,
these solutions could be used to check two-dimen-
sional areal flow with matrix diffusions in the
vertical direction.

By making use of the Stehfest method
(Stehfest, 1970a, b), the transient solutions were
determined by numerically inverting the solutions
to Model I in the Laplace domain, which involve
the transcendental Airy functions. Calculation of
the transient solutions is not straightforward, and
the purpose of this paper is to document a con-
tained FORTRAN program, which computes the
Stehfest inversion, the Airy functions, and gives
the concentration distributions in the fracture as
well as in the porous matrix for both transient and
steady-state cases. A formula determining the
maximum transport distance is given here.

Mathematical Model and Solutions
The mathematical model and its solutions are

briefly discussed here. Detailed discussions of
development of the model and derivation of the
solutions are provided in Chen (1986).

The dispersion theory for solute transport in
porous media is adopted, and the longitudinal
dispersivity in the fracture is assumed to be
constant. Hence, the longitudinal dispersion
coefficient for the radial flow field neglecting
molecular diffusion can be written as

Dr = a!V (2)

where V is the steady-state, radial ground-water
velocity described by (1); and a, is the constant
longitudinal dispersivity.

The governing equations of the model can be
formulated as

dC2
R2 - —

9t
(3)

d2C

Hi

i

D m

b

A dCi

r ~J7
3C_2

3z

3C,
(4)

where \ is the decay coefficient for the radio-
nuclides (or the first-order rate constant for
chemical or biological transformation);
Ci and C2 are concentrations in the fracture
and in the porous matrix, respectively;
Dm , n2, and R2 are, respectively, the effective
molecular diffusion coefficient, the porosity, and
the retardation factor for the linear-isotherm
adsorption in the porous matrix; and

« i , b , and R r are , respect ively, the dispersivi ty, half
aperture thickness, and retardation factor in the
fracture.

The initial condition for (3) and (4) is

C1(r,0)=C2(z,0)=0 (5)

which states that no contaminants exist in the
system prior to injection.

The boundary condition at the interface of
the fracture and the porous matrix is given by the
continuity of concentrations as

C1(r,t) = C2(z,t); z = 0 (6)

as r -*• « and z-»»«,a bounded condition is
prescribed for d and C2 as

C,(«,t) = C 2 K t ) is bounded; r2 + z2 - « (7)

Two different boundary conditions for decay and
nondecay sources are considered at the well bore.
The decay boundary condition is

which may be relevant to injecting a radioactive
substance with a short half-life. Due to the rapid
decay, the concentration of the substance in the
well bore cannot remain at a constant level but
decreases with time following the exponential law
as stated in (8).

The nondecay boundary condition, however,
may be used if the concentrations at the injection
well remain at a constant level because of the long
half-life of the injected radioactive materials; that
is,

Ci(ro,t) = Co/Co = 1 (9)

In fact, if Xt< 0.01, the boundary conditions (8)
and (9) are approximately equivalent since (8)
yields a source concentration which like (9) is
approximately equal to unity. Therefore, use of
the decay or nondecay condition at the injection
well does not cause significant difference in the
calculated results provided Xt < 0.01.

Transient Solutions by Numerical Inversion
Analytical solutions to (3) and (4) subject to

(5) through (8) or (9) can be determined by the
Laplace transform technique. In appropriate
dimensionless forms, the solutions for the decay
boundary condition (8) in the Laplace domain is

Ai[fl1
Gj<p,p)« exp[(p-po)/2]

P+ a '

G2(p,p) = G, • exp[-$(p+ <*1/
/*

'/3
(10a)

(10b)
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where Gi and G2 denote the concentration distribu-
tions in the fracture; and within the porous matrix
in the Laplace domain, respectively, p is the Laplace
transform parameter of the dimensionless time r
defined by

r = At/R^!2

and the symbol Ai(x) represents the Airy function.
The dimensionless radial distance p, the dimension-
less vertical distance £, and other dimensionless
parameters are defined in the Nomenclature.

The analytical Laplace inversion of (10) gives
closed form solutions of Q and C2 for the problem.
As shown by Chen (1986), however, approximate
solutions determined by numerically inverting (10)
with the Stehfest method (Stehfest, 1970a, b) yield
accurate results for practical purposes. Specifically,
C, and C2 for the decay boundary condition are
obtained by numerically inverting G! and G2 given
in (10) with the following finite series of N terms

C, (p , r ) ap S
n = l

N

p = ln(2)/r ( l i a )

C2(p.T)*p Z WnG3(p,np); p = ln(2)/r (lib)

During the inversion calculation, p is inversely
related to T, and N must be an even integer. The
weighting factors, Wn, are determined with the
rational function given by Stehfest (1970a, b).
These weighting factors are only dependent on the
value of N chosen; that is, they need to be deter-
mined only once for any numerical inversions so
long as N is fixed. In the computer examples
provided in the Appendix, 16 weighting factors
(i.e., N = 16) are given. It was found that 16 weight-
ing factors provided sufficiently accurate results on
an IBM-AT compatible microcomputer or on a
DEC-20 main frame. Double-precision calculations
are suggested when using the program. It should be
noted that the arguments in the Airy functions are
also dependent on p and hence on N and r (see
Nomenclature).

The Airy functions in (10) are calculated
using appropriate formulae given by Abramowitz
and Stegun (1970). Arguments of the Airy
functions in (10) are always positive. The first 16
terms of the power series given by Abramowitz and
Stegun (1970, equation 10.4.2) are used to evaluate
Ai(x) when 0< x< 3. For the condition, 3 < x«S 5,
Ai(x) is determined using a two-step procedure.
Firstly, the modified Bessel function of the second
kind of order V3, Ky (x), is calculated by the
integral formula of equation 9.6.24 in Abramowitz
and Stegun (1970). Secondly, the calculated Ki/3(x)

is converted to Ai(x) using the mathematical.
identity of equation 10.4.14 in Abramowitz and
Stegun (1970). This method of determining Ai(x)
for 3 < x < 5 increases the computational stability
of the algorithm. For x > 5, the first 14 terms of
the asymptotic expansion given by equation 10.4.59
in Abramowitz and Stegun (1970) are employed
for evaluating Ai(x). If a computer with sufficient
precision is available, Ai(x) can be calculated by
using the power series in the range 0 < x < 5, and
by the asymptotic expansion for x > 5 as mentioned
above. In this event, the two-step computation for
3 < x < 5 is not required. When x > 5, Ai(x)
becomes small and can cause exponential underflow
problems. Therefore, Ai(x) is scaled by a multiply-
ing factor, x A exp [(%) x A]. To recover the actual
value for the Airy function during the calculations,
the result is multiplied by x" A exp [- (2/3) x A ].
This approach for evaluating Ai(x) was suggested
by Hsieh(1986).

In a similar manner, Ct for the nondecay
boundary condition can be determined by replacing

Ai[31/3 vl
G l(p,p) = (l/p)exp[(p-p0)/2]

Ai [0/ ' f t ]

in (lia), and C2 can be obtained by introducing
(12) to (10b) and (lib).

The effect of the nondecay boundary condi-
tion is to replace the term l/(p + ÛI) in (10) by the
term 1/p. The calculation for the nondecay case
follows identical procedures as the decay case.
Hence, determination of concentration distributions
for both the decay and nondecay boundary condi-
tions requires only a slightly different calculation
in the program.

Exact Steady-State Solution
Under steady-state conditions (i.e., injection

time approaches infinity), the decay boundary
condition yields a zero source concentration at the
injection well, leading to a trivial solution of zero
concentration everywhere in the system. However,
nontrivial steady-state solutions exist for X > 0 and
a nondecay boundary condition; that is,

C, = exp [ ( -E 1 \ -E î \ ' / î )7 ] (13a)

(13b)

The longitudinal dispersivity is absent in (13)
because the longitudinal dispersion in the fracture
was neglected. Although Chen (1986) noted that
longitudinal dispersion in the fracture could be
neglected for steady-state conditions without intro-
ducing noticeable error based on one problem, we



have verified that this conclusion is true for general
conditions unless the parameter a is greater than
approximately 10, which is unreasonably high and
would rarely occur for practical problems. There-
fore, (13) provides a useful steady-state solution
for the stated problem.

The ultimate extent with which the concentra-
tion front can move in the fracture can be approxi-
mated with (13a). If the concentration front is
taken as the location where x percent of the injected
concentration takes place, then this ultimate moving
distance is approximately equal to

fv = (14)

which is derived from (13a) by setting C> to x and
the well radius is neglected. For example, if the
frontal concentration is taken as 0.05, then the
associated ultimate moving distance is

ro.05 = (15)

Examples
To illustrate the solutions contained herein,

several hypothetical examples were created. To
provide for the implementation of the computer
program by future users, the data used to create
the examples are reported in Appendix 2. To use
the program, which is listed in Appendix 1, aquifer
and chemical properties are required. The properties
used for the following example are: half aperture
thickness (b), well radius (r0), flow rate into the
fracture (Q), dispersivity («0, effective diffusion
coefficient (Dm), and matrix porosity (n2),
respectively; 5.0X 10's m, Ü.1 m, 3.65 mVday,
0.1 m, 1.0 X 10"3 mVday, and 0.01 mVm3. Other
required parameters include the decay coefficient
and retardation constant, which are 0.01 day'1

and 1.0, respectively. For each calculation, 16
Stehfest weighting coefficients and double
precision were used.

Figure 2 shows the concentration distribution
as a function of radial distance at several times and
for two different boundary conditions at the well.
The solid and dotted lines indicate, respectively,
the concentration profiles based on the nondecay
and decay boundary conditions. For the injection
time equal to 0.01 day, the solutions determined
by the two different boundary conditions are
practically the same (see Figure 2) because the
relationship \ t < 0.01 is satisfied. Under steady-
state conditions, the solid line calculated by (12)
with a large value of time is almost identical as the

t 10 100 V 0 5 . 238

Radial D istance (m)

Fig. 2. Concentration with respect to time and radial
distance in the fracture. The solid and dotted lines indicate
the results from the nondecay and decay cases, respectively.
The model coefficients are given in Appendix 2.

dots which resulted from the zero-dispersivity
approximation, equation (13). This coincidence
indicates that longitudinal dispersion in the fracture
is not important for steady-state conditions. The
ultimate moving distance, r005, determined with
equation (15), is about 238 m, which is found in
Figure 2 by graphic interpolation.

Figure 3 is a diagram of the concentration
distributions in the porous matrix for the example
contained in Figure 2. In Figure 3a, the concentra-
tion profiles of Cj at a radial distance of 1.0, 5.0,
and 10.0 m and a time of 0.01 day is shown. In
Figure 2b, the concentration profiles are for
steady-state and radial distances of 1.0, 100.0, and
150.0 m. The dots indicate the results from the
approximate solution. As was shown for the
fracture, the zero-dispersivity approximation
produces almost the same results as the more
rigorous exact solution for this example.

Figure 4 contains a transient and steady-state
contour diagram of the concentration in the
fracture and porous matrix. For clarity, the
fracture has been enlarged. The dotted line in
Figure 4a indicates the position of the well bore. In
Figure 4b, again it can be shown that equation (15)
is a valid approximation for the ultimate moving
distance, roos.

Nomenclature
Dimensiona/ Parameters

A advection parameter equal to Q/(4n-b), mVs.

b half fracture aperture, m.

Co concentration at the well bore, kg/m3.
Dm effective diffusion coefficient of porous

matrix, mVs.

I



0.015

Vertical Distança (m)

Fig. 3. Concentration in the porous media for times 0.01 d
(a) and at steady-state (b). The dots in (b) indicate the
results from equation (13). The model coefficients are given
in Appendix 2.

p

y -

y0 »

a =

& =

í

r

fi

Po

Laplace transform paramerer.
P + 1/(4/3).

Po + K4/3).

(n2a1/b)(R2Dm/R,A)' / l.

R,\a,2/A.

p + 0C, + a ( p + a 1 ) ' / i .

(z/a1)(R :A/RiDm) l / j, dimensionless vertical
distance.

At/iRiûj2), dimensionless time.

r/a1? dimensionless radial distance.

TQ/Û!, dimensionless well radius.

Function
Ai(x) Airy function.

Disclaimer
Although a portion of the research described

in this article has been funded wholly or in part by
the United States Environmental Protection
Agency, it has not been subjected to the Agency's
peer and administrative review and therefore may
not necessarily reflect the views of the Agency, and
no official endorsement should be inferred.

D r longitudinal dispersion coefficient, mVs.

E, R i / A , s/m2 .

E2 n2(R2Dm)Vl/(bA), s1/2/m2.

Q constant injection rate, mVs.

r radial distance, m.

r0 well radius, m.

r ( r 2 - r 0
2 ) / 2 , m2.

t time, s.

V ground water in fracture defined by (1 ), m/s.

z vertical distance in the porous matrix, m.

<*! dispersivity of fracture, m.

X radioactive decay constant or first-order
rate constant for chemical or biological
reactions, s"1.

Dimension/ess Parameters
C^Cj normalized concentration in fracture and in

porous matrix, respectively.

n2 porosity of porous matrix.

R,, R2 retardation factors in fracture and in
porous matrix.

0.008

R (n)

Fig. 4, Contour diagram of the concentration with respect
to position and time. For t * 0.01 d (a), the contour levels
are: 0.95, 0.9, 0.8 0.1. For t » steady-state (b), the
contour levels are: 0.95, 0.9, 0 . 8 , . . . . 0.1, and 0.05. The
dotted line in (a) indicates the position of the well bore.



Appendix 1. Program

c
C rHIS PROMAN COMITES THE LAPLACE INVERSION OF THE RADIAL
C DISPERSION ÉQUATION FOU VELOCITY 0EPENOENT FLOW ANO RAOiOACTIVE
C OECAT GIVEN gr C H E N O 9 M ) USING THE LAPLACE INVEHÍ I ON METHOD OF
C STEHFESTÍ1970)
c c
c * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c
I "

e 1XPUT INFORMATION:
C . . . . . . . . . , . ; : = . . 2 i

C Input parameters can be provided to tne program from either
: i aitk fite or tnt keyboard, in either case, the parameters C
C that njtt M supplied are:
c
C INTERACTIVE INPUT (for opening files)
C **•****•*•>•*«••>••••.**.•**»>•»••*

C
; IN - Incut f i l e rute*!-, I N * ' for disk, IN-5 for
C keyooard.

: FILE • IF IN*1, then give the input H I * name.

c e
c 10 - Output unit number. 10*1 'of ditk, IO»5 for
C terminal, IO«4 fop printer,

c
C FILE - IF 10=2, then give the output file nan*.
C

c

Source Code

COMMON IN,IT,10,IL
DATA »ES1(1)/'Vertie»t concentration* will not be calculated'/
*,MES1(2)/'vertical concentration» nil 6» calculated'/
#,MES2(1)/'A decay boundary condition m i l ! at the veil'/
#,M£S2(2)/'A conitant boundary condition tiisd at the util'/
DATA INN,108,ITT/1,2,5/.IA/30/,(8/15/

read steering paramaieri
ir.iTT
WRITEdT,9C0>
SEAOdT,*) IN
IM1H.EO..0) CALL VT1Û0
If(IN.eO.I) CALL VTJ2

CALL VTPOSI
US!TE< IT,•)• 5|vt INPUT DEVICE NUHlER. (1'dsk, 5«tty) '
Kuxn,') IN
IF( tN.EQ.INN) THEN
CALL VTPOSI
U R I T E t I T , * ) 1 5IVE INPUT FILE NAME'
R E A D ( I T , ' ( A ) ' ) F I L E
OKN(UNITi|N,HlE>FILE,$Tl.ruS>>OI.O l

IMOOE''RCAD l)

END IF

CALL VTPOSI
U R I T E d T , - ) ' SUE OUTPUT DEVICE NLIMIER (J-dSk, 5 « t [ y , 6= IB ) '
aEAOtlT,*) 10
IL-5S
IF ( IO .Ea .S ) IL '20
IF ( IO .£0 , :SO) THEN
CALL VTPOSt
WRITECIT,-) ' GIVE OUTPUT FILE NAME'
READ( IT , ' (A)M FILE
0PEM<UNIT>10,MLE>FILE,STATUS>'NEU' )
ELSE
E MO IF

reed in inout perameter» of the fracture
IFdN.EO.n THEN
KÉAO<IN,'(A¡') (T!TLE(1),I»1,3)
ICADdN,*) ISC
SiAOCIN,') N,R1,R2,D,9,N2,DH2,LAM,3
SEAOÍIN.*) »«,»0,B,0«
ÍIAOÍIN,*) l|f,(r(I).l«t,NT)
READdN.'l «2,22
ELSE

• in te rac t ive inûvt ootton — * *
CALL INT«AC(TITLE,I>C,N,«1,R2,D,a,N2,l>M2,LAM,a,NR,ltO,l),BR,

«H2,D2,NT,D
ENOIF .

•*— u n t e out input parameter* - * * • •
IFZN«O
IF(N2.CT.0) IFZM>t
IF(IÛ.SÛ.It) CALL VTPOSI
U«IIE(IO,9O5I
waaE<IQ.?iO) (ttt'.E<n,tM,3>
URITE<10.915)
W«IT£(10,920) *ESUIFZN*1),iaCS2(iac>1)
!F(O.»Í.0.300) URITE(I0,925) N
IF(O.IO.a.QDO) u»irE(I0,930)
l fdO.EO.IT] CALL VTWAIT
wRirEdO,93;> ; , ï i .3 ,3»! ,a2,M2, ' .A«.a
I R I O . t q . I T ) CALL VTUAIt

gs ta appropriate analytical solution
(iBdeli if 0 > T, 3th*rni«* model2

If(D.NE.O.OOO) CALL N00CLUIA,IS,tSC,N,R1,R2,D.B,N2,DM2,LAM,3
t ,»»,l»O,«.0t,m,OZ,MT,!,V,IÏ.H,XR,AIQ,20)

IK0.ÊO.0.0OO) CALL MODEL2di,IIC,«1,R2,l,N2,DM2,LAM,a,NR,l(a,R
* ,DR,H2,0Z,«T,n

format ttatanaot<
900 F0«MT(3i(/),' SIVI THE TERMINAI TTPÏ: •,//, SX,'0 . VTIOO',/,

i ÎX,M • VTSÎ'.TÎO,'"» ',S)
905 FO»MAT(/,1X,78(1H*)l/,tX.'",7'oX,>#')
910 FO»MAT(1i(,"',3X,A,3X,1*')
91J f«IHAT(1Xl'*

l,76X,'••,/,IX,7S(1N»))
920 FORMAT(///,1X,'P«0ÍLE»t SPECIFICATtC*IS',/,1X,22(1H<),//,1X,

tA*q,/,1X,A**)
92S FOMMTdX.lî.' SteKfnt Might<n« factors Hill be uied to invert t

alt* LMlee* trantfora')
930 P0*MAT(1x,'Tne diip»r»ivity of the fracture is zero, uil l use tha

* approximate totution')
93! F0tMAT(///1X,'INPUT PA«AMÍTfRSV,1X,16<1IC),//.

a-ix.'Oiiwnivity of the fracture [LI ',1O(1H.)
«JPÍ13.6,/,
#1X,'Retardit(on coefficient for fracture « t i l l (OI'.tOdH,)
f,tP(13.6,/,
»ix,'Half width of fractura aperature [I] ',1O(1H.)
«.1PÍ13.4,/,
eix.'Oiffuaten coefficient of porout M t r i i (L'l-/T] ' , 10(1H.)
t ,1Wi l .6 , / ,
fix,'Retardation coefficient for porou* iwtriii (01, •, 10(1N, )
i.iPCU.o,/.
*1X,'Poro«ity of th* oorota matrix CO] ',10(1H.)
t,1P€13.6,/,
«IX,'Rautoactive decay eorutant [1/T] ',10<1H.)
«,1Pf13.6,/,
«IX.'Comttant injection rate [L*l*L/T] ', 10C1M, )
#,1PE13.6)

••#

SUIROUTINE moiLi - - CALCULATES THE LAPLACE INVCRIION SOLUTION
OF Chen (198S) WHEN THE OISPERSIVITT t$
OREATER THAN ZERO.

SUMOUriNf NamUIA,U,IiC,N,R1,R2,D,i,N2,DN2,LAM,a,N«,R0
* ,«.0«,N2,DZ,NT,T,V,S,H,XR.Al0,20)

IMPLICIT OOUttl PRECISION (A-H.O-Z)

I
I
I
I
I

HCDCL INPUT DATA (e i ther f f » a disk f i l e or interacrively)

RECORO 1: ( free format)

T I : L £ < 3 ) • Three lines of t i t l e or problaei dncr ip t ion .

ISC - Steering paramter for the boundary condition at
the u e l l . I f I8C«O; thtn a decay boundary.
If IBC*1; then a non-decay boundary.

N - Number of Stehfest xeignting coeff icients. For

ISM-AT compatible computert uie betueen IO ca 16.

• Retardation coefficient for the fracture surface.

• Retardation coefficient for the porous n a t r i i .

- Dispersivity of the fracture.

• Fracture aperature thickness.

- Porosity of the porout matr i t .
• Effect ive di f fusion coefficient for the porous

«atri i .

- Radioactive decay coefficient.

• Flow into the fracture.

Hi

«2

0

9

Hi

ami

LAM

a

3EC0RD 2:

HR

ÍO

9

¡ECORO 3 :

NT

f < N T )

c
0
c
c
c

cr of radial coordinate* where a concentration
is to be calculated.

The radiu i of the net I t e re .

The radial di l tance unere tne f i rs t concentration
i t to o» calculated.

The distance between consecutive radial distances.
A concentration wi l l ae determines ic « • (••'JOB,
for ¡ «1 ,2 ,3 , . . . ,NR .

Number of timet tne concentration is to be calculates.

The NT vatuet of time. The maaimua s i te for f i t
array is 10.

Minieer of vert ical coordinates ( in the porous n a t r m
unere a concentration i j to be calculates. Hote: tne
total rwieer of concentrations calculated a i i l se:
NR*W*NT.

Th* diitanee between conMcutiv* vertical distances.

C IMPOCTANt VARIARLES
c

RNOO
ORHO
RHO
DXI
XI
TAU
A
ALF1
ALF

C
c
c
c
c
c
c
c
c
c

DiMntionteti well radiuf
Inereaiantal dlmmionieït radial diltance
DlmnaiontM* radius
Incrammtal diaian«ianlt«* vertical distance
DimentioMMt vertical distança
Oioansionte» time
Aaveetion paraBetei*
Parameter relating to th* radioactive decay
Parameter relating to the diffinive leeieae

•

•

•

iMnicir DoutiE PRtcmcai CA-H.O-Z)
D0UM.C PRECISIÓN LAM,«,T(15),V(3O),C(JO).N<1î),X«<30>

* ,AI0(3O).Z0(3O)
CNMACTE* MLE>2t>

••

•
m

I



OOWLE PRECISION t.AM,»2,V<IA>,]<R(IA),T(IB),AI0(lA),20<IA>.5UA).
» ( I 8 )
CCHHON IN,IT,10,IL
COMMON /ARGU/ A13.ALF,SETA.BETA3

calculât» tn* prooi™ constant!
RHOO • RO/D
ORHO * 0'/0
RHOI * >/0
PI • J,0O0*OATAN(1,0»3C)
A » O/(<..0O0*PI#»)
ALF • M2*0«OS8RT(R2-0«/(R1'A))/«
ALF1 • RI'UH'O'O/A
0X1 • 0Z*DSORT(R2*A/<R1"tm2)>/0
A13«1.00/3.00
A23>2.000/3.000
Aln2>OLOG(2.D0)

print out calculei*) a*rm*t*r*
WRITÊÍ10,900) A,RHOO,ORHO.ALF,ALM

~ T.0) WRITE(!0,905) 0X1

d*t<rntin» in* Stefiftst niiahtina coefficients
[F(T(1).LT.0.000.ANO.NT.Ea.1) GOTO 15
CALL LlNV(IA,ia.».V,S,H)
IFdO.EO.tT) CALL
URITE(tO,910)
SO 10 l>1,N/2
H • N/2 » I
WR|TE(IO,915) I,V(

10 CONTINUE
CALL VTUAIT

calculât» a concentration prof i l * for *acn lim*
15 i fdo .Ea . i r i CALL vTmi

U«ITE(!0,920)
IFCIO.EQ.IT» CALL VTUAIT

n » y t i l M
00 20 («1,MT
TAU • »*T(Ï)/(R1*O*O)
RHO * RHOI

IFCIO.E0J.tr> CALL VTPOS1
IF(T(IC).LT.0.0O0) URITEOO.925)
IF(T(t) .CE.0.000) URJITE( 10,930) UO.TAU

dtttrmir* AiO ira 20 (only one*)
IF<T((),LT,Q.MO) THEN
IFU1C.EO..0) WRITE(5,9*Q)
IFUÍC.EO.Q) RETURN

< ,
IF(LAM.EO.O.ODO) GOTO 20

find v i l u n for ttttav »t»tt c » t
TO ' A»0<ALF1,«HO0)
20(11 • A23*Cf0)**1.JO0
[Í3PT-1
IKTO.LT.3.000) (WT«-1
IF(tO.CE.5,000) IOPT' 0

Mi

f ind v * l u « for tTiwd»Mni)»rn c***
TH« • AIIC(DlLE(FL0Ar(ll))-A(n2/UU*ALF1,l(HO0)
TMX • »«G(Aln2/TAU»ALM,«HO0)
IWT«1
IF(TMX.LT.3.XO) IWT.-1

.S.OSO) IOPT- 0

00 25 L-1.N
PA1>0SLE<FL0AT(L))*Aln2/TAU*ALFl
TO * A»G<PA1,»MQO)
ZO(L) • Aí3*T0"1.5OO
AIO(L)» AKTO.IOPf)

25 CONTINUE
EMIF

c t l c u l * » th« csrsmtritiont in tht fr ietur*
LO«O
SO 30 :H-1 ,M«
0D>0.50O*(«HO-«HO0)
XP'O.00
IF(T(K).LT.0.000) THEN

:«lcut»t« th« tiHdy-itit* V I I M
T > ABG<ALf1,«HO>
IF(T.LT.J.OO) THEN
Z • A 2 3 " ( T ) - * 1 . 5 O 0
C1»OEXP<00»I0<1)-Z)*»l(T,1)*(T0/T)*«0.ÎSO0/AI0(1)
ELSE
0XP«(TO/T)**.25O0
«P • »33VYO"1.500-T"1.5OO)

ENOIF
ELSE

calculât* in» tim-dapancMnt valu» ••
TUN • ARG(DllE(FI.0AT(N>)<Aln2/TAu>ALM,«N0)
in > *«G<AlnJ/TAU*ALÍ1,«HO)
lOPTai
tHi**.LÎ .3.0S0Í 10FT--1
lF(TMH.Gt.5.0OO) IOPT. 0

St th fMt numrical intt«ration Minod
00 55 L » 1 , N
PA1 • 0ILt(fL0AT(L))*Aln2/TAU*ALf1
T ' AB0(PA1,«HO)
1 ' A2J«T"1.ÎOO

FACT » OIXP(OO*ZO(l)-Z)*(Z0(l.)/2)".25

if i tC '1 , C't.0 at tn* u*tl bort
IF<I9C.6O.1) PA1.PA1-ALM
AlfN • AKT.IOPT)
X«(L)«v(L)'(tAlfN«FACT)/(AI0(l)'PA1))
xp » xp • xsa>

35 CONTINUE

C1»XP»Aln2/TAU
ENOIF

C print out r**ul i
R - 0*RHO
LO'LO+I
IFÍC1.LT.0.0O0) CU0.000
UR[TE(!O,950) LO,»,0.000,CI
IF(LO.EO.HR .ANO. N2.Efl.0l COTO 10
IF(FLOAT(LO/IL),E«.FLOAT(LO)/F1,OAT(IL)) CALL VTWAIT
IF(FLOAT(L0/IL).E«.FLOAT(LO)/FL0AT(IL)) URtTE( 10,935)

e calculât* eonemtration in porous matrix
XI>OX|
00 40 1Í-1.HZ
IF(T(K).LT.O.ODO) THEN

C calculât* i l taoV * t a t * cencantraton
C2«C1*0£XP(-XI'M»T(ALFin
2 > 0'JI/0SO«t(«2*A/(l
ELSE

; calculât* tiaa-iMptndtni concentration
iP-O.000
00 4S L»1,«
PA1 > L*Aln2/TAU*ALF1
II > 0EXP(-XI-Om«T(PA1)>
IP « ZP • 2Z*Xt(L)

45 CONTINUE
C2-2P-AlnZ/TAU
ENOIF

print out r « u l t i
I • 0')II/Osa»T(«î*A/(«1'BW))
I.O»L»1
IF(C2.LT.0.000) C2-0.000
w«ITE<|0,9ÎÛ) L0,K,2.CZ
IF(LO.Eg.N«*NZ> GOTO iO
lF(FL0AT(L0/U>.Ea.fl.OAT(lO)/FLOAT(IL)) CALL VTUAIT
IF(FLOAT(L0/IL).ta.FI.OAI<LO)/FLOAT(a)¡ MITEC 10.935)

¿0 XI «1*0X1
30 «MO'iHOOIHO
20 IF(t.NE.MT) CALL VTWAIT

fonwt >tatam*nti
900 F0HMAU///1X,'CALCULATED PA«A«ÍTE«S'/1X.22(1N«)//

•11,'Advaetien p i r w i l f (A) ' , 1 0 ( 1 H , I ,
»1Pt13.6,/,
11X,'0iii*n*ienl*» r*diu« af th* M i l (RHOO) ',10(1H.)
<,1PE1J.4,/,
• 1 x / D t « m i o n l M * diitane* b*tu«n radii (ORttO)... ' , 10<1n. )
«,1PI13.*,/,
t1x, ' I * t ie of dlffu*W* lasa to in)«t isn (ALPHA).. ' , 10(1H. )
f.IPB13.4,/,
• ix . 'Oinrrnianmi radioactiva cttcay constant (ALPHA1 ) ' , ? (1H. )
f,1P!13.4)

905 FOMATUX.'OimansisnltM vtrtical spacing (0X1) •
« ,10<1K.),1PE13.6)

910 F0*MAT(///1X,'STENFfST LIGHTING FACTOBS'/1X,27(1H.)//
»5X , ' l l . 1 ÍX . ' ¥ ( I ) l , Í 7X ,Ml l , 11X , l V( I Í ) 1 )

9tS fOMArm,!5,1Pe20.7,20X(J5.1Pe20.7)
920 FOatMTdM.'CaNCfNTIATION DISTRIIUTtON-

»./.16X,26(1N"),//)
925 FOMAUSX.'Tlnit • St*ae)y Stat * ' , / )
v30 FORMT(!X,'Tiiw . ',1PE15.5,1OX,Tau ' ',1PE15.5,/)
935 FOtJUTíSX.' l ' . IM.'H'. loX.' I ' . ISX.'e/Co')
940 F0RMAT(5x,'E*ltO«: ItC n u t « 1 for a Ktaoy n i t t solution')
945 FOtNAr(5x,'EltMM: LaaiMa cannot b* l*ra for a steady m i l

« lolutiao.' . / ,12X,'Th* csnc*ntr*tion is K0 for X < inf in i ty 1 , / )
950 FOHKAt<1X,lS,5X,F12.3,$<5X,Fl2.l.))

RETURN

SUBROUTINE N A M : H0DÍL2 THIS PROGRAM CALCULATES THE SOLUTION

OF Ch*n ( 1 9 4 4 ) WHEN THE 0ISPEKSIV1TY

is :EDO.

SUMOUTIHE WDEL2(H,HC,B1,R2,S,lli,0«,I.AX,a,l(B,80.9
* ,0»,HZ,02.HT,t)

ILLICIT OOUtLE PRECISION <A-H,O-2)
90UILE PRECISION LAM.N2
3IHENSION T(ls)
carnoN in , IT . IO . IL

calculât* profeta* constant»
'1 • 2.000-OATANd.O-SO)

V • «I/A
E2
91 « R
yllTEC10,900) A.I1.E2
CALL VTUAIT
¡KIO.EO.IT) CALL VTPOSI

:F(IO.EO.:T) CALL VTVAIT

• • • - - cticutat* esmntration for t»cn t in*
00 10 K»I,HT
(F(IO.fa.ir) CALI VTPOSt
IF(T(C).LT.0.0DO) UR1TKI0.910)
IF(T(t).CE.0.000) WITE(iO,91S) T(K>
WRIIEt10,920)

calculât* th* concaniration in tn* fractura
Z>0.000
«••I
LO-0

DO 15 II'I.HR
•R>**R/Z.-R0*tM/2.
2*0.ODO
IF(T(IC>.LT.0.0Mi TNC«



steadyMtate solution
AIICI • -Ê1»LAM"«t - Ê2*DSatT(UM>*M
iFn>c.Ea.3.ANO.uu*.j*E.a.ooa) ci • 0,000
IF< IIC.Kt.S.AW.LAM.NE.0. WO) C1-OEXPÍARG1)
imíC.KE.0.AI».LAM.EO..0.00O) CI-I.OOO
El-St

time-depenlent solution
T1«T(K.)'E1*»R
I F ( T I . L E . O . O ) COTO 25
ARGI«E2'RR/OSORT(TI)/2.O
ARC2'OS«RT(LA)«*T1>
EXP1*E2*RR'0SORT(LAM)

P 2 Ê 1

calculation for a decay boundary condition
GOTO 20

C1»0EXF(-LAM*T(«),ARG1)
SOTO 20

- - - - - calculation for a non-decay boundary condition — • •
20 C1'0.50O*(OEXF(-EXP1-EXP2,A*G1-ARG2)

« *DEXF(EXP1-EIP2,ARG1*ARG2)>
SOTO 20

25 Ci '0 .0
20 CONTINUE

ENOIF

print out result!
L0«LO*1
WRITE(IO.925) L0,R,Z,C1
IF(L0.E9-NR .ANO. HZ.£0.0) SOTO 35
IF(FLOAT(L0/IL).Ea.FI.OAT{L0)/FL0AT(IL)) CALL VTUAIT
IF(FLOAT(L0/ll.).EO.FLOAT(L0)/fLOAT(il)) URITE( 10,920)

salculatt concentration in porou* media
35 Z'OZ

00 40 N'1,MZ
IF(T(i).ir,0.M0) THEN

steady-state solution (only non-decay Boundary allowed)
IFdaC.NC.Q) a z 0EXP<ARG1 • Z*0SORT(R2*LAM/0M2))
ELSE

tfide-oeoenaent solution
IF (T1.LS.O.0) GOTO SO
ZZ«Z'OSORT(R2/OM2)
AR61«(E2*«R*ZZ)/OSORT(T1>/2.0
IF(IBC.EO.I) SOTO 45

decay boundary condition
C2«0EXF(-LAM*T((),ARG1>
SOTO ¡S

non-decay boundary condition
45 CZ«Q.5O0'<0EXF(-EXP1-EXP2-QSO«T(LAM)'ZZ,ARC1-ARG2>

* •0EXF(EXP1-EXP2-DSQRT(LAM)'ZZ,ARG1*ARG2))
GOTO 55

SO C2.0.0
55 CONTINUE

ENOIF

orint out result»

URlTÊ(10,a2î> IO.R,2,C2
IF(LO.EO.HR'IIZ) GOTO 40
IFmOAT(LO/IL).EQ.FLOAT(LO)/FLOAT<IL)) CALL VTUAIT
!F(FLOAr(LO/IL).Ea.FLuAT(LO)/FLuAT(IL)) URITE( 10,920)

•0 Î»Z'OZ
15 R'«*OR
10 IF(t.NE.NT) CALL VTUAIT

RETURN

format statements
900 FOOMAT(///1X, 'CALCULATED PARAMETERS V1X,22(1K<>//

*1X,'Adv*ction paramar (A) ' ,10(1K.) ,
«1PE13.6,/,

/ « a t i o of retirdation in fracture to "A' (£1) . . • ,10(1H. )

',10(114,), , ,
f i x , ' Factor E2
»,1PE13.0)

S Tn 'CONCENTRATION 0I5TRIMJTI0N'90S

910 F0RMAT(5X,'Tine > Steady S t a t e ' , / )
915 FORMAT(5X,'Tiffle ' ' JPEIS .S , / )
920 FO»KAT(5X,'!',!4X,<*<, 16X, ' Z ' , 15X,'C/CO')
92Î FORMAT(1X,I5,ÍX,F12.3,5(5X,F12.4))

ENO

c
c™
c
c
c

FUNCTION ARG •• CALCUIATEI TNI AROJWÍNT FO* THE AIRT FUNCTION

OOUtlE PRECIStON FUNCTION A*Q(P,R>
IHBIICIT DOMIE PtECIlIOM (A-M.O-Z)
COMMON /ARGU/ A1],ALF,iETA,HTA3

8ËTA • P*»lfOSORT(C)
•ETA3 • »ETA»*A1J
ARG • 1(TAJ«(I • 0.2SD0/UTA)
RETURN
ENO

SUUCUTUE Otxf •- EVALUATES Exm)ERFC(i) IN OOUtLI PRECISION

OOL/iLt PRCCISIOM FUNCTION OËXFtA.I)
IMPLICIT OOUIIE PRECISION (A-M,0-2>
DATA P/.327Ï91100/,AV.254«29Î9»O/,A2/,2S449é73íO0/

» ,A3/1.42141374100/,A4/t.453152027ÍO/,A5/1.04U0542900/

OEXF-O.OOO
IF((0AlI(A).5T.S2,00).AMO.(l.l.e.Û.ÛO0)) RETURN
IF(I.Ml.O.O) GOTO 10
oexFo(xp(A)

RETURN
10 C'A-S't

IF((DAH(C).GT.U.D0).ANO.(I.GT.O.0O>) RETURN
IF(C.LT.-<2.0DO) GOTO 25
*«OA»S<1>
IF(X.GT.3.0O0) COTO 15

r • i.oo/<i.ooo»p«t)
T • T»(A1-T»tA2-TVAJ-TVA4-A5*T))))
GOTO 20

ti<> .54*1»940O/<Xt.5D0/(X»1.00/<X»1.500/(x*2.o0/(X»2.500/<x*1.D0
*))))))

20 OEXF • r*O£XP(C)
25 IF(l.LT.O.XO) OEXF • Z.D0*DEXP(A)-OEXF

RETURN
END

FUNCTION AKZA.IOPT) THIS FUNCTION SU8ROUTINE COMPUTES THE
AIRT FUNCTION FOR POSITIVE ARGUMENTS.

IF 1OPT > -1, USE THE SNALL ARGUMENT SERIES SOLUTION
IF IOPT • 0, USE THE LARGE ARGUMENT SERIES SOLUTION
IF IOPT • 1, USE THE INTEGRAL SOLUTION METHOD

THE AIRY FUNCTION IS SCALED (MULTIPLIED) IT:

(Z"O.25)*EXP(U>, WHERE U»(2./3.)"(Z"1.5)

OOUILE PRECISION FUNCTION AI(ZA.IOPT)
IMPLICIT OOUILE PRECISION (A-H.O-Z)
BOU1LE PRECISION XG(10),WC(10)
COMMON IN,IT,10,IL
OATA CI ,C2/.35502M53M78DO,.25881W0379J800/
SATA COEF1>CaEFZ,:3EF3,COEF4,COEF5.COfF6/9.55552a226077D-2O,

1 4.235*055970200-32,1.6410218027Î30-35,1.0135782122940-29,
2 4.30943117471S0-33,1.6249740*77820-36/
DATA v/.333333333333333300/. PIS0R3/Í .44139809300/,

' ^'»T2/J i5"?jrT2iao0/.PI/3.1*159265359O00/,PI04/7.aS3981634o

ÓATA HG/10/,XG/.7»526S2113349n3O-1,-227785851141445000,
»,373706O88715419Í00,.5108670019508Î7000, .636053480724515000,
'.744331904440150790,.339116971822218000,.912234428251325900,
».9639719272 779137ï0,.903i2S59918S0949O0/
OATA WG/.1527533871307Z5800,. 149172984*72403760.

». 1420941O9J183820O0,, 1314886)SU«176é»0,. 11819*531941518400.
1.1019301198172*0*00, .8327674157670*740-1, .6267204833*109040-1
«.40401*29800384940-1,. 1761*007139152110-1/

function itatements
FN(T) • 0EXP(-ZK«OeOSN(Y))«0COSM(VY)
0ACOSM<Y) • OLOG(T*OS«RT(T*Y-1.0O0))

IF(ZA.LT.O.OO) MITE(IO,900)
IF(IA.LT.O.OO) STOP
IFUOPT) 10,20,30

seri»» «pan» i on for Ai(ZA) ( for 0.0 •« ZA < 3.0)
10 P»ZA"3

F*1.DQ+P*< 1.6664*46666670-01*P*( S.S5555553SJ54O-03*
1 . . . . . _ . . _
2

4
5
6

S

P*( 7\71M493S27160-05-PV 5.845*919564030-07*
P*( 2.783S67598382P-09*P*( ».09*626138Í050-12*
P*t 2.1658433**3110-14.P'( 3.9236«S51847«O-17»
P*{ S.589Z67120425«'20^*( 4.*2****944239O-2J*
P'( 6.O8375*70287*D*24*P*< *.8283747*83130-29*
P*( 3.Z58014O0O2110-32-P«( 1 .Í919W1929220-3S-
P'( 1.0O-10*COEF1»P*t 1.00-10»COEF2»
P*( 1.00-10* COÍFJ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

G-ZAV1.00*»*! a.333333333333O-O2*P«( 1.98*124«8*127D-O3*
1 P*( 2.Z045»5S37V1«-0!*P«( 1.41319Í8S74400-07*
2 PV 5.S883140n501B-10*P'< 1.72173984«0S3O-12*
3 P*( 3.724487978*700-15*P*( 4.2111*66307830-18*
4 P*( 8.215802*216no-21*P*( S.8341941S2333D-24*
5 P*( 7.8734)5109032&-27tP<( 3.9111224542280-30+
6 P'( 3.7S91S10eu40U-33*P*( 2.098104a99**S0-34*
7 P*< 1.00-10»COtF*»P»( I.OO-IO^COEFS*
» • ( 1 t 4

A i c i c 2 e
u«A23*ZA"1.3O0
A|.<ZA**0,2S00)*0IXP(U)»AI
KETURN

(for ZA > 5.000)aay«vtot<c «pan» i on for Ai(ZA)
20 Z K > A 2 J * Z A " 1 . 5 B 0

P-1.00/IK
A>1.00*P*(-6.9****4*4****0-OZ*P*( 3.7133*8765*320-02*
1 P*C-3.7993059127S00-02*P*( 5.74*9190*12670-02*
Z P*(-1.14O99O4*02i50-01*P*<
3 P»(-8.7766*«6951000-01-P'(
4 P<(-1.23*i57333235O*01*P*(
5
6

2.9159139923070-01*
3.079*530301730*00*
5.562278534S91D*O1*

P*<-2.7è*4*08077760*0Z*P*< 1.5331694320130*03*
P*C-9.207706S997240'03>))))))))))))6

AMA/PIRT2
RETURN

Integral repreieniation far Ai(ZA) ( for 3.0 « ZA >< 5.0)
30 ZK • 2.OOO»(ÎA"1.5OO)/J.0O0

TM» . 70 .00/ I Ï
IF(TMP.LE.I.ODO) THEN
Xl.-20.QOO/ZK
ELSE
XL • 0ACOSN<TMP)
ENOI'

SA2 < XL/1.BO
SLM • 0.00*0
SUMI * 0.00*0

00 39 I-1.NO
r • 8A2'(XG(I) • 1.000)
r i . - ÍA2VX6U) - 1.000)
SLM • SU) • UG(I)*FN(Y)
SUMI • SUMI • Mcn*FN(Ti)

35 CONTINUC

SUN > 8A2'<BM*SU*1>
Al • aEX*(ZJC)<(ZA**C.7tO0)<«M/PISM3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



l E T U K N
C
9 0 0 FORMAT C • " WARNING " • SUBROUTINE A I ( Z > U I L I MOT EVALUATE

» « O N - P O S I T I V E ARGUMENT OF * [ ( ! > . ' )
£110

C

SUBROUTINE LI NV FI «OS THE STEHFEST WEIGHTING COEFFICIENTS

SUBROUTINE L:NV(U,II,K,V,C,H)
IMPLICIT DOUBLE PRECISION (A-H.O-J)
DIMENSION G(IA),V(lA),l«(t3)

i ( I t , J 1 0 ) I
IS «EAD(IT,«) T d )

810 F0RMAT(1X,' GIVE THE ' , 1 2 , ' t h TIM? [ T ( I ) ] ' , 2 0 X . ' •
CALL VTPOSI
tf«!'£Cir,SO5r 01 Vt THE HUMIER OF VEtTICAL POSITIONS UHEDE A
WRITEdT.SO!)1 POROUS MATRIX CONCENTRATION IS TO SE CALCULATED
WRITECIT.SOO)' , = ,
SEADdr l

' ,» )

,
IF(NZ.EQ.O) RETURN
URITEdT,SOO)' GIVE THE SPACING BETWEEN VERTICAL POSITIONS » >
«EAOdT,") 02
IETUSN
END

HH>N/2
DO 10 1*2,H

u
'0 CONTINUE

H(1)«2.O0/G<NH-1)

DO 20 I-2.NI»
1

IFd.EO.NH) COTO 15
H< i >«t F i"NM)«Gcz*t >/(C{»Hr n*oc i >-at i • 11 >
(WTO 20

:5 *<I>«<FI"NN>*GCÎ*I)/<G<1)'SU-1))
20 CONTINUE

lSN»2»(NH-<NH/2)«2)-1

DO 2! I'1,N
vd)"0.00

IF(«.GT.NM)««Nlt
DO 40 t « H , «
IK2*K-l.E«.0) GOTO 10
[Fd.Ea.o GOTO 3S

. V( I )«V( I )*H(O/(G< 1 -<)'G(î't-1 ) )
SOTO 10

30 vU)-v<t)»H<K)/GU-iO
GOTO 40

35 vd)«Vd>
40 CONTINUE

Vd)»ISN*Vd>
ISN.-ISM

25 CONTINUE

END

SUM0UT1NE INtKAC •• ALLOWS INTERACTIVE INPUT

(This subroutine and th« cal Una tut tmtnt in TA* w i n
cm oo r n m d i f interactive incut i i not require^)

SUBROUTINE INTRAC(TtTLE,IBC.Nl*1,R2ID,B<N2,DM2,LAM,a,NR,Ra

IMPLICÍT DOUÍLE'PRECISION (A-H.O-Z)
DOUBLE PRECISION N2.1AM
DIMENSION r(10)
CHARACTER T1TLE(J)*7O
COMMON IX,IT,10,IL

900 F0RMAT<1X,A50,S)
405 FORMAT<IX.A50)

CALL VTPOSI
00 10 1-1,3
URITE(IT,805)' GIVE A LINE OF TITLE

10 «EAOdT, '(A)') TITLEd)
CALL VTPOSt
yRlTEdT.SOS)1 GIVE 0: for DECAYING BOUNDARY CONOITION
URITEdT.SOO)' or 1 : far CONSTANT CONCENTRATION BOUNDARY • »
«EAOdT,*) IBC
CALL VTPOSt
WRITEdT.800)1 GIVE THE NUMBER OF WEIGHTING FACTORS [N] • •>
«EAfldT,') N
CALL VTPOSt
WRITEdT.800) ' GIVE RETARDATION FACTOR [FIACTURE: R1I > »
«EAOdT,•) «1
CALL VTPOSt
URITEdT.SOO)' GIVE «ETAROATION FACTOR [POROUS MATRIX: R2] i>>
«EAOdT,-) R2
CALL VTPOSI
UR|TE(IT,800)< GIVE 0ISPERS1VITY IN THE FRACTURE CO] • •>
«EAOdT,-) 0
CALL VTPOSI
URITEdT.SOO)1 GIVE HALF FRACTURE APERATURE DIMENSION Cbl • •>
«EAOdT,-) B
CALL VTPOSI
VRITECIT.SOS)1 GIVE POROSITY OF POROUS MATRIX [n ]
WRITEdT.ouO)1 2 >»
«(AOdT,*) »J
CALL VTPOSI
íiRITEdT.SOS)' GIVE DIFFUSION COEFFICIENT IN MATRIX [DID 1

«EAOdT,*) DM2
CALL VTPOSt
UHITEdT.SOO)' GIVE «AOIOACTIVE DECAr CONSTANT [lHM*) •»
«EAOdT,*) LAM
CALL VTPOSI
WRITEdT.SOO)' GIVt THE INJECTION RATE [QJ =..
«EAOdT.•) O
CALL VTPOSI
W»ITE<]T,8OS)' GIVE THE NUMRCR OF «ADI I [NT], WELL RADIUS (»01 ,
WR|TldT,SOS>' START RAOIUS [ft] ANO DISTANCE BETWEEN RAOII [DR]
WRITEdT.SOO)* ...
lEAOdT,*) NR,RO,R,OR
CALL VTPOSI
WRITEdT.SOS)' GIVE THI NUNKk OF TIME! THE CONCENTRAT 10*1
wniTtdT.aoov PROFILE is TO ai CALCUUTED n n . . .
«EADdT,*) NT
CALL VTPOSt
DO 15 1*1,NT
CALL VTPOSI

C SUBROUTINES V T « "
C

VIDEO DRIVERS FOR VT-100 AND VT-52

VT100
CHASACTER'I ESC
OATA ESC /'IB/
u«IfS(5,9O0) ESC

«00 FORMAT <'»',1A1,'«')
SETUBM
END

SUBROUTINE VT52
CNARACTER'1 ESC
OATA ESC /ti»/
w«II£(i,900) ESC

900 FORMAT ('•'.1A1,'[7ZI')
«ETURN
em

SUBROUTINE VTPOSI
CHARACTER'1 ESC
CHARACTER CMD1*S,CMD2*3
3ATA ISC / * 1 B / , I L I k E / S / , I C 0 L / V
OATA CMD1 / • t i . ' i f • / ,

• CMOÎ / ' [ 2 J I V

u»!Ti(S,900) ESC,CMP1,ESC,CHO2
WRITE(5,9OS) ESC,ILINE,ICOL

ENTR» VTPOS1
WRIT|(5,900) ESC,C»01.ESC,CI«2

WO fOÍMAT ( ' « ' . A . A . A . A . Í )
90S FORMAT ( ' t ' A 1 . ' [ ' , 1 2 , 2 , ' ; ' , 1 3 . 3 , ' f ' )

aetUR
(NO

SUBROUTINE VTWAIT
CHARACTER*1 ESC
CHARACTER C»1*!,CMD2*3
COMMON IN , IT ,10 , IL
OATA ESC / * 1 B / , I L I N E / 2 4 / , I C O L / 1 /
OAT» CM01 / ' [ 1 , - i f / ,

• CMOJ / ' [ 2 J ] ' /

i f output iWvie» is t h * p f i n t t r
I f d O . E O . I t ) GOTO 10

O

t t r m m « i • • •

«ETURN

if output atvict is tn«
tO U9|TJ(S,9O5) ESC,ILINE,ICOL

« I T E 9 1 0 )
«EAOdT,91!) TMP
WRIT|(S.920) ESC,CM01,ESC.CMD2
IETURN

900 FOtHAT(M')

910 FORMATC* Typ« r t t u r n to c w u i n u t >>>
5'5 F0RNAT(G1.5)
920 FORMArr>',A,A,A,A,S>

EMC

Appendix 2. Examples of Program Input and Output

E x a m p i t t n p u c d a c a s a C

1.
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Ground-Water Modeling: Applications'

by James W. Mercer and Charles R. Faustb

ABSTRACT
The numerical models used in ground-water studies

are general computer programs that can be applied to a
variety of hydrogeological conditions. These programs are
based on approximations to the governing partial differ-
ential equations for ground-water flow and transport. To
use these models requires an understanding of the physical
problem and field data. Although program input data and
output results are quantitative, the appropriate application
of numerical models remains a partly subjective procedure.
To use models, the hydrologist must assess the merits of-
alternative numerical methods, evaluate available data,
estimate data where missing or absent, and interpret
computed results. The review of previous model applications
can provide valuable insight on how these tasks may be
approached.

INTRODUCTION
The effective application of numerical models

to field problems in ground-water hydrology is
ironically a qualitative procedure. The hydrologist
must first decide whether a numerical model is
necessary for project objectives. If needed, he is then
faced with the decision of which numerical method
is best for his problem. Once a particular method or
computer program is selected, he must assess the
reliability of data that arc needed to run the program
and the quality of the data that will be used to
verify computed results. Because available data are
never as comprehensive as desired, he will probably
have to fill in data gaps with estimated, interpolated,

aThis is the fourth in a series of papers on ground-
water modeling.

bGeoTrans, Inc., P.O. Box 2550, Reston, Virginia
22090.

Discussion open until March 1, 1981.
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or extrapolated values. Although running the
computer program is fairly straightforward, inter-
preting or analyzing the output can be very difficult.
The computed results may not compare well with
observed data. It is then necessary to adjust and refine
input data and rerun the computer program until
some satisfactory agreement is obtained. This
refinement procedure is known as model calibration.
A calibrated model may be used for future fore-
casting, but care must be taken to avoid unwarranted
prediction.

The above discussion suggests that a successful
model application requires a combination of
experience with (1) hydrologie principles,
(2) numerical methods, (3) the aquifer to be
modeled, and (4) model use. Model use is the topic
of this paper, fourth in this series. In the previous
papers we (1) provided an overview of numerical
modeling, (2) presented and discussed the partial-
differential equations on which numerical models
are based, and (3) reviewed commonly-used
numerical methods. If we accept that model use is a
subjective procedure, then one way to gain
experience is to see how other problems have been
approached using modeling techniques.

There are several good review articles on
models used in ground-water studies. Prickett
(1975) presents a review of the available literature
on ground-water modeling. In addition to Prickett's
work, Narasimhan and Witherspoon (1977) present
an overview on ground-water modeling. Anderson
(1979) summarizes the literature concerned with
modeling solute transport while Mercer and Faust
(1979) summarize the literature dealing with
modeling heat transport. Because of these articles,

Vol. 18, No. 5-GROUND WATER-Septcmber-October 1980



we do not present a literature review. Instead, in
this paper we consider, in detail, three examples.
The first deals with ground-water flow in a glacial
aquifer. The second application involves the analysis
of a pollution problem. The final example illustrates
the potential for using models to aid in data
collection,

GROUND-WATER SUPPLY EXAMPLE
This particular example was chosen for

discussion because it is typical of many applications
(only limited data are available), and it provides a
qualitative comparison of two alternative numerical
methods. This application was first presented by
Pinder and Bredehoeft (1968). It represents the use
of a ground-water flow model to analyze an aquifer
system composed of glaciofluvial deposits. It
includes a history match with limited data and a
prediction using a finite-difference model. This
problem was later simulated by Pinder and
Frind (1972) using a Galerkin, finite-element model.
Based on this field application and numerical
experiments, they present a discussion on the
relative merits of both numerical techniques.

Problem
The village of Musquodoboit Harbour, Nova

Scotia (location map is shown in Figure 1) depends
entirely on domestic wells for a water supply.
Unfortunately, bedrock wells are of poor quality,
and shallow wells cannot meet demands during
summer months. Field studies indicate a nearby,
unconsolidated deposit containing good quality
water. Can this deposit provide an adequate water
supply for Musquodoboit Harbour?

PEAT AND MUCK

G'-AGO-F'JJVIAL DEPOSITS

GLACIAI. TILL

Fig. 1. Location map of tha Musquodoboit River basin
(from Pinder and Bredehoeft, 1968).

Fig. 2. Geologic map of Musquodoboit Harbour, Nova
Scotia. Inset is the welt configuration for the pump test
conducted on this aquifer (numbered wells are observation
wells) (from Pinder and Bredehoeft, 1968).

Hydrogeology
According to Pinder and Frind, the aquifer is

adjacent to the Musquodoboit River lA-mile
northwest of the village of Musquodoboit Harbour
(see the geologic map in Figure 2). The aquifer is a
glaciofluvial deposit consisting of coarse sand,
gravel, cobbles, and boulders deposited in a typical
U-shaped glacial valley cut into the slates and
quartzites of the Meguma group and granite
intrusives of Devonian age. The contrast in
permeability between the granitic and metamorphic
rocks and the glaciofluvial valley fill is so great
(approximately 10*) that the bedrock is considered
as impermeable in die aquifer analysis. The aquifer,
which is up to 62 feet thick, is extensively overlain
by recent alluvial deposits of sand, silt, and clay.
The alluvial deposits are less permeable and act
as confining beds. A cross section through the
valley is given in Figure 3.

Aquifer Analysis
A pumping test was conducted to evaluate the

aquifer transmissivity and storage coefficient, and
to estimate recharge from the river. The test was
run for 36 hours using a well discharging at 0.963
cubic feet per second (432 gallons per minute) and
three observation wells (see insert of Figure 2 for
locations). The test was discontinued when the
water level in the pumping well became stable.

487



LEGENO

CENOZOC

PLEISTOCENE AND RECENT

I Ü Ü RECENT ALLUVIUM

GLACIO FLUVIAL DEPOSITSm
PALEOZOIC ANO PRECAMBRIAN

H I GRANITE ANO SLATE

SCALE

HORIZONTAL: 1ia= 943 ft.

VERTICAL: 1in.:13Oft.

Fig. 3. Geologic cross section, MusquodoboJt Harbour
area, Nova Scotia (from Pinder and Bredehoeft, 1968).

Initial estimates of aquifer parameters were calcu-
lated using the Theis curve and the early segment
of the drawdown curves for the observation wells.
Results are shown in Figure 4. The values are
somewhat variable, and because of the close
proximity of boundaries, the pumping-test results
are difficult to analyze using standard analytical
methods.

Although not included in the original report,
the late time data may also be analyzed using
Jacob's method for distance drawdown data (Jacob,
1950). The transmissivity calculated by this method
is 0.288 ftVs, which is about five times smaller
than the values determined from the early time data.

Aquifer Model
The boundary used in the model is the contact

between the valley-fill deposits and the bedrock.

TE1T O M » -

Fig. 4. Time-drawdown curves for a pump test conducted
at the Musquodoboit Harbour aquifer (from Pinder and
Bredehoeft, 1968).
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Fig. 5. Finite-difference grid showing the modified trans-
missivity matrix adjusted on the batis of three additional
test well logs and digital model results (from Pinder and
Bredehoeft, 1968).

Because of the very low permeability of the bedrock,
the boundary condition is considered no-flow. A
uniform 45 by 57 rectangular grid was used by
Pinder and Bredehoeft, and is shown in Figure 5.
Note that approximately half the nodes are outside
the aquifer area and are not included in the calcula-
tion. The aquifer is considered to be confined;
however, steady-state leakage is allowed through
the river bottom.

According to Pinder and Frind, this grid could
be redesigned with approximately 25% of the nodes
by introducing a variable grid. Furthermore, a model
based on Galerkin's approximation in conjunction
with deformed isoparametric quadrilaterals was
used to examine this problem and contained 96
nodes and 44 elements (see Figure 6). The flexibility
introduced through the use of irregular elements is
apparent in the definition of the impermeable
boundaries and the river. Often, however, the
subsurface geometry is not that well known. The
shape and distribution of the internal elements
demonstrate how an understanding of the hydro-
logic system can guide the hydrologist in the
selection of an efficient nodal arrangement. On
the other hand, a poorly designed model may be
inefficient and may provide inaccurate results.

History Match
The history match consisted of reproducing

the pump-test results. An initial estimate of trans-
missivity was made based on the pump-test
analysis and the geologic information.
Approximately 37 computer runs were made with
the finite-difference model, varying aquifer
parameters until a satisfactory match was obtained.
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Fig. 6. Element configuration for Galerkin analysis of
Musquodoboit Harbour aquifer (from Pinder and Frind,
1972).

The final transmissivity distribution used in the
, model is shown in Figure 5, Using the same data,
the problem was again simulated with the finite-
element model. A comparison of finite-difference
and finite-element drawdowns is shown in Figure 7.
These may be compared with the observed draw-
downs in Figure 4. Note that by using drawdowns,
the initial conditions for this linear problem are
simply initial drawdown is equal to zero everywhere.

According to Pinder and Bredehoeft,

"A decrease in transmissibilicy results in a greater drawdown
after a given period of pumping. The storage coefficient
affects the shape of the time-drawdown curve before
equilibrium is reached in the aquifer system. The most
pronounced effect of an increase in the storage coefficient
was a decrease in che drawdown during the early periods
of pumping. Steady-flow conditions in the aquifer depend
upon the quantity of water entering the system through
the river bed. The closest approximation to the pump test
results was obtained using a permeability value (for the
confining material) of 0.00002 feet/sec for 10-foot

thickness of river bottom. The shape of the time-drawdown
curve was changed markedly by adjusting this value as
little as 0.000005 feet/sec."

The aquifer is not confined everywhere and,
in parts, behaves as a water-table aquifer. Although
the saturated thickness does not change much
with time because the drawdown is small, the
storage coefficient is time-dependent due to
drainage of the aquifer system. To account for this
the following crude approximation was made. The
initial value for the storage coefficient of 0.003
was allowed to increase linearly with time to a
maximum of 0.06 after 10 minutes, over the entire
aquifer.

Prediction
The areal head distribution in the aquifer after

206.65 days of pumping at a rate of 0.963 cfs is
shown in Figure 8. Because of the aquifer's high
transmissivity, a rapidly expanding, flat cone of
depression develops. The influence of the
Musquodoboit River is observed within a minute
after pumping begins, and after 300 minutes the
drawdown at the closest impermeable boundary
is greater than 0.1 feet.

The drawdown for long pumping periods was
computed for the three observation wells used in
the pumping test (Figure 9). It is interesting to note
that the steeply rising time-drawdown curve levels
off rapidly after approximately 273 days of
pumping, and has essentially attained steady state
after 5,000 days. Based on this study, it was
concluded that the aquifer could easily supply
the village of Musquodoboit Harbour indefinitely
at a rate of 0.963 cfs (approximately 0.6 mgd).
This quantity of water was more than adequate to
supply the village needs for the immediate future.

(«00 , IN MUNÜttl

Fig. 7. Comparison of finite-difference and Galerkin
solution at Musquodoboit Harbour (from Pindar and
Frind, 1972).

Fig. 8. Potentiometric surface determined from the digital
model after 206.65 days of pumping at a rate of 0.963 cfs
(from Pinder and Bredehoeft, 1968).
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Fig. 9. Time-drawdown curves obtained from the digital
modal (from Pinder and Bredehoeft, 1968).

Discussion
In the Musquodoboit example, the subjective

aspects of model application are evident. The first
task was to determine if a numerical model was
necessary. Pumping-test data suggested that
because of boundary effects, analytical techniques
may not be adequate. The authors, therefore,
decided to use a numerical model, and performed
the necessary developmental work.

Evaluation of available data involved
reducing information from geologic reports to a
form usable in die model (that is, boundary
conditions, aquifer thickness, etc.). The pumping-
test data were also analyzed to provide estimates of
transmissivity and storage coefficient. These
values were refined via model calibration. This
took 37 runs and necessitated the assumption of
an arbitrary time-dependent change in the storage
coefficient.

It is interesting that the final transmissivity
value in the vicinity of the pumping well (see
Figure S) was close to the value calculated using
Jacob's method for the late time data. Although
effort was spent to match early time data, the
arbitrary time-dependent storage coefficient
probably had little effect on the predictive results
because after 10 minutes of pumping a constant
value was used. The predictive results are more
limited by the lack of data for both later times
and greater distances from the pumping well.

In addition to making predictions, this applica-
tion considered two different types of models.
Conclusions regarding the relative merits of the two
numerical methods are provided by Pinder and
Frind as:

1. "The analysis of the aquifer at Musquodoboit
Harbour indicates that a carefully designed model using
490

deformed elements may provide the same accuracy as a
finite difference model that used many more nodes."

The relative cost, however, will depend mainly on
rlie matrix solution technique used for each method.

2. "The theoretical development of the Galerkin
method of approximation is possibly more abstract than
finite difference theory and the development of an efficient
computer code for the Galerkin procedure is a formidable
task."

3. "Experience has shown that errors in the input
of nodal locations in the Galerkin model can lead co
problems that are difficult to detect. This problem docs
not arise in the finite difference model because the entire
grid is specified by the spacing between rows and
columns."

4. "In the final analysis the primary advantage of the
Galerkin approach to digital modeling of aquifer system?
is its flexibility in application."

GROUND-WATER POLLUTION EXAMPLE
Konikow (1977) presents a good example of a

solute-transport model applied to a chemical
pollution problem at the Rocky Mountain Arsenal,
near Denver, Colorado. The model couples a
finite-difference solution to the ground-water flow
equation with the method-of-characteristics
solution to the solute-transport equation.

Problem
Liquid waste by-products from the manu-

facturing of chemicals for warfare and pesticides
were disposed into unlined ponds from 1943-1956.
The wastes contained chloride concentrations of
several thousand mg/1. In 1954, severe crop
damage occurred to fields irrigated with ground
water along the South Platte River. This prompted
the construction of an asphalt-lined evaporation
pond. The purpose of this study was to
demonstrate the application of a numerical
solute-transport model to a complex field problem
involving contaminant movement in an alluvial
aquifer.

Hydrogeology
The location of the study area is shown in

Figure 10, and the major hydrologie features are
presented in Figure 11. The records of about 200
observation points were used to determine the
hydrogeologic characteristics of the alluvial
aquifer, including saturated thickness and trans-
missivity of the aquifer. Observed chloride
concentration for 1956 is shown in Figure 12 and
a water-table configuration is given in Figure 13.
The major features to be noted are the areas
where the alluvium is absent or unsaturated most



I

Fig. 10. Location of study area (from Konikow, 1977).

o i i

CXPLANATION

UnilfHMj fwr\B>f

Fig. 11. Major hydrologie features. Letters indicate
disposal-pond designations assigned by the U.S. Army
(from Konikow, 1977).
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Fig. 12. Observed chloride concentration, 1956 (from
Konikow, 1977).
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Fig. 13. General water-table configuration in the alluvial
aquifer in and adjacent to the Rocky Mountain Arsenal,
1965-71 (from Konikow, 1977).
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of the time. Bedrock below the alluvium is
considered impermeable for the purposes of the
model analysis.

Aquifer Analysis
The transmissivity of the alluvial aquifer in

this area ranged from 0 to over 200,000 ftVd
(over 1,800 m2/d), and the saturated thickness
was generally less than 60 feet (18 m). No field
data were available for effective porosity and
dispersivity of the aquifer. These were determined
by trial and evaluated through a sensitivity
analysis.

Aquifer Model
Konikow states:

"The limits of the modeled area were selected to
include the entire area having chloride concentrations over
200 mg/1 and the areas downgradient to which the
contaminants would likely spread, and to closely
coincide with natural boundaries and divides in the
ground-water flow system. The model includes an area of
approximately 34 mi2 (88 km2),"

The modeled area was subdivided into a
finite-difference grid of blocks 1,000 feet (305 m)
on a side (see Figure 14). The grid is 25 columns
by 38 rows, but because of the boundaries, only
516 nodes are actually used to compute heads.
The boundary conditions for flow are indicated in
Figure 14. Constant-head boundaries were
specified where it was believed that either recharge
or underflow into or out of the modeled area
was sufficient to maintain a nearly constant
water-table altitude at that point in the aquifer.
Leakage was allowed from the canal.

No data were available to describe the chloride
concentrations in the aquifer when the Arsenal
began its operations. Because more recent
measurements indicated that the normal back-
ground concentration may be as low as 40 mg/1, an
initial chloride concentration of 40 mg/1 was
assumed to have existed uniformly throughout the
aquifer in 1942.

Recharge and discharge into and out of the
aquifer had to be estimated. Recharge from the
disposal ponds varied from 0 to 1.08 ftVs with
concentrations that ranged up to 4,000 mg/1 (but
were reduced significantly after 1956). The ponds
were treated as constant-head nodes.

History Match
Insufficient field data were available to

accurately calibrate a transient-flow model.
Therefore, the hydraulic history of the aquifer
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Fig. 14. Finite-difference grid used to model the study
area (from Konikow, 1977).

was approximated by simulating four separate
steady-flow periods which differed on the basis of
the disposal pond operations. The computed
chloride concentration at the end of one of the
periods, 1956, is given in Figure 15. This compares
well with that observed given in Figure 12. A
comparison of observed and computed chloride
concentration patterns indicated that an effective
porosity of 30 percent and longitudinal and
transverse dispersiviries of 100 feet (30 m) were
best.

The problem was simulated for a 30-year
period, 1943 to 1972, and numerous comparisons
of chloride distributions are given in the original
reference.

Prediction
During the history-match portion of this

study, leakage from pond C was found to be
relatively important in flushing pollution out of
the aquifer. To further assess this leakage, two
simulations were made over the time period
1972-1980. In the first simulation, pond C was
represented as full of fresh water; the computed



chloride concentrations for this case are shown in
Figure 16. For the second simulation, recharge of
fresh water from pond C was kept to a minimum;
the computed chloride concentrations for this
case are shown in Figure 17. With artificial
recharge, only one small area north of the Arsenal
would contain chloride concentrations between
200 and 500 mg/I; for the second case, there are
two relatively large areas of contamination.

Possible changes in water management in the
area were also considered. These might, for example,
involve maintaining withdrawal wells along parts of
the northern boundary to intercept the
contaminated ground water. To demonstrate the
value of a solute-transport model as a planning
tool, two sinks were incorporated into the model
and their steady-state effects on the chloride
concentrations were evaluated. Assuming the wells
begin operating in 1968 and that pond C remains
full after 1968 results in the computed chloride
concentrations in Figure 18. Intercept wells
would only slightly increase the rate of water-
quality improvement between 1968 and 1980 in
the area between the source and the sinks. Also

Lin* of aquai cmorid* cencantrati«« ( In milligram! c
Interval variael*

Araa in «tllcn alluvium il aMant er u m n ' H M

Hvnraulic (ink

Fig. 16. Chloride concentration predicted for 1980,
assuming that pond C is filled with fresh water during
1972-80 (from Konikow, 1977).
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Fig. 15. Computed chloride concentration, 1956 (from
Konikow, 1977).
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Fig. 17. Chloride concentration predicted for 1980,
assuming that recharge from pond C is minimal during
1961-80 (from Konikow, 1977).
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note that the intercept wells should be placed
further downgradient to effect a more thorough
cleanup.

According to Konikow,

"Analysis of the simulation results indicates that the
geologic framework of the area markedly restricted the
transport and dispersion of dissolved chemicals in the
alluvium. Dilution, from irrigation recharge and seepage
from unlined canals, was an important factor in reducing
the level of chloride concentrations downgradient from
the Arsenal. Similarly, recharge of uncontaminated water
from the unlined ponds since 1956 has helped to dilute
and flush the contaminated ground water."

Discussion
As with the example for Musquodoboit

Harbour, the Rocky Mountain Arsenal example
illustrates the presence of some subjective aspects
in model applications. In addition, this example
shows the additional complexity typical of solute
transport problems. The additional complexity
leads to some practical considerations: (1) input
data determination, preparation, and evaluation
are more difficult; (2) some data are likely to be
missing for both model and input and for history

EXPLANATION
Line of eQuel ehloride concentration (in milligrwni per liter!.

Interval variable

Area in wnieh alluvium is abMnt or unuturated

Fig. 18. Chloride concentration predicted for 1980,
assuming that artificial recharge from pond C is coupled
with drainage through two hydraulic sinks (from
Konikow, 1977).

matching; and (3) some assumptions based on
qualitative arguments are necessary.

In this example, additional data were needed
for dispersion coefficients, effective porosity,
initial and observed concentrations, and recharge
from the disposal ponds and from irrigation.
Insufficient data made calibration of transient
ground-water flow not possible, so four steady-
state flow periods were assumed. Comparisons with
observed and computed chloride concentrations
were made to determine the "best fit" values of
dispersion coefficients and porosity.

Konikow also concluded that the stringent
data requirements for applying the solute-transport
model pointed out deficiencies in data existing at
the start of the investigation. The subsequent
analysis and reinterpretation of hydrogeologic
and chemical data led to a revised and improved
conceptual model of flow and contaminant
transport in the alluvium.

The conclusions and predictions based on
model results, though quantitatively nonunique,
provided a great deal of qualitative insight into
reclamation alternatives. In this particular
situation, the relative merits of the various
proposed remedial measures would have been
extremely difficult to assess without the use of a
model (also see Warner, 1979).

DATA-COLLECTION DESIGN EXAMPLE
In practice, models have been applied

generally to field problems after data have been
collected. However, models also can be used to help
in data collection. In this example, we consider
the use of a model to help design two-well tracer
tests in a relatively porous limestone. Results
from the tracer tests will be used to determine
field dispersivity values for subsequent solute
transport studies.

Problem
Denmark is presently undertaking a drilling

program to evaluate the potential for storage of
radioactive waste in salt domes. In particular, the
focus is on data collection in order to more fully
evaluate the geology and safety of such storage
for two potential dome sites. The hydrological
data collected at the sites will play a major role in
the final evaluation.

As part of this study, a need for the field
dispersivities that characterize the carbonate strata
overlying the salt domes was identified. To
determine these values, a conventional two-well
tracer test will be used. This test involves injecting

4.OJ.



water containing a nonreacting tracer in one well
while withdrawing water from the second well,
both having the same constant volumetric flow
rate. The tracer concentration is measured in the
withdrawal well as a function of time. This data
can be analyzed to determine dispersivity values.

Because little data are available on the
hydrologie properties at these sites, several
questions were raised about the test design.
Among the most important were:

1. What range of pumping rates is necessary?

2. What range of well spacing is adequate?

3. How long should the test take? and

4. Are three-dimensional effects important?

Hydrogeology
Other than a generalized stratigraphy, little of

the hydrology of the test site is known, especially
for the deeper units. In descending order, the units
consist of: (1) an upper aquifer system of
Quaternary and Miocene age composed of clay,
till, sand and gravel, totalling about 200 m in
thickness; (2) Tertiary clays having a low
permeability and a thickness ranging from 200 to
400 m; (3) a lower aquifer system consisting of
Paleocene and Cretaceous limestone and chalks
with a thickness ranging between 200 and 500 m;
and (4) a Precretaceous cap rock for the salt dome,
having a low permeability. Based on this
description, the lower aquifer system is considered
to be confined, with fluid pressures slightly in
excess of hydrostatic.

Analysis
To help answer the design questions

discussed earlier, two models were used. The first
model is an analytical solution for quasi-steady-state
flow between a recharging-discharging well pair for
partially penetrating wells in three dimensions
(Hantush, 1961). The second model is based on
finite-difference approximations to the ground-
water flow and solute transport equations in
three dimensions (INTERCOMP, 1976).

In order to use either of these models, it is
necessary to estimate probable ranges of
pertinent hydrologie parameters. Based on values
obtained at other locations for units similar to the
lower limestone aquifer system, the ranges in
Table 1 are assumed. The well field consists of two
wells with equal open intervals at the top of the
aquifer (assumed to be 200 meters thick). Major
design variables include injection flow rate,

Table 1.

Parameter or Design Variable Range

hydraulic conductivity
porosity
horizontal to vertical

anistropy
longitudinal dispersivity
injection flow rate
length of open interval
well spacing

1.0Xl0"4-1.0XlO"6m/s
0.08-0.32
100.0-1.0

5.0-40.0 m
1.61X10"3-1.6lXl0'2rn3/s
10-20 m
20-40 m

length of the open interval and well spacing, which
are also included in Table 1.

With the major hydrologie and design
parameters estimated, a sensitivity analysis was
performed, which involved both models. The
main purpose of the analytical model was to
estimate the length of time to run the test. In a
standard tracer test, three injection periods occur:
(1) injection at a constant flow rate with no tracer
until quasi-steady state is achieved between the
two wells, (2) continued injection at the same flow
rate, but now introducing the tracer—the slug period,
and (3) continued injection, now with the tracer
eliminated. This procedure produces a concentra-
tion breakthrough curve at the withdrawal well that
looks like an asymmetrical bell (see Figure 19). The
shape of this curve is used to estimate dispersivity. In
designing a tracer test, a common practice is to end
the slug period when the tracer is first encountered
in the withdrawal well. The analytical solution pro-
vides an estimate of when this occurs, if dispersion is
neglected. The analytical results show that for a
horizontal to vertical anisotropy ratio of 100 or

I
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Fig. 19. Concentration breakthrough curvei for the two-well
tracer test at the withdrawal well, for different values of
longitudinal dispersivity, ag. Transverte dispersivities are
one-tenth ai large as the longitudinal values for each case.
Other data include: slug period, 4.63 days; porosity, 0.2;
hydraulic conductivity, 1.0X10'5 m/s; well spacing, 40 m;
open interval, 20 m; and pumping rate, 1.61 X10"2 m3/s.
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Fig. 20. Concentration breakthrough curves for different
ratios of horizontal to vertical hydraulic conductivity, kr/kz

Longitudinal dispersion is 10 m; aquifer thickness is 140 m;
all other data are the same as that given in Figure 19. Note
that the three-dimensional results for partially penetrating
wells approach the two-dimensional results as the
anisotropy ratio increases.

larger, three-dimensional effects are not
significant (see Figure 20). For isotropic conditions,
results show the slug period is generally twice as
long as for the corresponding anisotropic case.

In addition to providing the duration of the
slug period, the analytical solution also determines
the injection (and pumping) rate for the solute
transport model. The injection rate was calculated
assuming a head difference between wells of 160
m. If the injection rate required to sustain this
difference exceeded 0.0161 m3/s (about 360,000
gpd), then 0.0161 m3/s was still used. With these
data and injection constraints, sensitivity analysis
using a two-dimensional, areal transport model
was performed to assess the influence of porosity,
dispersivity, and well spacing. To evaluate the
importance of three-dimensional effects, a three-
dimensional transport model was used in
conjunction with different ratios of anisotropy.
Some results from the sensitivity analysis are
shown in Figures 19 through 22.

I * 8 8 10 13 14
Tim» of lni*ctl«n P*t"M Idayil

Fig. 21. Concentration breakthrough curves for different
values of porosity, 0. Longitudinal dispersivity is 10 m; all
other data are the same as that given for Figure 19.

Discussion
In this final example, models are used before

data are collected to provide insight into system
behavior. The relative importance of the various
hydrologie and design parameters were assessed
and used to guide data collection. Conclusions
(somewhat oversimplified here) of this study
include: (1) For a given well spacing and head
differential in the wells, the duration of the test
will be related inversely to hydraulic conductivity
and directly to porosity; (2) The major design
criteria affecting the duration of the test are well
spacing and head differential between the wells,
which are related directly and inversely to the
duration of the test; (3) Based on the range of
possible hydrologie data and design criteria for the
site, a single injection test may require from less
than one month to two years to obtain sufficient

JO M M

Tin» M Hitarte*

Fig. 22. Concentration breakthrough curves for two well
spacings. Slug periods were 10.4 and 46.3 days with pumping
rates of 1.80X10"3 and 1.61X10"3 m/s for spacing* of 20
and 40 m, respectively. Other data include: hydraulic
conductivity, 1.0X10*6 m/s; porosity, 0.2; open interval,
20 m; and anisotropy ratio, 100.



information about the system; (4) If the hydraulic
conductivity of the aquifer is low, a small well
spacing will be required in order to conduct the
test in a reasonable amount of time; (5) The time
required to reach a quasi-steady flow between wells
will be short in comparison to the duration of the
test; (6) Tests can be designed for a moderate
injection rate of less than 1,500 mVday; and
(7) Analysis of the field-test data can use a
two-dimensional model if the anisotropy ratio is
greater than 100; otherwise a three-dimensional
model may be required.

Consideration of the model results led to
recommendations, that are not presented in this
article, on both test design and well drilling. As an
example, it was recommended that single-well flow
tests be performed on the first well before drilling
the second. The resulting information would be
useful in selecting appropriate well spacing for the
next well.

This type of sensitivity analysis employing
models may be used for other data collection
programs. For example, model results could be
used to guide the placement of monitor wells to
help insure their success in detecting the possible
movement of contaminants from disposal sites.

SUMMARY
The effective application of ground-water

flow models involves several interrelated areas:
model selection (need), computer program use,
sensitivity analysis, system conceptualization,
data collection design, history matching —
calibration and prediction. The use of models
cannot be considered a step-by-step procedure.
Actually, it is an iterative process to which one
never achieves a fully satisfactory conclusion. The
reason for this is that when dealing with real
systems, a model is never exact and complete
data are never available. Consequently, considerable
scientific judgement of a subjective or intuitive
nature is necessary for any degree of success. For
transport problems, the need for subjective
judgement is greater than with ground-water flow.
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Microcomputer Model of Artificial Recharge
Using Glover's Solution

by D. Molden, D. K. Sunada, and J. W. Warnera

ABSTRACT
An interactive program written for an APPLE 11+

48K computer is presented which solves Glover's (1960)
analytical solution for recharge from a rectangular basin.
The program is capable of graphically displaying the rise
and decline of the recharge mound for either an infinite
homogeneous medium or for a stream aquifer system.

INTRODUCTION
Advances in technology are rapidly increasing

the speed and storage capabilities of microcom-
puters, enabling them to perform more tasks that
were previously reserved for main frame com-
puters. But, unlike the many programs available
for main frame computers, at present there are
relatively few ground-water programs available for
microcomputers. The program presented here is a
model of artificial recharge, written in BASIC for
use on the APPLE 11+ 48K microcomputer
(APPLE 11+ is a trademark of APPLE computer).
Glover's (1960) solution for a rectangular basin
wirh a constant recharge rate and the principle of
superposition are used to model the growth and
decline of a recharge mound in the cases of an
infinite, homogeneous aquifer and for a stream
aquifer system. The model can also be used to
calculate discharge from the recharge basin into a
stream for various times. The results of the model
are displayed both graphically and numerically.
The program is interactive, allowing for easy data
input and program execution.

Analytical solutions have been derived for the
problem of artificial recharge from circular and
rectangular recharge basins and for various assumed
initial and boundary conditions (Baumann, 1952;
Glover, I960-, Hantush, 1967; Hunt, 1971; Rao
and Sarma, 1981). Most of these analytical solu-
tions have not been used extensively by practicing
hydrologists because the solutions often involve
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complex integrals which are poorly behaved and
difficult to evaluate (Sunada et al., 1982). Hand-
held programmable calculators are capable of
solving many simple problems, such as those
involving the well function. However, the
analytical solutions for artificial recharge are
typically too complex and impractical to solve on
handheld calculators. Conventional solution of the
artificial recharge problem on large main frame
computers has been by numerical methods, such as
finite-difference and finite-element methods. The
microcomputer is ideally suited to solve many
types of problems, such as that of artificial
recharge, which do not require the enormous
capabilities of the main frame computer. The
advent of the microcomputer has added greater
importance and usefulness of many analytical
solutions, such as that for artificial recharge. The
increasing capabilities of microcomputers coupled
with their increasing personal availability, primarily
due to their decreasing cost, are destined to make
the microcomputer an indispensable tool of the
hydrologist.

MATHEMATICAL BASIS OF RECHARGE
FROM RECTANGULAR SOURCES

Glover's (1960) solution for constant recharge
from a rectangular basin (Figure 1) has the form

4S o

where

JT JT JT
(1)

- W/2 x +W/2
U2

U 3 ~ (
y - L/2 y + L/2

' T T T S T »4T/SC

and

H = mound height (L),

R = recharge rate (L/T),

S - storage coefficient (dimensionless),

T = transmissivity (LVT),
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Sida View

I l l l l l l ground

Plan View

Fig. 1. Definition sketch of artificial recharge from a
rectangular basin.

W = basin width (L),

L = basin length (L),

x,y = Cartesian coordinates (L),

t = time (T),

T = dummy variable of integration,

erf(u) = error function.

Glover's solution is for a homogeneous, isotropic
unconfined aquifer with constant recharge and an
initially horizontal water table. For Glover's
solution to be valid, the mound rise should be
small compared to the initial saturated thickness
of the aquifer.

To utilize Glover's solution it is necessary to
evaluate the integral in equation (1). This integral
is difficult to solve which is a major reason why
Glover's solution is not used more extensively by
practicing hydrologists. Both Simpson's rule in 10
steps and Gaussian Quadrature with up to 20 points
(Abramowitz and Stcgun, 1972) were tried to solve
equation (1) directly, but neither method gave
completely satisfactory results over a large range of
data inputs. In evaluating Glover's solution,
Simpson's rule applied directly to equation (1)
gave the least satisfactory solution. Gaussian
Quadrature applied directly to equation (1) gave
satisfactory answers in most but not all cases that
were simulated.

Hantush (1967) provides a better means of
evaluating equation (1) by integration by parts.
Performing the multiplication indicated in
equation (1), Glover's solution is written as

Rt l u2 u4 l u, u3
H = — [ ƒ e r f - e r f - d r - ƒ e r f - e r f —dr

4S 0 JT JT Q Jr JT

- ƒ er f—erf—dr + ƒ e r f—erf—dr] . (2)
0 Jr Jr o Jr Jr

Hantush shows that the integrals in equation (2)
can be evaluated as

ƒ erf—erf^dr =
0 Jr Jr

erf(u¡) erf (u¡) + (4/TT) UJU¡ W ( U ¡ + U ¡ )

+ (2/Jit) [u¡ e*Ui erf (UJ) + UJ e'ui erf (u¡)]

(3)

where

M*(ui, U j ) = - ¡ - ƒ
1 exp[-uj(H-r*)]

1 +r-

Uj

2u

dv (4)

(5)

and W(u) = well function.
For implementation of equation (2) on the

microcomputer, expressions for the error function
and well function are used and the integral in the
function M* is numerically evaluated by Gaussian
Quadrature. In the program the error function is
evaluated by a polynomial approximation
(Abramowitz and Stegun, 1972).

For u > 0, the error function is given by

where

b = 1/(1 +pu)

e,= .254829592

c j - -284496736

e3= 1.421413741

and erf(-u) = -erf(u). The error in equation (6) is
in the order of 10'7.

The well function is found by approximations
given by Huntoon (1980) and Abramowitz and
Stegun (1972). For values of u < 1, the program
uses

(7)

e4 = -1.453152027

c5 = 1.06140543

p = .3275911
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where

ao =-.57721566

a,» .99999193

a2 = -.24991055

a3 = .05519968

a4 = -.00976004

a5 = .00107857.

For values of 1 < u «S ™, the program uses

W(u) =
u exp(u)

where

b, = 8.57332874

bj = 18.0590170

b3= 8.63476089

(8)

c, = 9.57332235

c2 = 25.6329561

c3 = 21.0996531

b4= .267773734 c4 = 3.95849692

In the program the integral in M* is evaluated
using six-point Gaussian Quadrature given by

u¡ 6 exp[-uj( l +r : ) ]
M*(upUj) = ̂  S - '

1+r 2

where

u;
^ -
2u¡

Vk (9)

(10)

Ak = abscissas of Guassian Quadrature,

Vk = weights of Guassian Quadrature.

The abscissas and weights are

A, =-A6 =0.238619186 V, =V6 = 0.467913935

A : =-A 3 =0.661209386 V. =V5 = 0.360761573

A3=-A4 = 0.932469514 V3 = V6 = 0.171324492

USE OF SUPERPOSITION
The principle of superposition (McWhorter

and Sunada, 1977) is used to obtain additional
solutions for the case of a finite aquifer or for the
case of a variable recharge rate. Superposition in
time is used to calculate the decline of the recharge
mound after recharge is stopped. With a stream in
the vicinity, superposition in space is used to
calculate mound profile and discharge to the
stream with time.

At the end of the recharge period an image
basin at the same location as the real basin begins
withdrawal (negative recharge) while the real basin
continues to recharge. The mound height due to
the real basin is added to the drawdown due to the
discharging image basin to give the actual mound
height:

Section View
Recharging
basin

Discharging
basin

level n —=• ^it^_
H;IS

Plan View Stream

w w

Pig, 2. Definition sketch of the use of superposition when a
stream is in the vicinity (xr = real x coordinate; x¡ = ¡mage x
coordinate).

H = Hr + Hit

where

Hr := mound height contribution from the real
basin,

Hic = mound height contribution from the
image basin superimposed in time.

If a stream is in the vicinity, an image dis-
charging basin is set up on the opposite side of the
stream equidistant from the real basin (Figure 2).
The drawdown from the image basin is
superimposed onto the mound height contribution
from the real basin to give the actual mound height

H = Hr + His (12)

where

Hi, := drawdown contribution from the image
basin superimposed in space.

If the end of the recharge period has been
reached and a stream is in the vicinity, an image
basin at the same location as the real basin begins
discharging and another image basin at the same
location as the image basin opposite the stream
begins recharging. The mound height at a selected
location is given by
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H = Hr + His + HiE + Hits (13)

where

H¡a = mound height contribution from the
image basin superimposed in time and
space.

DISCHARGE TO THE STREAM
The integral equation for flow to a stream is

(McWhorter and Sunada, 1977)

3H
QT = ƒ (T — ) dy

-so 3X
(14)

where

Q T = total discharge to the stream (LVT).

The integral is evaluated numerically by computing
the integrand at selected intervals along the stream
and integrating the distribution by the method of
trapezoids. The numerical evaluation yields the
expression for discharge

QT * 2 .2

where

(T3H/3x)j] Ay¡
(15)

Ayi = the interval between points i-1 and i
along the length of the stream,

n = number of locations that stream discharge
per unit length was calculated.

The value of n is selected by the program so that
the discharge between locations n-1 and n is less
than 0.1% of the total discharge calculated up to
location n. The quantity òH/òx is approximated by
computing the mound height at 1 foot away from
the stream denoted by Hl. Because the head at the
stream is constant and known (selected to be zero
in this case) the discharge is approximated by

Q T - T 5 +HÍ] Ay¡ (16)

Figure 3 is a plot of discharge to the stream vs.
time, with values obtained from the program using
the data in Figure 5.

PROGRAM DESCRIPTION
Taking full advantage of the capabilities of

the microcomputer, this interactive program is
written to be self-explanatory and easy to use. The
graphics are employed for quick visual study. An
example run is described to demonstrate the flow
of the program. The figures represent what would
be shown on the screen.

20 30 40
TIME (days)

Fig. 3. Discharge to the stream vs. time.

The program can be easily operated by
persons with very little knowledge of computers,
yet many advantages of computer use are available.
The program works by a "turn key" system; that
is, the disk containing the program is inserted, the
computer turned on and the program execution
begins. The user is prompted at each step, often
with a variety of options. Data are easily entered or
changed; results are quickly obtained and readily
compared.

When starting the program, a menu presents
the user with selection of model options (Figure 4).
For our example, option 1 is selected to model
artificial recharge in an aquifer with a fully pene-
trating stream. The recharge parameters and their
values are then displayed on the screen (Figure 5).
To change a value, the number corresponding to
the recharge parameter to be changed is input. The
old value is displayed and the user asked to input a
new value (Figure 6). The updated parameter list is
again displayed and the process repeated until 0 is
typed. The program then checks for any value
which is out of range. A message will inform the
user if there are any mistakes and appropriate
values must be entered. With no mistakes, the
program begins execution.

ARTIFICIAI, RECHARGE

OPTIONS

I) STREAM IN VICINITY

1) NO STREAM IS VICINITY

3) READ FILES

4) EXIT

TYPE THE NUMBER OF ÏOUR CHOICE 1

Fig. 4. Screen display. Model options: artificial recharge
will be modeled with a stream in the vicinity.
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In this example, both mound profile and dis-
charge to the stream are calculated. As values for
head are calculated at selected distance they are
plotted on the graphics screen with the values of

1) RECHARGE SATE (FT/DAY)
2) TRANSMIS5IVITÏ (SQ.rT/DAY)
3)
-)

3)

SPECIFIC YIELD
BEGINNING TIME (DAYS)
flNAL TIME (DAYS)
TIME INCREMENT (DAYS)
END OF RECHARGE PERIOD (DAYS)

0) BEGINNING DISTANCE (FT)
FINAL DISTANCE (FT)
DISTANCE INCREMENT (FT)

7) DEPTH TO WATER (FT)
3) BASIN WIDTH (FT)
9) BASIN LENGTH (FT)
10) ANGLE FROM LENGTH AXIS (DEC)
11) DISTANCE TO STREAM
12) CALCULATE MOUND PROFILE
13) CALCULATE DISCHARGE TO STREAM

TYPE THE NUMBER OF THE VARIABLE YOU
WISH TO CHANGE. TYPE 0 IF YOU WISH
TO CONTINUE UITHOLT CHANGING. ̂

2500

30
3D
30
30
0
500
50
30
200
200
0
250
YES
YES

Fig. 5. Screen display. Parameter display: the depth to
water will be changed.

time, distance and mound height shown beneath
the plot (Figure 7). Upon completion of the plot,
the user is asked to type C to continue. The
graphics screen is then cleared and discharge to the
stream is calculated. The display gives the distance
along the stream, the mound height at one foot
away from the stream, and the discharge per unit
length at that point as the points are calculated
(Figure 8). When the discharge per unit length
becomes negligible, the total discharge to the
stream is given.

To reexamine and study the problem, the user
is presented with a variety of output options
(Figure 9). The "data display" option gives a list of
the recharge parameters used. The "results display"
tabulates the numerical values of the results. A
hard copy of the data and results can be obtained
with the "results printout" option. The graphics
are quickly recreated by the "graphics display"
option. Data and results can be stored on the disk

DEPTH TO WATER - 30 FEET

INPUT NEW DEPTH TO WATER 10

Fig. 6. Screen display. The depth to water is changed from
30 to 20 feet.

DISTANCE
ALONG
STREAM

(FT)

30 DAYS

0
50
100

zoo400
800
1600
3200

DISCHARGE TO STREAM

HEAD
AT

I FOOT
(FT)

.03881

.03739

.03353

. 0 2 3 2 9
9.36E-O3
2.35E-O3
3.2E-Q4
0

DISCHARGE/
L'NIT

LENGTH
(SQ.FT/DAY)

9 7 . 0 3
93.18
33.33
5 8 . 2 3
2 4 . 6 5
5.38
. 3
0

TOTAL DISCHARGE - 68000 CUBIC FT./DAY

Fig. 8. Screen display. Discharge to the stream at 30 days.

7Vf»e C TO CENT INUE

za

IB

saa
CIT 38 TQ 3B 3V 33 OrtYS

Fig. 7. Screen display. Mound profile at 30 days.

OPTIONS

1) DATA DISPLAY

I) RESULTS DISPLAY

3) GRAPHICS DISPLAY

4) RESULTS PRINTOUT

5) CREATE FILE

6) ANOTHER RUM

7) EXIT

TYPE THE NUMBER OF YOUR CHOICE 5

Fig. 9. Screen display. Output options: create file ¡s chosen
to store data on the disk.
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READ FILES

DO YOU WISH TO SEE THE CATALOG

{Y/ES, M/O)? N

INPUT FILE NAME: NO STREAM

TYPE STOP TO RETURN TO THE MENU

Fig, 10. Screen display. Read files: the file "no stream" is
read from the disk.

with the "create file" option. The "another run"
option allows the user to go back to the original
model option, retaining all the present values of
the recharge parameters. The "create files" option
is chosen and the name given to the file is
"stream."

Next, the "another run" option is chosen and
the original recharge option appears (Figure 4).
"Read files" is then selected and the name of the
file to be read is entered (Figure 10). The previ-
ously made file "no stream" is read from the disk.
This file has exactly the same recharge parameters
as "stream" but simulates recharge in an infinite
aquifer. After the file has been read, the list of
output options again appears on the screen with
the exception that "create file" has been changed
to "read another file." Up to 10 files can be read
and simultaneously stored in memory. "Read
another file" is chosen to read in the file "stream."

To compare the influence of a stream, the
graphics will demonstrate any difference in mound
profile. The "graphics display" option is chosen.
The program has the capability of plotting several
sets of points on the same graph enhancing com-
parison of solutions. "No stream" is chosen and
plotted. The "graphics display" option is again
chosen with "stream" to be plotted. The program
asks if the same plot is to be used. In this manner,
"stream" (dotted line) and "no stream" are plotted
on the same graph (Figure 11). With a stream in
the vicinity, the mound height is lower than an
infinite aquifer and not symmetric around the
center basin.

Glover (1960) also presents a solution for
recharge from a circular basin using instantaneous
slug injections. A comparison was made between
the mound profile under a square basin using the

data of "no stream" and a circular basin of the
same area (Figure 12). Using 250 instantaneous
injections took over 100 times the execution time
required by the rectangular basin program, yet gave
approximately the same solution, showing that this
program could also be used to simulate recharge
from a circular basin.

DISCUSSION
To calculate one point on the recharge mound

takes about 13 seconds in interpreted basic and 6
seconds in compiled basic. To get a good graphical
representation of the recharge mound height, it is
usually adequate to calculate about 10 to 20
points, and total time of execution is usually only
a few minutes. Memory requirements are not
restrictive, as the program takes about 25K bytes
of random access memory leaving about 15K bytes
of memory for variables and 8K bytes for graphics

rv»; c TO CONTINUE
za —

SHCLNO

ua STue.iri nr ;a TO SB av za
STSEM"! «T 3B ta 2a sv sa a

Fig. 11. Screen display. "Stream" (dotted line) and "no
stream" are plotted on the same graph.

TVf>e C TO CONTINUE „ , r NSB— „.nn.tn

. . - • * * •

!B0
«CTI-INGUL/Ift flT 2a TO 3B 9ft 23

CI&CL2 nT sa TO 3a av sa ouvs

Fig. 12. Square basin (solid line) vs. circular basin (dotted
line). The solution for the circular basin almost completely
overlaps the solution for a rectangular basin.
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in a 48K computer. The compiled version requires
additional storage and will run on a 64K computer.

A major problem faced by hydrologists is to
reduce the complex mathematical equations used
in the study of ground water into results that can
be readily understood by lay persons interested in
water. By making programs which are very "user
friendly" and which make extensive use of
graphics, the ground-water hydrologist is much
better able to communicate with nontechnical
water users. This program was developed as part of
a demonstration of artificial recharge in the San
Luis Valley, Colorado, in cooperation with several
local irrigation districts. The graphics features of
the microcomputer were well suited to describe the
effects of artificial recharge to nontechnical water
users.

Using the program, the effects of various
recharge strategies can be quickly investigated. For
example, the user can study the effects of changing
basin geometry, changing recharge rates and
changing duration of recharge. The effects of
different soil characteristics and boundary condi-
tions can also be easily studied. The comparison of
results for different case studies is enhanced by
the capability of the program to plot several
different case studies on the same graph.

CONCLUSIONS
The advent of microcomputers has given

ground-water hydrologists another choice, of tools
for problem solving. The microcomputer is well
suited to solve many types of problems, such as
that of artificial recharge, which do not require the
enormous capabilities of the large main frame
computer. By making programs which are very
"user friendly" and which make extensive use of
graphics, the ground-water hydrologist is much
better able to give a clear understanding of his
results to the nontechnical water user. The
program presented in this paper is one example of
a large number of problems which could be solved
on a microcomputer.
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NOTE
A program listing is available, and can be

obtained by request to Ground Water. A floppy
disk for the APPLE 11+ and documentation is

available at duplication and mailing cost (approxi-
mately $20). Every effort has been made to
provide an error-free program, but the authors do
not take responsibility for any errors which may
have been overlooked.

REFERENCES
Abramowitz, M. and I. A. Stegun. 1972. Handbook of

¿Mathematical Functions with Formulas, Graphs and
Mathematical Tables. 8th éd., Dover Publications.
Inc., New York, NY. 1046 pp.

Baumann, P. 1952. Groundwater movement controlled
through spreading. Transactions, ASCE. v. 117,
pp. 1024-1060.

Glover, R. E. I960. Mathematical Derivations as Pertain to
Groundwater Recharge. Agricultural Research
Service, USDA, Ft. Collins, Colorado.

Hantush, M. S. 1967. Growth and decay of groundwater
mounds in response to uniform percolation. Water
Resources Research, v. 3, pp. 227-2 34.

Hunt, B, W. 1971. Vertical recharge of unconfined aquifers.
Journal of Hydraulics Div., ASCE. v. 97, no. HY7,
pp. 1017-1030.

Huntoon, P. W. 1980. Computationally efficient poly-
nomial approximations used to program the Theis
equation. Ground Water, v. 18, no. 2, pp. 134-136,
March-April.

McWhorter, D. and D. K. Sunada. 1977. Ground Water
Hydrology and Hydraulics. Water Resources Publi-
cations, Ft. Collins, Colorado. 290 pp.

Rao, N. H. and P.B.S. Sarma. 1981. Ground-water
recharge from rectangular areas. Ground Water,
v. 19, no. 3, pp. 270-274.

Sunada, D. K., J. W. Warner, and D, J. Molden. 1983.
Artificial Groundwater Recharge, San Luis Valley,
Colorado. Colorado Water Resources Research
Institute, Colorado State University, Ft. Collins,
Colorado. Rep. No. 23.

David Molden is a graduate student in Civil Engineer-
ing at Colorado State University. He received bis M.S. from
Colorado State University in the ground-water program in
1982, and his B.S. from the University of Denver in 1977.
He is presently a Ph.D. student at Colorado State
University. He was a Peace Corps volunteer in Lesotho
from 1977-1979.

Daniel K. Sunada is a Professor of Civil Engineering
and leader of the ground-water program at Colorado State
University, He has conducted research and written
numerous papers and reports for the past 20 years. He has
taught courses in ground-water engineering, ground-water
hydraulics, drainage, pumping plants and basic courses in
engineering. He is coauthor of a texbook which is used in
several universities. For the past six years he has been
heavily involved in international water management.

James W. Warner is an Assistant Professor of Civil
Engineering in the ground-water program at Colorado State
University. Formerly he worked as a ground-water
hydrologist with the U.S.G.S. He has taught courses in
ground water, ground^water modeling and basic
engineering.

19



Mapping Recharge Areas Using a Ground-Water
Flow Model — A Case Study

by Mary W. Stoertza and Kenneth R. Bradbury'

ABSTRACT
We have developed a method to calculate ground-

water recharge rates using the mass-balance equation, water-
table elevation data, estimates of hydraulic conductivity,
and aquifer thickness data, and have applied this method to
produce a map of the recharge and discharge patterns for a
ground-water basin in central Wisconsin. This recharge
mapping method is simplified using a modified computer
program, the USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). The modeled recharge
pattern compares favorably with a recharge map based on
field observations. Because recharge rates are extremely
sensitive to hydraulic conductivity, the magnitudes of the
calculated rates are less reliable than the patterns of
recharge and discharge areas. However, introducing stream
discharge data constrains the model to produce net recharge
rates averaged over the basin which agree with estimates of
the basin yield. Because the method is insensitive to the
position of lateral boundaries, it can be used to map
recharge over areas within basins that arc not physically
bounded. Recharge maps made with this method can be
used to design ground-water monitoring networks and as
frameworks for interpreting geochemical or potentiometric
data.

INTRODUCTION
Of the many factors which control a well's

susceptibility to contamination from the surface,
the areal distribution of recharge and discharge is
one of the most difficult to measure or predict,
often requiring installation of extensive networks
of multilevel piezometers in which water levels are
measured frequently (e.g., Faustini, 1985;
Sophocleous and Perry, 1984, 1985; Rehm et ai,
1982).
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This paper describes a method for mapping
recharge and discharge areas using an existing
water-table map. Like Freeze's (1967) method of
mapping recharge and discharge areas, vertical
fluxes derived from Darcy's Law are contoured to
produce a map. In applying Darcy's Law, however,
Freeze (1967) determined the vertical hydraulic
gradient with a three-dimensional mathematical
model. In contrast, we obtain a water balance for
each water-table cell by calculating fluxes between
the water-table cell and its four adjacent cells.
Heads specified for each cell determine the
hydraulic gradients. The recharge or discharge rate
is interpreted as the deficit or surplus in the water
balance. Other studies of recharge that are similar
in concept to this one have been presented by
Stallman (1956), Tanaka and Hollowell (1966),
Cooley et al. ( 1971 ), Weeks and Sorey (1973),
and Lappala (1978).

We apply the method areally in two dimen-
sions to a ground-water basin in Portage County,
Wisconsin and verify the resulting recharge map by
comparing it to a field-based recharge map of the
same basin.

OVERVIEW OF THE METHOD APPLIED
IN TWO DIMENSIONS

The recharge mapping method described here
is based on the steady-state mass-balance equation,
and is illustrated in Figure 1 for one-dimensional
flow in a homogeneous aquifer. The flux Q between
two adjacent cells is calculated by Darcy's Law,
using observed heads h, hydraulic conductivities K,
and aquifer thickness, all of which must be
specified. Heads in cells are fixed, so the entire
water table is represented as a specified-head
surface. Cell D (Figure 1) loses more water to cell
C than it gains from cell E, according to Darcy's
Law which determines the flux between the
constant-head cells; there is a net mass deficit for
cell D. To maintain the observed head, ho, water
must be added as recharge, R Q . Similarly, vertical
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Fig. 1. Schematic of the recharge mapping method.

discharge RB from cell B will offset a mass surplus
for cell B. To extend this schematic to two dimen-
sions, the mass balance is calculated using the four
cells adjacent to each water-table cell. Contouring
the values of the recharge and discharge rates for
each water-table cell produces a recharge/discharge
map.

The USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984) contains a pro-

cedure to calculate the mass budget for individual
cells. The Appendix gives modifications of the
model to include flows between specified-head
cells in its cell-by-cell budget calculations.

APPLICATION TO CENTRAL WISCONSIN
The Buena Vista Groundwater Basin occupies

an area of 170 mi3 in central Wisconsin (Figure 2).
The unconfined aquifer is composed of medium to
coarse moderately sorted outwash sand, ranging in
thickness from 50 to 150 ft with the depth to
water from 5 to 60 ft. The aquifer is bounded
below by igneous and metamorphic bedrock and in
places by sandstone. The surface relief is about 150
ft, primarily due to the series of moraines forming
the eastern no-flow boundary of the basin. The
Wisconsin River bounds the basin on the west, and
the northern and southern boundaries correspond
to flowlines determined from a water-table map
(Lippelt and Hennings, 1981). Comparison of
seasonal water-table maps and a water-table map
prepared from well-construction reports spanning
several decades indicates that these flowline
boundaries do not shift significantly (Blanchard
and Bradbury, 1987). Faustini (1985) showed that

Water-table elevation control point

I I Surface water

Basin boundary

Water-table contour (in feet)

Fig. 2. Map of the Buena Vista Basin showing August 1984 field-observed water-tabla contours. Locations of water-level
control points and surface drainage are shown, along with outline of the ditch subarea.
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Table 1 . Summary of Hydraulic Conductivity Values (in ft/s) as Determined by Various Methods

Method

Aquifer pumping test
Specific capacity test
Slug test
Permeameter test
Grain size analysis

Sumber of
samples

11
266

48
8

71

Lower

6.2
1.9
4.2
2.2
8.9

endpoint
95%

X 10'4

X 10"3

X10"4

X10"5

X10"4

Upper
C.I."--

1.3
2.2
1.2
8.2
1.8

endpoint

X 10"2

X 10" 3

X 1O'3

X 1O"3

X 10"3

Geometric mean

2.9 X 1O"3

2.1 X 1O"3

7.2 X 10"4

4.3 X 10"4

1.2 X 10"3

Standard deviation
of log (70

0.98
0.25
0.79
1.5 3
0.68

The large 95% confidence intervais for pumping and permeameter tests are due to the small number of data points rather
than scatter in the values.

the Buena Vista Groundwater Basin behaves as a
closed basin with respect to ground water; i.e.,
ground water does not cross the boundaries except
where it flows into the Wisconsin River. Detailed
studies of the drainage ditches in the central basin
(Faustini, 1985), corroborated by theoretical
studies of these ditches as flow boundaries (Zheng
and Anderson, 1985), show that local flow systems
are well-developed within the basin.

Hydraulic Conductivity
Several hundred measurements of hydraulic

conductivity have been made in the vicinity of the
Buena Vista Groundwater Basin using pumping
tests (Weeks, 1964, 1969; Holt, 1965; Weeks and
Stangland, 1971 ; Karnauskas, 1977; Rothschild,
1982), specific capacity tests (Bradbury and
Rothschild, 1985), slug tests (Allen, 1985),

permeameter tests (Stoertz, 1985), and grain-size
analyses (Brownell, 1986). Although several hydro-
stratigraphic units are discernible (Brownell, 1986),
the aquifer is generally homogeneous as indicated
by the narrow confidence intervals for specific
capacity tests, slug tests, and grain-size analyses
(Table 1 ). We treat the aquifer as homogeneous
and use the geometric mean of pumping test
conductivities as an initial estimate of the hydraulic
conductivity of the whole basin.

Water Table
Figure 2 shows the August 1984 water table

(Faustini, 1985), measured over several days
following a week without rain. Because vertical
gradients were relatively stable and storage changes
were small, we view this water-table map as a
steady-state map corresponding to late summer

Illillliil < - 30 in/yr (strong discharge)

WwWl - 3 0 to - iOin /yr (moderate discharge)

| | - 10 to 5 ¡n/yr (weak recharge and discharge)

| | 5 to 15 ¡n/yr (moderate recharge)

f 1 > 15 in/yr (strong recharge)

N

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fig. 3. Modeled map of recharge and discharge rates for the Buena Vista Basin, based on the August 1984 water-table map
and a hydraulic conductivity value of 3.0 E-3 ft/sec. Basin outline (dashed) is the same as in Figure 2.
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water .table elevation control point
(piezometer, 3taff gagt)

N
Q discharge gaging station

— modeled ditch subarea ditch V/<%v^water-t*ble Contour

Fig. 4. Map of the ditch subarea showing water-table
contours for July 2, 1984. Locations of water-level control
points, gaging stations, and surface drainage are shown.

seasonal conditions. We argue that the water table
in very permeable aquifers can be viewed as a series
of quasi-stcady-state profiles interrupted by brief
periods of intense recharge. The primary influences
on water-table profiles between recharge events are
fairly steady fluxes, including a steady feeding of
the aquifer from water traveling through the
unsaturated zone in recharge areas, and a steady
draining of the aquifer by evapotranspiration and
ditch discharges. The resulting water table, while
seasonal, is therefore fairly steady.

Model
The data just described, including boundary

conditions, hydraulic conductivity, and water-table
configuration, were used with a modified version
of the USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). Modifications
are described in the Appendix. The basin was
modeled on a 16 by 32 grid, and the resulting
recharge/discharge map is shown in Figure 3.

Calibration to Streamflow
Because the method is based on Darcy's Law,

the calculated flux between adjacent cells varies in
direct proportion to the hydraulic conductivity
which is inherently uncertain. Additional informa-
tion about the flow system, such as measurements
of fluxes (e.g., streamflow or pump discharges),
must be used to constrain the hydraulic
conductivity.

Faustini (1985) measured streamflow at eight
gaging stations along Ditch 4 in the central basin,
and one day later made a detailed water-table map
of a subarea of the basin including Ditch 4 (Figure
4, also outlined in Figure 2). Ditch stages were used

in constructing the map and were assumed to be
close to the underlying aquifer heads. The stream-
flow data allow calibration of hydraulic conductiv-
ity to streamflow but require a finer-meshed model
of the ditch subarea (Figure 5) to give sufficient
resolution to capture the details of the water-table
map near the ditches. By applying the recharge/
discharge mapping method to the ditch subarea, we
can compute the discharges from nodes along the
ditches and then compare them to the field-
measured discharges for each segment of the ditch.
Modeled and measured discharge gains between the
upstream gage (Gage 8) and the downstream gage
(Gage 1) for three different values of hydraulic
conductivity are plotted in Figure 6. Stream sedi-
ments, aquatic vegetation, and local variations in

if H < - 30 ¡ivy- Wrong diien»gtl

N m - M t s - lQinlyr ¡moott»t«aucuns»!

I I -lOloSirtVyr (wMh rÉcnargiind

? '• | | 3 to T5in/yr tmoqtran r«n»rg«t

FnjnH > 15 in/yf dtrong r«hargtt

Fig. 5. Map of recharge and discharge rates for the ditch
subarea based on the July 2, 1984 water-table map.

0 $.000 10,000 19,000 20,000 29.000 30.000 35,000

Distance above Gage 1 (ft)

Fig. 6. Comparison of measured and modeled ditch
discharges for the ditch subarea. Modeled discharges are
shown for three hydraulic conductivity values.
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hydraulic conductivity affect stream discharges, so
the model cannot reproduce exactly the discharge
increases. We nevertheless get an acceptable fit to
the changes in ground-water discharge along the
ditch using a value of K of 3 x 10'3 ft/sec which
agrees with the geometric mean of conductivities
from pumping tests in the Buena Vista Basin
(Table 1). Moreover, basin yield estimates using
this hydraulic conductivity value agree with esti-
mates from previous studies in the area. This
estimate of hydraulic conductivity was used to
prepare the map in Figure 3.

Field Verification
We verified the modeled recharge pattern

(Figure 3) by comparing it to a field-based recharge
map (Figure 7) prepared by Faustini (1985) using
topography, piezometric patterns, seepage measure-
ments in stream sediments, and water-table response
to precipitation, as indicators of recharge. Faustini
(1985) did not assign rates to his various recharge
and discharge zones, but instead differentiated them
on the basis of whether they were part of regional,
intermediate, or local flow systems. It is therefore

possible to compare only the pattern and not the
rates of recharge and discharge in Figures 3 and 7.
In both figures, recharge occurs at the upper
(eastern) end of the basin, and along the north and
south flanks of the lower basin. Discharge occurs
along streams and at the break in slope below the
moraine in the east. The recharge patterns in the
ditch area are poorly reproduced due to the large
cell dimensions relative to the size of the ditches.
The map for the ditch subarea (Figure 5) shows
that with an appropriate discretization, the modeled
discharge pattern near the ditches matches the
field-measured pattern.

The model results are summarized in the first
row of Table 2. Recharge areas cover 57.5% of the
basin, and discharge areas cover 42.5% of rhe basin.
Recharge rates averaged over recharge cells average
13 in./yr, while discharge rates (over only discharge
cells) average -17.6 in./yr. Because the system is
assumed to be at steady state, the volume of
recharge must equal the volume of discharge. Since
recharge areas are larger than discharge areas, the
rates are higher in discharge areas. While recharge
areas will not always be larger than discharge areas

[ J D, Primary discharge area.

ü % | j °2 Local (or intermediate) discharge area.

| | Transitional between recharge and discharge.

f | R3 Recharge induced by adam.

f"'""™] R Recharge area for local (or intermediate) flow
'• • •» * system.

Fig. 7. Recharge map based on field observation! (after Faustini, 1985, Plate 7).

Secondary recharge area associated with ground-
R2 water divide between streams tributary to

the regional discharge stream.

Primary recharge area associated with a regional
groundwater divide.



Table 2. Comparison of Recharge and Discharge Rates and Areas, and Basin Yield, for Various Models '

Model

8/84
8/84
Coarse
Fine
4/84
12/83
Ditch

K, ft/sec

3 X 10"3

2 X 10" 3

3 X lCf3

3 X 10"3

3 X 1(T3

3 X 1 0 ' 3

3 X 10"3

Recharge area
%

57.5
57.5
57.4
54.5
57.2
56.3
58.9

Discharge area
of total

4.2.5
42.5
42.6
45.5
42.8
43.7
41.1

A verage recharge

13.0
8.6
8.0

24.1
15.9
13.1
11.2

Average discharge
in./yr

-17.6
-11.7
-10.8
-28.6
-21.3
-16.9
-21.0

Basin yield

7.5
5.0
4.6

13.0
9.1
7.4
6.6

Average recharge = (Total recharge)/(Total recharge area).
Average discharge = (Total discharge)/(Total discharge area).
Basin yield = (Total flux through system)/(Total area).
Total recharge = Total discharge, at steady state.

(e.g., Freeze and Witherspoon, 1967, Figures lc
and 4a), Freeze and Cherry (1979, p. 197) observe
that "discharge areas commonly constitute only
5-30% of the surface area of a watershed."

Two checks on these rates were used: first,
net annual recharge rates cannot exceed precipita-
tion (31 in./yr in Portage County), and should be
considerably less because of evapotranspiration. In
applying the method, however, calculated rates
exceed precipitation at several cells. A high-recharge
cell may be caused by a lens of low-conductivity
material that was not detected in drilling and
therefore not included in the model. Unexpectedly
high rates may also be caused by interpolation
errors in discretizing the water table.

A second check on the magnitudes of the
mapped rates is to compare the net annual recharge
for the entire model to the annual basin yield. The
net annual recharge is calculated by dividing the
recharge volume by the total model area. For a
steady-state model, the volumetric recharge rate
equals the volumetric discharge rate, so either can
be used to calculate basin yield. Holt (1965) esti-
mated that the annual discharge from streams in
the region averages 10.3 in./yr, or 6.8 in./yr during
dry periods. The net annual recharge for this model
is 7.45 in./yr for August 1984. Because the August
water table was measured during a relatively dry
period, the calculated net recharge rate over the
entire basin agrees with Holt's (1965) estimate of
the basin yield.

SENSITIVITY ANALYSIS
We checked the method's sensitivity to

discretization, hydraulic conductivity, and head
by changing each of these in turn, and observing
how the change affected the recharge pattern and
rates.

Discretization
To test the sensitivity of the mapping method

to cell spacing, we used three different discretiza-
tions, with nodal spacings of 0.25 to 0,5 miles
("fine" grid, not shown), 0.5 to 1.0 miles (Figure 3 ),
and 1 to 2 miles ("coarse" grid, not shown). Com-
paring the basin yields for these three models
(Table 2, last column) shows that cell spacing
affects the modeled yields profoundly, raising the
question of how one should choose the cell spacing.
Ideally, one would continue refining the grid until
changes between successive simulations become
acceptably small. Like other hydrologie parameters,
however, recharge appears to be scale-dependent:
the apparent recharge for a basin increases as the
cell spacing decreases. Local flow systems, which
account for much of the recharge and discharge
within a basin, occur at all scales, so by using a
smaller cell spacing, one accounts for more local
flow and hence more recharge. Where the cell
spacing is larger than local flow path lengths, water
discharges in the same cell as it is recharged, result-
ing in zero net recharge. With increasing cell
spacing, one overlooks increasing amounts of
"intranodal flow" (Feinstein, 1986). At the limit
net recharge is zero if a closed basin is viewed as a
single cell, and net recharge should approach net
infiltration if a fine cell spacing is used.

Increased recharge with small cell spacing can
also be an artifact of the data collection and
modeling. In detailed water-table maps constructed
using geophysical methods, the water table is not
artificially smoothed by interpolation between
piezometers and can be quite irregular (Geoff
Bohling, 1988, pers. comm.). If equally detailed
hydraulic conductivity data are not available,
calculated recharge rates may be unrealistically
high because water-table irregularities arise from
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both recharge and conductivity variation. We
conclude that

1. Recharge may be scale-dependent. This
idea could be tested using mathematical models.

2. The choice of cell spacing is constrained by
data availability. If one wishes to equate recharge
with basin yield, a cell spacing that captures the
general water-table curvature is appropriate. In
defense of this vague guideline, we are in much the
same position as someone establishing guidelines
for piezometer placement: in both cases, one
wishes to avoid over-interpolation.

Hydraulic Conductivity
Changing the hydraulic conductivity for the

entire basin does not affect the pattern of recharge
and discharge, but rates are affected. In many
hydrogcologic problems, recharge rates are of less
interest than the distribution of recharge and
discharge areas. In these problems it is not necessary
to constrain the conductivity with flux measure-
ments since the patterns are insensitive to the
magnitude of hydraulic conductivity. Even in
heterogeneous aquifers, only relative hydraulic
conductivity values may be known, but the
patterns will still be valid.

Hydraulic Head
Water-table maps for April 1984 and

December 1983 were used to make seasonal
recharge maps as a test of the method's sensitivity
to head changes. Comparison of the April and
August maps (not shown) indicates that local flow
systems are developed or enhanced during the
spring, especially in the central basin where the
water table is shallow (5-15 ft). The basin yield
increases to 9.1 in./yr during the spring (Table 2),
and average recharge and discharge rates both
increase by about 20%. Comparison of the
December and August maps shows decreased
activity of local flow systems during the winter,
especially in the eastern basin where the water
table is relatively deep (30-60 ft). The basin yield,
average recharge rate, and average discharge rate
are similar to those of a dry season. Comparing all
the seasonal maps, it is interesting that while fluxes
nearly double, the percentage of the basin being
recharged remains about the same, approximately
57%, and the general patterns of recharge and
discharge are similar from season to season.

THREE-DIMENSIONAL ASPECTS
Modeling the inherently three-dimensional

recharge process with a two-dimensional model
seems paradoxical: the assumption of horizontal
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flow is implicit in a two-dimensional areal model,
but the flow of interest is the vertical component.
We view recharge not as a vector, but as an addi-
tion of water to the aquifer. Provided the full
thickness of the aquifer is modeled and the lower
boundary is impermeable, recharged water
effectively flows horizontally when moving toward
discharge areas. Where vertical gradients are very
large, however, the appropriate hydraulic heads to
assign to nodes in a two-dimensional model are not
water-table elevations, but averaged heads one
would measure in an aquifer screened over its
entire thickness.

In complex hydrogeologic settings, three-
dimensional models may be necessary. The recharge
mapping method for three-dimensional models is
similar to the method in two dimensions; the water
table is fixed, as in the two-dimensional case, but
the heads in the lower layers are calculated with
the mathematical model. The flux is calculated
between each water-table cell and five adjacent
cells, including one below the cell of interest.

CONCLUSIONS
We have presented, demonstrated, and field-

checked a method for making recharge maps that
is readily available because it is adapted to the
USGS Modular Groundwater Flow Model
(McDonald and Harbaugh, 1984). The advantage of
this method over field measurements of recharge is
its dependence on data commonly available from
well logs. The method must be used cautiously in
the following cases:

1. If head data are widely spaced, the method
may not have sufficient resolution to make manage-
ment decisions about individual wells or properties.

2. Where hydrogeologic data are scarce,
predicted recharge and discharge rates must be
viewed with skepticism because there is a nonunique
relationship between the recharge/discharge pattern
and the shape of the water table.

3. If flow is strongly three-dimensional, the
method must be applied using a three-dimensional
analysis.

Despite these limitations which apply to
ground-water flow modeling in general, the method
described here is a useful tool for aquifer manage-
ment. The method can be used to assist field
studies, decreasing costs by indicating areas where
contaminants might be entering the flow system.
The method also should be useful in interpreting
concentration data for natural ions, environmental
isotopes, and contaminants. The combination of
horizontal flow vectors drawn from a water-table
map and recharge patterns obtained from the



mapping method produces a pseudo-three-dimen-
sional flow map. Such a map provides, at least
roughly, the advective flow regime needed to
interpret ground-water movement.
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APPENDIX
Modification of the USGS Modular Ground-

water Flow Model (McDonald and Harbaugh, 1984)
permits the user to calculate recharge to and dis-
charge from a water table. This Appendix describes
modifications of the computer code and how to
apply the technique.

Code Modifications
Two-Dimensional Models

The example in this paper is a case where flow
can be treated as two-dimensional (thin, extensive,
permeable aquifer) in which case only one layer is
used in the USGS model. Because the water table is
specified, there are no active (IBOUND>0) cells, so
the model's solution routines are not needed. Some
computers require that the solution routines be
skipped to avoid terminating the program. Execu-
tion goes directly to the budget calculations. The
solution routines can be skipped by omitting the
following 19 lines from MAIN (McDonald and
Harbaugh, 1984, p. 50):
MAIN - Remove the following 10 Hues:

DO 300 KPER=-1,NPER
DO 200 KSTP=1,NSTP
DO 100 KITER=1,MXITER
JF(IUNIT(9).GT.0) CALL SIPlAP(...5 Unes total...)
IF(lUNIT(ll).GT.O) CALL SOR1AP(...4 lines total...)
IF(ICNVG.EQ.l) GO TO 110
100 CONTINUE
KITER=MXITER
110 CONTINUE
IF(ICNVG.EQ.O) STOP
200 CONTINUE
300 CONTINUE
Because the model as originally written does

not calculate flows between adjacent inactive
(IBOUND.LE.0) cells, subroutine SBCF1F, which
calculates flow from specified-head cells to active
cells, must be modified to include flows between
specified-head cells. Six lines require modification,
as follows:
SBCFlF - In the following lines, change .LE. to .EQ.:

IF(IBOUND(J-l,I,K).LE.0)GO TO 30
IF(IBOUND(J+l,I,K).LE.0)GO TO 60
IF(IBOUND(J,M,K).LE.u)GO TO 00
IF(IBOUND(J,I+l,K).LE.0)GO TO 120
IF(IBOUND(J,I4<-l).LE.0)GO TO 150
IF(IBOUND(J,I,K+l)XE.0)GO TO 180
In effect, the flux calculations will be skipped

only for no-flow cells, not specified-head cells.

Three-Dimensional Models
Although this paper discusses recharge

mapping for a single-layer two-dimensional model,
the method is similar for creating a recharge map
for the upper layer in a three-dimensional model.
Because there are active cells in the layers below
the water table, MAIN does not have to be modified
as in the two-dimensional case. The changes to
SBCFlF are the same as for the two-dimensional
case.

Data Entry
Two packages are used: the block-centered

flow package (BCF), and output control (OC). If
the model is three-dimensional, either the strongly
implicit procedure (SIP) or the slice-successive
overrelaxation (SOR) package will be used as well.

Basic Package Input
The IBOUND array for the water-table layer

will be filled with 0's and -1 's. Set all the water-
table cells to - 1 , and cells outside the problem
domain to 0. This makes the water table a specified-
head surface. The observed heads are entered in the
starting-head array (Shead). Head values for the
center of each cell are obtained by interpolating
between potentiometric contours, either by hand
or with a computerized interpolation routine.

Block-Centered Flow Package Input
The simulation is treated as steady state

(ISS = 1). The cell-by-cell flow terms must be
printed for each specified-head cell, so
ICBCFL = - 1 .

Hydraulic conductivities values for each cell
are read in array HY. Bedrock surface (aquifer
bottom) elevations are read in array BOT.

Output Control Input
This package enables printing of cell-by-cell

flow terms ; they are not printed if the default
output is used. ICBCFL = 1 to print cell-by-cell
flow terms.

Presentation
To contour the recharge and discharge rates,

most contouring programs require an input file
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containing che array dimensions (NROW.NCOL),
the cell spacings (DELR(J).DELC(I)), and a listing
of fluxes by row and column. Preparing such a file
involves reformatting the USGS Model's ouput file.
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COM PUTER
NOTES

THREE-DIMENSIONAL, CROSS-
SEMIVARIOGRAM CALCULATIONS
FOR HYDROGEOLOGICAL DATA

by Jonathan D. lstoka, Richard M. Cooperb,
and Alan L. Flintc

Abstract. Geostatistics is a powerful tool for the analysis of
hydrogeological data, but few well-documented computer
programs for performing the necessary calculations have
been presented in the technical literature. This is especially
true for applications that require either three-dimensional
or multivariate analyses. This paper describes a FORTRAN
subroutine, VARIO, that can be used to compute experi-
mental direct- and cross-scmivariograms from a set of
sample data, for any specified direction in one-, two-, or
three-dimensional space. The subroutine combines into
groups those sample pairs that fall within predetermined
angular tolerances of the specified direction. The number of
sample pairs used to compute the value of the experimental
scmivariogram at each value of separation can be specified
in four different ways, depending on the nature of the
available data. Written in FORTRAN 77, VARIO can be
used on any computer that supports a FORTRAN 77
compiler. Source code listing, user instructions, and
example input and output data for VARIO arc presented.

Introduction
Whenever we make measurements at points

distributed in space, we may refer to the quantity
we are measuring as a regionalized variable. Some
examples of regionalized variables in the field of
hydrogeology are hydraulic conductivity, rrans-
missivity, porosity, water-table elevation, ground-
water temperature, and ground-water contaminant
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concentrations. The term geostatistics refers to a
set of statistical procedures (1) for describing the
spatial correlation displayed by regionalized
variables, and (2) for using theoretical models of
this spatial correlation to obtain local and global
estimates for regionalized variables over the sample
space. Geostatistical procedures are proving to be
useful for solving a variety of practical problems
in hydrogeology including determining values of
aquifer parameters for input into numerical models
of ground-water flow and solute transport
(Delhomme, 1976; Neuman and Yakowitz, 1980;
Vauclin et al, 1983), mapping ground-water levels
over large areas, and determining the severity of
ground-water contamination at hazardous waste
sites (Cooper and Istok, 1988a, b). Several reference
texts are available that describe the theory of geo-
statistics (David, 1977; Journel and Huijbregts,
1978 ; Clark, 1979), but few well-documented
computer programs have been presented in the
technical literature. This is especially true for
applications that require three-dimensional or
multivariate analyses.

Essential to a geostatistical analysis are direct-
and cross-semivariograms (defined in the Theory
section). In the case of one- and two-dimensional
problems, computer programs may be easily
written to compute direct-semivariograms (Journel
and Huijbregts, 1978). However, many problems in
hydrogeology are truly three-dimensional and the
use of direct-semivariograms based on a one- or
two-dimensional approximation of the problem
domain is not realistic. Also, in many situations
(e.g., when more than one type of measurement is
made at each sample point) it may be useful to
study several regionalized variables simultaneously.
If we determine that some of the regionalized
variables are intercorrelated, the use of direct-semi-
variograms (which only display the spatial correla-
tion of a single regionalized variable) is not suffi-
cient. Instead, a multivariate geostatistical analysis
is required, and this necessitates the use of direct-
semivariograms computed for each regionalized
variable and cross-semivariograms computed for
each pair of intercorrelated regionalized variables.
Procedures for the general problem of computing
cross-semivariograms in three-dimensional space are
more complex and for this reason are not widely
used. To our knowledge, a computer program for
performing these calculations previously has not
been reported in the technical literature.

The objective of this paper is to describe a
FORTRAN subroutine, VARIO, that can be used
to compute direct- or cross-semivariograms from a
set of sample data for any specified direction in



one-, two-, or three-dimensional space. The sub-
routine can be used as either an exploratory tool,
or as one component of a general purpose
geostatistical software package. Future papers will
describe subroutines for fitting theoretical models
to the semivariograms computed by VARIO, and
for using the fitted models to obtain local and
global estimates for regionalized variables over the
sample space. It is hoped that the publication of
these subroutines will promote a more widespread
use of geostatisticsin the field of hydrogeology.

Theory
We are concerned here with a set of measure-

ments made at an arbitrary number of sample
points distributed in one-, two-, or three-dimen-
sional space. The position of a sample point could
be specified in a variety of ways, depending on the
type of measurement. For example, if the measure-
ments were made on core or ground-water samples,
the position of each sample point would probably
be specified by the location of the borehole, the
elevation of the drill collar, and the depth from the
drill collar to the center of the sample. To simplify
the following discussion, however, we will assume
that the position of each sample point has been
specified by a set of coordinates represented by the
vector x with components (xu), (xu, xv), or
(xu, xv, xw) according to whether a one-, two-, or
three-dimensional sample space is considered. The
collection of sample points is represented by the
set (x,, . . . . x¡yj ) where N is the number of sample
points. At each sample point xk, as many as M
types of measurements may be made, and these are
represented by the set {z,(xk),. . . ZM(X|Í),
k = 1 to N }.

For the following geostatistical procedures to
be strictly valid, it is required that (1 ) the sizes (e.g.,
the volume or the mass) of all the samples are the
same, (2) the same sampling procedures are used to
obtain each sample, (3) the same measurement pro-
cedures are used for each measurement of the same
type, and (4) the dimensions of the samples are
much smaller than the dimensions of the sample
space. These requirements are collectively referred
to as the requirement for constant and point
support. These requirements are satisfield approxi-
mately in most applications encountered in
hydrogeology, but in cases where they are not, an
additional procedure called regularizaton may be
required (Rendu, 1978).

For many geostatistical techniques, it is also
required that the regionalized variables are
normally distributed (e.g., when using kriging to
estimate the value of a variable at a point, devia-

tions from a normal distribution may result in
biased estimates). The probability that the region-
alized variables are normally distributed may be
determined from any of several statistics, e.g., the
chi-squared statistic (Henley, 1981), the
Kolmogorov-Smirnov statistic (Henley, 1981), or
the Shapiro-Wilk statistic (SAS Institute, 1985). In
many cases, a log-transformation will improve the
fit of the regionalized variables to a normal distri-
bution (Cooper and Istok, 1988b). A class of geo-
statistical methods called indicator geostatistics
has been developed for the case where the
regionalized variables are not normally distributed
(Journel and Isaaks, 1984).

Procedure for Semivariogram Calculation
The first step in a geostatistical analysis is

structural analysis, the determination of the
statistical structure of the spatial correlation
displayed by the experimental data. The first step
in a structural analysis is to perform a detailed
review of all the available data to determine if
some or all the spatial correlation displayed by the
data can be attributed to known geologic,
geographic, topographic, or other factors. Particu-
lar attention should be paid to factors that cause
trends or discontinuities in the data. For example,
an observed trend in measured values of saturated
thickness in an alluvial aquifer may be caused by
the pattern of deposition (e.g., in an alluvial fan).
Faults and nonconformities can often cause abrupt
changes in measured values of regionalized variables.
For example, measured values of porosity might
change abruptly along a transect if the transect
crosses a fault that juxtaposes two different
lithostratigraphic units.

The next step in a structural analysis is to try
to develop a theoretical model to quantify the
pattern of spatial correlation displayed by the data
and, in general, this requires the calculation of sev-
eral experimental direct- and cross-semivariograms.

The experimental direct-semivariogram,
7¡¡(h), is a measure of the spatial correlation
displayed by pairs of measured values of a single
variable i. The experimental cross-semivariogram,
7¡j(h), is a measure of the spatial correlation
displayed by pairs of measured values, of two
different variables i and j . Both types of
semivariograms are defined by

„ 1 N(h)
7 ¡J ( h > =2Ñ(h) i-i

[z¡(xk)~ z¡(xk + h)] [zj(xk)~ zj(xk + h)] (1)

where h is the vector separating a pair of sample



points, and N (h) is the number of pairs of samples
that are separated by the same vector h. Equation
(1) defines the cross-semivariogram for regionalized
variables i and j . When only one regionalized
variable is considered, j = i, and equation (1)
defines the direct-semivariogram for the
regionalized variable i.

In a geostatistical analysis, scmivariograms
usually will be calculated for several specified
directions for h. If all the semivariograms are
equivalent, the regionalization (the underlying
natural phenomenon that the regionalized variable
represents) is said to be isotropic. When the spatial
structure of a regionalized variable is not the same
in every direction chosen for h, we say that the
regionalization is anisotropic. The source of
anisotropy depends on the type of regionalized
variable studied. For example, anisotropy in the
physical or chemical properties of alluvial aquifers
may be caused by deppsitional processes. Similarly,
anisotropy in ground-water contaminant distribu-
tions may be caused by dispersion or by an
anisotropic ground-water flow pattern. Whatever
the source, anisotropy in a regionalization will
cause experimental semivariograms to be
anisotropic. Since we will seldom know prior to
our analysis if the regionalization is isotropic, we
must be able to calculate semivariograms as a
function of both the direction and magnitude of h

¡ J < « , 0 , Ih l ) (2)

where a and /? are two angles that define the
orientation of h in three-dimensional space (see
below), and Ihl is the magnitude of h. Thus, to
perform a geostatistical structural analysis on a set
of measured values of a regionalized variable, a
procedure is needed to compute the values of
experimental semivariograms for any specified
direction and magnitude of h.

Conceptually, this procedure is simple. The
steps are as follows:

1. Select a particular direction h0 by specifying
the angles a0 and 0O and the distance !hol.

2. Find ail possible pairs of sample points that
are aligned in the specified direction.

3. If a direct-semivariogram is to be computed,
retain only those pairs of sample points that have
measured values of the regionalized variable for
which the direct-semivariogram is being computed.
If a cross-semivariogram is to be computed, retain
only those pairs of sample points that have
measured values of the two specified regionalized
variables for which the cross-semivariogram is being
computed.

4. Group the sample pairs into categories of

Ihl and substitute the measured values at each pair
of retained sample points into equation (1).

In practice, performing these calculations can
be difficult, primarily because the number of
samples available for a geostatistical analysis is
usually small and because the measurement points
are usually irregularly distributed over the sample
space. This means that if we limit the semivario-
gram calculations to only those pairs of samples
points that are exactly aligned in the specified
direction, an insufficient number of pairs of sample
points will be available to accurately define the
values of -y-j(h) [e.g., Journel and Huijbregts, 1978,
p. 194, suggest that a minimum of 30 to 50 pairs
of sample points are required for each value of
7¡*(h)]. This problem often can be avoided by per-
forming the semivariogram calculations using those
pairs of sample points that are approximately
aligned in the specified direction. This is done by
specifying angular tolerances for a0 and 0O> Aa0

and A0O-

Consider a pair of sample points X! and x2. In
three-dimensional space, each point is defined by a
set of coordinates (xu, xv, xw). The separation
vector h = Xj - x t has components

hu -x„) i ~x u ) !

tlv =
 XV)Î ~ Xu)i

hw =

(3a)

(3b)

(3c)

where the term x u ) l t for example, is the xu

coordinate of sample point x t . The position of h in
space also can be defined by two angles, ah and
0h in the xu - xv and xv - xw planes where

ah = arctan (hv/hu )

0h = arccos(hw/lhl)

(4a)

(4b)

and I h I = Vhu + hv + hw is the magnitude of h.
Following the procedure outlined above, the

pair of measured values at the points x, and x2 are
used in the calculation of 7¡j(a0, 0O. Ihl) only if h
is aligned with the specified direction h0- Alignment
of the pair of sample points with the specified
direction is indicated if

- Aft0 a0

and

(5a)

(5b)

These criteria are illustrated in Figure 1. If we wish
to compute semivariograms for the isotropic case
(i.e., the case that the experimental semivariograms
are independent of a0 and 0O), the criteria in
equation (5 ) still can be used if Aa0 and A0O are
both set equal to 180°.



-90°<ao< 90° o<Aao<i8Oe

-90°</30<90° O<A/3O<I8O°
Fig. I . Definition of angles and angular tolerances used to
specify a direction h0 .

Once all the pairs of sample points aligned
with a specified h0 have been identified, they are
grouped into categories of IhI. In general, four
different methods can be used to perform the
grouping operation. The choice of which method
to use for a particular problem will depend on the
number of sample points and on the way that the
sample points are distributed in space. One criteria,
for example, is that pairs of sample points with
greatly different values of Ihl should not be
combined because this will result in a smoothing of
the semivariogram. The initial step for all these
methods is the same; the pairs of aligned sample
points are sorted, from smallest to largest, using
the value of Ihl for each pair. Then the sample pairs
are combined into groups by one of four methods:

Method 1: Divide the range of Ihl values into
intervals of constant size. Ihl values are grouped
according to the interval in which they occur. The
number of pairs of sample points in each group will
be different.

Method 2: Divide the range of Ihl values into
intervals of variable size. Ihl values are grouped
according to the interval in which they occur. The
number of pairs of sample points in each group will
be different.

Method 3 : Specify the number of sample pairs
to place in each group. The number of pairs of
sample points in each group will be the same. The
size of the intervals of Ihl is variable.

Method 4: Put each unique value of Ihl into a

separate group. The number of pairs of sample
points in each group will be different.

Whichever method is used, the measured values
of the regionalized variable (s) for each pair of
sample points in a group are substituted into
equation (1) to compute the value of y*. for that
group. The mean value of Ihl for a group (which is
the value that will be plotted on the semivario-
grams) then can be computed by averaging the Ihl
values for all the pairs of sample points in the
group.

Computer Implementation—Subroutine VARIO

The FORTRAN subroutine VARIO was
written to implement the procedures described
above. VARIO can compute either direct- or cross-
semivariograms from a set of sample data, for any
specified direction in one-, two-, or three-dimen-
sional space. The maximum number of sample
points is limited only by the available computer
memory and can be adjusted by changing the value
of parameter MAXI, currently set at 100. Each
sample point can have any number of regionalized
variables in addition to the xu (xu, xv), or
(xu, xv, xz) coordinates of the point. The sub-
routine has been tested and compiled on IBM
compatible microcomputers using the Microsoft
FORTRAN 77 compiler (version 3.3). The
particular machines used had 640 Kbytes of RAM.

The definitions of FORTRAN variables used
in VARIO are in Table I, and the source code

Tabla 1. Variables Passed to VARIO from Calling Program

DIM - DiMMlon of problaa (1, 2, or 3).

ALPHA - Spaelfiad direction In X,. - X,, plan* ('40° <
ALMA < »0°) .

OALFKA - Tolaranea for alpha (0 < DALPMA < iso°) .

BETA - spaclfiad direction in xv-xu plan* (-90° £

BETA s. »o°) •
DBËTA - Tolaranea for bata (0 £ DBETA < n o 0 ) .

REVI - coluan nuabar of tint rwjionaiiiad variabl*..

REVJ - Coluan nuabar of saeend racionalizad variabl*. If
RIVI • REVJ than a dlr*ct-i*Bivarieqraa ba canputad.
REVI - REVj tnan * crs«s->»iv*rioqro> will b*
coaputad.

LOGTAAM - flag Co indicate if aaaivariearau will ba computed
on th* natural logarithm of th* valúas of th*
racionalizad variabl.. If LOSTtUN - 1, natural
logarithaa of th* valu** of tna racionalizad
vari»bla(a) will ba uaad. It UKTftAM - 0, th»
original valuaa of tha racionalizad varlabl*(s) will
ba uaad.

METHOD - Chsica of group ing aathod to usa for Ihl (1, 2, 3,
or 4).

LIMITS(1) - Interval sitáis) for |hj If HETHOD - 1 or 2.
Huiibar of tupia pairs in «ach group if METHOD
• ). Not U»*d if METHOD - 4.

LIMITS(30)

IKFILI • Input data fil* n.m. ( ¿ 20 characters).

OUTFIU • output data fila nana ( < 20 characters) •

TITLE1 - First title for o u m u ; < < ao characters).

TÏTLH - Second titla for 0UTMLS ( < 80 cnirietara).

I
I
I
I
I
I
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I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

SUBROUTINE VARIO(DIM,ALPHA,OALPHA, BETA,DBETA,REVI,REMT,
Î

c
c . .
c

c
c ..
c

10

20

30

,
PARAMÉIS» (KAX1»IOO, MAX2-2OOO)
INTEGER DD4, METHOD, GROUFN, GN, GCDUNT, GNUM, REVI, REVJ
REAL LDŒTS(30) , LOWXY, LOWYZ
CHARACTERS D1FÏLE, OUTFILE
£HARACrER*80 TTTLE1, TTTLE2
COMMON / B U O / XUVW(MAX1,3)
GOMMO)»/BLK2/ GROUPH(HAX2) , GR0UPZ(MAX2) , GROUPN(MAX2)
COMMON / B O O / GH(MAX2) , GN(MAX2) , NREF(MAX2) , GCOUNT, GNUM
OOMMON /BLK4/ Z(MAX1,2)
DATA P Ï / 3 . 1 4 1 5 9 2 S 5 4 /

. . . OPEN M U T AND OUTPUT DATA FILES

c
c . .
c

C
c
c

OPEN(5,
OFEN(6, FIIFMJUTFILE, STATUS-'NEW')

. , . WRITE HEADINGS TO OUTPUT FILE

WRITE ( 8 , 1 0 ) TITLE1, TTTLE2
FORMAT (15X,AS0/15X,AS0/)
WRITE (S,20) DIFTLE, DIM
R3RMAT (11X,'INPUT DMA FILE: ' ,A2O,6X. 'DIMENSIONS:
WRITE ( 6 , 3 0 ) ALMA, BETA, DALPHA, DBETA
FORMAT (11X, 'SPECIFIED DIRECTION: ' / /

1 23X, 'ALPHA • ' , F 6 . 2 , 5 X , 'BETA - ' , F 6 . 2 /
2 22X, 'DALPHA - ',F6.2,4X, 'DBETA - \F6.2/)

IF (REVI .BQ. REVJ) THEM
WRITE («,40) REVT
POFMAT (11X, 'DIRECT-SEMIVaRIOGRAM FOR REGIONALIZED'

1 ' VARIABLE M 3 )
ELSE
WRITE («,50) REVI, REVJ
FORMAT (UX, 'CROSS-SEMIVARIOGRAM FOR REGIONALIZED',

1 • VARIABLES ',12,' AND \I2)
ENDIF
WRITE (S,SO)
FORMAT (6X,6S('-')/

1 18X, 'GROUP', 5X, 'AVERAGE',5X, 'NO. O F ' /
2 19X, ' N O . ' , 9 X , ' H ' , 8 X , ' P A U S ' , 11X, 'GAMMA(H) ' /

: i 8 x s r ' 5 7

CONVERT ANGLES FROM DEGREE TO RADIANS

OON - PI / 1 8 0 .
ALPHA - ALfHA * CON
DALPHA - DALPHA * CCN
BETA - BETA • CON
OBETA • DBETA • COi
UPXY - ALWA + DALfflA / 2 . 0
LOUXY - ALPHA - DALPHA / 3 . 0
UPYZ - Œ I A + DBETA / 2 . 0
LOWYZ • BETA - DBETA / 2 . 0

CHECK FOR VALID HOOT VALUES. I F CHECKS FAIL,
MESSAGE AND STOP

L2/)
c
c
c
c
c

160
170
180

PRINT ERROR

I F ((DIM . L T . 1) .OR. (DIM . S T . 3 ) ) CALL ERROR(1)
I F ((REVI . L T . 1) .OB. (HEW . L T . 1 ) ) CALL EBS0R(3)
I F ((LOGTRAN .GT. 1) .OR. (LOGTRAN .LT. 0 ) ) CALL ERROR(4)
I F (¡METtOD .OT. 4 ) .OR. (METHOD . L T . 1 ) ) CALL ERROR(5)
COM - PI / 2 .
I F ((ALPHA .GT. CON) .OR. (ALfHA . L T . -OON) .OR.

(BETA .OT. CM) .Oft. (BETA . L T . -OON) .OR.
(•ALPHA .GT. PI) .OR. (DALPHA . L T . 0 . ) .OR.
(DBETA .GT. PI ) .OK. (DBETA . L T . 0 . ) ) CALL ERR0R(6)

I N I T I A L I Z A T I O N

DO 7 0 1 - 1 , HAXÎ
CROUFH(I) - 0 .
GEOUPZ(I) - 0 .
GHOUHJ(I) • 0
GH(I) « 0 .
CH(I) • 0
NREF(I) - 0

CONTINUE
GNUM - 0
GCOUNT - 0

READ FROM DUWT FILE: (XUVW(1,I) ,1-1 ,DIM), 2 ( 1 , 1 ) AND Z ( l , 2 )

(XUVW(NX,I),I-1,DIM), Z(NX,1) AND Z(;iX,3)

IF (BEVJ .LT. REVI) THEN
I - REVI
REVU - REWT
REOT - I

NX-1
IF (REVI .EQ. 1) THEM

IF (REUJ .EQ. 1) THEM
80 READ(S,*,EMD-WO) (XUVW(NX,I) ,1-1,DIM) ,Z(NX,1)

IF (Z(MX,1) ,NE. - 9 9 9 . ) NX - NX + 1
GOTO 30

ELSEIF (REVJ .Ep. 2) THEN
90 REA0(5,*,END>U0) (XUVW(NX,I),I-1,DIM),Z(NX,1),Z(NX,2)

IF (Z(NX,l) .ME.-999. .ANO. Z(M(,2) .NE.-999. ) NX - NX + I
GOTO 90

ELSEIF (REVJ .GT. 2) THIN
100 READ(3,*,END-140) (XDVW(NX,I),I-1,DIM),Z(NX,1),

1 (D)K,I-1,»E«T-B£VI-1),Z(NX,2)
17 ( î ( J « , l ) . N B . - 9 9 9 . .AND. Z(NX,2) .NE. -999 . ; NX • NX * J
GOTO 100

ENDIF

Fig. 2. Sourea coda luting for VARIO (continued).

140

ELSE
IF (REVJ .ËQ. REVI) THEN

READ(5,*.END-140) (XUVW(NX,I) ,1-1,DIM) , (DXÏ.I-1,BEVI-1) ,
Z(NX,1)

IF (Z(NX,1) .ME. -999.) NX - NX + 1
GOTO U O

ELSEIF (REVJ .EQ. REVI + 1) THEN
R£AD(5,«,END-14O) (XUVW(NX,I) ,1-1,DIM) , (CMY,I-l,REVI-l) ,

Z(NX,1),Z(NX,2)
IF ( Z ( N X , l ) . N E . - 9 9 9 . .AND. Z(NX,2) . N E . - 9 9 9 . ) NX - NX + 1
COTO 120

ELSE
READ(5,*,END»140) (XUVW(NX,I) ,I»1,DIM) , ( D « , I - 1 , J ! E V I - 1 ) ,

Z(NX,1) , ( n f f , I - l , R E V J - R E V T - l ) ,Z(NX,2)
IF ( Z ( N X , l ) . N E , - 9 9 9 . .AND. Z(NX,2) . N E . - 9 9 9 . ) NX - NX + 1
GOTO 130

ENDIF
tUDIF
NX^IX - 1
IF (NX .ST. MAXI) THEN

WRTr£(*,15O) ' DATA ' , N X , W ) a
FOHMAT(A, 'SIZE O F ' , I S , ' EXCEEDS MAXIMUM SIZE O F ' , 1 5 / ' STOP!')
GOTO 180

ENDIF

FIND ALL ALIGNED PAHS OF MEASUREMENT POINTS, AND fW THE
COMRrTED SEPARATION AND MEASURED VALUES FOR THE PAIR INTO
TEMPORARY STORAGE (ONE-DIMENSIONAL PROBLEMS)

IF (REW .EQ. REVI) THEN
REVJ - 1

ELSE
REVJ . 2

ENDIF
REVI - 1
CALL FINDPIS(0m,MEIHOD,LOGTBAH,NX,l,REVI,REVJ,UPXY,LOWXY,UPYZ,

LOWYZ)
IF (GODÜOT .GT. MAX2) THEN
WRXTE(*,1SO) ' EXPANDED DATA ',GŒUNT,MAX2
GOTO 180

ENDIF
CALL SETGROUP(WETH0O, LOOTS)
CALL FINDfTS(DIM,METHOD,L0GTRAN,NX,2,REVI,BEW,UPXY,LOWXY,UPYZ.

LOWYZ)
DO 1 6 0 1 - 1 , GCDUNT

I F (CROUPN(I) .NE. O) THEN
GRCUPH(I) • GROUm(I) / GROURI(I)
GROIPZ(I) • aaxjFza) / a * cDtx-Tna,')

ENDIF
WRITE (6,170) I , OWUPH(I), OROUHi(I), GROUPZ(I)
rrauE

FORMAT (17X,I4,SX,G8.3,7X,I3,SX,C15.7)
CLOSE(5,STATUS-'KEEP')
CLOSEfe.STATUS-'KEEP1 )
RETURN
END

SUBR0UTT1IE SWAP(M, N)

N-L
RETURN
END

SUBROUTINE nMDPTS(DIK,ME^H0O,L0GrRAN,NX,HCHSrcE,REVT,REVJ,l-T
LOWXY, UPYZ, LOWYZ)

PARAMETER (HAX1-10O, MAX2-2000)
IMTBSER DIM, GROUIN, GN, MEIHOD, GCOUNT, OHM, REVI, REVJ
REAL LOWXY, LOMYZ, HU, HV
LOGICA!. CHMKZ
C O W » / B U O / XUVW(MAX1.3)
C O K » /BLK2/ GROUPH(MMQ) , GROUP2(MAX2), GRCUPN(MAX2)
O M E N /BLKI/ GH(MAX2) , C»(MAX2), NREF(MAX2) , GCOUNT, GNUM
COtCN / B U M / Z(MAX1,2)
REAL X U ( N U a ) , XV(WO.), XW(MA)Q)
EQUIVALENCE (XU,XUVW(1,1) ) , (XV,XUVW(1,2) ) , (XW,XUVW( 1 ,3) )
DATA P I / 3 . 1 4 1 5 9 2 6 5 4 /
I F (DIM .EQ. 1) THEN

DO 140 J - 1 , N X - 1
0 0 140 t - J + 1 , NX

IF ( ( W ( J ) .EQ. XU(I)) .OR. (Z(J ,REVI) - .LE. - 9 9 0 ) .OR.
(Z(J.raWJ) .LE. - 9 9 0 . ) .OR. (Z(I ,REVI) .LE. - 9 9 0 . )
.OR- (2(1,REVJ) .LE. - 9 9 0 . ) ) GOTO 140

HU-XU(I) - XU(J)
DISTâr (>
CALL CEMRTTEfLOGTRAN, ZVALUE, I , J , REVT, REUT)
CALL AECHECfMETHOO, NCHOICE, DIST, ZVALUE)

CONTINUE

FIND ALL ALIGNED PAIRS OF MEASUREMENT POINTS, AND PUT THE
COMPUTED SEPARATION AMD MEASURED VALUES FOR THE PAIR INTO
TEMPORARY STORAGE (TVO-OOIENSKMAL PROBLEMS)

ELSE ir (Dor .03. 2; THEN
CO 190 J-l, NX-1

DO 150 ra+i, NX
IF ((XU(J) .EQ. XU(I)) .AND. (XV(J) .EQ. XV(I)) .OR.

(Z(J,REVT) .LE. - 9 9 0 . ) .OR. (Z(J,REVJ) .LE. - 9 9 0 . ) . O R .
(2(1 ,REVI) .LE. - M O . ) .OR. (Zd.REMJ) .LE. - 9 9 0 . ) )
GOTO 150

FIND THE SEEPWATTON VECmt FOR A PAIR OF SAMPLE POINTS

HU-XO(I) - XU(J)
HV"XV(I) - XV(J)
DIST-SQ(IT(«J««2 + HV«2)



150

DETERMINE IF THE PAIR OF POINTS IS AUOŒB WTTH THE SPECIFIED
DIRECTION {IN WE XU-XV PUNE)

IF (XU(N) .EQ, XU(M)) THEN
ANGlZl-PI / 2 . 0
IF ((AM3L£1.GT.UPXY).OR. (ANGLE1.IÏ.L0WXY) ) THEN

AICLE1-PI / ( - 2 . 0 )
CALL S*ftP(M,N)

ENDIF
EISE

AN3LE1-ATAN(HV / HU)
ENDIF
IF ((AMSIE1 .LE. OTKY) .AND.

(AittLEl .GE. IflWXY)) THEM
CALL ŒntUTEflÛOTBAN, ZVMUE, M, N, REVI, REVJ)
CALL ADDREC(METHDO, NCH0IŒ, DIST, ZVAUŒ)

ENDIF
CONTINUE

FIND ALL ALIGNED PAIRS OF MEASUREKENT POINTS, AND EUT THE
COMPUTED SEPARATION AND MEASURED VAUJES FOR THE PAIS INTO
TEMPORARY STORAGE (THREE-DIMENSIONAL PROBLEMS)

ELSE
DO ISO J - l , NX-1

co lso w + i , toe
IF (((XU(J) .EQ. XU(D) .AND. (XV(J) .EQ. XV(I))

1 .AND. (XW(J) .EQ. XW(I))) .OR.
2 (Z(J,REVT) . ! £ . - 990 .J .0R . (Z(J,RCWJ) .LE. -990 . )
3 .OR. (Z(I,REVI) .LE. - 9 9 0 . ) .OR.
4 (Z(I,REVJ) . I E . - 9 9 0 . ) ) GOTO 1Í0

FIND THE SEPARATION VECTOR IOR A PA» OF SAMPLE POINTS

HU-XU(I) - XU(J)
HV-W(I) - XV(J)
Ht*XW(I) - XW(J)
DIST"6QRT(HU**2 + HV»*2 + HW«Î)

DETERMINE IF THE PAIR OF POINTS IS ALIGNED WITH THE SPECOTHJ
DIRECTION (IN THE XU-XV AND XV-XW PLANES)

OWNGE". FALSE.
IF (XU(J) .EQ. XU(I)) THEN

ANGLE1-PI / 2.0
IF ((ANGIZl.CT.UPXY).OR. (ANGIE1.IT.LOMXY) ) THEN

ANGIE1.-PI / (-2.0)
CALL SWAP(M,N)

EM3IF
ELSE

ANGI£1-ATAN(HV / HU)
ENOIT
ANGLE2»ACrS(ABS(HW) / DIST)
IF (HW . I X . 0 . 0 ) THEN

ANGLE2O-ANGLE2
IF (.NOT. CHANGE) CALL SWAP(M,M)

ENDIF
IF ((ANGLE1 .LE. UPXY) -AND. (ANQLE1 .GE. W W W )

.AND. (ANGLO .LE. UPYZ) .AND.
(ANGLE2 .CE. LOWV3)) THEN

CALL ooowTE(Locn»N, ZVMDE, M, M, RCVI, REWJ

CAUL ADDREC(NETHOD, MCHOICE, DIST, TOUX.)

160 CQWTIMJE
ENDIF
RETURN
END

SUBROUTINE SEK3CUF(H£TH00, LDOTS)
PÁRAMETE» (MAia-tOO, MAX2- 2000)

GHOUPZ(MRXÍ),
O I ( M N a ) , NREffMAXJ), OCDUNT, CKM

RIM. UMTTSDO)
REAL C», GROUFH, DIST
INTECER METHOD, GROUPH, O l , OTXNT, OKH, TEMP
CO 170 1 - 1 , GO3UNT-1

L-I
DO 180 J - I , GOWK

IF (OOUPH(J) .LT. CÎOOPH(L)) IAT
CONTINUE

ELSE I f (METHOD . 3 2 . 3) THEN
MAX-LIMTTSd)
TEMP-WX
GHUH-0

250
00 240 I - l , GCOUNT

QNUMOIUM + 1
IF (GROUPN(I) .OT. TEMP) THEN

)
GR0UPN(I)«3<CUPN(I) - TEMP
WRITE ( 6 , * ) OI(GNUM), TEMP,
HSUtir-KDUNT * 1
TEMP-MAX
GOTO 2S0

ELSE IF (GHOUIN(I) . a . TEMP) TOEN

)
WRTTE <6,») « ( O U I ) ,GRCUPN(I) ,NREF((3JLW)
TEMP-TÏMP - GRDUPN(I)

EXSE

240

275

990

999

ENDIF
CONTINUE

ELSE

DO 27S 1 - 1 ,

GH(I)^3R
CONTINUE

ENDIF
DO 9 9 0 1 - 1 , MAX2

GROUPH(I)>«>.

CONTINUE
DÛ 9 9 5 1 - 1 , O U *

ŒHTINUE

RETURN
END

WRITE ( 6 , » ) GH(O)UM), TEMP,
WUOT.KOUNT + 1
TEMP-MAX

OJUM

CUPH(I)

SUEMUTINE <rHPUTE(I£GlRAN, 7ALUE, M, N, REVI, REU7)
PARAMETEH (MAXl-100, MMQ-2000)
COMHSM/BLK4/Z (MAXI, 2 )
INTEGER REVI,SEW

Z1-Z(N,REVI)

Z4-2(M,REVJ)
IF (LO3TRAN .SQ. 1) THEN

Zl-LOGIO(ZI)

GHQUm(L)-CÏ»3UPH(I)

180

170 CONTINUE
IF (METÍB0 .BQ. 1) THEN

CNUt-aWUPHiGCOUHT) / LDOTB(l) + 1
DO 220 1 - 1 , SMM

O i ( I ) - L I K n B ( l ) • I
220 COMTDUE

ELSE IF (METHOD .ES. 2) THEN

230

800
810

Z4-UX:iO(Z4)
ENDIF
IF (REVI .EQ. REUT) THEN

ZVALUE»(Z1 - Z 3 ) « 2
ELSE

ZVAIIŒXÏl - 13) * (Zl - Z4)
ENDIF
RETURN
END

SUBWOTDJE ACO)EC(HErH0D, NCH0IŒ, DIST, ZVALUE)
PARAMETER (MAÎQ-100, I«X2-2OOO)
O»tfW/HLlO/GR0UPH(»WÖ), GRCUPZ(MAX2). C3OÜPN(MAX2)
CatBH/BUa/GHÍMMO), GN(MWa), NREF(MAXÍ), SO3UNT, GNUM
QÎTEŒR METHOD, GSOURI, CM, OODUNT, (MM
REAL CH, (3CUIN, DIST
LOGICAL RUM)
DAI» T O L / 1 . 0 0 0 V
IF (NCHOICE -OS. 1) THEN

FOUND». FALSE.
H - l
DO SOO t*"l,GC0UNT

M-H
I F ((DIST .SE. CTOUPH(H)*(TOL-0.0002)) .AND.

I (DIST .ME. GKWPH(N) *TOL) ) THEN
FOUMKTJUE.

ccnn no
ENDIF

CCKTMJE
IF (.NOT. FCUO) THEN

* i
M-GCDUNT

I F (UMrTS(GNUM) .OT. 0) THEN
GH (SUM; - U K C T S (GNUM)

auMUi + i
GOTO 230

ENDIF
OUfrCMJM - 1

750
760

ENDIF
<3ioUFH(M)«aanw(M) * i

ELSE IF (MEM» .EQ. 3) THEN
DO 750 N- l , O U )

M-N
IF ((DIST . 1 1 . GH(Nl) .AND. (GN(N).NE.O)) GOTO 760

CONTINUE
SVURKWCFnni^aajPHfNREFtM)) + DIST

Z(NBIT(M))*3RDUPZ(NREF(M)) f ZVAUJE
))3PN(NI)EF(M)) 1

Fig. 2. Souro cod» listing for VARIO (continuad).
GN(M)-OKM) - I

IF (Knr(oai) .or. SOOUNT)

I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
I
I
1
I



ELSE

770

780

DO 770 N» l , GOOUNT

IF (DIST .LT. Of(N)) GOTO 780
OONTINUE

(3*»FH(M)*3*XJFH(M) + DIST

GROUFZ(M)=<3BUPZ(M) + ZVALUE

ENDIF

RETURN

END

610

630

630

640

650

££0

ERROR (NUM)

INTHSS MJM

:F (MUM .S3. 1) THEN

WHITE (*,S10)

ELSE IF (NUM .32. Ï) THEN

WRITE (*,.620)

ELSE IF (NUN ,EQ. 3) THEN

WRITE (*,630)

ELSE IF (NUM .BO.. 4) THEN

WRITE («,640)

ELSE IF (NUM .EQ- 5) THEM

WRITE (*,6SO)

ELSE

WRTTE (*,660)

ENDIF

roawr c £«WRAM ABORTED - INVALID DIMENSION GIVEN1)
FORMAT ( ' PROGRAM ABORTED - EXCEED ARRAY' ' S LIMITS' )
FORMAT ( ' PROGRAM ABORTED - INVALID OOLUMNS GIVEN1)
FORMAT ( ' PRCÛRAH ABORTED - INVALID CODE FOR NATURAL LOGARITHM',

1 OPERATION1)
PROGRAM ABORTED - INVALID CDOE FOR GR0UPIN3 OPERATION' )
ÎU0GRAM ABORTED - n r r - r m DECREE BOUNDS')

FOtWAT ( '
FOBWT ( '
STOP
END

Fig. 2. Source code listing for VARIO.

listing is in Figure 2. All program control informa-
tion is passed to VARIO through the argument list
in the calling statement. The dimension of the
problem is specified with the integer variable DIM.
The direction for which the semivariogram is to be
computed is specified by the real variables
ALPHA (= a-, in Theory section and in Figure 1),
DALPHA (= Aa), BETA (= j3), and DBETA (* A/3).

REVI and REVJ are used to specify the
column numbers (on the input data file) that
correspond to the regionalized variable (s) to be
used in the semivariogram calculations. If
REVI = REVJ, then a direct-semivariogram will be
computed. If REVI # REVJ, then a cross-semi-
variogram will be computed. For example, if
REVI = REVJ = 2, a direct-semivariogram will be
computed for the regionalized variable that corre-
sponds to the second column of the input data file.
If REVI = 1 and REVJ = 3, a cross-semivariogram
will be computed for the pair of regionalized
variables that corresponds with thé first and third
columns of the input data file. LOGTRAN indicates
if the semivariograms are to be computed using
the natural logarithm of the values of the regional-
ized variable (s). METHOD is used to specify the
grouping method to use for I h I. If METHOD - 1,
then method 1 (described in Theory section) will
be used. The interval size for h is specified by the
value of LIMITSU). If METHOD = 2, then
method 2 will be used. The interval sizes for h for
each group are specified by the values of LIMITS (1)

to LIMITS (30). If METHOD = 3, then method 3
will be used. The number of pairs of sample points
to place in each group is specified by the value of
LIMITS (1). If METHOD = 4, then method 4 will
be used and the array LIMITS is not used.

VARIO reads the coordinates of the sample
points and the measured values of the regionalized
variable (s) for each sample point from the data file
specified by the character variable "INFILE".
VARIO reads data from INFILE using "free-
format" FORTRAN read statements. The form
this data file should be in for one-, two-, and three-
dimensional problems is shown in Figure 3. The
computed semivariograms are written to the data
file specified by the character variable "OUTFILE".
The two character variables TITLE1 and TITLE2
are used to label the output data file.

Example input data for VARIO are given in
Tables 2 and 3. The first example is for a two-
dimensional problem (DIM=2) used as an example
by Clark (1979). Direct-scmivariograms are com-
puted for three directions (a = 0°, 45°, and 90°)
for a single regionalized variable. The results shown
in Table 4 are for grouping method 1. The average
value of lh01, the number of pairs of measurement
points, and the value of -y¡j(ao. Bo, lh01), labeled
GAMMA(H) on the output file, are computed for •
each group.

The second example is a three-dimensional

DIM * I

X u ( l ) Z( l , l )

X u ( 2 ) Z(2,l)

* •
* 9

XU{NX) Z(NX,I)

• Z(I,IO)

• Z(2,IO)

• Z(NX.IO)

DIM • * 2

xud)
Xu(2)

•

•

Xy(NX)

Xv(l)

Xv(2)
»
•
•

XV(NX)

Z(l,l

Z(2,l
*

*

*

Z(NX

) * *

) * *

• Z(I,IO)

• Z(2,IO)

«

• Z(NX,IO)

01M - 3

Xu(l)

Xu(2)
•

XU(NX)

Xv(l)

Xv(2)

XV(NX)

XW(D

Xw(2)
*

XW(NX)

Z(l,l

Z(2.
*

Z(NX

• • • 2(1.10)

• Z(2.IO)
*

• Z(NXJO)

Fig. 3. Input dan fila structure for VARIO.



Table 2. Example Input Data* for VARIO for a
Two-Dimensional Problem (DIM=tt2)

*u. ft xv. ft Fe, xu. ft xv. ft Fe,

0
100
200
400
600
700
800

0
100
200
300
400
500
600
700
800

0
100
300
400
500
600
700

0

0
0
0
0
0
0
0

100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
300

38
37
35
30
29
30
32

• 36
35
36
35
34
33
32
29
28
35
38
35
37
36
36
35
37

100
200
300
400
500
600
700
800

0
200
300
400
500
600
700
800

0
200
300
400
500
600
700

300
300
300
300
300
300
300
300
400
400
400
400
400
400
400
400
500
500
500
500
500
500
500

37
37
35
38
37
37
33
34
42
43
42
39
39
41
40
38
44
40
42
40
39
37
36

Table 3. Example Input Data for VARIO for a
Three-Dimensional Problem (DIM-3)

xv x w Bromide Chloride Bromoform
. m g/m

3 _ - -

0.0 0.0

0.0

1.0

1.0

1.0

2.0

3.0

2.0 4.0

2.0 5.0

2.9
2.5
2.3
2.1

3.1
2.9
2.7
2.3

3.0
2.8
2.6
2.2

3.0
2.8
2.6
2.2
1.6

2.7
2.3
1.5

2.7
2.5
2.3
2.1
1.7

82
178
96

4

0
165
212
147

103
177
210

30

0
151

76
5

174

2
2
0

118
186
165

8
10

240
579
267

34

3
553
570
472

315
558
663

95

3
472
230

25
582

6
5
2

348
632
520

58
28

27.2
24.8

3.1
0.1

0.0
0.4

31.9
4.1

0.0
23.0
20.0
0.4

0.1
4.2
3.4
0.1

13.9

1.4
0.1
0.1

0.1
9.5
3.6
0.1
0.1

problem (DIM=3). Cross-semivariograms are
computed for two pairs of regionalized variables.
In both cases, the regionalization is considered to
be isotropic. The results shown in Table 5 were
calculated using grouping method 1, and the results
shown in Table 6 were calculated using grouping
method 3.

Summary
A general procedure is presented for calcu-

lating direct- and cross-semivariograms, from a set
of sample data, for any specified direction in one-,
two-, or three-dimensional space. Four different
algorithms are presented for combining sample
pairs into groups, and these should handle most
problems that occur in practice. A FORTRAN
subroutine is presented for implementing the
procedure on any computer that supports a

Table 4. Output from VARIO for Example
Input Data in Table 2

TWO-DIMENSIONAL EXAMPLE GIVEN IN CLARK (1979)

INPUT DATA FILE: TABLE2
SPECIFIED DIRECTION:

ALPHA • .00 BETA
DALPHA • .00 DBETA

DIMENSIONS: 2

.00

.00

DIRSCT-SEMIVARIOGRAM FOR REGIONALIZED VARIABLE 1

GROUP
NO.

AVERAGE
H

NO. OF
PAIRS GAMMA!H)

1
2
3
4
S
6
7
8

1 0 0 . 0 0
2 0 0 . 0 0
3 0 0 . 0 0
400 .00
500 .00
600 .00
700 .00
800 .00

TWO-DIMENSIONAL EXAMPLE

INPUT DATA FILE: TABLE2
SPECIFIED DIRECTION:

ALPHA
DALPHA

• 9 0 . 0 0
.00

36
33
27
23
17
14

9
4

GIVEN IN

BETA
DBETA

1 . 4 6
3 . 3 0
4 . 3 1
S . 7 0
8 . 8 8

1 3 . 0 4
1 5 . 56
1 5 . 6 3

CLARK ( 1 9 7 9 )

DIMENSIONS;

• . 0 0
• . 0 0

DIRECT-SEMIVARIOGRAM FOR REGIONALIZED VARIABLE 1

GROUP
NO.

AVERAGE
H

NO. OF
PAIRS GAMMA(H)

1
2
3
4
5

100.00
200.00
300.00
400.00
500.00

36
27
21
13

S

S.3S
9.87

18.88
27.54
26.10

TWO-DIMENSIONAL EXAMPLE GIVEN IN CLARK (1979)

INPUT DATA FILE: TABLE2 DIMENSIONS:
SPECIFIED DIRECTION:

ALPHA • 45.00 BETA • .00
DALPHA • 1.00 DBETA • .00

DIRECT-SEMIVARIOORAM FOR REGIONALIZED VARIABLE 1

GROUP
NO.

AVERAGE
H

NO. OF
PAIRS GAMMA(H)

141.42
282.84
424.26
SÍS.69
707.11

31
22
14
8
3

.89

.89

.54

.69

.33



Table 5. Output from VARIO for Example
Input Data in Table 3

THREE-DIMENSIONAL EXAMPLE

INPUT DATA FILE: TABLE 3
SPECIFIED DIRECTION

ALPHA •
DALPHA •

CROSS-SEMI VARIOGRAM

.00
180.00

BETA •
DBETA •

FOR REGIONALIZED

GROUP AVERAGE
NO.

1
2
3
4
5
6
7
3
9
10
11
12
13
14
15
IS
17
IS
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

H

.20

.40

.SO

.80
1.00
1.04
1.17
1.28
1.40
1.44
1.57
1.68
1.77
1.92
2.06
2.26
2.34
2.45
2.S9
2.S9
5.17
3.23
¡.35
).42
1.64
.80
1.87
1.94
.48
.54
.67
5.39
S.43
1.52

NO. OF
PAIRS

11
12
7
6

10
21
12
5
I

25
7
1
3
1
1

48
11
9
3
2

18
19
1
2
9
1
1
1
16
13
3

14
5
1

DIMENSIONS: 3

.00
180.00

VARIABLES 1 ANO 2

GAMMA(H)

13599.23
22309.46
24103.71
17290.92
16162.55
22529.24
19155.54
22555.30
50373.00
17112.40
14918.36
1380.00

22559.50
35485,00

.00
22159.15
19731.18
14242.39
164Í7.17
33246.2S
10673.75
20348.63
44255.00
14538.75
34442.22
60208.00
45457.50

.00
12864.63
27013.23
16856.83
14496.43
18562.60
7632.00

FORTRAN 77 compiler. Copies of VARIO, and an
example main program and data files can be
obtained by sending a formatted 5'/i-inch floppy
diskette (360 Kb format) to the senior author.
Future papers will present procedures and sub-
routines that use the experimental semivariograms
computed by VARIO to fit theoretical semi-
variogram models, to calculate extension variances,
and for kriging and cokriging. It is hoped that the

Table 6. Output from VARIO for Example
Input Data in Table 3

THREE-DIMCMSIONAL EXAMPLE

INPUT DATA FILE; TABLI 3
SPECIFIED DIRECTION:

ALPHA > .00
DALPHA > 180.00

DIMENSIONS :

BETA
DBETA

.00
180.00

CROSS-SEMIVARIOQRAM FOR REGIONALIZED VARIABLES 1 AMD 3

GROUP
NO.

AVERAGE
H

NO. OF
PAIRS GAMMA(H)

1
2
3
4
S
6
7
8
9
10

.37

.97
1.22
1.50
2.21
2.30
2.81
3.29
4.29
5.13

30
30
30
30
30
30
30
30
30
30

569.83
417.80
489.81
477.45
384.58
641.21
4S4.69
638.87
698.03
450.4$

increased availability of programs and subroutines
for geostatistical analysis will encourage the more
widespread use of these methods by practicing
ground-water hydrologists.
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Unsaturated Zone



COMPUTER
NOTES

AGALERKIN FINITE-ELEMENT PROGRAM
FOR SIMULATING UNSATURATED FLOW
IN POROUS MEDIA

by R. Khaleela and T.-C. Yehb

Abstract. A fully documented Galerkin finite-element
FORTRAN program is presented for solving che one-
dimensional, transient flow equation in unsaturated porous
media. Material balance error summaries are presented to
demonsrrate accuracy of the numerical scheme. Compari-
son of our simulated results with other existing numerical
solutions using the Galerkin scheme provided excellent
agreement.

Introduction
Ifnsaturared flow typically involves nonuni-

form, time-dependent moisture contents and flow
fields. The partial differential equation governing
unsaturated flow in porous media is nonlinear, and
is not readily amenable to accurate analytical solu-
tions. In recent years, the Galerkin finite-element
technique has been used to solve the transient,
unsaturated flow equation (e.g., Neuman, 1973;
van Genuchten, 1978; Yeh, 1981; Huyakorn and
Finder, 1983). In the Galerkin approach, the
dependent variable-the pressure head-is approxi-
mated by a series of basis (or shape) functions and
associated time-dependent coefficients. The
approximating series arc then substituted into the
governing equations and the resulting errors
(residuals) minimized through the use of weighted-
residual theorems (Zienkiewicz, 1977). The
integral equations derived in this manner are
evaluated using the finite-element method of
discretization, resulting in a set of (quasi)-lincar

equations which can be solved using appropriate
matrix equation solvers.

In this paper, a Galerkin finite-element
solution of one-dimensional unsaturated flow
equation is developed using linear basis or shape
functions. A fully documented listing of the
FORTRAN program is provided. Material balance
error summaries are presented to demonstrate
accuracy of the numerical scheme. Results
obtained using our program are compared with
other existing numerical solutions.

Numerical Model
The pressure head form of the differential

equation describing one-dimensional, vertical flow
of water in an unsaturated homogeneous and
isotropic soil profile, can be written as;

1-
3z

— (* - z)] - C
dz

*W~- = 0
9t

(1)

where £. is the differential operator defined in the
flow region; 4> is the pressure head, L; K(i/>) is the
hydraulic conductivity, LT*1; C*(\¡>) = dô/d^ is the
specific water capacity, L"1; 0(4/) is the volumetric
water content; z is cartesian coordinate (positive in
the downward direction), L; and t is time, T. Both
i// and K are assumed to be single-valued function
of d.

The initial conditions are

a Assistant Professor of Hydrology, Department of
Geoscience, New Mexico Institute of Mining and
Technology, Socorro, New Mexico 87801.

b Assistant Professor, Department of Environmental
Sciences, University of Virginia, Charlottesville, Virginia
22903.

Received July 1984, accepted September 1984.
Discussion open until July 1, 1985.

and the boundary conditions are the usual
Dirichlet (constant pressure) and Neuman (flux
type) conditions:

and

, t) = , t) onr, (3a)

— - l ) n ¡ + q f j ( z , t) = 0 on r2 (3b)

90 Vol. 23, No. 1-GROUND WATER-January-February 1985



f- where f, + V2 = V, the boundary of the region;
* qp is the surface flux prescribed along the
i Neuman boundary P2; and n¡ is the unit outward

normal on P2.
The finite-element equations are formulated

using the Galerkin technique (Nieuman et al., 1974).
A trial function can be selected of the form

<Hz, t )« *i(t)Nj(z) (4)

where N¡ are the element shape functions; i//¡ are
undetermined coefficients which become the nodal
values of the function \jj ; and n is the total number
of nodes in the finite-element grid system. For a
one-dimensional linear element e, the shape
functions are

and

(5a)

(5b)

where Le is the length of element e. Upon substi-
tuting the trial function (4) into (1) and setting the
resulting residual orthogonal to all N¡'s, one
obtains a set of n integral equations in the flow
domain n •.

ƒ £ U ) N ¡ dz = O i = 1 , 2 n (6)

which, upon integration by parts on the second
derivative term in (6), can be solved for the
unknowns \¡/\.

A functional representation is used to express
the variable parameters K and C within a linear
element with two nodes, as weighted averages of
the corresponding nodal values of the element.

and

K(z ) - .2
8 = 1

C*(z) = £

The same shape functions as those of the trial
function (4) are used here. The final finite-element
equations are written in the matrix form as

at
(8)

where for a typical one-dimensional linear clement
e, the elements of the matrices and the right-hand
vector in (8) are:

•§ ƒ 2 N« l c'TT-n l < k'Tn
I

ƒ I
Le e=l az

(8a)

(8b)

d z - J N¡q r dr . (8c)

r2
Because of the nonlinear nature of the differ-

ential equation, the solution is iterative at each
time step. Using a time weighting factor e, where
0< e < 1, equation (8) is discretized in time as

At*
(9)

where k indicates a point tk in time, and
Atk = t k + 1 - tk. The matrix [B] in (8) is
diagonalized by a procedure known as "lumping."
According to this procedure, we calculate the
elements in [B] as

bf. = ƒ I
11 L c 2=1

bf j -0

(10a)

(10b)

Experience indicates that a stable solution is
obtained with the lumped mass matrix. A lumping
procedure similar to that just described was
successfully applied by Neuman (1973) to a
number of seepage problems.

Following the mass lumping procedure for
matrix [B] and performing necessary integrations,
the element matrix for an interior element
becomes;

(7a) _í_

(7b)
Le rcr/3 +c?/6 o
Ãt L O Cf/6+C?/3

2Le L-ÍK.+K,) (K.+K

Le rcr /3 +C?/6 O
At L O Cr/6+C?/3

(K,+K2)/2
(11)
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The variable coefficients in (9) are evaluated
at one-half the time step. At the beginning of the

iteration, estimates of ^+¥l are obtained by linear
extrapolation:

(12)

These are used in determining the variable
parameters K (<//), 9(\¡/), and C*(i//); and in updating
coefficient matrices [A], [B], and the right-hand
vector {F} in (9). A tridiagonal system of linear
algebraic equations is generated at each iteration
and solved for ^+1 at all nodes by gaussian
elimination (Carnahan et ai, 1969). Due to the
nonlinear nature of (9), these estimates for ^ + 1

must be improved (Neuman et ai, 1974). At each
iteration, an improved estimate of ójt+!'! is
obtained by averaging the most recent estimate of
i//^1 with (¿H, the value obtained in the previous
rime step:

(13)

After having reevaluated K(<p), 0(i¿), and C*(i//)
based on ^+l/¡- and coefficient matrices [A], [B],
and right-hand vector {F}, equation (9) is again
solved for improved estimates of lÂ "1"1. The
iterative procedure is continued until the relative
change in pressure head between two successive
iterations is within a prescribed tolerance.

Computer Program
The computer program is written in

FORTRAN for the DEC 2060 computer at New
Mexico Tech computer center. A reprint of the
prpgram used in solving an infiltration problem
(Warrick et ai, 1971 ) is given in Appendix A.

The FORTRAN code consists of a main
program and eight subroutines. The main program
accepts the input data and governs the sequence of
operations to be performed. Initial segment of the
main program (up to statement number 169)
controls the type of input data, their sequence, and
printing. Actual simulation of the problem starts at
statement 179 (LA is simply an integer number to
indicate simulation increments). Equation (12) is
programmed in statement 195, whereas equation
(13) is programmed in statement 329.

The iterative segment of the program for
solving the nonlinear equations starts at statement
203. In statements 207 through 251, we set up the

individual matrix elements [equation (11)] . The
RH arrays are generated for use in the MATBAL
subroutine.

After assembly of individual matrices, the
'global matrices are formed in statements 257
through 305. The program, in its present form, can
handle two types of boundary conditions: (1) a
constant pressure boundary, and (2) a constant
flux boundary. The global matrix for the interior
nodes is formulated in statements 276 through
285. The global matrix for the top boundary
condition is formulated in statements 257 through
272. For the lower boundary condition, the global
matrix is formulated in statements 289 through
305.

The variable time step size used during simula-
tion is calculated in statements 360 through 367.
At each time step, the equation for calculating At
is given by

Atk+1 =

and is programmed in statement 364. The variables
TOL, DELZ, and Q(l) are defined in the initial
segment of the main program. The variable ek is
defined as

- max
i

and is programmed in statements 313 through 319.
Subroutine INTERP is used to linearly inter-

polate for values in the soil hydraulic properties. It
is used only when the parameter INT equals 1.
When INT = 0, functional relationships are used to
describe the soil hydraulic properties.

The five functional subroutines FNCTP,
FNCPT, FNCZT, FNCPK, and FNCPC are used to
obtain, respectively, (1) pressure head \¡i given
moisture content $, (2) moisture content d given
pressure head <p, (3) 8 as a function oí the depth Z
for the initial condition, (4) hydraulic conductivity
K as a function of i//, and (5) water capacity C* as
a function of ^.

Subroutine TRIDIA is used to solve the tri-
diagonal system of equations generated by
equation (9). It is adapted from a similar sub-
routine given by Carnahan et al, (1969). The arrays
A, B, C, and D formulated in statements 257
through 305 during global assembly procedure are
inputs to the TRIDIA subroutine. The solution
vector of \¡/ values is contained in array ANS and
returned to the main program.
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The material balance errors are calculated in
subroutine MATBAL. Both differential and
cumulative material balance errors are calculated at
each time step. The equations used in MATBAL to
calculate inflow, outflow, and change in storage are
developed following equation (11).

Application
Our computer code was used co solve the

infiltration flow problem as described by Warrick
stal, (1971). Other finite-element solutions for
this particular problem are available (van
Genuchten, 1978). Our simulation results could
therefore be compared with those of van
Genuchten.

Warrick et al. (1971) obtained experimental
data from a 6.1-m by 6.1-m square field plot of
Panoche clay loam having an approximate initial
water content of 0.20. The soil was wetted with
7.62 cm of 0.20 N CaCK solution, followed
immediately by tracer-free water. The total
infiltration time was 17.5 hours.

Functional relationships (INT = 0) for d, </<,
K, and C*(</0 were given by van Genuchten (1978)
for Panoche clay loam soil (Warrick et al., 1971).

0.6829-0.09524 2n 1

0.45 3 1-0.02732 Ín I

1, \¡/<- 29.484

-29.484< ¿ <-14,495

. . . . ( 1 4 a )

•¿(0)
-1300exp (-10.5 0), 9 < .3606

-1.59XlO7exp(-36.ó0),0>.36O6 (14b)

19.34X1O5 I0I"3-4095, i//<-29.484

51ó.8li¿r°-97814,-29.484<i/><~14.495(14c)

0.09524/1^1, il <-29.484

0.02732/ l iR-29.484<(/<<- 14.495 (14d)

where the hydraulic conductivity, K is in cm/day,
and the pressure head, 4) is in cm.

The initial and boundary conditions are as
follows:

O.15+O.OOO8333 z, 0 < z < 6 0

0.2000 6 0 < z < 1 2 5 (15a)

¿(0,t) =-14.495 Ôo = O.38 (15b)

¿(125, t) =-159.19 0e.= O.2O (15c)

where the distance z is in cm; and time t is in days.
The following were the input data (main

program, Appendix A) for our test problem:

Interpolation parameter, INT = 0;

Saturated hydraulic conductivity, KSAT = 37.8
cm/day;

Saturated moisture content, POR = 0.38;

Total number of nodes, NODES =51;

Spatial increment, DELZ = 2.5 cm;

Initial time step size, DELT = 1 sec;

Convergence criterion, TOL = 0.01;

Time weighting factor, EPS = 0.5;

Maximum iterations during a time step, MAXIT = 10;

Maximum size of time step, DELMAX = 1000 sec.

The variables NP and NPT (main program.
Appendix A) were given dummy integer values
when the parameter INT = 0. For node 1, the
boundary conditions were given by: type of
boundary condition, NBC(l) = 0, the pressure head
value, BCQ) = -14.495 cm, and Q(l) = 0. For
node 51, the boundary conditions were:
NBC(51)»0, BC(51) =-159.19 cm, and
Q(5'l) = 0. The initial conditions were provided by
calling subroutines FNCZT and FNCTP.

Figure 1 is a comparison of water content
profiles obtained using our unsaturated flow

MOISTURE CONTENT

0.2 0.3 0.4

2 0 -

4 0 -

6 0 -

È 80

1OO-
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Fig. 1, Moisture contant profiles at two and nine hours for
the Panoche clay loam soil (Warricketa/., 1971);
Az • 2.S cm and e • 0.5.



program with chose obtained by van Genuchren
(1978) using his mass-lumped linear finite-element
(MFE) program for the Panoche clay loam soil. As
discussed earlier, a variable time increment size was
used during simulation. A total of 86 time steps
were needed for the nine-hour simulation.
Frequently it required no more than four or five
iterations to converge to a relative pressure head
tolerance value of 0.01; at no time did it require
more than seven iterations. As suggested by
equation (14d), there isa discontinuity in C(i//) at
\¡/ = -29.484 cm. However, these same functional
relationships (14) were also used by van Genuchten
(1978). An indication of accuracy of our numerical
results is given by the material balance error
analysis. The cumulative material balance error at
the end of the nine-hour simulation was of the
order of 10*5 percent of the total inflow rare. We
used a single precision in our computer code; use
of double precision would have further improved
these errors. Our numerical results are nearly
identical to those of van Genuchten (1978); the
two solutions were indistinguishable from each
other on the plots (Figure 1). However, this is to
be expected since both our and van Genuchten's
method used identical numerical schemes.
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Appendix A. A Finite-Element Program
to Simulate Unsaturated Flow

00200
00)00

00400
00600

aos oo
00400
OLOOO
f iUOO
0L200
ÛL30Û
0L4OO

31*00
31 "DO
31800
3 1400
3Ï0QQ
12U0
92190
3 2100
12400

0Í3OO

c
c
c
c
c
c
c
c.
• -

c
c
c
c
£

c
c

c

THtS ÍS A f t t I T í ÍL^MCNT ?MGRAH TO SIMULAT*
Oít l -DÍ SESSIONAL UNSATURATED FLOW,

rXPV [NTORHATIOH:

ÍEPORC EXFCÜTIHO THIS PROCHAH. VOU 3HQULO CREA** AN INPUT
FILE ¿MICH CONSISTS OF THE ?OLLO*ítNq;

i l l SO[L "YPE HAHE [NOT TO KXCE^n LU CHARACTERS)

(2t FUNCTIONAL uELATmNS OR TABULAft ÎNPUT

[ y » . - , g FUNCTIONAL REUTtOHSHlPS USED FO
WISTURE CHARACTERÍSTÍC CUflvTS

L TABULAR INPUT DATA

(1) HYDRAULIC ÍOMDUCTlVI-Y ANO SUCTIO* tELATÍOHSMtP
(NP AND KSATt

SP HO. OF ?HI-!( "AIR
«SAT—SATURATED HYDR.AÜMC CONDUCîVTTY

HOTEt! XP SHOULD <4E IN A DEHCÏtfOtiG 0ft06»
•IJOOQ
QJL30
S] ¿00
1)100
.1J400
OHIO
0)600
0Î7O0
•11BÛ0
Ûi'00
•H001
34L00
0*20(1
04100
11400

04700
04900
34400

(M SOIL WJTSTURE RE'VUTION 3Af \ ( Xpp AND ÎTt i ï I

NOTE!! Xf»F 3rtOLÛ >íE tu A ,

Dt L T - - * r HE t V^ERVA L

ÏPÎ TIME '

TOP SO(JHDARY

31 ; , -FyjX Fr>R FLUX I

OOUtLK f R t C t S I O i ' lA.ie. FIL?4
HEAL KJAt, L

06100
O64O0

06600

369Û0
36400
Q7OOO
37 LOO
97ÏOO
3Î1O0
37400

,17 ÍOO
07790
17ÍIÜD
J 7 < l 00
0*000

08)00
0*400

08A00
04700
QBSOO
01400
0*000

a4ïoö
04 100
04400
04400
04400
04700

04QOO

10000
10 LOO
ifllOO
10100
10400
L3'00

LQ7Q0
L1XQ0
10100

nooo
uion

1

'.JOL

2

1.Û0Î

'.001
10
T-0

c
c

'.00 4

c
c

sms • : .

DATA -.

WR : " T «
FORMA1

ft'ADC

d ) r ? S I H f t L1 ,-tnC ' 21 , K ' 3 ! , J ! : ' , ? » ' 1 l i . 5 ^ l 2 , Ï . S l i t

, 2 • S 11 . R ! 2 , S L ! , TPS I l S L ! , ^ m i , * , M i

I 5ELT , DÇL7 , »FS , NODES . - w i n , TwOuT. "-WHN . -^WJT, WS , HÎ I , W

• T Í I N . T W H í ^ . ^ W E M . T W T j W S . í í I S / a l f 3 . , O . f r t , r 3 . , 0 . /

1 *• F LI
" I " " , ' I1PUT p I ^ K NAftE IN ALO'1
Í .Z1 FILM

OPE1 Î ( IJNIT»6,FTLE* IHARRtCl t . I ÎAT* . ACCtS^ - ' SCQIN ' -DEVICE»'OS
4EADI4
FORMAI
WRtTÏ1

RfTAO ! *,

P,3 INAH(
MALO)
Ï4PRT, LOO I 1 NAWt

' I 1 ' , L Q X . M ' - ' ) .ALO, 'SOIL PROPERTIES " , I'M ' - ' ' / / 1
i , M TNt

RCAO SOIL PROPERTtTS

REAO (4
IP ' "^
1ÎRITÏ '
FORMAL
DO : ;

riRlTf1

REAO f *.
I» 'IS

FORMAT
DO : :
READ (4

W R I T l l

i, • )NP,USAT
t T . EQ. Oí CO TO 770
Ü1PRT, I O I I 1
P C * , l a x , m i ' - 1 1 . ' F « r * . u t 1 - * 1 . ' M ' , i n c - • 1 , / / )

• *Xp [ 1 1
N P R T , L 0 Q 1 I X P f l ) f X R { I >

PC ' , i q » , 2 B I S . Î I

me

I t A « TRETA Rí t .At lOü

iF•1Npp,pftR
IT .EO, 01 SO Tfl 772
NPR*,L0041

' C ' ,f , LflXF L Û C - ' 1 , ' P i t ' . L 1 C - ' 1 , 'TMETA' , 1 1 c - 1 ) . /
I -L .UPT

u ' l X P H I I .XTKCtl)

smr.LOOD Xf»(Tf .XTHUI)

cnrs^ttt

UNE Pftt AND V)(imite CAPACITY RCLATtOHSNI*

94



L1200
HlOO
LL4OO
LLSflO

1 UOO
L I ' ( I O

u n o

12100
L2200
L 2 100
L2400

L2700

12400
LJOOO
L 31 rio
1.1200

L3Î00
LJ40Q

L 3600
L1700
11900
LJ400

1.H00
L4200
L4100
H*O*1
L 4 SOQ

14600
14700

14300
HÖO0
L "1 ' n 0
LiîOO

[I'll
1*600
H70Q
t í 400
_ s »* n il
L^OOO
1*1 OQ

16100
16400

1*7 OÙ
11*404
.4400

.UÛ0

17400
.7^00
. ' Í 00

, HOO
17400
LflOOO
ISLOO
L1200
• .moo

.9400

.1700

.iflOO
19400

LÍ 100
.4400
L4100
.4(00

.9800

20000
: ÎLOO
2O2DO
20100

C

LOI)

10
772
C

c
c

u

J5

402

404

40

1004

C

C
c
c

LOOÚ

L030

C

C

LOO

900

WRITE (T lpRT, 10 11 )
fOBMA^f • ' , / , ; o x , i a í ' - ' i , • p a r ' , 10 f ' - ' i ( • c ' l O f - ' i
N P C - N P T ' L
0 0 10 I - l . i p C
XCf í I • ( X T H Í ( I ) -XTHE ( T * L i 1 / ' X P * ( I I ~ X P P ( I * - 1 > )

i í H I T Í INPUT, LOOS I X P f ï l , XC 1 11

CClatTlNlJl!

READ °ARAMETSftS

SEA0 ( S . • i NOOSS , DEL?., 3ELT , TMAX ,TOL ,EP3 , MAX I T , fiKLMAX

1 ' ,L<1X.' I E L * - ' . F I S . 1 ! , / , U K , ' DELT- " . F 1 4 . 1 . / ,
H I , 1 TrtAX» ' . F l ^ - i , - , UX,'TOLERANCE- ' . F L 4 . Î , / ,
U S * ' TIME HEl5H'lF*q FACTOR. EPS - ' , P 1 4 , 5 , / ,
L1X, - MAXIT- ' , E 4 F / , U X , ' MAXIMUM D E L T * ' , F I S . S , / .
V l LX, ' BOUNDARY CONDITIONS ' ,
L3X, ' « O í 1 , 1 TYPE ' , ' PSI * , ' 0 M

»i£Le«-«ODBl"1

^SLÍML^HLEM- l

1 CTÍAL CQNDITt AMO 9ÛUNOA*r -ONOI ION
00 J * 1*1,3
M- L
IF ( I , *!3, Í1 y*MOQES
REACH Í . • IMBCf l l , 9 C m ,3(11
WRITÍ (NPRT, IL) ^ . - Í K I I I . ïC f 11 ,3 (1 )

rf«tTE(NPRT,lOOai

3"0 .
IF1 ( I«T . £ 0 , 11 CO TO 96
DO 40 2 [ -2 , **00í L
T»**OÍL!Í
CALL FNC3T (3.THETA)
ÍALL FMCTP (TMRTA.PSI ( I H
CONTINU5
30 TO 104

OO 40 I*2,NODE|.

•TP9Î ( I I -PPSI ( I t
CONfîNUE
WR[TÍ INPRT, LdOíl l t ( í H l l l , I - L . í JO0 tS l
FORMAT(4(14.F1Ú. I l I

SIMULATION STARTS HERE

L,*E*0 '°

•^ÏHt LOOP

CONTINUE
LA-LA+l
Trf iE-TtMt*OELT
WRITeiHPH"1", 1030ITIME
fOWlATC • , / , L0( ' - ' I , 'SIWLATfOW TIME - ' , 7. L l . *>, LO ( ' - •
/ / l

-WUT-TWOUT

: F I L A . C T . ' L > Tn-r-fO.-i*OELT/0Tl
00 LOO t-L,MOORS
r F ( LA . ST . 11 ù-; ( H( t 1 «PPS K l ) *DTT» ( FPSI ( I | -TPS l i t ) )
I F ( L A , L f f , H P3 IH( I l»PPgr ( I |

ÎT fH-0

tTÎRA+tO" LOOP

CONTINUE
[TER-(TER*l

00O
100
2OO
100
400
HQ0

soo
700
SOO

*00
600
700
400
2400
OOÔ
LOO

¿1-0,0
C2-0.0
IF il*** .",0

IF ( PS t H f K > ,

00 ?O 7flî
CONTIfÎUt
IF (pSIrt l l t l
IF P*[H<K-

Lf.Û.

, LT .0
U .LT
.r.T.0

GO TO 7 fa

OtCALL INTERP(YP

.OlCALL F*lCPK(FS
. 0 . 0 ) C A L L F N C P K (
.OlCALC, FWC»C ÍPS

IH(K) ,XK 1

,1111

,c:i

l.W)

XX2-XX2-K3AT

SETFRMIXC tHOtVlOÜAL ELEHENT5 I'd EACH ELEMENT

«ML-'JtltL + Klt l l -Û.Î / t ,

A2L-AL2

ÎÎÏO0
13400

24700
24DOO
24*00
JlOOO
2)100
Ï1300
2)100
24400

moo

0, V IXXUXK2I
B

Assente Ttit ELRHEITT sTtFrnns MATRICES IMTO A OLO*AL

TOP BOUNDARY COrtDITfON

JÍ70D

^400

6100
R100

'S10.1
6 400
6S00

COHSTAN11 fLJX ?nUNOA«Y COHOtTtl1!*!

A f l t * Î P ( l . 1 . 1 )
S I U - S F I l . 2 . 1 1
O C , - 1 H Ç ( l , 1 . I l

iiil

¿TOOI
itiO'
!

27750
17300

28000
29190

2IJ00
2^400

21700 C
29(00 C

Z*ÛOO "

24)00

2Ï100
!1S00

¡0000
10100
10200
ÎO1OO
1D400
J0100

10100

uooo
JUOO
11200
HJ00
J14O0

31A00
11700
11900

12000
'l ! 100
12 200
!!)00
1240»

32^00 C
12700 C
13)00
12S00
1)000
11100 1^0
11200
131O0
1)400

'11 **HSH,2, li *PPSt !2i -Rd, ;i *Q( '. i

HT COHOtTIIW

1010

U J U

11AO0 100
Î17Q0
moo
n»oo
14000
14100
14 200
14100
14400

14700
14IO0

moo
11400

moo
)6QO0

is ion
)«2Q4
lilOO
19400
ifiAOfl
S700

70U-J
7100
7200
7)00
7 400
7100
7900

17100
)7100

>*:oo
19400
34100
19900
19 700

istoo
14000

11100
14400
imoi)
14900
H700
19900
144(10

40100

OO 210 KaL,1El£*l

A l d l . S F C . l . l t )

SS-HH5I2.2 .H.HHÜ1.1 .R1)
n-HHS(L,l ,KLI
O(K1I-»A-?PSIIIII.S«-PPSI[
coMTiityt

MWIP ISUKOAKT

t P ! N B C { 2 1 . E O . O I GOTO 2fiO

ÏO^S*A(4T TLUX 3OUMDARY ZOHOtTtOI

»i«oom-îPi2,;,Mrt.e>il
S{«0r)C31-5Pf2i2.'(f!t.£Ml
D|NO0tS)'4H?12,L,"ELEMt *PP31 ffODE!
••P3I mooeSl-p.l2,:IEI.im-«l2l
GOTO Ï70

-ESTANT 4ÍAD tOUMDAdV -OMOCTTOM

C(«OOESl»0.]

CALL rftIDtA

CALL TRISCA[NODES,

TEST OP (

» 100 l . J . i O O t l
C H S - A M t l P S t l t l - P P l I X 'P9t(t>
: r LCHCtpT-^PStcwiooTO ioo

. - O i t t B U t
W H I T Ï t ^ P f T . U 1 0 ) I ^ E R . Ï P Î L O M . ^ H A X

*í1f tHATIU. ' WAX. 4ELATIV» CHA«C^ IN *Í£S5UHE KRAO JufttKC

, • ITPRATtON'

IT ÉPSLOH.f.E.TOt.AMD. l*í* .*&'. L) JOTO ÏQO

IMPUOVlt - H t PSIH VALUC TO» NEXT :-TRATIOH

W Î10 [ - 1 . 4 0 O E S

J P l I l - P S t ' l t i '

WP,ÍTE(«PHT, ;3L0( ETS?
FORKATC • , / , ' « • • - - - • U I . NO. OF ITÏHATtrtN EXC.ÏVrt^O Af '

WR[TÏ 'MPftT, U2OI
f O W A T C ' . / . L3X, ' ï ' , ; i x ,
1 . 1 , 1

DO 1 0 1
CAI!, ™
: p i PS I

Í tt> .THETAl
1.0» THETA-COR

COTO 6 20
30 4 0 0 1-1.NOOES
CAL:. 11Tt»P I XPP . XTHE , ?S t I I I . fflPl. 1PT I
( » < M I Í t ) , C l t T T . 0 » - H E - 1 * P O 1
WRr-ïfMUH*. : o i l i ! , » s : f rt , - H E T A
PORMATC • , 1 0 X . P 1 . 2 , ? ' - 6 . 4 , l X , r 7 . 1 ,

CAIL HAT1AL I H H t T . - p S t , J I , R H , o , - n c i
DETERMINE A TTHE 5TPP SIïE POR ̂ EXT T[Ht î^ïp

0T1-0IL»
[ f f f l í C r l l .EO. II GO TO 47
O ' l l " ( P S I ( I I -PST Í2) *DEt.2) ' E P 3 ' P ( I , 1 I '3EL7. -
1 P M I U I - 1 " ! {2>*0*LZ! • ' l . - Î P 3 l * R ' 2 , ; i DFLT

tf lOttt .ÚT. DELHAXI QELT-OtLHAX

t r i T I « * û r L T . C E . Truxj DtLT-f ïwx-TTi ir

STORE ™ ut '/ALU« ron m*r rise JTÍ-
» 700 1.1.MOOIS

¿OTO 10Ó0
evo

SUiWUTl.it t*TIRP<x,ï,M.".N
«("41 ,Ï!N1

¡.tint I!^TtllK>L^»!O«

oo lo r-i,"
[ffXX.QT.Xdl ,Al40,I.LT,^tCOTO 10

GOTO 20
COHTHUt
«ETURM

WROUTIHt T « I 1 ) I « I N K I
111 ,D(11> ,ATt3(11f

95

I
I
I
I
I
I
I
1
I
I
1
I
I
I
I
I
I
I
I



Hl

4LÎ.0O
41.200
4 L100

41,^00
41*00

4 ï HIJ
43200
4 J300

4=; .TO

4fiOQ

4300
4400a
4Í00O
4S1OO
4*200
HJi)0
4^400
4^00

46400

41900 S

i r e

9ñt
ÛG(
30

; i™
3d .I
(M f
¿ONT

Pf R

'JP

) -
1 *
0

-1" !
i -
1 -
ÏN

nu

4L#N4-

OC L-i

r«tJK *
AJ*S

-i i

I '

COMI L ̂

B

S(LI
DILI
E»2,

J

U

M

J

-Ç

J'

( I

AND (¡G

'i(l)
IN

-Mil'!
1-AI [| •

Alt RAYS

! t l l / 8 B ( ï l .

simn,'*vn

BACK SUBSTITUTION

1 ,

Qi

S I

t l - C ( I ) •MtSfl'D/HÜ

T-ÍE FOLLOWING FIVE FUNCTIONAL COROUTINES 3PECH

FUMCtONAL ftîLATTnN FOB A nIPTCRENT 3OIt.

FNCT7(XX,ÏY)
2

ÍF ¡X
SET-'JU

IF -XX. [ .E . -24 ,444 t ïYwi). 68 29-0 . 0*121*"* LOG (

X.3T.6i1.JI Y"í»0.iO

'F i*X.C7.-2*,*9*.AMD.XX.[.rt.~H\
i 3 ' , 3 - (ABS (XXI i * • ( - ( Ï . 9 ? i l 4 t

t . 2 - / (
.. XX,CT,-2i - Í8 4 . A N D . . « A E . - l 1.4951 ï ï »

47000
47\00
17200
1Î300
47400
471(10
17S00
17700
17Í00
17400

uooo
14100
11200
43300
13100
43100
4SÍ00
437(10

n»oo
19400
nono
14100

14)00
14400
14100
14(00
14700
14800
14400
10000
iOLOO
10200
10)00
10400
10ÎOO
10400
10700
501.10

10400
11000
U100
11200

11)00
1U0O
11100
11 «00
11700

uaoo
1L400

122110
12)00
12400
1:100
126011

12900
12400
ïlOOO
1)100

ilïftO
13 3 0 0
1 ) 4 0 0

c
^
c

l

u

c

2

11
14

c
C

' .40

171

4 7 Î

3 I M E V S t O H P P Í I ( i l ) , a ( 2 . 1 l ) , H H ( 2 , 2 , 1 1 ! , q ( 2 l , i l t íT ( Zl
muno» í m i ,1(111 ,C(11i .01511 ,» [ (Ui
^iMiitrtu nmi •" nrr T end wnr'ic'ic -PWT^ «yni i? mJ jru TWTJT jd'ï W11 J T Q

t OWIN . r^wOur .OCCMAX , »OP , f «AX**TMÏ
rWIrJwTWEM
TWOUT-TWUT

"OflPUTÏS MATER INFLOW OR OUTrLOW THROUGH THE 'JP^ÏB 30Ü1DARÏ

[F tUBCt l i . 5 0 . i l 30 TO l
3 ( 1 ) - ( P S Ï ( D - P 3 I [ 2 l * O e t ï ) * S P 3 » R { Ï , 1) /r)*L;*OBf|T

b - ;?i»S[ n i - pps [ [2 i * o e L î i * ( i . - e p s i * m ? , ; i / D E L S ' O Î L I *
C3MTISUE
IF ! Q ( l ) .ST. 0.01 CO TO 11
CtWDUT«DWOUT-Q.( l)

a TO 12
ZWIHaOMtNtO.m
CONTINUE

COMPUTE* ¿ATER INFLOV OR OÜTfLOH T«POUCM 1OWEÍ ÎOUMDAy/

CP 'NBCÍ2I ,EQ.. l i 30 TO 2

- .'PPSI INQQES-l) ' ?PSI (NODS3) *0EL2) * ! i . -EPS) *R (2 ,>IOOE3-: > /5Et , í
•DELT
CONT[UUÎ
ÏF ÍQ Í Í1 -GT, 1-) GO TO 11
awaU^-QWQUT-QIZl
SO *O L4

COMTIN-JÍ

COMPUTES CHANGÉ [M HAT»* S'ORAÛE

f5W3*0.
•xOOEl-vOOCS*!
DO L40 K#2,M00Kl
DWS--0WÏ* fR'îr 2 , 2 ^ - 1 ) * R H ( l » l , m 1 • IPSHK)-PP3r ÍK) ' 'DELT
COÎJT ÏVUE

HiS*tfS*DWS
'JP2*W3+wtS
••WT^Tr i iNi i jwt- j

THOUT #T«OU?* 0WOUT
QWDÍFF-OWIN-DiOUt
"WDirF-TWIN-^WOUT
[ÎÇRRW.ftBfi IDHS-OWD t FF t
ÍESRW-A8S(MS-TWOIff)
^P-ITÍ iHPRT. jT^t
JXtTE HPRT,47U
WRITE ; N H R T , 4 7 3 ) W* .OWOUT .OHDIFF, , 1 - ^ , - W t i , - W U T ,-MDIFF ,

FOUMAT C l X p ' t N C . ^ATEK ÍH * ' . Í 1 1 . » , ? ]0 , ' INC . JATÏ^ OUT • ' ,
e i l ^ ^ í O , ' t ü C . WATÏR IS i OUT - ' . E U . 4 . T 9 1 . ' " < - , -¿ATER STBG.
CHANGE - • . E l L . i . / l X . ' C ' J N . *ATtP ;H - ' . î U . 4 . T10 . ' C'JM. 4A?*m
5CT - ' , E L I . 4 . T 4 0 . 'C'JH, MATtR : « * 3ÜT - • . E l 1 , i . * f l : ; < '^U«-

T ^ S , 1 ^ ' ^ . JATER ERROR, * - ' , E U - * >
FORMAT :2fl C - - - • - ' I 1
SET'JBW
ÍND



A Three-Dimensional Analytical Model to Aid in
Selecting Monitoring Locations in the Vadose Zone

by C.R. McKee and A.C. Bumb

Abstract
Monitoring of the vadose zone is a potentially complex, time-consuming, and expensive problem. The location of

monitoring points and selection of monitoring instruments can be optimized by using computer models. Numerical
models developed for this purpose in the past have often been expensive and difficult to use. This paper describes a fast,
three-dimensional, approximate analytical solution to the moisture content in the unsaturated zone. An analytical
solution is available for steady-state drainage, whereas an approximate analytical solution is available for the transient
case. The model will handle an arbitrary distribution of fluid sources, as well as vertical and horizontal impermeable
boundaries.

The model may be applied to predict the incursion of fluid from accidental leakage or infiltration over large areas
from unlined ponds and land treatment sites. The model is quite useful as an aid in designing monitoring or
premonitoring programs near hazardous waste sites. Examples are presented to demonstrate the model's utility in
estimating the maximum spread of a contaminant, the extent to which the fluid may spread with depth, the regions of
high and low capillary pressure, and the non-linear behavior of the saturation when drainage from several sources in
considered. These results are useful for the placement of monitoring locations and the selection of appropriate
instruments, and as a tool in working with regulatory agencies to design monitoring programs. A glimpse of the future is
necessary for today's planning. Computer models are some of the most useful crystal balls we have available.

Introduction
Computer models for predicting unsaturated flow

near waste sites have become more numerous and preva-
lent in recent years, although their use has yet to become
widespread. A review of such models has been given by
Oster ( 1982). The use of models in the unsaturated zone is
complicated by a lack of data and the need for the
operator to be familiar with numerical analysis of non-
linear problems. Moreover, the assessment of the impact
at a hazardous waste site is a time-dependent problem in
three dimensions (Adams et al. 1983), which further
suggests its complexity. Furthermore, instabilities can
arise, requiring a linearization of the saturation vs. capil-
lary pressure curve (Segol 1982). Comparatively few
hydrologists and geohydrologists have the necessary
mathematical and computer training to handle such dif-
ficulties. Indeed, many of these problems continue to be
the object of present-day research. The authors have
developed a computer model that is free of the problems
associated with the use of numerical models, yet is three-
dimensional and can be run rapidly on a microcomputer
by the experienced hydrogeologist.

The problems associated with monitoring and pre-
dicting the fate of hazardous waste in the vadose zone can
lead to considerable expense (see, e.g., Devary and
Schalla 1983) and these programs, if not well planned,
may not obtain the necessary data, resulting in delays
that further escalate costs. Everett et al. (1982), in an

excellent review of monitoring systems, point out that
premonitoring programs are necessary because they pro-
vide clues on potential mobility rates and valuable
information for the design of a vadose zone monitoring
system. The approach they advocate appears largely
intuitive and based on previous experience. Personal
experience, unfortunately, is difficult to quantify and
pass on to other investigators/Hence, the use of premoni-
toring data as input to a mathematical model to predict
the direction and rate of migration of contaminants is
advocated. Most investigations do not have sufficient
funds available in the premonitoring stage to obtain the
extensive data required for numerical modeling. Thus,
the recommended approach is to use an analytical model.
This will allow optimum use of the monitoring budget to
concentrate sensors and sampling devices in the most
likely avenues of pollutant migration. The authors'expe-
rience in working with regulatory agencies is that they
often require a worst-case analysis, using a mathematical
model, to predict paths of contaminant migration in case
containment mechanisms fail. The monitoring systems
are then designed, based upon this analysis, for early
detection of contaminant migration.

According to Everett et al. (1982), a vadose zone
monitoring program consists of premonitoring followed
by an active monitoring program. Premonitoring consists
of assessing the hydrologie and geochemical properties
of the vadose zone. In this study, "premonitoring" is



synonymous with the term "site characterization." Here,
the authors are interested only in the hydrologie charac-
terization of the vadose zone. Lack of a chemical assess-
ment is not a significant problem because anions, many
complexes, and some organics travel with little or no
adsorption. Some chemicals may affect fluid mobility,
and this can be readily incorporated in models using
different mobility rates. Chemical movement in the vapor
phase may be important, but is not considered here.
Tracking the infiltration front usually represents a worst-
case analysis. If this shows unacceptable migration, then
a geochemical site characterization may be necessary.

Selection of a Computer Model
The mathematics of unsaturated or multiphase flow

are well known (they are reviewed by Bear 1979, Corey
1977). The equations have also been tested in numerous
hydrologie, agricultural and petroleum laboratories.
Nonetheless, the equations remain very difficult to solve
either analytically or numerically due to their non-
linearity and tendency to form sharp fronts. Sharp fronts,
in turn, are the result of a non-linear dependence of the
hydraulic conductivity on saturation. Ground water
velocity increases with saturation, causing waves or per-
turbations to catch up to the infiltration front. The pro-
cess is analogous to the formation of shock waves in
hydrodynamics.

Procedures in modeling unsaturated flow are re-
viewed or illustrated by Lappala (1982), Segol (1982),
Sharma (1982), and Dagan and Bresler (1983). These
procedures or steps may include: (I) site characterization
to obtain field data for a model; (2) selection of a
mathematical model; (3) selection of a method to obtain
a solution from the mathematical model; (4) prediction
and comparison with field data; and (5) history matching
and improvement of the model selected.

According to Dagan and Bresler ( 1983), accurate site
characterization in the case of unsaturated flow is a
time-consuming process. Moreover, the error due to spa-
tial variability, which is random in many cases, can be
much larger than that due to model approximation. The
reason for the difficulty stems not only from the usual
geologic variability but also from the large array of
parameters that must be determined. These include the
non-linear functional dependence of saturation on capil-
lary pressure of suction and the corresponding relation-
ship between effective saturation and hydraulic conduc-
tivity. Approximately eight parameters are required to
characterize a given soil type depending upon the func-
tional forms selected to describe the capillary pressure,
saturation, and hydraulic conductivity curves. Because it
is often difficult to obtain the desired accuracy for neces-
sary measurements, and because unsaturated flow prop-
erties are often unknown and must be inferred from
measurements in the literature on materials having similar
composition, the selection of an elaborate method to
solve the equations would appear unwarranted. This is
not a serious limitation because simple approximate
methods, even in a spatially variable field, generally lead
to predictions as accurate as field data for the saturation
over the entire field (Dagan and Bresler 1983).

A typical approach to the problem is to state that
because the equations are non-linear and because hetero-
geneities exist, a finite difference or finite element
approach is the only practical method of obtaining a
solution. The authors do not agree with this viewpoint,
and indeed believe that in many cases there are strong
reasons for considering an approximate analytical solu-
tion instead. The alternatives will be compared to justify
this approach.

Once the basic site characterization is complete and a
mathematical model describing the physical situation is
at hand, the next step is to select a solution technique for
the equations. The major mathematical solution tech-
niques include finite difference, finite element, analytical,
and combined analytical and numerical methods.

Finite Difference and Finite Element Models

For steady-state problems, using regular meshes and
the common triangular elements, it is easy to show that
both the finite element method (FEM) and the finite
difference method (FDM) result in identical difference
equations (Allen 1955, Zienkiewicz 1977). Higher-order
FEM have not proven as useful in solving unsaturated
flow equations. Higher-order methods involve more
computational time per discretization point, which is
compensated for by using fewer points. However, this
works only if the functions are smooth and interpolation
can be performed with high accuracy (Finlayson 1980).
Because unsaturated flow often results in rapid changes
in saturation, higher-order methods must still use more
points to define these areas, which often makes them
prohibitive in cost (Abou-Kassem and Aziz 1982, Ewing
1983).

FEM enjoys advantages over FDM in ease of inter-
polating data and fitting odd boundaries. However, for
steady-state and transient problems with variable coeffi-
cients in two dimensions, FEM has some disadvantages
(Emery and Carson 1971). These include long execution
times and large storage requirements, which may be an
order of magnitude larger than using FDM, as well as
potential inaccuracies in the treatment of sources and
transient terms. For three-dimensional problems, the
storage and execution time favor FDM by the square of
the matrix band width over two dimensions. Both, how-
ever, become unwieldy in storage and execution time in
three dimensions when fine zoning is required. According
to Brebbia (1981), the finite element method, in many
cases, constitutes an inaccurate and expensive technique,
whose early claims were often exaggerated.

While these differences are of interest, it is noted that
efficiency considerations generally dictate that lower-
order methods be employed. Except for storage and
execution times, the stability and accuracy of the two
methods are similar.

For regular meshes both FDM and FEM are spatially
accurate to second-order terms (square of the nodal
point spacing multiplying the higher-order derivatives of
the dependent variable). However, most practical prob-
lems require the use of irregular meshes that are only
accurate to first-order terms. Upstream weighting of
conductivities and fully implicit weighting are frequently
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used to preserve stability, and these, again are only first-
order accurate. As long as the functions involved are
smooth, the higher-order derivatives in the error terms
remain bounded. When sharp fronts are present, how-
ever, the higher-order derivatives become very large and
can cause substantial error. Under this condition, order-
of-error concepts lose their value, and the solution of the
difference equation will generally not converge to that of
the partial differential equation.

Lax's equivalence theorem for linear equations is
often invoked to show that if stability of the difference
equations occurs, then the solution will converge to that
of the differential equation (Smith 1978). However, both
the FEM (Segol 1982) and the FDM (Sharma 1982)
formulations are unstable (implying lack of convergence
to the differential equation) unless the saturation vs.
capillary pressure curves are linearized. But if non-linear
material properties are to be linearized, why measure the
non-linear soil properties in the first place? Upstream
weighting of conductivities and the commonly used fully
implicit technique are deceptive terms to increase stabil-
ity. These methods effectively add diffusion terms to the
solution, which were not present in the original differen-
tial equation.

For low-order FEM and FDM, grid orientation
effects can also distort the solution. (For a discussion, see
Aziz and Settari 1979). The calculated displacement
fronts will appear vastly different depending on whether
the leading edge of the infiltration front is moving parallel
to or diagonally along the mesh. Both answers are calcu-
lated incorrectly! Grid orientation effects are eliminated
using higher-order FDM ( Yanosik and McCracken 1973,
Abou-tCassem and Aziz 1982) and FEM (Settari et.al.
1977), but again at additional expense and complexity.

In the authors' experience, some instabilities can be
eliminated by using a grid that is smaller than the dis-
placement head pd (see Brooks and Corey 1964, for
definition). However, as Segol ( 1981 ) states, "This usually
requires the nodal spacing of the finite element grid to be
small (on the order of centimeters or tens of centimenters)
to avoid numerical instabilities. It is impractical to design
such a fine mesh for a field problem because of economic
considerations."

The preceding remarks serve to illustrate the authors'
reservations concerning the use of FEM and FDM for
solving the equations of unsaturated flow. In general,
their power and accuracy for solving highly non-linear
equations are often overstated. The thousands of waste
sites requiring analysis, compared with the relatively few
geohydrologists familiar with advanced numerical tech-
niques, and the questionable accuracy of these techniques
in practical use, has motivated the authors to re-examine
the utility of purely numerical solutions and proceed
instead in another direction: that of analytical solutions.

Analytical Solutions
Included in this category are analytical, quasi-

analytical, and approximate analytical solutions. Fol-
lowing Philip (1969), the authors define analytical solu-
tions as those found completely by mathematical analysis.
Quasianalytical solutions are those that have a well-

defined mathematical form, but require numerical tech-
niques for their evaluation: integral equations and itera-
tive successive approximation methods fall in this cate-
gory. Approximate analytical solutions include situations
in which the solution does not exactly satisfy the differen-
tial equation, but the error can be shown to be negligible
for specified conditions. The latter approach broadens
the range of possible applications and increases the flexi-
bility of analytical solutions, and is the approach followed
in this article.

The advantages of the analytical solution the authors
are proposing are: (1) it is three-dimensional; (2) no
numerical dissipation or damping coefficients are re-
quired; and (3) it is fast enough to run on microcomput-
ers. The computer model can handle arbitrary distribu-
tion of unlined ponds, land treatment areas, and/or
leakage from surface sites, directional permeability, ver-
tical impermeable and constant-head boundaries, and
horizontal impermeable boundaries. For certain cases.
time-dependent solutions are available. Among the dis-
advantages are that the boundary geometry must be
regular, permeability may not vary spatially (although
directional permeability is included, which may some-
times account for layering effects), and the model should
not be used near the water table if mounding of the
phreatic surface is appreciable. These drawbacks will be
removed in the future using combined analytical and
numerical techniques.

Theory
The governing equation for the movement of fluid in

an unsaturated medium was first obtained by Richards
( 1931). When conservation of mass is applied using Dar-
cy's law, as modified by Buckingham ( 1907), and allowing
that the gravity vector need not coincide with a positive
coordinate axis, the governing equation for unsaturated
flow is (in general terms)

= - < / > # - da)V • JK(S) V (Pc(S)
where K. is the permeability tensor; pc is the capillary
pressure head or suction, measured in units of head of the
wetting fluid; Í? is the radius vector from the source; S is
saturation, t is time; and <p is porosity. When z is defined
positive downward, with gravitational force downward,
in a homogeneous medium, the result is

V • K(S) V (MS) + z) j = -*# (lb)

On the other hand, if z is taken as positive upward, then
the sign of z is negative in Equation 1 b. In this article z is
taken as positive downward.

A general solution for Equation lb is not available
because of its non-linear character, which arises from the
interrelationship of K, pc, and S. For certain cases, ana-
lytical solutions are available (Philip 1969). This article
describes an analytical solution that is computationally
faster than numerical procedures, yet maintains the time
and three-dimensional spatial dependence. The solution
is obtained by simplifying Equation lb using a Kirchhoff
transformation. The simplified differential equation is
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Capillary Pressure vs. Saturation

Capillary
Pressure

- - - - P c

0 Sr Sm 1.0

Saturat ion

Figure 1. Typical plot of capillary pressure as a function of satura-
tion to illustrate the selection of Sr, Sm, and pc .

linear for some specific functional relationships between
K, S, and pc, described in the following section. An
analytical solution can then be obtained for an un-
bounded medium, while for a bounded medium, a modi-
fied method of images is used.

Functional Dependence of pc and K on S
Many empirical relationships for saturation vs. capil-

lary pressure and saturation vs. hydraulic conductivity
have been suggested (Corey 1977, Bumb 1987). The spe-
cific functional relationships for the dependence of capil-
lary pressure and hydraulic conductivity on saturation,
which will be used to transform Richards'equation, are

(2)

(3)

and

V
where Ku is saturated hydraulic conductivity; n is an
exponent in Equation 3; pc is a parameter in Equation 3;
Se is effective saturation; Sm is maximum saturation; Sr is
residual or irreducible saturation, and /3 is a parameter in
Equation 2. When capillary pressure is equal to p c ,
effective saturation is 1.0, and actual saturation is equal
to the maximum saturation. In general, the more uniform
the pore size distribution, the smaller P becomes. Equa-
tion 2 is referred to as a Boltzmann distribution. It is not
valid for pc > pc , since it will yield values of Se greater
than unity.

To establish the validity of the functional relationship
between pc and S, Equation 2 is used to fit experimental
data for capillary pressure vs. saturation. For plotted
capillary pressure vs. saturation data, the values of Sr,
Sm, and Pc, are approximately established as shown in
Figure 1. Once approximate values of Sr and Sm are
selected, pC| and /3 can be obtained using standard curve-
fitting techniques (minimization of absolute error, least-
squares method, relative least-squares method, etc.).
Depending on the quality of the curve fit, Sr and Sm may

Capillary Pressure vs. Saturation
Consolidated Material
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Figure 2. Curve fits (solid lines) to match data from Brooks and
Corey (1964) for consolidated material. Data were converted to an
equivalent water-air system using Brooks and Corey's Equation 17.

Capillary Pressure vs. Saturation
Unconsolidated Material
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Figure 3. Curve fits (solid lines) to match data from Brooks and
Corey (1964) for unconsolidated material. Data were converted to
an equivalent water-air system using Brooks and Corey's Equation
17.

need to be adjusted and the curve-fitting technique
reapplied to obtain final parameter values.

Equation 2 was fitted to data from eight samples
studied by Brooks and Corey (1966) and one sample
from a low-level waste management site in the Powder
River Basin in Wyoming. Figures 2, 3 and 4 show the
data points along with the curves obtained from Equation
2 using the values of parameters given in Table 1. As can
be seen, the curve fits are excellent in the interval Sr to Sm.

Expressions defining the relationship between S and
pc are more commonly found in the form of a power law
(Corey 1977). These, however, are also empirical rela-
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tionships. Curve-fitting techniques are required to select
the values of the adjustable parameters, and their range
of validity is also restricted (Bumb 1987). Thus, these
relationships suffer the same restrictions as Equation 2.
Equation 2, however, has the advantage of permitting
Richards'equation to be transformed to a linear equation
for certain cases. This fact, and the fact that a reasonable
fit to experimental data is obtained, provide the justifica-
tion for using Equation 2.

TABLE 1
Properties of the Soils Used in the Examples

Sample

Powder River Basin soil
Touchet silt loam*
Fine sand*
Hygiene Sandstone*
Berea Sandstone*
Volcanic sand*
Fragmented sandstone*
Fragmented mixture*
Glass beads*

cm
27.7
36.0
17.4
58.0
31.0
15.5
33.0
30.0
9.5

•Converted to equivalent water-aii

s m

95.0
96.5
94.5
97.5
96.0
98.0
97.0
96.0
97.0

• system
tion 17 of Brooks and Corey (1964).

(cb)

3.97
14.99
7.39

10.56
8.48
3.05
1.67
3.27
5.63

using

(cb)

78.09
8.32
3.32
3.27
2.75
2.19
1.70
1.47
0.91

Equa-

A power-law expression relating relative permeability
and effective saturation has been proposed by several
authors (Corey 1954, Irmay 1954, Averjanov 1962). These
expressions are equivalent to Equation 3, the values of
Ko, Sm, Sr being defined by the data, leaving n as an
adjustable parameter. Corey ( 1954) proposed a value of 4
for the exponent in Equation 3, while Irmay (1954) pro-
posed a value of 3. Reiss ( 1980) suggested a value of 1 for
a smooth fracture. Using data from Brooks and Corey
(1964) and Irmay (1954), our curve-fitting procedures
suggested n to be in the interval from 2 to 3 for consoli-
dated and unconsolidated material. By analyzing draw-
down test data from a saturated coal seam in the presence
of desorbing methane, Bumb ( 1987) and McKee and
Bumb ( 1987) obtained n = 3, in agreement wiih Irmay's
theoretical result. The case for n = 1 is particularly attrac-
tive, because then an analytical solution for the transient
case can be obtained. For n ^ 1, Richards' time-
dependent equation does not transform to a linear equa-
tion and successive approximations may be used to
obtain a solution.

Analytical Solutions
A new variable, 0, is defined using a Kirchhoff trans-

formation, to reduce the non-linearity of Equation lb:

oo
B = ƒ K dpc = £ K

Pc

(4)

Then, using Equations 2 and 3 and assuming an isotropic
medium. Equation lb is transformed to
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Figure 4. Curve fit to match data for PRB soil.
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where

a = —

and

D =

d2e de 1 3d
dz

M.
3z D 3t

n-i
S

- Sr)
 b e

(5a)

(5b)

(5c)

As can be seen from Equation 5c, the non-linearity
involving 6 for the term in brackets becomes unity only
for n = 1. For n = 1, the coefficient of the diffusivity, D,
simplifies to

D . •<s„-sr)
for n = 1 (5d)

The same result can be obtained for anisotropic media by
scaling the coordinate system using the following trans-
formations:

(50

(50

(5g)

a = -r (5h)



where x*, y* and z* are the actual coordinates in the
anisotropic media and coincide with the principal axis of
permeability.

Note that Equation 5a is a linear differential equation
for n — 1 in the transient case and for all values of n at
steady-state. The boundary and initial conditions are
obtained by recognizing (1) that the medium is initially
assumed to be at uniform saturation; (2) that far from the
point source the medium will be unaffected; and (3) that
there is a source of constant strength (infiltration rate) at
the draining site.

Time-Dependent Solution for n = 1
The solution to Equation 5a for n = 1 is obtained by

analogy with the problem of heat transfer from a point
source of constant strength moving through a uniform
medium. The solution for a source at the origin is (Cars-
law and Jaeger 1959)

AS = 9 6 . - 2 - f
t exp

dt'

(/ aO<( i'))' - x' -
4 Du n ¿1 (6a)

where 8a is the value of 6 at initial saturation, and Ad is
the change in 0. Evaluating the integral for a source with
infiltration rate Q at x',y',z' results in

2 erfc [
[ 2N/DI

|

- e r f c

where

R = \/(x-x')a (6c)

This solution is for a point source. Areal leakage for
land treatment facilities can be obtained by superposition
of a large number of point sources. Superposition can be
used to sum any number of solutions of the form of 6b,
since 5a is linear when n = 1 or in the steady-state case.
Saturation as a function of space and time is obtained
using the inverse transformation from Equations 2, 3,
and 4,

S = Sr -r (Sm - Sr) 7 7
! n

(7)

Time-Dependent Solution for n # X
As noted earlier, governing Equation 5a is non-linear

when n 5e 1. However, the non-linearity occurs only in
the coefficient of diffusivity, D. The non-linearity for D
(Equation 5c) is in the Se term. To be conservative, the
authors evaluate the coefficient of diffusivity by substi-
tuting unity for Se. By doing so, diffusivity is overesti-
mated, and therefore the spreading of soil moisture con-
tent is overestimated. In the limiting case of large times,
time-dependent model calculations are the same as
steady-state model calculations, indicating some confi-
dence in the approximation.

Steady-State Solution
If the steady-state case is considered, the n = 1 restric-

tion may be removed because the governing equation,

320 dB
_ a =

oz 3z

(8)

is linear for all values of n. Non-linearity, however, is
preserved in the inversion to capillary head and satura-
tion. The solution for the steady-state case is

(9)

This result is also from Carslaw and Jaeger (1959), as
noted by Philip (1969).

Boundaries
The solutions presented in the preceding section are

valid for a vadose zone of infinite depth and extent. These
assumptions are questionable for many situations, par-
ticularly when the physical boundaries of the vadose zone
are near the leakage or infiltration. A common example
is leakage under a lined pond, where the lining forms a
horizontal impermeable boundary. Solution techniques
for impermeable boundaries can be developed using the
approximate method of images and non-linear superpo-
sition for partial differential equations. Because the results
are different for horizontal and vertical boundaries, they
are presented separately.

Horizontal Impermeable Boundary Above the Source
When no flow through the soil surface is allowed, and

the source is at a depth d below the surface, Raats ( 1972)
gives the following equation:

8d - e0

- OS.
Aw

[ f (z+d+Vr2 + (z+d)2 )]
(10)

where E, is the exponential integral function. Equa-
tion 10 is also applicable with appropriate definitions of
d for any impermeable boundary above the source.

Horizontal Impermeable Boundary Below the Source
For an impermeable boundary at z = a, the no-flux

condition is represented by:

atz = a (11)

where êz is a unit vector in the positive z direction. This
condition represented in terms of the Kirchhoff trans-
formation variable 6 is

dB
flux= i r

z=a 111
= 0

z=a
(12)

The theory of images, as illustrated in Figure 5, has
been used extensively in the hydrology of saturated flow
to model impermeable and constant-head boundaries
(see, for example, Muskat 1946), and in conduction of
heat in solids to model perfect insulation or constant
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temperature (Carslaw and Jaeger 1959). For these appli-
cations, 8 would represent the potential (head or temper-
ature) and the no-flow boundary condition given by V-0
= 0 at the boundary. In that case the exact method of
images results in 8 = 8R + Bx, where 8R is the solution for
the real source and Bx is the solution for the image source.
In the saturated flow case (a + 0), the real and image
solutions have the same mathematical form, but the
presence of gravity causes an asymmetry between them
for unsaturated flow. The authors' modified method of
images has the same form as the classical method of
images, namely

= A8R (13)

In Equation 13, 0R is the solution due to a "real" point
source at (x',y',zO in an infinite medium (which may be
either Equation 6b, time-dependent, or Equation 9,
steady-state) and 8\ is the solution due to an "image"
point source for a horizontal boundary at (x',y', 2a-z') in
an infinite medium with gravitational force acting
upward:

877-R,
•af-, erfc

2v/5T

where

R, = + (y-y')2 + (z-(2a-z'))2 (14b)

The steady-state image solution is also obtained by
changing the sign of (z-zO in Equation 9 and replacing R
with R,. Notice that the flow due to the "real" solution
(8R) will be downward (gravity pulling water downward),
while the flow due to the "image" solution (0*J) will be
upward (the direction of gravity is reversed). The flux
due to a real source in which gravity is downward is then

.90R
flux0 = \ ~ - K

z=a
(15)

and the flux due to an image source in which gravity is
upward is

f lux ,= ! • £ • +
z=a

and the total flux at the boundary is given by

flux = fluxR + flux, = 0

(16)

(17)

which is satisfied as shown in the appendix, and hence
the solution is Equation 13. The error introduced by
reversing the sign of gravity is evident when Equation 13
is substituted into differential Equation 5 as all the terms
do not cancel (see appendix). The remaining terms vanish
exponentially with distance from the real source.

Vertical Impermeable Boundary
The vertical impermeable boundary at x

represented by

A.

b is

(18)

ground surface

real leak source~9_L
axis of + Q t
'impermeable" a-d
boundary \ j |

/w/////^^^
a-d

image leak source 1

Figure 5. Schematic of real and image sources used to model a
horizontal "impermeable" barrier under the real source.

or, equivalently,

T T " 0

ÖX

(19)

This is easily satisfied, with no change in the sign of
gravity, by

= Vi9 (20)

where 0R is the solution due to the "real" point source
and 8] is the solution due to the "image" point source
located at (2b-x',y',z'); 9\ is obtained by substituting
(2b-x') for x' in Equation 6a.

Flux and Velocity
The flux in the unsaturated zone is given by

flux = - K V- (21)

where è7 is a unit vector in the positive z direction. Note
that pc is in units of head of water (or wetting fluid).
The x. y. and z components of flux in terms of 8 are

x component of flux =
90
ax

y component of flux = r̂—
9y

' 08 g
z component of flux = — —

n
—— B

(22a)

(22b)

(22c)

Derivatives of 8 are easily calculated from the expression
for 8. Equation 22 is linear; therefore, the method of
superposition can be used to obtain flux. If a horizontal
impermeable boundary below the source exists, Equa-
tion 22 will have the appropriate sign with the second
term on the right.

The cross-sectional area for particle movement is
reduced by afactor of 0S. Therefore, the particle velocity,
v, is obtained from flux using

(23)
0S
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Application of the Computer Model to
Monitoring

There are at least six ways in which computer model-
ing can aid in designing an effective monitoring program:
( 1) The maximum spread, both laterally and vertically, of
contaminants from a leak or waste site can be estimated.
Most monitoring should be concentrated in this region,
with sparse monitoring outside it to check that the
movement of fluid is as anticipated; (2) The model will
indicate whether fluid from the site tends to spread with
depth. Accordingly, samplers and instruments, such as
moisture blocks, can be set at depths where they will be
most likely to intercept fluids from the source; (3) Regions
beneath the waste site or leak can be classified into areas
with low and high soil moisture suction or capillary
pressure head values (most moisture movement occurs at
less than a few meters of suction head). This information
can be used to identify the most accessible flow region for
instrumentation, because the high flow region will trans-
port contaminants most rapidly; (4) One can, from the
computer output of suction and saturation, estimate the
range of suction and saturation values expected in the
vertical plume. This range can be used to select the
optimum instrumentation to measure moisture content
and potential, and the appropriate sampling units such as
lysimeters. Many types of instruments are available;
however, they often work over limited ranges in soil
moisture and suction. Computer calculations will help
reduce the uncertainty in selecting appropriate instru-
ments to carry out the desired function. (5) The non-linear
nature of hydraulic conductivity and capillary pres-
sure/ saturation must be considered when leakage occurs
from multiple adjacent sources in the same area. Super-
position of flows from multiple sources can create an
unanticipated region of higher flow between the sources;
and (6) The computer model can be used as an aid in
working with regulatory agencies to lend assurance that
an adequate monitoring plan has been, or will be,
implemented.

Two different soil types will be used to illustrate the
preceding concepts. The first, termed Touchet Silt Loam
(TSL), was studied by Brooks and Corey (1964) and has
0.54 fr1 (1.77 nr1) for the value of a when n = 3. The
second is a sample taken from the Powder River Basin
(PRB) in Wyoming in conjunction with an investigation
for an experimental low-level waste disposal facility. For
this soil, a is 0.057 fr' (0.189 nr1), again for n = 3.
According to Philip (1969), a for most soils lies in the
range of 1.52 to 0.06 fr1 (5 to 0.2 nr1). Note that a is
proportional to 1//3 and that large P values correspond
to a wide range of pore sizes. Hence, TSL soil contains an
average range of pore sizes for the soils Philip (1969)
studied, while PRB soil is within the range expected but
toward the lower range of a, indicative of a wide range of
pore sizes.

These two soil types were chosen because they exhibit
very different behavior of the vertical unsaturated flow
plumes, and they serve to illustrate the points the authors
have made for the use of a computer model. In all cases,
the effective saturation, Se, is plotted in the accompanying

figures. The real saturation can be obtained using the
values of Sm and Sr found in Table 1. When Se = 0, the soil
is at residual saturation, Sr, where soil water movement is
negligible. The permeability of the PRB soil was mea-
sured at 0.4 darcy, or a hydraulic conductivity of 1.15
ft/day (0.35 m/day) for water movement, and a porosity
of 34.5 percent. TSL was assumed the same so that the
effect of a on the saturation profile can be illustrated.

Vertical permeability is normally less than horizontal
permeability. A ratio of horizontal to vertical permeabil-
ity of 4 was selected based on measurements conducted
on shallow aquifers. It is assumed a layered soil will
exhibit the same behavior. If Se is the same for both soils,
then the hydraulic conductivity will be the same for soils
with the same saturated hydraulic conductivity. For the
following examples, it is assumed that initially the soils
are at irreducible saturation. All the steady-state examples
use n = 3 to relate effective saturation to hydraulic con-
ductivity, i.e., K = K0S*-

Point Source Leakage
Point source leakage is typical of the behavior of

leaks from buried pipes or tanks. The three-dimensional
axisymmetric solution for TSL and PRB soils is given in
Figure 6. The leakage rate is assumed to be 52.8 gpd (200
liters/day). Note that at 33 feet (10m) below the source,
the fluid has spread laterally to 33 feet (10m) for TSL and
72 feet (22m) for PRB soil using the Se = 5 percent
contours to illustrate the penetration of the fluid. For
equivalent increases in effective saturation, Se, the plume
for PRB soil is much wider. However, from a contami-
nant transport perspective, TSL maintains higher soil
moisture content directly under the leak, resulting in
faster movement of the fluid. At 100 feet (30m) horizon-
tally from the leak and 100 feet (30m) deep, TSL should
not transport contaminants, whereas PRB soil will. The
relative siting of monitoring instruments is obvious from
the two plots of effective saturation.

Uniform Pond Leakage
Figure 7 shows a cross section of an unlined pond or

land treatment site 49.2 feet (15m) by 98.4 feet (30m).
Infiltration of 9.17 gpm (50 m3/day) is assumed, which is
approximately 30 percent of the maximum soil infiltra-
tion rate. This allows for a flow reduction due to fines at
the surface. The results of calculations in the TSL and
PRB soils are given in Figure 8. Note that at 80 feet (24m)
from the edge of the pond for TSL [120 feet (37m) from
the origin along the major axis] instrumentation would
have to be buried at a depth of 100 feet (30m) to intercept
appreciable amounts of fluid seepage from the site. How-
ever, the PRB pond calculation indicates considerable
saturation at the same distance from near the surface to
the maximum depth calculated. The velocity, which
increases with saturation, shows more gradual variation.
At 65 feet (20m) deep and less than 30 feet (10m) away
from the pond, the effective saturation is 38 percent,
which is very close to saturation under the pond in PRB
soil. A sample at this point would therefore be predicted
to be representative of that under the pond. For TSL, the

Cnrinn 1Q«K CW\!R



Steady Point Source Leakage ¡f- •*
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Figure 6. Steady point-source leakage compared for a soil with
TSL and PRB soil properties. The relative spreading of the plume
in the two cases indicates very different monitoring approaches.
Fluid would move most rapidly directly under the leak in a TSL
soil. The leakage rate in both cases is 5.28 gpd (200 liters/day).

maximum effective saturation of 80 percent occurs
directly under the pond where the flow is highest. In this
case, for an existing site, directional drilling would have
to be used to sample or install instruments in the most
active region of flow.

Multipond Calculation
The layout for two ponds is given in Figure 9. This

problem was chosen because it is a true three-dimensional
calculation with no axis of symmetry to reduce the
amount of calculation required. If this were done accu-
rately with a finite difference or finite element computer
program using a 3-foot ( 1 m) grid spacing, approximately
15 million nodal points would be required. Needless to
say, it would not be in the realm of possibility to run this
problem on today's computers. This problem demon-
strates the advantages of the analytical approach, partic-
ularly to aid in understanding the flow patterns.

Saturation contours for TSL and PRB soils are
shown in Figures 10 and 11, respectively. The flows for
each pond combine to produce the highest saturation
between the ponds. This is due to the rapid non-linear
increase in the hydraulic conductivity as the saturation
increases. The area between the ponds is the predicted
zone of greatest flow, and monitoring should address this
area first.

The spreading of fluid is again radically different for
the two cases. The TSL needs monitoring close to the
ponds, while the PRB soil will influence a larger area.
Absolute saturations between the ponds will be in the 45
to 60 percent range. Figure 12 shows the components of
particle velocities projected on the cross-sectional plane
shown in Figure 9 for TSL soil. Information on velocities
(and flux) is important in determining how fast contami-
nants are moving and in designing leak detection net-
works.

Time-Dependent Calculations
The principal utility of time-dependent calculations is

to estimate arrival time of contaminants at selected loca-

15m
30m

100m

pond

100m

(0,0)

calculated saturations
for this cross-section

Figure 7. Cross section for uniform steady infiltration calculation,
performed for half the pond along the major axis. Uniform infiltra-
tion from the pond at a rate of 9.17 gpm (SO m3/day) is assumed.

Leakage from an Unlinad Waste Site
Eftectlva Saturation (SB) Contour*

Touchât Silt Loam Pawl» Rivar Baim Soil

«0 60
Olatanca (matan)

Figure 8. Steady-state effective saturation contours for two differ-
ent soil types for the cross section shown in Figure 7. Maximum
flow and saturation occur directly under the TSL waste site and
can be accessed only by directionally drilled holes. The same satu-
ration values are accessible for monitoring near the edge of the
PRB site.

Layout of 2 Ponds for
3D Computer Calculation

150m p
vortical cross-section
for calculation

-75m

(-«0,-55)

150m

-75m L

Figure 9. Plan view of two asymmetrical ponds for three-
dimensional computer calculation. The calculation is performed in
a vertical plane along the cross-section line.
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Figure 10. Steady-state effective saturations along cross section
shown in Figure 9 for TSL sou. The highest flow occurs between
the two ponds,

tions and to gauge when instruments should begin to
respond. The results for n = 1 and n = 3 are given in
Figures 13 and 14, respectively. The time-dependent cal-
culation is exact for n = 1. For n = 3 the coefficient of the
time-dependent term (D) is the same as for n = 1; however,
the spatial part (a) contains the correct terms. The calcu-
lation can only be regarded as an approximation of the
transient behavior. This deficiency will be removed in
future work. Large differences in saturation profile again
persist for the two soil types, although they are not
shown.

Notice that for n = 1, it takes almost 50 days for
1 percent effective saturation to reach 100 feet (30m)
below the center of the pond. However, in Figure 14 for n
= 3, the 5 percent Se contour reaches the same point in
less than 10 days. Although the time-dependent solution
for n ^ 1 is approximate, faster arrival times (greater
spreading) for n = 3 compared to n = 1 are also indicated
from steady-state calculations (Figures 13 and 14). This
is surprising since higher values of n result in lower
relative permeability, and one would intuitively expect
that lower permeability would result in longer travel
times. The preceding statement applies to linear differen-
tial equations written in pressure. The governing equation
for the vadose zone in terms of capillary pressure (Equa-
tion 1) is highly non-linear; it becomes linear only in
terms of 6 (Equation 5). Note that this equation is analo-
gous to the equation for heat transfer from a constant-
strength source moving through a uniform medium. In
the analogous problem, a would correspond to the speed
of the moving heat source. Since a is proportional to n,
one would expect more spreading of heat (and saturation)
for higher velocities of the heat source (higher n).

Summary and Conclusions
State-of-the-art for modeling unsaturated flow was

100
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250,
50 100 150

Distance (meters)
200 250

Figure 11. Steady-state effective saturations along cross section
shown in Figure 9 for PRB soil. Monitoring in this case should be
concentrated between the ponds since this is the region of highest
flow and saturation.

2 Ponds 3D Steady State Calculations
Touchet Silt Loam Velocity Vectors
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Figure 12. Steady-state velocity vectors along the cross section
shown in Figure 9 for TSL soil.

reviewed, with the conclusion that approximate analytical
solutions offer unique advantages—primarily ease and
economy of running the program and freedom from a
host of numerical instabilities and damping coefficients
that were not present in the original differential equation.
The disadvantages include a lack of spatial variation in
hydraulic conductivity.

Six reasons were given for using a model to guide the
installation of instrumentation in the vadose zone. The
primary reasons are that instruments can be selected to
optimally respond to the saturation and soil potential



condition in situ. Instrumentation can be located in the
areas of the highest fluid mobility to afford the earliest
detection of contaminant escape. Also, the model can be
used in working with regulatory agencies to justify and
optimize the design of a monitoring system. The model is
not advocated as the final solution for a site, but rather as
a tool with which to guide and develop a vadose zone
monitoring program. The final model must, of course,
include the effects of site-specific geometrical constraints
and heterogeneities.
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Appendix: Calculations for Horizontal
Boundary Conditions

From Equations 15, 16, and 17, it is known that the
flux at the impermeable boundary is given by

Time Dependent Frontal Advance
Powder River Basin Soil, n = 1

> 750 days

1% Se contours

150
60 90

Distance (meters)
120 150

Figure 13. Time-dependent frontal (1 percent effective saturation)
advance for PRB soil and the pond layout shown in Figure 7, The
exponent relating effective saturation to hydraulic conductivity is
1; therefore, for this case, the analytical solution is correct.

I38i 38X
Flux — -T— - K + -7-

3z dz z=a
(A-l)

From Equations 6 and 14, it can be shown that

dz z = a z=a
(A-2)

Substitution of Equation A-2 into Equation A-l yields

Flux = 0
z=a

Hence the image solution

(A-3)
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satisfies the no-flux criterion. However, when the
"image" solution for a horizontal boundary is substi-
tuted in the differential equation, all the terms do not
cancel. This is due to reversing the sign of gravity for
the "image" solution. The remaining terms for the
steady-state case are

47r ( R3 \R R2 /
( A . 5 )

Since a is a small number, these remaining terms are
negligible. As long as R and z are positive, the error

Figure 14. Time-dependent front (1 percent effective saturation)
advance for PRB soil and the pond layout shown in Figure 7. The
exponent relating effective saturation to hydraulic conductivity is
3, and thus, this calculation is only a rough approximation. Fluid
spreads much more rapidly in this case.

term decays exponentially. Similarly, it can be shown
that the remaining terms for the transient differential
equation are also negligible. Thus, this image solution
technique, while not exact, is still a preferred approx-
imation to an otherwise very complex proolem.

Nomenclature
a = distance to impermeable boundary [L]

d = depth to the source [L]

D = parameter defined in Equation 5d [L2/Tj



e, = unit vector in the positive z direction

K - hydraulic conductivity [L/T]

Ko = hydraulic conductivity at maximum
saturation [L/T]

n = power in the power-law relationship for K
as a function of soil saturation

pc = displacement pressure head obtained by
extrapolating the capillary pressure curve
to S-I [I]

Pc = capillary pressure head [L]

Q = flow rate or strength of point source [L3/T]

R = distance from point source [L]

Ri = distance from image point source [L]

S = saturation of the soil

Se = effective saturation

Sm = maximum saturation

Sr = irreducible or residual saturation

t = time since drainage began [T]

v = velocity of particles

x.y.z = Cartesian coordinates, z defined positive
downward [L]

x',y',z' = location of point source [L]

a - constant defined in Equation 5b [L/1]

0 - adjustable parameter in the saturation vs.
capillary pressure relation. Equation 2 [L]

8 = dependent variable defined by Kirchhoff
transformation. Equation 4 [ M : T ]

80 - value of 8 at initial conditions

8R = dependent variable for real point source in
an infinite medium [M2/T]

6\ - dependent variable for image point source
for a horizontal impermeable boundary in
an infinite medium [M2/T]

B\ - dependent variable for image point source
for a vertical impermeable boundary in an
infinite medium [M :/T]

0 = porosity
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Simulation of Vapor Transport Through the
Unsaturated Zone — Interpretation of

Soil-Gas Surveys
by Lyle R. Silka

Abstract
Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil

and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published
soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been
considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of
pesticides generally differ substantially from those of VOCs.

This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through
unsaturated soils using a two-dimensional, finite-difference, solution to Fick's second law of diffusion. An effective
diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is
computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data,
nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content
in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be
complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal variations in
moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC
liquid and contaminated ground water.

Introduction
Volatile organic chemicals (VOCs) have been identi-

fied nationwide as one of the more ubiquitous groups of
hazardous chemicals present in contaminated ground
water. A major reason for this is the widespread use of
VOCs in the manufacture of pesticides, plastics, paints,
Pharmaceuticals, solvents and textiles, as well as constit-
uents of petroleum products. Due to the presence of
VOCs at many sites of contamination, there has been
increasing interest in the sampling and measurement of
VOCs in soil gas to estimate their extent in soils and
ground water. With the recent development of the porta-
ble gas chromatograph, the quantitative and semiquanti-
tative field analysis of VOCs in soil gas is now a reality.

Portable gas chromatography, a relatively new tech-
nology, has been shown to be especially applicable to the
investigation of soil and ground water contamination
through the analysis of shallow soil gas. Under diffusive
transport, VOCs volatilize from ground water and move
upward through the unsaturated zone, ultimately venting

to the atmosphere. This process provides a means to
delineate areas of subsurface contamination through the
analysis of VOCs in the shallow soil gas. Also, it has been
shown empirically that the concentration of VOCs in
samples of shallow soil gas are related to the concentra-
tion of VOCs in ground water (Glaccum et al. 1983,
Lappala and Thompson 1983a and b, Swallow and
Gschwend 1983, and Marrin 1984). Soil-gas surveys are
recognized as a valuable tool, both alone and in conjunc-
tion with other remote-sensing techniques, that can pro-
vide data on the location and extent of soil and ground
water contamination and can aid in the design of more
detailed ground water studies involving soil borings and
monitoring well networks.

The successful interpretation of a soil-gas survey
depends on several factors, including the size and age of
the source, the moisture content and organic carbon
content of the unsaturated zone, and the volatility and
solubility of the VOC. Prior to conducting a soil-gas
survev, the effects of these factors should be evaluated in
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order to optimize the design of the soil-gas survey.
Through a review of theory and application of a computer
model, this paper presents an evaluation of the opera-
tional limitations of soil-gas surveys.

Behavior of VOCs in the Subsurface
Transport Mechanisms

The transport of VOCs from a source through unsatu-
rated soil may be by mass flow as a solute in percolating
water or by diffusion as a vapor in soil gas. Mass flow as a
vapor due to advective migration may be important in
the upper few feet of the unsaturated zone, Advective
vapor migration in the shallow soil may be induced by
diurnal temperature and barometric variations. Baro-
metric, or atmospheric pressure changes are not consid-
ered here because, on the scale of typical soil-gas investi-
gations, changes in barometric pressure would produce
minor vertical piston-type fluctuations in the soil gas as
the air alternately compresses and expands. The alternat-
ing up and down movement of the soil gas under the
influence of the barometric fluctuations would tend to
approach an average condition.

However, pressure and temperature gradients can
become important near subsurface structures such as
basements and utilities that are vented to the atmosphere.
Nazaroff et al. ( 1987) found that pressure and temperature
gradients may be transmitted to the subsurface by resi-
dential houses with basements and could induce signifi-
cant advective transport of soil gas to lateral distances of
20 feet (6m). Although this paper does not address these
influences and considers vapor migration under isother-
mal and isostatic conditions, the influences of atmo-
spheric wind-induced pressure gradients and tempera-
ture-induced thermal gradients near subsurface structures
should be considered in the interpretation of soil-gas
surveys.

For VOCs that have low solubility limits in water, as
is generally the case with the chlorinated solvents, diffu-
sive transport in soil gas can predominate (Spencer and
Farmer 1980). When a liquid YOC is spilled on the soil or
leaks from a tank into the soil, the VOC will begin to
partition into the liquid and vapor phases and become
dissolved in soil moisture and adsorbed onto the surfaces
of soil minerals and organic matter. The degree of parti-
tioning of the VOC among these four components will
depend on the volatility and water solubility of the VOC,
the soil moisture content, and the nature of soil solids.

Partitioning Between Liquid and Soil Gas
The saturated equilibrium concentration of a VOC in

air above a volatile liquid is expressed by Raoult's law
and is described by a partition coefficient that is depend-
ent on the vapor pressure of the VOC and the temperature
(Thibodeaux 1979). At equilibrium, the mole fraction of
a VOC in the air space above the pure VOC liquid at a
specified temperature is expressed as:

y = P/Pr (0
where y is the mole fraction of the VOC, p is the vapor
pressure of the VOC, and pT is the total pressure in the air
space.

Equation I provides a means to estimate the source
concentration of a VOC vapor in the soil gas above a free
VOC liquid spill. Vapor pressures for many VOCs at
ambient temperatures are available in the literature (for
example, Perry and Chilton 1973, and Callahan et al.
1979).

Partitioning Between Soil Gas and Soil Moisture
Partitioning between the VOC vapor in the soil gas

and VOC dissolved in soil moisture may be expressed as
the ratio of its concentration in each of the two phases
(Equation 2). At equilibrium, this ratio is constant for
constant temperature and is governed by the relationship
expressed as Henry's law, i.e., (Thibodeaux 1979):

K H = C G / C L (2)

where KH is Henry's law constant for the VOC at a
specified temperature, CG is the concentration of the
VOC in soil gas, and CL is the concentration of the VOC
in the water.

The Henry's law constant may also be expressed as a
function of the VOC vapor pressure, the concentration of
the VOC in water, and temperature as (Thibodeaux
1979):

KH = 16.04p,M,/TCL (3)

where Ma is the gram molecular weight of the VOC, T is
the temperature (in degrees Kelvin), and the other
parameters are as previously defined.

Dilling ( 1977) reports values of Henry's law constant
for numerous chlorinated solvents with those for selected
VOCs presented in Table 1. Empirically derived values of
Henry's law constants reported by Dilling ( 1977), Swal-
low and Gschwend ( 1983), and Lappala and Thompson
( 1983) are in reasonable agreement with the calculated
values of K.H, keeping in mind the temperature depen-
dence of KH.

Partitioning Between Soil Moisture and Soil Solids
In addition to the partitioning of the VOC between

the vapor and aqueous phases, some of the VOC will be
adsorbed onto the soil minerals to a lesser extent and
onto soil organic matter to a greater extent. Although no
research in this area is known to this author, adsorption
of VOC vapor on to organic matter may be an important
sink for VOC transport in soil gas. In order to estimate
the possible importance of adsorption onto organic mat-
ter, results of research on the adsorption of aqueous
VOCs have been utilized. Although not specifically
directed at the current problem, the results from the
experiments with aqueous solutions of VOCs may prove
applicable, because soil solids will be surrounded by
water layers of at least several molecules thick for even
the driest soils. The process of partitioning of the VOC
between the soil gas and the soil solids then becomes a
two-step process of partitioning from the vapor into the
water and subsequently from the water onto the soil
solids.

Since no known research has been directed at the
problem of determining the partitioning of VOCs in a
three-phase system, the validity of the approach utilized
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TABLE 1
Reported Values of Henry's Law Constant, Vapor Pressure and Solubility at 25 C for Selected

Chlorinated Solvents

Chemical

1,1,2,2-Tetrachloroethane
1,1,2-TrichIoroethane
1,1-Dichloroethane
Tetrachloroethylene

Trichloroethylene
trans-Dichloroethylene
cis-Dichloroethylene

Solubility
in Water

(ppm)

3000

4420

8700

140

1100

6300

3500

Vapor
Pressure
(mm Hg)

6.5
23
82
18.6

74
326
206

Henry's Law
Constant

Calculated
(Measured)

(Dimensionless)

0.019
0.038
0.050 (.040)'
1.2 (0.5)2

(0.43) '
0.49 (O.33)3

0.27
0.31

Source: Dilling (1977).
Notes:
1 Empirical values reponed by Dilling (1977).
2 Empirical values will vary from calculated values due to differences in temperature.
3 Empirical values reported by Lappala and Thompson (1983).

for this model is unknown. Nevertheless, as described
later, to the extent that Jury et al. (1984) tested this
approach, they reported finding good agreement between
calculated and empirically derived values for the effective
diffusion coefficient.

At equilibrium, the degree of partitioning between
the soil solids and the soil moisture is expressed as:

KD = S/CL (4)

where KD is the partition coefficient or distribution coef-
ficient (with units of l3/m), S is the mass of chemical
adsorbed per unit dry mass of soil solids, and CL is the
concentration of the chemical in the soil moisture.

For aqueous solutions, it has been observed that
strongly hydrophobic organic chemicals tend to adsorb
more strongly onto the soil solids. Empirical studies by
Karickhoff et al. (1979) found that KD was proportional
to the organic carbon content of the soil, as well as the
octanol: water partition coefficient (Kow), a measure of
the hydrophobicity of an organic chemical. For the equi-
librium condition, this relationship has been expressed as
(Karickhoff et al. 1979, which is essentially the same
relationship determined by Rao et al. 1985):

where KD is the distribution coefficent of Equation 4, îx

is the soil organic carbon content, and Kow is the octa-
nol:water partition coefficient.

The amount of carbonaceous matter in the soil is the
dominant factor controlling the extent of adsorption of
dissolved organic chemicals. Karickhoff et al. ( 1979) also
found that the particle size of the mineral fraction was
important. For example, the distribution coefficients for
pyrene and methoxychlor on the sand-sized fraction were
approximately 100 times less than the distribution coeffi-

cient for the silt- and clay-sized fraction, due primarily to
the lower organic carbon content of the sand (Karickhoff
et ai. 1979). Table 2 presents data for Kow and calculated
values of KD using Equation 5 for selected VOCs. From
the example calculations of distribution coefficients in
Table 2, these VOCs are not strongly adsorbed onto the
soil solids due to their relatively low octanol-water parti-
tion coefficients. Pentachlorophenol, in comparison, with
a log Kow of 4.74, has a KD of 35, i.e., pentachlorophenol
will be preferentially adsorbed to the soil solids by a
factor of 100 to 1000 times greater than the chlorinated
solvents listed in Table 2.

VOC Vapor Diffusion in Soil Gas
As previously stated, the primary transport mecha-

nism for VOCs in the unsaturated soil is by diffusion
through the soil gas. The distribution of VOC concentra-
tion in the soil gas can be modeled by Pick's second law,
which in one dimension is expressed as (Thibodeaux
1979):

C/dt = Dd2C/dz2 (6)

where C is concentration of the VOC in air, D is the
diffusion coefficient, and z is the distance traveled.

Assuming the outer boundary condition is zero con-
centration, Equation 6 can also be expressed as (Thibo-
deaux 1979): - -

-Iz.t) = erf[z/(4Dt)°5] (7)

where Q. . is the concentration (as mole fraction) at a
distance z and time t, C(z¿01=0) is the initial concentration,
and erf is the error function.

Swallow and Gschwend (1983) conducted limited
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TABLE 2
Reported Values of Log Octanol: Water Partition Coefficient and Calculated Values of

Distribution Coefficient for Selected Chlorinated Solvents

Chemical

1,1,2,2-Tetrachloroethane
1,2,2-Trichloroethane
1,1-Dichloroethane
Tetrachloroethylene
Trichloroethylene
trans-Dichloroethylene
cis-Dichloroethylene

Notes:
4FromCallahanetal. 1979.
Calculated from KD = 0.63 K

Log OctanokWater
Partition

Coefficient4

2.56
2.17

1.79

2.88
2.29
1.48
1.48

0.001

0.23
0.09
0.04
0.48
0.12
0.02
0.02

Calculated Distribution
Coefficient5

Fraction Organic Carbon

0.01

2.3
0.9
0.4
4.8
1.2
0.2
0.2

0.03

6.9
2.7
1.2

14.4
3.6
0.6
0.6

controlled laboratory experiments using a glass tank.
Although their experimental design prevented a direct
measurement of the concentration of VOCs in the unsat-
urated zone. Swallow and Gschwend (1983) concluded
that volatilization can be adequately modeled by Fick's
second law.

Diffusion Coefficient in Soil Gas
The diffusion coefficient for VOC vapor in air was

estimated by Jury et al. (1983 and 1984) to be 4.6 ft2 ¡d
(0.43 m2 /d) based on studies by Brattain in 1929 of the
gas diffusion coefficient of intermediate molecular weight
organic chemicals. However, Bruell and Hoag (1986)
reported values of the diffusion coefficient for benzene in
air of from 8.0 to 8.4 ft2 /d (0.74 and 0.78 m2 /d).

The diffusion coefficient in soil gas has been found to
be reduced from that in air by a tortuosity factor which
accounts for decreased cross-sectional area for flow and
increased length of the flow path. Jury et al. ( 1983 and
1984) concluded that the Millington-Quirk tortuosity
formula has been proven useful for describing pesticide
soil diffusion coefficients. More recently, Bruell and Hoag
( 1986) confirmed the validity of the Millington-Quirk
model in column experiments. Jury et al. ( 1983) estimated
the diffusion coefficient in soil gas by determining the
effect of the Millington-Quirk tortuosity formula on the
diffusion coefficient in air by:

= Da'°'3/n2 (8)

where DG is the diffusion coefficient in soil gas, D is the
diffusion coefficient in air, a is the volumetric air content
of the soil, and n is the total soil porosity.

Since the VOC vapor may partition between the gas,
liquid, and solid phases, an effective diffusion coefficient
can be formulated that incorporates that partitioning.
The removal of VOCs from the soil gas by partitioning
into the soil moisture and soil organic matter results in a
reduction in the apparent diffusion rate, and con-

sequently, the apparent, or effective, diffusion coefficient.
Jury et al. (1983) developed the following relationship
between the diffusion coefficient in soil gas from Equa-
tion 8 and the effective diffusion coefficient:

where De is the effective diffusion coefficient in soil gas
corrected for effects of partitioning, DG is the diffusion
coefficient corrected for tortuosity using Equation 8, b is
the bulk dry density of the soil, KD is the soil partition
coefficient from Equation 5, KH is Henry's law constant
from Equation 3, w is the volumetric soil moisture con-
tent, and a is the volumetric air content, where n (total
porosity) = a •*• w.

Jury et al. ( 1984) report that the model for the effective
diffusion coefficient expressed in Equation 9 gives results
that are in good agreement with empirically derived
values of De.

Model Description
Although several investigators have developed mod-

els for the simulation of the transport of organic chemicals
in the soil (for example, Leistra 1973, Jury et al. 19S3 and
1984, Rao et al. 1985), these models are limited in their
application to the simulation of the diffusion of VOCs in
soil gas. In general, the previous models were developed
for application to the modeling of pesticide movement
and fate in soils. The models are one-dimensional analyt-
ical solutions that do not allow for heterogeneous soil
properties and initial conditions. Also, these models
incorporate transport of the chemical in the liquid phase,
as the models were intended for the study of the leaching
of pesticides from soils (Jury et al. 1983). In the case of
the model developed by Rao et al. (1985), transport by
vapor diffusion was omitted.

Corapcioglu and Baehr (1987) described a one-
dimensional, finite-difference model of VOC transport
through the unsaturated zone. Although their model
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simulates multiphase transport in vapor, water and
immiscible liquid, and accounts for partitioning, adsorp-
tion, and transformations, the vertical, one-dimensional
nature of their model limits its application to the inter-
pretation of soil-gas survey results that are two- to three-
dimensional in nature.

To correct for these limitations, a two-dimensional
vapor diffusion model was developed and described pre-
viously (Silka 1986). This model is a finite-difference,
forward-difference approximation relative to time, and
is based on Fickian diffusive transport. (Although
unavailable to this author at this writing, Striegl (1987)
subsequently reported on the development of a similar
model).

Model Assumptions
The model is based on the following assumptions.

Assumption 1 Diffusion is described by Fick's
second law.

Assumption 2 Partitioning coefficients are linear and
system is at equilibrium with respect
to partitioning, i.e.. Equations 3 and 5
are valid.

Assumption 3 The Millington-Quirk tortuosity for-
mula defined in Equation 8 is valid.

Assumption 4 The soil properties of bulk density, b,
and total porosity, n, are homo-
geneous.

Assumption 5 The diffusion coefficient in air, D, is
constant.

Assumption 6 The soil gas is isostatic and at atmo-
spheric pressure, i.e., there is no
pressure-gradient induced advective
vapor flux.

Assumption 7 The soil system is isothermal, i.e..
there is no thermal-gradient induced
convective vapor flux.

Assumption 8 The VOC is conservative, i.e., the
VOC is unaffected by biotransforma-
tion, hydrolysis, or redox reactions.

The model allows for heterogeneous initial concen-
trations with either constant concentration sources or
instantaneous spike sources. The diffusion coefficients
may be varied over the finite-difference grid and in the x
and y directions by weighting coefficients. The effects of
partitioning are incorporated by using the effective diffu-
sion coefficient as defined in Equation 9.

Since the finite-difference equation is solved using the
forward-difference approximation relative to time, the
maximum size of the time steps must meet the following
criterion for the solution to be stable. For two dimensions
where dx - dy = x, (i.e., the grid spacing is the same in
both directions and equal to X):

dt<0.25X 2 a/D e (10)

where dt is the maximum time step, X is the grid spacing,
a is the volumetric air content, and De is the effective

diffusion coefficient (after Wang and Anderson 1982).

Model Verification and Validation
To date, the verification of the vapor diffusion model

has been limited to comparisons with computed results
from the one-dimensional analytical solution presented
in Equation 7. At this time, it is difficult to adequately
validate the vapor diffusion model against real field data
due to the lack of good data.

An adequate validation problem requires information
on the moisture content and organic matter content of
the soil, the soil texture, as well as the concentration and
distribution of the source. Further complications arise
when one considers that field conditions are dynamic,
i.e., always changing. This problem is especially acute for
soil moisture content, which, over the large scale, fluctu-
ates seasonally. Also, field data are not available in suffi-
cient detail to allow description of the spatial variability
of soil conditions resulting in necessary oversimplification
of the physical setting. Jury ( 1986) lists several potential
problems that must be considered to successfully carry
out a field validation experiment of a vapor diffusion
model:
1. Lateral and vertical variability of transpon and reten-

tion parameters may introduce heterogeneities and
anisotropy not included in the model;

2. Macropores, cracks, plant root holes and animal bur-
rows may create discontinuities difficult to account for
in the model;

3. Time-dependent boundary conditions, such as depth
to water table and seasonally saturated zones may
alter the system geometry from that modeled;

4. Problems with validity of measurement techniques for
characterizing field properties may introduce model
error,

5. Scale effects may be important in the field that are not
accounted for in the model, such as temperature
variation.

Although not available at the time of this writing,
Striegl (1987) published an account of an apparently
successful modeling of the diffusion of methane from a
waste disposal trench in Illinois using a two-dimensional
finite-difference solution of Fickian diffusion similar to
the model described here.

Implications for Soil* Gas Surveys
Delineating Surface Contamination

Previously, this author has presented the results of
sensitivity analyses using the model 2D-DIFF to assist in
designing and interpreting soil-gas surveys for contami-
nated soil and leaking underground storage tanks (Silka
1986, and Ferre and Silka 1987, respectively). With regard
to the use of soil-gas surveys for identifying shallow
contaminated soil (Silka 1986), the optimum grid spacing
for the soil-gas survey was found to be primarily depend-
ent upon soil moisture and the value of Henry's law
constant, and, to a lesser degree, organic matter content.
Figure 1 illustrates the dependence of the effective diffu-
sion coefficient on K.H and fraction of pore volume occu-
pied by water (w/n). The reduction in De is represented
by the ratio of D e /D0 , where DG is the diffusion coeffi-
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cient corrected by the Millington-Quirk tortuosity for-
mula in Equation 8. Therefore, in dry soil De/DG is
unity.

Obviously, optimum conditions for soil-gas surveys
are obtained when dry soil conditions have prevailed
prior to the survey. Since moist soil is the rule, though,
especially in the more humid regions, the optimum grid
spacing will generally be ¡ess than 100 feet (30.5m). For
VOCs with even moderate values of KH, for example,
trichloroethyleneCTCE) with KH of 0.4 and 1,1,2,2-tetra-
chloroethane (TET) with KH of 0.02, the reduction in the
effective diffusion coefficient is sufficient to reduce their
distance of migration. Compared to a VOC with a KH of
0.0, TCE would migrate on the order of only 60 percent
of the distance, while TET would migrate on the order of
only about 20 percent of the distance of the unretarded
VOC within the same time period. In homogeneous soils,
the maximum extent of the migration of vapor through
soil gas will be limited by the thickness of the unsaturated
zone. However, many soils are heterogeneous and strati-
fied, and greater lateral migration may occur.

Mapping Ground Water Plumes
Several observations reported in the literature con-

cerning the interpretation of soil-gas surveys for ground
water plume mapping have been investigated using the
model 2D-DIFF. It has been reported that concentra-
tions of VOCs in soil gas decrease from the source at the
water table to the surface by up to 5 orders of magnitude
(Lappala and Thompson 1983). This field observation
follows from the diffusive transport equation. Since the
soil-gas system is bounded below by an essentially con-
stant concentration source and above by a constant zero-
concentration boundary (i.e., the atmosphere), the vapor
concentration will decrease logarithmically from the
water table to the surface in an ideal, homogeneous soil.

Figures 2 and 3 show two cases for the distribution of
vapor concentration with distance above the centerline of
a plume of contaminated ground water where the water
table is at a depth of 32.8 feet (10m). The concentration is
presented in dimensionless units. Figure 2 shows the
results for a relatively dry soil having only 8 percent water
content (a=0.32, w=0.08) and a VOC with a KH of 0.02.
Figure 3 shows the results for a wetter soil with a 20
percent water content (a=0.2, w=0.2). In both cases, there
is greater than a 3 to 5 order of magnitude change in the
VOC concentration in soil gas from the water table to the
surface, even when the concentration profile approaches
steady-state.

For the dryer soil (Figure 2), the higher effective
diffusion coefficient results in the concentration profile
approaching steady-state faster than the wetter soil case
(Figure 3). Thus, the dryer soil conditions will result in a
more responsive concentration profile as compared to
the wetter soil. Shallow soil-gas measurements in the
dryer setting will better reflect the distribution of the
VOC in the ground water at that point in time.

More recently, Evans and Thompson (1986) con-
cluded that aerobic biodégradation of hydrocarbon
vapors was the cause of lower than expected concentra-
tions, < 10 fig/ L, in shallow soil gas at depths of less than
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Figure 1. Dependence of the effective diffusion coefficient,
expressed as the ratio of De /DG , on moisture content, expressed as
the fraction of total porosity occupied by water, and Henry's law
coefficient, KH.
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Figure 2. VOC concentration in sou gas vs. time and distance
above the water table under nearly dry soil conditions <w=0.08).

5 feet ( 1.5m) when compared to the > I000/ug/ L concen-
trations in the 6- to I4-foot interval ( 1.8 to 4.3m). How-
ever, they also reported at least one instance when the
concentration gradient reversed and decreased with depth
below the 6- to 14-foot (1.8 to 4.3m) interval.

In order to substantiate the interpretation that bio-
degradation was occurring, active microbial populations
and degradation by-products, such as CO2 generation
should be confirmed in the soil column. Since these data
are lacking for their particular site, alternative explana-
tions may be just as viable. For example, the lower-than-
expected concentration in the uppermost 5 feet (1.5m)
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Figure 3. VOC concentration in soil gas vs. time and distance
above the water table under wet soil conditions (w-0.02).
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Figure 4. Extent of migration of 0.01 ppm contour for VOC in soil
gas from a vertical spill source and advancing NAPL front floating
on the water table dry soil conditions.

could be due to the normal decrease in concentration
expected under the concentration gradient established by
diffusion alone. Inspection of Figures 2 and 3 shows that
transient concentration profiles can produce a concen-
tration decrease of greater than 3 orders of magnitude
from the 6- to 14-foot (1.8 to 4.3m) interval to the less
than 6-foot ( 1.8m) interval. Considering that the concen-
tration decrease due to the diffusion gradient would be
greater in wetter soils, biodégradation is not necessary to
explain the observed decrease.

Evans and Thompson ( 1986) also reported the obser-
vation that vapor concentrations decrease rapidly, by 2 to
3 orders of magnitude, just beyond the edge of the ground
water contamination zone. Simulations were conducted
using 2D-DIFF for an advancing front of a non-aqueous
phase liquid (NAPL) floating on the water table. The
model was set up with a constant saturated vapor con-
centration of 6000 ppm at the NAPL-soil gas interface
and an initial concentration of 6000 ppm along the left
side to represent the downward path of liquid VOC
migration. Two variations were run, one with a vapor
diffusion rate that was faster than the NAPL front veloc-
ity, and the second with a vapor diffusion rate that was
slower than the NAPL front velocity. Figures 5 and 6
show the results in terms of the relative positions of the
NAPL front and the 0.01 ppm concentration contour.
The results presented in these figures can be applied to
the case of only dissolved VOC in a ground water plume
by dividing 0.01 ppm by 6000 ppm, i.e., the contours in
the figures would be equivalent to 1.6 x 10"6 times the
concentration of the VOC in the soil gas just above the
water table.

Figure 4 indicates tha,t for a source front, i.e., NAPL
or dissolved contaminant plume, that moves slower than
the diffusion rate, the VOC does diffuse beyond the
plume edge asobserved by Evans and Thompson ( 1986),
up to a height of 40 feet (12.2m) above the water table.
Above a height of 40 feet (12.2m) from the water table,
the vapor front falls behind the liquid front. However,
Figure 5 indicates that when the diffusion rate in soil gas
is less than the velocity of the source front, the VOC
distribution in the soil gas will lag behind the source front
or edge of the plume at a much lower height above the
water table. In the case illustrated in Figure 5, the VOC
diffusion in the soil gas begins to lag behind the front at a
height of about 15 feet (4m) above the water table. The
lag increases to about 60 feet ( 18.3 m) at a height of 30 feet
(9.2 m) above the water table. Therefore, it may not
always be the case that the soil-gas survey will detect
VOCs beyond the edge of the plume, and, in fact, may
underestimate the extent of the plume.

Discriminating Between Ground Water and
Surface Sources

A problem that arises in the course of soil-gas surveys
for detection of surface sources, but more so, for mapping
ground water contamination, is the potential interference
caused by VOC vapors from another source. The inter-
ferences are especially problematic in highly industrial-
ized areas with multiple contaminant sources. Based on
sensitivity runs, the vapor concentration due to a con-



taminant source may be sufficient out to several hundred
feet to mask the detection of vapors emanating from
contaminated ground water when vapor concentrations
due to ground water contamination are much less than
those due to the diffusion from a surface source. This
potential problem was first recognized by Marrin ( 1984).

Computer simulations reported previously (Silka
1986) were used to estimate the potential interference
from the upward diffusion of VOC vapors emanating
from contaminated ground water. For the modeling, it
was assumed that the highest VOC concentration in
ground water underlying the area of the soil-gas survey
was 100 ppb. The depth to the water table was 30 feet
(9.2 m). This level of ground water contamination could
result in soil-gas concentrations in the upper 3 feet (0.9m)
of soil as high as 150 ppb.

In comparison, a surface source of TCE, with a
saturated vapor concentration of 72,000 ppm, could cause
a concentration in soil gas at a distance of 100 feet
(30.5 m) of as high as 72 ppm. Even with a relatively low
saturated vapor concentration, for example TET at 6000
ppm, the concentration in soil gas at a distance of 100 feet
(30.5 m) could be several parts per million. Vapor concen-
trations of less than a part per million due to diffusion
from contaminated ground water would be completely
masked by such surface sources.

Conclusions
Previous investigators have shown that VOC vapor

migration through the unsaturated zone is primarily
under diffusive transport. The vapor diffusion is ade-
quately described by Pick's second law, and the effects of
partitioning between soil-gas and soil moisture can be
incorporated into the modelby the use of Henry's law
coefficient. Adsorption of VOCs onto soil organic matter
is accounted for by the empirical relationship between
the octanol-water partition coefficient and the liquid-solid
partition coefficient.

Design of soil-gas surveys should be developed with
an understanding of the potential extent and distribution
of contaminants in the subsurface. Preliminary modeling
of the diffusive transport using a model such as 2D-DIFF
can provide useful criteria for designing the survey and
interpretation of subsequent results. Modeling results
presented here and in a previous paper (Silka 1986)
demonstrate the importance of soil moisture content to
the design of the soil-gas survey. Optimum conditions for
soil-gas surveys occur when lengthy, dry soil conditions
have preceded the survey, which usually occur during
July, August and September over much of the United
States.

Interpretation of soil-gas survey results are hampered
by unknown or poorly defined parameters, such as soil
porosity, moisture content, organic matter content, as
well as source attributes. In general, the variation in soil
moisture will have the greatest influence on the rate of
diffusion of VOC vapors through the unsaturated zone,
especially for those VOCs with small values of KH. Slight
increases in soil moisture dramatically reduce the effective
diffusion rate and increase the time required for concen-
trations in soil gas to approach steady-state values. Dry
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Figure 5. Extent of migration of 0.01 ppm contour for VOC in soil
gas from a vertical spill source and advancing NAPL front floating
on the water table under slightly moist soil conditions (w-0.17).

soils in arid regions may allow quasi-steady-state concen-
tration profiles to be approached. However, steady-state
conditions probably are never approached in the humid,
temperate regions where frequent, episodic wet and dry
periods occur.
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