VOLUME 4

training modules	
	GENERAL
	ORGANISATIONAL
	Basic knowledge / skills
	Processes/procedures
	Equipment/materials
-	TECHNICAL
-	Basic knowledge/skills
	Processes/procedures
	withdrawal
	treatment
	distribution
	consumption
	Equipment/materials
TAPE / SLIDE PROGRAMMES	

LIRPABY

$\rightarrow+$
\ldots

DIRECTORATE OF WATER SUPPLY DIRECTORATE GENERAL CIPTA KARYA DEPARTMENT OF PUBLIC WORKS GOVERNMENT OF INDONESIA

DIRECTORATE GENERAL
FOR INTERNATIONAL COOPERATION
MINISTHY OF FOREIGN AFFAIRS GOVEANMENT OF THE NETHERLANDS

VOLUME 4^{*}
TRAINTNG MODULES
TECHNICAL (basic knowledge/skills)

```
PREFACE
This volume is part of the Final Report of the MDP Production Team which
produced Training Materials for Water Enterprises as part of a project
under the bilateral cooperation programme between the Government of the
Republic of Indonesia and the Government of the Kingdom of the Nether-
lands.
This Final Report contains the following volumes:
Volume l Guide for users of training materials
Volume 2A Training Modules, 隹 GENERAL + ORGANIZATIONAL
                                    (basic knowledge/skills)
Volume 3 Training Modules, ORGANIZATIONAL (processes/procedures;
    equipment/materials)
Volume 4 Training Modules, TECHNICAL (basic knowledge/skills)
Volume 5A Training Modules, TECHNICAL (processes/procedures)
Volume 5B Training Modules, TECHNICAL (processes/procedures)
Volume 6A Training Modules, TECHNICAL (Withdrawal + Treatment)
Volume 6B Training Modules, TECHNICAL (Withdrawal + Treatment)
Volume 7 Training Modules, TECHNICAL (Distribution + Consumption)
Volume 8 Training Modules, TECHNICAL (equipment/materials)
Volume 9 Tape/slide programmes
```


TABLE OF CONTENTS

TRAINING MODULES

CODE	TITLE
TBG 360	Fundamental equations for pipeline hydraulics
TBG 365	Local losses in pipelines
TBG 508	Progress reports in construction
TBG 509	Engineering drawings
TBG 512	Concrete technology
TBG 513	Concrete testing
TBG 514	Plans
TBG 701	Maps

$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots\end{aligned}$
"3 4" "

-

Modul	FUNDAMENTAL EQUATIONS OF PIPBLINE HYDRAULICS			Code	TBG 360
				Edition	13-03-1985
Section 3: TRAINING AIDS				Page	02 of 02
C					
			Fundamental of pipeline	quations hydraulics	TBG 360/H 1

DEPARTMENT OF PURLIC WORKS
$M \overline{M D P P}$
directorate general cipta karya
DIRECTORATE OF WATER SUPPLY

Module	FUNDAMENTAL EQUATIONS OF PIPELINB HYDRAULICS	Code	TBG 360
		Edition	13-03-1985
Section 4 : HANDOUT		Page	01 of 10

1. INTRODUCTION

The hydraulics of pipelines are described by three equations namely:

- the continuity equation;
- the energy equation;
- the motion equation.

These equations will be elaborated for steady, incompressible, onedimensional flow conditions.
By 'steady flow' is meant that there is no variation in velocity (discharge) with time at any point. By 'incompressible flow' is meant that the volume of the water is not changed by pressure differ ences. Lastly, 'one-dimensional flow' implies that the flow is in one and only one direction, as constricted by the water conducting pipe. Hereafter each equation will be shown for the specified flow conditions.

2. CONTINUITY EQUATION

For a steady, incompressible and one-dimensional flow the continuity equation is simply obtained by equating the flow rate at any section to the flow rate at another section. This equating can be done over a single plpe section, or over a branched section or even over a reservoir.

Over a single pipe section (control section) the continuity equation reads as follows :

$$
Q_{1}=Q_{2} \quad\left(\text { in }_{1}=\text { out }\right)
$$

Where Q is the discharge (flow) in $\left[\mathrm{m}^{3} / \mathrm{s}\right]$ or $[1 / \mathrm{s}]$.

As $Q_{1}=Q_{2}$ and $Q_{2}=A_{2} v_{2}$ we may write $A_{1} V_{1}=A_{2} v_{2}$, where A is the cross-sectional area in $\left[\mathbb{m}^{2}\right]$ and v is the mean velocity in [m/s].

Module	FUNDAMENTAL EQUATIONS OF PIPELINE HYDRAULICS	Code	TBG 360
		Edition	13-03-1985
Section 4 : HANDOUT		Page	02 of 10

For a pipe section in which the diameter is varying, the equation remains the same, as can be seen in the following figure:

For instance, knowing Q_{1}, A_{1} and A_{2} the velocity at cross-section 2 (v_{2}) can be calculated out of the continuity equation by :

$$
v_{2}=\frac{Q_{1}}{A_{2}}=\frac{Q_{2}}{A_{2}}=\frac{A_{1}}{A_{2}} v_{1}
$$

Over a branched pipe section the continuity equation becomes :

$$
Q_{1}=Q_{2}+Q_{3} \quad(\text { in }=\text { out })
$$

Module	FUNDAMENTAL EQUATIONS OF PIPELINE HYDRAULICS	Code	TBG 360
		Edition	13-03-1985
Section 4 : HANDOUT		Page	03 of 10

When outgoing flows (Q_{2} and Q_{3}) are counted as negative, and ingoing flows (Q_{1}) as positive, the continuity equation can be written as:

$$
Q_{1}+Q_{2}+Q_{3}=0(\text { in }- \text { out }=0)
$$

or

$$
v_{1} A_{1}+V_{2} A_{2}+V_{3} A_{3}=0
$$

If a storage reservoir is incorporated in the control section the continuity equation can not be derived by equating the flow rates only, but a term must be included accounting for the change in storage $s\left[m^{3}\right]$ during a certain time span $t[s]$.

In this case the continuity equation reads:

$$
\begin{aligned}
& (\text { in }=\text { out }+ \text { storage }) \\
& Q_{1} \Delta t=Q_{2} \Delta t+\Delta S
\end{aligned}
$$

We see here that the time is introduced in the equation by t [s]. For instance, knowing the ingoing $\left(Q_{1}\right)$ and outgoing (Q_{2}) flows, the change in storage S over a certain time span t can be calculated with :

$$
\left.\Delta S=Q_{1}\right\lrcorner t-Q_{2} \Delta t
$$

3. ENERGY EQUATION

Energy is needed to let the water actually flow through the pipes. Normally energy is provided by gravity or by mechanical devices such as pumps. The energy of water in pipes is expressed as the total head of the water.

Module	FUNDAMENTAL EQUATIONS OF PIPELINB HYDRAULICS	Code	TBG 360
		Edition	13-03-1985
Section 4 : HANDOUT		Page	04 of 10

The total head along a plpeline containing water that is not flowing (energy line) is shown in the following figure:

In the above case the energy line is horizontal as no water is flowing. To quantify the total head (energy line) an arbitrary reference level is introduced. The energy can then be expressed as $H=z+p[m]$. Normally the same reference level is chosen as that used for surveying. In non-flowing water the energy line is the same as the pressure line.

After opening the valve at the end of the pipeline the water starts to flow. This will consume energy, so the energy line will gradually decline in a downstream direction. Thus H_{a} is the head loss over section a and Hb that over section b, as shown in the figure on the next page.

Note that for the same rate of flow the head loss over a certain distance in section a is smaller than over the same distance in section b, because the pipe diameter of section b is smaller.

In the above figure the hydraulic grade line (or pressure line) is drawn as well. It must be understood that the energy (total head) consists of three elements viz.:

- the pressure head;
- the velocity head;
- the elevation with respect to the reference level.

Modul	e FUNDAMENTAL EQUATIONS OF PIPBLINE HYDRAULICS		Code	TBG 36
			Edition	13-03-
Section 4 : HANDOUT			Page	5 of

In flowing water the energy line is not the same as the pressure line (hydraulic grade line): the velocity head must be added to the pressure head to obtain the energy (head) line.

The velocity head equals $v^{2} / 2 g[m]$ where $v[m / s]$ is the mean velocity of the water in the pipe and $g\left[m / s^{2}\right]$ is the gravitational acceleration.
The velocity head can be explained by connecting two tubes to the water pipe as shown in the above figure.
In tube 1 the water level will rise to the pressure line, but in tube 2 the water level rises to the energy line. In this tube, of which the opening faces upstream, the flow (velocity) pushes up the water level to the energy line.
In fact these tubes form a flow measurement device. As the difference in water levels $\Delta \mathrm{H}$ can be read from the tubes and equals $\mathrm{v}^{2} / 2 \mathrm{~g}$, or $:\lrcorner \mathrm{H}=\mathrm{v}^{2} / 2 \mathrm{~g}$, thus:

$$
v=\sqrt{2 g \Delta \mathrm{H}}, \text { where } g=9.82 \mathrm{~m} / \mathrm{s}^{2}
$$

However, this picture is not yet complete, as other, local, energy losses (non-frictional losses) occur at places where :

- the pipe diameter changes (contraction, expansion);
- the flow direction changes (bends, branches);
- obstructions are placed in the pipe (valves, flow and pressure measurement devices, air and pressure release valves, joints etc.);
- water enters or leaves a pipeline.

| Module $:$FUNDAMENTAL EQUATIONS OF
 PIPELINE HYDRAULICS | Code $:$ TBG 360 |
| :--- | :--- | :--- | :--- |
| Section 4 : HAND OUT | Edition : $13-03-1985$ |

With these local energy losses in mind the same figure is regarded again:

By equating the energy over A and B we get

$$
\left.H=Z_{1}+P_{1}=Z_{2}+P_{2}+v^{2} / 2 g+\Sigma\right\lrcorner H
$$

where $\Sigma \Delta \mathrm{H}$ is the summation of all kinds of losses between the points A and B .
The above equation is called the Bernoullis equation.
In a distribution system the total head H is normally provided by pumps or boosters or is dictated by the water level in a reservoir (as shown here).

In designing water distribution networks the pressure at the taps is decisive. So the work of the hydraulic engineer, involved in designing, consists essentially of determining the losses H along the pipeline. In the following section the equations are presented to calculate the friction losses, whereas the local losses are dealt with in a separate module.

4. BQUATION OF MOTION

The equation of motion gives the relationship between the flow through a pipe section and the total head loss over that section, due to the friction only.

Various empirical relationships have been established in the past, but only in the last few decades semi-empirical relationships were established on a more theoretical base. Two of them are widely accepted and used. They are the formula of Chèzy and Darcy-Weisbach.

In its original form the formula of Chezz reads:

$$
Q=A C \sqrt{R I}
$$

where :

| $Q=$ discharge | $\left[\mathrm{m}^{3} / \mathrm{s}\right]$ |
| :--- | :--- | :--- |
| $A=$ wet cross section | $\left[\mathrm{m}^{2}\right]$ |
| $C=$ friction coefficient | $\left[\mathrm{m}^{1 / 2 / s}\right]$ |
| $R=$ hydraulic radius | $[\mathrm{m}]$ |
| $I=$ gradient of energy line | $[\mathrm{m} / \mathrm{m}]$ |

The gradient I can also be written as $\Delta H / L$, where ΔH [m] represents the frictional loss and $L[m]$ the length of the relevant pipe section. The hydraulic radius for fully filled circular pipes equals $1 / 4 \mathrm{D}$ ($D=$ internal pipe diameter) and A equals $1 / 4 \pi D^{2}$, so we can re-write the Chezy formula as:

$$
Q=0.39 \mathrm{D}^{2} C \sqrt{D(\Delta H / L)}
$$

The value of the friction coefficient C was originally obtained from laboratory tests (empirical), but White and Colebrook developed a more theoretical expression:

$$
C=18 \log \frac{3 D}{k+-2.5 r} \quad \text { (for fully filled circular pipes) }
$$

Substitution in the formula of Chezy yields :

$$
Q=7.02 D^{2} \quad \log \left\{\begin{array}{c}
3 D \\
k+-\frac{2.5}{D(\Delta H / L)}
\end{array}\right\} \quad \sqrt{D(\Delta H / L)}
$$

Where:
$k=$ the equivalent roughness of Nikuradse [m];
$v=$ the kinematic viscosity of water in $\left[\mathrm{m}^{2} / \mathrm{s}\right]$.
Nikuradse's equivalent roughness k can be explained by imagining that the roughness of the inside of the pipe is caused by a layer of spherical grains, as shown in the next figure:

| Module $:$FUNDAMENTAL EQUATIONS OF
 PIPRLINE HYDRAULICS | Code $:$ TBG 360 | |
| :--- | :--- | :--- | :--- |
| Section $4:$ HAN D O U T | Edition $:$ | 13-03-1985 |

The value of k depends on the actual pipe material. Some specific values are given below:

PIPE MATERIAL	k in $[\mathrm{mm}]=\left[10^{-3} \mathrm{~m}\right]$
uPVC/HPE	$0.01-0.05$
AC (asbestos cement)	$0.02-0.10$
Ductile iron	
Galvanized steel	$0.5-10$
	$0.10-0.5$

The kinematic viscosity is a special property of water, which varies with its temperature. The following table shows the kinematic viscosity of water at various temperatures.

TEMPERATURE in $\left[{ }^{\circ} \mathrm{C}\right]$	VISCOSITY in $\left[10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right]$
0	1.79
10	1.30
20	1.01
30	0.80
40	0.66

Module	FUNDAMRNTAL BQUATIONS OF PIPBLINE HYDRAULICS	Code	TBG 360
		Edition	13-03-1985
Section 4 : H A N D OUT		Page	09 of 10

In circumstances as prevailing in water distribution networks for $2.5{ }^{c}$
clean water the value of the term $\sqrt{\sqrt{D(\Delta H / L)}}$ is small compared to the value of k. For easy use, the formula of Chezy may thus be simplified and a good approximation is:

$$
Q=7.02 \times D^{2} \log (3 D / k) \sqrt{D(J H / L)} \quad \begin{aligned}
& \text { (approximation for Chezy } \\
& \text { formula) }
\end{aligned}
$$

This formula can be rearranged into:

$$
H=f \times L / D \times v^{2} / 2 g \quad \text { (Darcy - Weisbach formula) }
$$

The form in which the equation is written now, is called the Darcy Weisbach formula, in which :
$\mathrm{f}=8 \mathrm{~g} / \mathrm{C}^{2}$ and where $\mathrm{C}=18 \log 3 \mathrm{D} / \mathrm{k}$ (approximation)
Note that f is dimensionless, and is called the Darcy - Weisbach friction coefficient.
White and Colebrook have also developed an expression for f, which reads :

$$
f=\frac{1}{1.96 i D} \quad \begin{gathered}
\text { (White - Colebrook for } \\
\text { Darcy Weisbach equation) }
\end{gathered}
$$

This formula is basically the same (except for a slight difference in the empirical constants) as can be found by substituting the complete White-Colebrook expression for C into $f=8 g / C^{2}$. This means that the formulae of Chézy and Darcy-Weisbach are in fact the same, but written in rearranged ways. Calculating f with this equation for given values of l, D, Q and k is rather complicated as f appears also at the right hand side of the equation.

An iteration process would thus be required. Therefore, the relationship between flow and total head loss has been calculated already for the most common pipe materials and diameters. The results are presented in nomograms or in tables.
In cases not covered by the nomograms, the approximation formula as given above may be used, for minor extensions of existing distribution networks. For calculation of headlosses in mains with relatively long lengths, preferably the complete formula of Darcy-Weisbach or of Chezy in combination with that of White-Colebrook should be used.

5. SUMMARY

Three equations describing the hydraulics of pipelines have been presented. They are:

- the continuity equation;
- the energy equation;
- the motion equation.

These equations have been presented for steady, incompressible and one-dimensional flow conditions.
A number of widely used formula for the equation of motion are given, which may be used under specific conditions.

$$
\doteq
$$

CONTINUITY (1)

CONTINUITY (2)

ENERGY (1)

ENERGY (2)

WALL ROUGHNESS

	$k($ in mm)	
PIPE MATERIAL	LOW	HIGH
UPVC / HPE	0.01	0.05
AC (asbestos cement)	0.02	0.10
DUCTILE IRON	0.5	1.0
GALVANIZED STEEL	0.5	0.5

Module : LOCAL LOSSES IN PIPELINES	Code : TBG 365
	Edition : 13-03-1985
Section $2: S \mathrm{~S}$ S SION NOTES	Page : 01 of 01
1. Introduction - Head losses in pipeline systems comprise: - friction losses; - local losses, at: - bends; - junctions; - change in pipe diameter; - location of devices. 2. Local losses - Can be expressed as factors, to be multiplied with the velocity head: $\Delta \mathrm{H}=\xi\left(\mathrm{v}^{2} / 2 \mathrm{~g}\right)$ - The value of ξ (the loss coefficient) depends on the specific local situation, and has been calculated for many situations. 3. Bquivalent pipe length - To simplify the calculation, equivalent pipe lengths are sometimes used. - Equivalent pipe length produces the same head loss as the actual local loss. - Total pipe length becomes: $L+\Delta I$ (actual length + equivalent length). 4. Example of calculation - With loss coefficients. - With equivalent pipe length. 5. Summary	Show V 1-2
	Write on whiteboard Show V 3-8
	Show V 9
	Show V 10 Show V 11-12 Give H 1

Module : LOCAL LOSSES IN PIPELINBS	SS \quad Code : TBG 365
	Edition : 13-03-1985
Section 3 : TRAINING A I D S \quad Page : 02 of 03	
Entrance/Exit losses TBG 365/V 7 LOCAL LOSSES	Losses in valves and TBG 365/V 8 meters LOCAL LOSSES IN: Valves METERS
Equivalent pipe length	Example (1) TOP VIEW OF SYSTEM
Example (2) TBG 365/V 11 $\begin{aligned} & \text { EOVMELCh } \\ & C=10 \end{aligned}$ EMT ME LEMTH FON E.WIO	Example

directorate of water supply

LOCAL LOSSES IN PIPELINES	Code	TBG 365
	Edition	13-03-1985
Section 4 : HANDOUT	Page	01 of 12

1. INTRODUCTION

Apart from frictional head losses, other local losses will occur in water conveying pipelines. Local losses occur at any point where the direction of the flow (streamlines) is forced to change. Such points for instance are bends in pipelines, junctions of pipelines, connections of pipes with different diameters and points where devices are installed in the pipelines.
Such devices can be valves, meters and pressure blow-offs.
Also at places where water enters the pipe, for instance out of a reservoir, losses will occur (entrance losses). On the other hand exit losses will occur at places where the water leaves the pipeline.

These losses can be calculated in terms of velocity head loss [m]. As the formula to calculate a local loss is basically the same as that for frictional losses (Darcy-Weisbach), it is also possible to calculate an equivalent hydraulic pipe length. This is an imaginary pipe section (of the same material and diameter), the friction loss of which is equal to the actual local head loss. The total head loss is then established by calculating the friction loss of the pipe, but with a total pipe length equal to the actual length plus the equivalent pipe length. This exercise eases the hydraulic calcuations to be performed in designing the pipeline and pipeline system analysis.

For long pipelines, such as transmission mains and many distribution mains, local losses are normally relatively small and may be neglected.
For complicated piping systems such as in pumping stations, local losses are an important part of the total head losses, however, and need to be calculated accurately.

2. LOCAL LOSSBS

Local losses occur at any point where the direction of the flow is forced to change. They can be calculated in terms of velocity head loss by the following formula:

$$
H=\xi\left(v^{2} / 2 g\right)
$$

Where H is the local head loss in [m], $\}$ is the loss coefficient and $v^{2} / 2 \mathrm{~g}$ is the velocity head ($v=$ mean velocity in the pipe and $g=9.82$ is the gravitational acceleration).
Extensive laboratory tests have been carried out to determine ξ for bends etc. and results have been published in literature.

Module	LOCAL LOSSES IN PIPELINES	Code	TBG 365
		Edition	13-03-1985
Section 4	HANDOUT	Page	02 of 12

A compilation of these results is shown below:

BENDS

For bends in pipelines the loss coefficient ξ depends on the angle of bend (α) and the radius of the bend (r) in relation to the pipe diameter (D) as shown in the table below.

r / D	0	1	2	3	4
a					
15°	0.10	0.06	0.04	0.03	0.03
22.5°	0.13	0.08	0.06	0.05	0.05
30°	0.18	0.10	0.08	0.07	0.06
45°	0.32	0.13	0.10	0.09	0.08
60°	0.68	0.19	0.13	0.10	0.09
90°	1.27	0.30	0.16	0.13	0.11

Note that for a sharp-edged bend $r / D=0$.

JUNCTIONS

For junctions of pipes the value of the loss coefficient ξ depends on the following factors :

- whether the flows come together or separate;
- whether all pıpe diameters at the junction are the same or not;
- what is the ratio between the flow rate in the main pipe and that in the branch pipe;
- what is the angle between the pipes at the junction.

To avoid laborious iteration procedures, values for the loss coefficlents will be presented which apply to most situations.

| Module : LOCAL LOSSES IN PIPELINES | Code $:$ TBG 365 |
| :--- | :--- | :--- |
| Section 4 : HAND OU T | Edition $: 13-03-1985$ |

The average loss coefficients for junctions are:

EXPANSIONS AND CONTRACTIONS

In water distribution networks the pipes gradually decrease in diameter in the direction of flow. At such points where the diameter is changing, local losses will occur due to the disturbance of the straight streamlines.

| Module : LOCAL LOSSES IN PIPELINES | Code $:$ TBG 365 |
| :--- | :--- | :--- | :--- |
| Section 4: HAND OUT | Edition : $13-03-1985$ |

For expansions the following loss coefficients are found empirically:

Expansions

D_{1} / D_{2}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
ξ_{1}	0.98	0.92	0.83	0.71	0.56	0.41	0.26	0.13	0.04	0.00

For contractions the following values apply:

$$
\xi_{1}=0.0
$$

Contractions

$\mathrm{D}_{2} / \mathrm{D}_{1}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
ξ_{2}	0.44	0.43	0.41	0.39	0.36	0.31	0.25	0.17	0.09	0.00

Note that S is assigned to a certain pipe section, and should hence be incorporated in the head loss calculations of that particular section only.

EXIT LOSS

-

Module : LOCAL LOSSES IN PIPELINES		Code : TBG 365
		Edition : 13-03-1985
Section 4 : HANDOUT		Page : 06 of 12
ENTRANCE LOSS DEVICES In pipe systems devices such as gate valves, check valves, meters, pressure release valves, air release valves etc. will have to be installed. Such devices also give local losses. The manufacturers of those devices normally specify the loss coefficients, which are obtained from laboratory tests. However, for some typical devices average loss coefficients will be presented here, as during the design phase the make of the devices is generally not yet known. Typical values for the loss coeffacients are : VALVES (Fully opened)		
	TYPE gate valve, without contraction gate valve, with contraction non-return (reflux) valve globe valves other types (butterfly valves, etc)	LOSS COEFFICIENT $\}$

| Module $:$ LOCAL LOSSES IN PIPELINES | Code $:$ TBG 365 |
| :--- | :--- | :--- | :--- |
| Section 4 : HAND OUT | Edition : $13-03-1985$ |

Note that for only partly opened valves the loss coefficient is increasing very rapidly, for instance for half-opened gate valves it may easily reach 6.0.
Pressure blow-offs and air release valves have an average loss coefficient of 1.0 (related to the flow in the pipeline itself).

METERS

TYPE	LOSS COEFFICIENT $\}$
Venturi	2
Mechanical	10

3. HYDRAULIC PIPE LENGTH

In order to simplify head loss calculations, the local losses can be thought of as caused by an equivalent (but imaginary) pipe section. The equivalent pipe length can be calculated with the following equation :

$$
\Delta L=\Sigma \xi \times 4.1 \quad x \quad D \quad x \quad(\log 3 D / k)^{2}
$$

where $\Sigma \xi$ is the summation of all local loss coefficients of the relevant pipe section, D is the internal pipe diameter and k the pipe wall roughness (Nikuradse).

In this way the actual pipe section with bends, devices, etc. is simulated in the calculations by a straight pipe with a hydraulic length of $L+\Delta L$.
($\mathrm{L}=$ actual length, $J \mathrm{~L}=$ equivalent length).
Doing so, the local losses are simulated by frictional losses for calculation purposes.
For $\xi=1.0$ the equivalent plpe length can be read from the nomogram.
The work of the hydraulic engineer now conslsts only of determining the actual value of $\}$ over the pipe section and multiply this figure with the result as read from the nomogram.

| Module : LOCAL LOSSES IN PIPBLINES | Code | TBG 365 |
| :--- | :--- | :--- | :--- |
| Section 4: HAND OUT | Edition : $13-03-1985$ | |

- From the nomogram read the equivalent pipe length $\Delta \mathrm{L}$ for $\xi=1.0$, $D=70 \mathrm{~mm}$ and $u P V C$ pipe material;

Hence $\Delta \mathrm{L}=4.6 \mathrm{~m}$ (see nomogram).

- Multiply this figure with 1.15 ($\Sigma \zeta$), thus obtaining the equivalent pipe length simulating the local losses

$$
1.15 \times 4.6=5.3 \mathrm{~m}
$$

- Add the equivalent pipe length to the actual pipe length

$$
300+5.3=305.3 \underline{m}
$$

- From the nomogram which shows the relationship between discharge and head loss for uPVC pipes read head loss $\Delta H[\mathrm{~m} / 1000 \mathrm{~m}]$ at the given Q and D :

Thus $\Delta H=8.0 \mathrm{~m}$ per 1000 m of pipe length. For 305.3 m this yields a headloss ΔH of

$$
\Delta \mathrm{H}=(305.3 / 1,000) \times 8.0=2.44 \mathrm{~m}
$$

RELATIONSHIP BETWEEN INTERNAL PIPE DIAMETER
AMD EOUNALENT PIPE LENGTH FOR EEIO

Module : LOCAL LOSSES IN PIPELINBS	Code : TBG 365	
		Edition : 13-03-1985
Section 4: HAN D OU T	Page : 12 of l2	

5. SLMMARY

Local head losses will occur at bends, junctions, connections of pipes with different diameters, places where devices are installed etc.
Local losses can be simulated in the calculation of frictional losses by adding a certain equivalent pipe length to the actual pipe length. Local head loss coefficients are presented for the most common cases and a nomogram is given to determine the equivalent pipe length.

.

LOCAL LOSSES:BENDS

α	0	1	2	3	4
15°	0.10	0.06	0.04	0.03	0.03
22.5°	0.13	0.08	0.06	0.05	0.04
30°	0.18	0.10	0.08	0.07	0.06
45°	0.32	0.13	0.10	0.09	0.08
60°	0.68	0.19	0.13	0.10	0.09
90°	1.27	0.30	0.16	0.13	0.17

LOCAL LOSSES

confluence

LOCAL LOSSES

INCREASE IN PIPE DIAMETER

$D 1 / D 2$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
S_{2}	0.98	0.92	0.83	0.71	0.56	0.41	0.26	0.13	0.04	0.00

$$
S_{2}=0
$$

LOCAL LOSSES
REDUCTION OF PIPE DIAMETER

$D 2 / D 1$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
ξ_{2}	0.44	0.43	0.41	0.39	0.36	0.31	0.25	0.17	0.09	0.00

LOCAL LOSSES
ENTRANCE LOSS

LOCAL LOSSES IN:

VALVES

Type	Loss coefficient \mathcal{E}
Sluice valve, without contraction	0.2
Sluice valve, with contraction	0.5
non return (reflux) valve	2.0
globe valves	10
other types (butterfly)	0.5

METERS

Type Loss coefficient ε
Venturi 2.0
Mechanical
10

TOP VIEW OF SYSTEM

DEPARTMENT OF PUBLIC WORKS
MDPP
directorate general cipta karya
DIRECTORATE OF WATER SUPPLY

| Module : CONSTRUCTION PROGRESS REPORTS | Code $:$ TBG 508 |
| :--- | :--- | :--- | :--- |
| Section 4 : HAND OU T | Edition : $17-09-1984$ |

1. INTRODUCTION

It is essential that both the supervisor and the contractor report the events and progress of the contract or project.

Reporting must be done on a regular basis and it is normal to report with the following frequency :
. daily
. weekly
. monthly.

2. DAILY REPORTING

Daily reporting gives an immediate record of the progress of the contract. It should be presented in a systematic manner and the Daily Report must be agreed upon and signed by both the Supervisor and the Contractor's representative.

The information which is required in a Daily Report is as follows:

- all materials received on site during the day;
- all materials used on site during the day;
- weather conditions;
- number of men on site;
- any deviations from the contract.

3. WEBKLY RBPORTS

Weekly reports are essentially a summary of the daily reports but add the financial implications of the work done during the week on the contract as a whole.

The information required for a Weekly Report is generally as follows:
a. summary of Daily Reports;
b. general progress of the contract;
c. total work done during the week;
d. percentage of total contract completed during the week;
e. percentage of the total contract costs spent during the week.

| Module : CONSTRUCTION PROGRESS REPORTS | Code | TBG 508 |
| :--- | :--- | :--- | :--- |
| | | Edition $: 17-09-1984$ |
| Section $4:$ HAND OUT | Page $: 02$ of 02 | |

4. MONTHLY RRPORTS

Monthly reports are a detailed summary of all Weekly Reports but with the important addition of remarks both by the contractor and the supervisor.

5. SUMMARY

Reporting on the progress of any contract of project is extremely important and normally the following types of reports are prepared:
a. Daily
b. Weekly
c. Monthly.

CONSTRUCTION PROGRESS REPORTS	Code :	TBG 508
	Edition :	17-09-1984
Annex : VIEWFOILS	Page :	01 of 05
TITLE :	CODE :	
l. Construction reporting period	TBG 508/V 1	
2. Daily progress report	TBG 508/V	
3. Weekly progress report	TBG 508/V	
4. Monthly progress report	TBG 508/V	

CONSTRUCTION REPORTING PERIODS

\author{

1. DAILY
 2. WEEKLY
 3. MONTHLY
}

DAILY PROGRESS REPORT

A. CONTAINS :

* MATERIALS - RECEIVED
- USED
* WEATHER CONDITIONS
* PERSONNEL
* DEVIATIONS
B. SIGNED BY :
* SUPERVISOR / SITE ENGR.
* CONTRACTOR

WEEKLY PROGRESS REPORT

CONTAINS :

* TOTAL WORK DONE
* \% OF WORK DONE * \% OF MONEY SPENT * SUMMARY OF DAILY REPORTS

MONTHLY PROGRESS REPORT

CONTAINS :

* SUMMARY OF WEEKLY REPORTS * REMARKS

Module : ENGINEERING DRAWINGS	Code : TBG 509
	Edition : 13-03-1985
Section 2: SESSION NOTES	Page : 01 of 03
1. Introduction - Drawings represent on paper what exists or is proposed on site. - Water supply engineering drawings may differ in symbols, sizes and scales. 2. Drawing title - All drawings must have titles. - Drawing titlé is usually given in a box in the bottom. right-hand corner of the drawing. - Information regarding the drawing is contained within the box: a. Drawing number; b. Title of drawing; c. Designer's name; d. Draughtsman's name; e. Scale of drawing; f. Date of drawing; g. Details of revisions.	Show V 1
3. Scales - For practical reasons a drawing is a smaller representation of what exists onsite. - The reduction is made using a fixed SCALE. - Drawing sizes are standard so the scale varies depending on size of feature onsite. - Examples of common used scales are: $\begin{array}{rlrl} 1 & : & 10 & =\text { Details } \\ 1 & : & 20 & =\text { Details } \\ 1 & : & 100 & =\text { Site plans } \\ 1 & : & 200 & =\text { Site plans } \\ 1 & : & 1,000 & =\text { Site plans } \\ 1 & : & 2,000 & =\text { Town maps } \\ 1 & : & 2,500 & =\text { Town maps } \\ 1 & : & 5,000 & =\text { Town maps } \\ 1 & : & 10,000 & =\text { Rural development } \\ 1 & : & 20,000 & =\text { Rural development } \\ 1 & : 50,000 & =\text { Rural development } \\ 1 & : 100,000 & =\text { Reconnaisance } \end{array}$	*

-

Module : ENGINBERING DRAWINGS	Code : TBG 509
	Edition : 13-03-1985
Civil engineering TBG 509/V 7 symbols (example)	Electrical diagram (example)
Longitudinal profile TBG 509/V 9	Cluster details
Standard drawing TBG 509/V 11 pipe bridge	

DEPARTMENT OF PURLIC WORKS
DIRECTORATE GENERAL CIPTA KARYA

1. INTRODUCTION

Drawings are a representation on paper of what exists on site or is about to be constructed.
Engineering drawings used in a water enterprise do not differ so much from common practice in engineering.
However, some specific differences do exist.
Especially symbols and to a certain degree also sizes of drawings are typical.

2. DRAWING TITLE

All drawings must have a title so that the drawings can be identified and also information is given to the person reading the drawing.
The information is usually contained in a title box that is located in the bottom right-hand corner of the drawing. It normally comprises:
a. Drawing number;
b. Title of drawing;
c. Designer's name;
d. Draughtsman's name;
e. Scale of drawing;
f. Date of drawing;
g. Details of any revisions.

Fig. 1 Typical title box

Module	ENGINEERING DRAWINGS	Code	TBG 509
		Edition	13-03-1985
Section 4 : HANDOUT		Page	02 of 12

3. SCALB

Like maps and plans, engineering druwings are made to a certain scale.
Contrary to maps and plans, however, which inform people of features already existing, drawings are there to allow things to be built exactly as the designer wants them to be built.
For that a clear drawing is needed and it is essential to select the right scale.

scale 1:5

scale 1:2

Fig. 2. Scales

Module	ENGINEERING DRAWINGS	Code	TBG 509
		Edition	13-03-1985
Section 4 : HANDOU T \mathbf{l}		Page	03 of 12

For construction drawings this generally means a large scale.
Scales of $1: 100,1: 20,1: 10$, and for mechanical parts scales of $1: 5$, 1:2 or even 1:1 are required to attain suitably detailed drawings. Overall views can be drawn satisfactorily using scales of 1:200 or I:500.

In Indonesia the following scales are often used :

1	$:$	10	$=$ Details
1	$:$	20	$=$ Details
1	$:$	100	$=$ Site plans
1	$:$	200	$=$ Site plans
1	$:$	1,000	$=$ Site plans
1	$:$	2,000	$=$ Town maps
1	$:$	2,500	$=$ Town maps
1	$:$	5,000	$=$ Town maps
1	$:$	10,000	$=$ Rural development
1	$:$	20,000	$=$ Rural development
1	$: 50,000$	$=$ Rural development	
1	$: 100,000$	$=$ Reconnaisance	

Some practical examples are :
1:100 typical cross section of road with main.
l: 20 cross section, crossing main/culvert.
1: 10 detail pipe support.
1: 5 water meter pit/house connection.
No other, non-standard, scales should be used.

Exaggerated scale

The section alongside the longitudinal axis of e.g. a transmission main - named the longitudinal profile - is usually drawn to two different scales.
The horizontal dimensions (the length of the main) may be given at a scale of $1: 2000$, whereas the vertical distances (the differences in level) may be drawn at a scale of 1:200.
Drawing these levels to the scale of l:2000 would mean that e.g. ground level and main could not be drawn as two separate lines anymore.

On the other hand, applying a scale of l:200 not only for the levels but also for the length would produce ten times as many sheets, thus obscuring the overall view without adding substantial details. The compromise with two different scales is called the exaggerated scale.

Module	ENGINEERING DRAWINGS		Code	TBG 509
			Edition	13-03-1985
Section 4 : HANDOUT		1	Page	04 of 12

scale : horizontal 1:2000
vertical 1:200

Fig. 3. Exaggerated scale
4. SIZES

The sizes of engineering drawings but also of plans are standardized. The smallest size is A4, which measures $297 \times 420 \mathrm{~mm}$.
All other sheet sizes are a multiple of this basic format.

Format \quad Width_x_Height_(mm).

A4	297	\times	210
A3	420	\times	$297=2 \times A 4$
A2	594	\times	$420=4 \times A 4$
A1	841	x	$594=8 \times A 4$
A0	1189×84	$\times 16 \times A 4$	

Module	ENGINEERING DRAWINGS		Code	TBG 509
			Edition	13-03-1985
Section 4 : HANDOUT		1	Page	05 of 12

There are several reasons for strictly adhering to these recommended standard sizes :

- The dimensions of filing systems for drawings are based on the A4 unit.
- Paper and film dimensions are such, that when using A4 units minimal cutting losses will occur.
- Printing machines (lichtdruk) and more importantly the dimensions of photo-sensitive printing paper are chosen in accordance with standard formats.
- When printing is done by a commercial printer sometimes a machine is used for folding the prints; this machine is capable of handing standard-size drawings only.
- For several reasons sets of drawings are bound. It has some advantage when all drawings are of the same size. This will keep cutting losses to a minimum and prevent pages in the book with excessive blank margins. To obtain a better presented book, the drawings are usually reduced before binding. Then it is advantageous when all drawings can be reduced by the same factor, which can only be done with drawings of the same standard size.

Apart from the above, there is a more specific reason why drawings within a water enterprise should be of a certain standard size. The scale of the comprehensive plans and the sectional plans are such, that the comprehensive plan on an AO format contains a whole number of sectional plans on an A4 format.
This will be explained in more detail in the following sketch.

The shaded part in the comprehensive plan represents exactly one sectional plan. With the AO and Al formats enough space is left for the title block and legend (see figure on next page).

5. RRADING DRAWINGS

Most drawings of water mains show the site and the line of the water main, as seen from above. This is called a PLAN ELEVATION.

However, more detailed drawings show the feature from different angles :
a. PLAN ELEVATION … seen from the top.
b. SIDE BLEVATION - seen from the side.
c. FRONT ELEVATION - seen from the front.
e. REAR ELEVATION - seen from the rear.

Module :	ENGINEERING DRAWINGS	Code	TBG 509
		Edition	13-03-1985
Section 4 : HANDOUT $\mathbf{1}$		Page	06 of 12

Comprehensive plan - scale 1:5000-format AO

Sectional plan - scale 1:1000-format A1

841 mm

Fig. 4. Comprehensive/sectional plans

Module :	ENGINEERING DRAWINGS		Code	TBG 509
			Edition	13-03-1985
Section 4 : HANDOUT 1			.Page	07 of 12

Fig. 5. Example of various elevations on drawing
6. SYMBOLS

Sectional Plans

The greater part of the information on sectional plans is given with the help of symbols. These symbols mostly represent mains, including their dimensions and the various types of fittings and accessories.
Annex I of this module gives names of fittings, together with matching pictures and symbols for different pipe materials.
For the greater part, the symbols are already widely used throughout Indonesia. These symbols correspond to those suggested by ISO (*). As the symbols are not related to any make or manufacturer they can be used without reservation.
For polyethylene (PE or HPE) fittings the same symbols apply as for unplasticized polyvinyl chloride fittings (uPVC).
(*) International Standardization Organization

Fig. 6. Example of pipe symbols

Civil and mechanical engineering

Even on engineering drawings, which are usually made to such a scale that all details can be drawn, symbols are widely used.
Here symbols replace items like non-return valves, fire hydrants, valves, regulators, bends and all kind of fittings, which otherwise would cost much time in drawing, particularly as they may appear many times on one single drawing.
Apart from these symbols, different ways of hatching or shading are used in sections to indicate the material of which the structure concerned consists. The hatching indicates that it concerns a section and not a view, which makes the drawing clearer.
At the same time the material is known, which avoids much explanatory text on the drawing and as such also contributes to a clear engineering drawing (see figure 7).

The lists of symbols for civil and mechanical engineering as well as for electrical engineering are given only as extensive examples of which symbols are used (see Annexes II-IV).
However, no completeness was intended and it will be advisable to consult the legend on the drawing concerned, as long as symbols are not officially standardized.

Module	ENGINEERING DRAWINGS		Code	TBG 509
			Edition	13-03-1985
Section 4 : HANDOUT I			Page	09 of 12

excavation and backfill main
wash-out
Fig. 7. Example of civil engineering symbols

Blectrical engineering

The electrical installation of e.g. a pumping station is drawn in the form of a diagram. Such a diagram is mostly made up of symbols only. There is no visual connection with the real installation anymore and hence the diagram is difficult to understand by non-professionals. Annex IV sumarizes the most usual symbols on an electrical diagram (see figure 8).

Fig. 8. Typical electrical diagram

Module	ENGINEERING DRAWINGS		Code	TBG 509
			Edition	13-03-1985
Section 4 : HANDOUT 1			Page	10 of 12

Longitudinal profile

In the longitudinal profile e.g. a long-drawn distribution system or a transmission main, accessories such as bends, valves, air release valves etc. are indicated by symbols that are sometimes different from those used on sectional plans.
The symbols for horizontal and vertical bends, clusters and clamp saddles, being the most common ones, are given below :

vertical bend upwards, 45°

vertical bend downwards, 22.5°

cluster

Although usually the longitudinal scale is large, symbols can be used without too much trouble, as the fittings are mostly far apart.

	$75 \mathrm{~m} 080 \quad 11.25^{\circ}$		
accesscries	$75 \mathrm{mo200} \sim 1125^{\circ}$		

| Module : ENGINEERING DRANINGS | Code | TBG 509 |
| :--- | :--- | :--- | :--- |
| Section 4 : HAND OU T 1 | Edition : $13-03-1985$ | |

Fig. 11. Example of cluster details

Only occasionally fittings are at such a short distance, that the details of the cluster have to be given on a separate drawing. These clusters are drawn not to scale, using only symbols and they are usually completed with a list summing up all the fittings involved.

7. STANDARD DRAWINGS

Within a water enterprise a considerable number of the engineering drawings cover structures that are the same or almost the same, except for a few measures, details or materials.
In such cases time and money can be saved by using standard drawings. These give an accurate picture of the subjects concerned, except for those dimensions and other items that vary. These are indicated by letters. In a separate list these letters are given their real values.

Module	ENGINEERING DRAWINGS	Code	TBG 509
		Edition	13-03-1985
Section 4 : HANDOUT 1		Page	12 of 12

An example is the crossing of a canal by a water main. The supporting structure, e.g. two steel beams, will vary with the diameter of the main and with the width of the canal.

$\stackrel{L}{(m)}$	supporting structure for malns up to © 250 mm	$\begin{aligned} & \text { mains } \\ & 6300 \text { and } \\ & 84000 \end{aligned}$
0-5	no support requiree	
5-10	2.][NP 200	
10-14	2-J[NP 240	

Fig. 12. Standard drawing pipe bridge
The use of standard drawings is suitarle for, amongst others, the following subjects :

- public tap	- water meter Fıt	- thrust blocks
- yard connection	- valve (pit)	- river crossing
- alley connection	- fire hydrant	- canal crossing
- house connection	- air-release valvc	- culvert crossing
	- wash-out	

8. SUMMARY

- Drawings are a representation on paper of what occurs on site.
- They are drawn to scale and the various views of the feature are known as elevations.
- Water supply drawings may have their own typical symbols.
- For longitudinal profiles exaggerated scales are used.
- Standard drawings considerably reduce the number of drawings required.

Module	BNGINBERING DRAWINGS			Code	TBG 509
				Edition	17-09-1984
Section 4 : HAND O U T 2				Page	05 of 10
Annex I (continued)					
No.	Type Symbol		Nominal dimensions (in mm, unless indicated otherwise)		
c. C. 1	Tee, female pipe thread		$\begin{array}{rlrllll} 75 \times 50, & 75 \times 75 & & & \\ 100 \times 50, & 100 \times & 75, & 100 \times 100 \\ 150 \times 75, & 150 \times & 100, & 150 \times 15 \end{array}$		
C. 2	Flange socket (thread)	\vdash	50, 100	, 150	
c. 3	Bend, 45°; male pipe thread		50, 75	100, 15	
C. 4	$\begin{aligned} & \text { Bend, } 90^{\circ} \text {; } \\ & \text { flanged } \end{aligned}$	C	$50,10$, 150	
C. 5	Reducer; female thread	\beth	$\begin{array}{r} 75 \times 10 \\ 100 \times 15 \end{array}$		
C. 6	Cap, with pipe thread	$コ$	75, 100	, 150	
C. 7	Screwed flange		50, 75	100, 15	
c. 8	Clamp saddle for galvanized steel pipe	\Perp	$\begin{array}{r} 75 \mathrm{~mm} \\ 100 \mathrm{mmu} \\ 150 \mathrm{mmm} \end{array}$	$\begin{array}{ll} x & 1 \prime \\ \times & 1 " \\ \times & l^{\prime \prime} \end{array}$	

Module	ENGINEERING DRAWINGS			Code	TBG 509
				Edition	13-03-1985
Section 4 : HANDOUT 2				Page	07 of 10

| Module : ENGINEERING DRAWINGS | Code $:$ TBG 509 |
| :--- | :--- | :--- | :--- |
| Section 4: HAN D OUT 2 | Edition : 13-03-1985 |

Annex III SYMBOLS MECHANICAL ENGINEERING (FOR SECTIONS)
Steel, only for relatively thin
parts
Steel
Cast iron
Copper/brass

Module	le ENGINEERING DRAWINGS	Code :	TBG 509
		Edition :	13-03-1985
Annex	- : VIEWFOILS	Page :	01 of 12
TITLE :		CODE :	
1. Drawing title box		TBG 509/v	
	2. Scale markers	TBG 509/V	
	3. Use of different scales	TBG 509/V	
	4. Drawing sizes	TBG 509/v	
	5. Elevation of drawings	TBG 509/V	5
	6. Pipe symbol (example) TBG 509/V 6		
7. Civil engineering symbols (example)		TBG 509/V	7
8. Electrical diagram		TBG 509/V	8
9. Longitudinal profile		TBG 509/V	
10. Cluster details		TBG 509/V	
11. Standard drawing pipe bridge		TBG 509/V	
$-\quad-$			

-

scale : horizontal 1:2000

Comprehensive plan - scale 1:5000-format AO

	¢ $\begin{aligned} & 3500 \mathrm{~m} \\ & -3000 \\ & -2500 \\ & -2000 \\ & -1500 \\ & -1000 \\ & 500 \\ & -0\end{aligned}$
1189 mm	

Sectional plan - scale 1:1000-format A1

$\rightarrow-$-+--ャ-+- +	+500 ${ }^{\text {m }}$
1 t	-400
+	-300
t	- 200
I	-100
\pm	to

$\begin{aligned} & \bar{O} \\ & \underline{R} \\ & \bar{N} \\ & \lambda \end{aligned}$	

Excavation and backfill mains

Wash out

	$75 \mathrm{~m}^{\prime} \varnothing 80 \sim 11.25^{\circ}$	$175 \mathrm{~m}^{\circ} \varnothing 200 \sim 22.5^{\circ}$
accessories	$75 \mathrm{~m}^{\circ} 0200 \sim 11.25^{\circ}$	$\text { ND } 200$

| |
| :--- | :--- |

xand

DEPARTMENT OF PUUBLIC WORKS
DIRECTORATE GENERAL CIPTA KARYA DIRECTORATE OF WATER SUPPLY

Module : CONCRETE TECHNOLOGY	Code : TBG 512
	Edition : 14-03-1385
Section 2 : SESSION NOTES	Page : 0ī of 03
1. Introduction - Concrete is a mixture of : - Sand - Cement - Gravel . Water. - For taking up tensile stresses reinforcement is used. 2. Bonding and hardening - The bonding process can be divided in : - initial bonding; - actual bonding. 2. Storage of cement - Cement is normally : - supplied in bags; - stored in a dry clean room; - stacked. 4. Impurities in concrete - Impurities reduce the strength of concrete. - Impurities reduce : - hardness - compactness. - Salt water is a major problem. 5. Aggregates - There are two groups of aggregates : - fine - coarse.	Show V 1 (a-e) Show V $2(\mathrm{a}-\mathrm{c})$ Show V 3

Module : CONCRETE TECENOLOGY

CONCRETE TECHNOLOGY	Code	TBG 512
	Edition	14-03-1985
Section 4 : HANDOUT	Page	01 of 15

1. DEFINITIONS

Concrete is a mixture consisting of : \quad.. ;

- Cement
- Sand
- Gravel and stones (split stones)
. Water (See Fig. 1).

Fig. 1. Concrete nixture

These materials are mixed at a specific ratio until they are really even, composite and homogeneous.
This mixture will then harden like rock (dry up and become hard as rock).

Explanation : Cement is a bonding material that, together with sand and water, fills the holes/pores between gravel and stones, thus bonding them together.

Note :
The ratio of fine particles (sand) to larger particles (gravel and stones) is important. Ideally there should be just enough fine particles to fill the gaps between the large particles, if a good strong concrete is to be obtained.

| Module : CONCRRTE TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- |
| Section 4: H A N D O U T | Edition : $14-03-1985$ |

Concrete has proven to be very strong in resisting pressure. However, concrete is unable to resist tensile stresses.
If a concrete structure will be exposed to tensile stresses at the point where load is applied, we have to provide some reinforcement (for example in the form of beams/bars of iron/steel) so that the concrete and reinforcement can really stick together strongly and can withstand the forces or load acting on the construction. This combination of concrete and reinforcing materials is called reinforced concrete (See Fig. 2).

Fig. 2. Forces in concrete

Thus : Reinforced concrete is concrete which contains steel bars. Both materials work together in taking up the forces caused by the load acting on it.

2. BONDING \& HARDENING

If cement is mixed with water, after some time the mixture will become viscous (bonding) and then harden.
The bonding process can be divided into 2 parts :

- Initial bonding
- The time required from the start of mixing cement and water until the moment the mixture become viscous.

| Module : CONCRETB TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- | :--- |
| Section 4: HAN D O U T | Edition : $14-03-1985$ |

- Actual bonding
- The time required, starting when the mixture becomes viscous, until the moment the mixture becomes solid.

3. STORING CEMENT

In concrete construction there must be facilities for storing the cement. This store must be made strong, and the floor, roof and walls must be waterproof and wind (air) proof.

There is no need for windows; a dark room is even better for storing the cement (See Fig. below).

Fig. 3. Cement store

The external walls should be coated with asphalt (bitumen) paper to help keeping out water and dampness. The floor of the warehouse must be at least 30 cm above the ground. The floor of the warehouse should also be coated with asphalt paper.
The floor must be strong, because cement sacks piled as high as 2 m will cause a pressure of $2500 \mathrm{~kg} / \mathrm{m}^{2}$ on the floor.

These cement sacks must not be arranged so as to stick against the walls. A 50 cm distance must be allowed to prevent the transfer of dampness from the walls to the cement.

Note : The cement piles must not be higher than 2 m . This is to prevent the cement sacks from bursting and to prevent the cement from solidifying and forming into hard clusters. If inside the cement mixture there appear small clusters of cement, and these clusters can be broken by hand, the cement can still be used.

Module	CONCRETE TECHNOLOGY	Code : TBG 512	
		Edition	14-03-1985
Section 4	HANDOUT	Page	04 of 15

4. EFFECT OF IMPURITIES

In a concrete mixture there may not be any impurities.
Impurities will cause :

- a reduction in compactness and hardness of the concrete;
- possible damage to the cement and the steel reinforcement;
- a reduction of the useful life of the concrete structure.

Frequently observed impurities (which cause much trouble) are clay and mud. Furthermore, if the dirt (impurities) stick to the gravel or stones of the concrete mixture, they will prevent the bonding of sand, gravel and split stones. In that case the compactness of the concrete will deteriorate.

Other impurities

- Plant residuals reduce the compactness and hardness of the corcrete.
- Various acids, salts and gypsum found in the gravel or stones will damage the concrete. Sea sand contains high concentrations of salts and should not be used.

5. GRAIN SIZES

The roughness, fineness and proportion of sand grains, gravel and split stones have a very great effect on :

- the use of the mixture;
- the compactness and hardness of the concrete.

Two groups of concrete aggregates are distinguished :
A. FINE AGGREGATES

- Sands and fine gravel.
- Materials to be used as fine aggregate should meet the following specification :
- 98x (by dry weight) must pass a 4 mm sieve;
. 90\% (by dry weight) must pass a 1 mm sieve;
. 80x (by dry weight) must pass a 0.5 mm sieve.
-

| Module : CONCRETE TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- |
| Section 4 : H AND OU T | Edition $: \quad 14-03-1985$ |

B. COARSE AGGREGATES

- Large gravel and split stones.
- Material for coarse aggregate should be hard, non-porous, nondegradable.
- The maximum size of stone allowed is determined as follows : either (a) $1 / 5$ of the smallest dimension of the shape being cast, or (b) $3 / 4$ of the space between any reinforcing bars, whichever of (a) and (b) is smaller.

For most concrete mixes the specified proportions (by volume) of cement, fine aggregate and coarse aggregate are as follows

1	$:$	2	$:$	3
cement	fine aggregate	coarse aggregate		

or $1 \quad: \quad 1 \quad 1 / 2 \quad: \quad 21 / 2$
cement fine coarse aggregate aggregate

6. SIEVING

To obtain a general picture of the roughness and fineness of the sand grains and/or gravel to be used, checks are carried out by sieving the materials, using various sieves with different sizes of holes.

These sieves are assembled as a combined unit, arranged one on top of the other, with adequate distances in between. The sieve with the largest holes is placed at the top and they are gradually getting finer, so that the finest sieve is placed at the bottom. In this way the fine sieves will not be damaged by rough materials.
The sieves are operated either manually or mechanically.
The roughness or fineness of the sieves can be determined by stating the size of the holes in mm.
In Indonesia the following sizes of sieves are known : 0.15 mm ; $0.30 \mathrm{~mm} ; 0.60 \mathrm{~mm} ; 1.20 \mathrm{~mm} ; 4.80 \mathrm{~mm} ; 9.60 \mathrm{~mm} ; 19 \mathrm{~mm}$; and 38 mm .

Module :	CONCRETE TECHNOLOGY	Code : TBG 512	
		Edition	14-03-1985
Section 4 :	HANDOUT	Page	06 of 15

7. SAMPLING SAND AND AGGREGATE

To take sand and aggregate samples for sieving, a small heap of sand or aggregate (gravel) must be taken.
Equal parts must be taken from the top of the heap of the sand (or gravel), from the middle part and from the bottom part. This is necessary as the rough/large grains tend to collect at the bottom. The total volume must be approximately 50 litres in case of sand, and approximately 100 litres in case of gravel and other coarse aggregates.
The total sample must be mixed evenly.
Each sample is then put on a platform base and arranged in the shape of a circle with uniform thickness. Reducing the volume of the sample is accomplished as follows :

- The sample is divided in four equal parts : A, B, C, D;
- Parts A and C are returned to the heap;
- The remaining B and D are formed into a full circle, and the procedure is repeated
- If necessary this can be repeated until a volume is obtained that is considered adequate.

Fig. 4. Taking aggregate/sand samples

| Module : CONCRETE TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- |
| Section 4 : H A N D O U T | Edition : 14-03-1985 |
| | Page $: 07$ of 15 |

8. MBASURING - OUT MATERIALS

When the sand and aggregate have been sampled and are found to be of acceptable grain sizes, they must be mixed in correct proportions with the cement.
This is a most important step, as any errors at this stage can seriously effect the quality of the concrete.
The basis for measurement is the bag of cement.
Remember, the specification is for 1 : $2: 3$ or 1 : $11 / 2: 21 / 2$ proportions (by volume) of cement, fine aggregate, coarse aggregate. Either :

- suitable containers can be used, which are calibrated to contain the correct volumes of fine and coarse aggregate per bag of cement, or :
- the volumes can be converted into ratios of weight, and the subsequent measurement carried out using a weighing machine. (But care must be taken to allow for the weight of any water contained in the aggregates).

When all materials have been measured out in correct proportions they are ready to receive the final ingredient - water.
9. WATER

The water used for the concrete mixture must be pure, clean and fresh, which means that the water must not contain any mud, sludge, acid, salt, sulphate, plant residuals and other dirt (impurities) that can damage the concrete.
10. WATER CONTENT

Water is not only necessary for the hardening process of the concrete, but it is also useful for softening the concrete mixture for easy use when it is still in the "porridge" condition.
For the hardening requirements a water-cement ratio of approximately 1 : 3 is needed.
However, if we only use that much water we have to apply pressure when casting.
Therefore, a somewhat higher water-cement ratio (approximately $1: 2$) is normally used, to ensure that the concrete can be handled without difficulty during the placing/casting stage.

Module	CONCRETE TECHNOLOGY	Code	TBG 512
		Edition	14-03-1985
Section	HANDOUT	Page	09 of 15

By using this method of measurement, we find :

- damp concrete : $W=0.40-0.60$;
- plastic concrete : $W=0.65-0.75$.

To determine the most suitable value of W as accurately as possible, we must bear in mind the final purpose of the concrete, and the way in which the mixture will be handled during the construction process itself.
11. FORMMORK

Formwork is the temporary construction which determines the final shape of the concrete.

Fig. 5. Formwork for wall

| Module : CONCRETE TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- | :--- |
| Section 4 : HAND OUT | Edition : $14-03-1985$ |

It should be strong and rigid so that it does not bend or twist when the wet concrete is poured into it (remember wet concrete behaves rather like water). Usually panels of wood are satisfactory if they are sufficiently-braced on the outside (see Fig. 5 on previous page).

However, the panels must also fit tughtly together so that they do not allow liquid cement to leak out when the concrete is placed, as this will leave holes in the concrete.
Before concrete is placed, the formwork should be checked to ensure :

- that it is clean and does not contain loose debris which would contaminate the concrete;
- that it is fixed to the correct line and level, as shown on the drawings;
- that it is rigid enough to withstand the weight of the wet concrete without bending.
- that there are no gaps for liquid cement to leak out;
- that any reinforcement fixed within the formwork will have sufficient covering when the concrete is placed (see Fig 7).

It is common practice to coat the inside of the formwork with a thin layer of oil so that it can be more easily removed when the concrete has hardened.
This oil should not contaminate the reinforcement.

$$
\pm
$$

Module	CONCRETE TECHNOLOGY	Code	TBG 512
		Edition	14-03-1985
Section 4 : HANDOUT		Page	11 of 15

12. REINFORCEMBNT

-- Heinforcement rods must be cut and bent according to the plan design.

- Reinforcement rods must be free of dirt, fat, rust and other materials that tend to reduce the adhesive power;
- Reinforcement that has been exposed to the open air is usually very rusty;
- The rust can be removed by hitting the rod, or by brushing it with a wire brush.

Permanent rust (not "loose" rust) is actually not that bad, because the cement can chemically eliminate the rust; furthermore the adhesive strength increases. However, if this permanent rust is very thick, this will decrease the effective diameter of the rod and also cause it to become brittle (so that it can break easily).

Fig. 6. Bending tools

| Module $:$ CONCRETE TECHNOLOGY | Code $:$ TBG 512 |
| :--- | :--- | :--- | :--- |
| Section 4: H AND O UT | Edition : 14-03-1985 |

It is important that reinforcement is sufficiently protected by the concrete against further corrosion, as this would also lead to cracking of the concrete. Therefore, no reinforcement should be closer than approx. 4 cm from an outside surface. This is accomplished by using so-called spacers (See Fig. 7 below).

Fig. 7. Spacers for reinforcement

13. MIXING CONCRETB

Mixing of concrete can be done manually, or mechanically by using a "mixer". Mixing the concrete mechanically is far more advantageous because the strength/compactness increases by 20x to 30x due to the fact that the elements are more evenly mixed.

We cannot always use a mixer, however. When the mechanical mixer has broken down, for instance, the mixing must be done by hand.

The location of the mixing container must be chosen so that it is :

- not too far from the place where the concrete is cast;
- not too far from the place where the aggregate materials are stored.
a. Mixing by hand

If mixing is done by hand, it must be done at a place where the floor is hard and does not absorb water.
This is necessary in order that no dirt or soil (earth) is mixed in and no water is lost or being absorbed. If a large amount of concrete is required, it would be better if mixing is done under a roof, so that the mixture is protected from the heat of the sun and from rain.
The first thing which must be done is to pour the cement (be careful not to let too much cement get blown away by the wind). Then mix the sand and cement as rell as possible using a spade (if necessary this is done by two people) until the whole mixture has a uniform colour. After tilat pour in the gravel, then pour in the water, and mix contimuously. Half the total volume of water is poured into the mixture first, and the same amount later again. The mixing is contimuct until a type of homogeneous "porridge" is obtained.

b. Mixing using a machine

The capacity of the mixer drum is the volume of the dry material which can be contained by the drum during each filling. Typical drum capacities are: 50 litres, 150 litres, 250 litres, 375 litres, 500 litres and 1000 litres.

Although the capacity of the drum, expressed as volume of dry material, is as mentioned above, its actual volume is approx. 3 times larger to ensure a mixture that is as homogeneous as possible. The mixing time is at least 1 minute, and often 2 minutes.

A mixing time which is too long gives a bad unaformity of the mixture and reduces the compactness and hardness of the concrete. Although the speed (rpm) of the mixer can be adjusted, the manufacturer always gives recommendations for the optimum speed for mixing concrete.

Module : CONCRETE TECHNOLOGY	Code	TBG 512
Section 4 : HAND OUT	Edition : $14-03-1985$	

Fig. 8. Bffect of mixing time

From the graph, it can be seen that a speed that deviates from the manufacturer's instructions results in a reduction in concrete strength. At very high speeds, the mixture will stick to the walls of the container (due to the large centrifugal force) so that it cannot "fall freely" and will no longer be really mixed.

14. PLACING CONCRBTE

This is a most important step in the process.
First, the formwork and reinforcement must be checked as described in sections 11 and 12 . Then, if concrete $1 s$ to be cast against an exisiting concrete surface, that surface should be roughened to enable a good bond. The surface should then be thoroughly moistened with water just before the new concrete is placed, so that it does not adsorb too much water from the new concrete.

Module	CONCRETE TECHNOLOGY	Code	TBG 512
		Edition	14-03-1985
Section 4 : HANDOUT		Page	15 of 15

The concrete should be placed carefully in layers (not dropped from a great height). Each layer should be rammed with a blunt rod or vibrated with a mechanical vibrator to compact it and to ensure that there are no bubbles of air trapped within it, and it completely fills the gaps between the reinforcing bars. When all concrete has been placed, any exposed (final) surfaces should be smoothed with a wooden float. The concrete should then be covered, to protect it from sunlight, which would cause it to dry too rapidly and would result in cracking.

15. CURING CONCRETE

During the period that the concrete is setting and hardening, it is said to be "curing". During this time all exposed surfaces should be covered up and kept damp by spraying with water.
Usually it is necessary to continue moistening the concrete surfaces for at least l week after the concrete has been cast.

During the rainy season, concrete which has not yet hardened, must be protected from heavy rain.

16. SUMMARY

- If a concrete structure is exposed to tensile stresses, reinforcement has to be applied.
- Cement must be stored dry and in stacks up to 2 m .
- Impurities reduce hardness and compactness of concrete.
- There are fine and coarse aggregates.
- Aggregates, sand and cement should be measured and mixed in the correct proportions.
- The water content and mixing time also determine the compactness and hardness of concrete.
- Concrete should be placed in layers.

:

DEPARTMENT OF PUBLIC WORKS
directorate general cipta karya
MOPP
directorate of water supply

Module : CONCRETB TESTING	Code : TBG 513
	Edition : 14-03-1985
Section 4 : H A N D OUT	Page : 01 of 03

1. INTRODUCTION

The appropriate viscosity of the concrete mixture (workability) is determined by transport requirements, compacting method, type of construction and how close the reinforcement rods are to each other. The viscosity depends on many factors, amongst others the types and structure of grains and possibly also the use of additional materials.
As the quality of concrete is directly influenced by its viscosity, this must be kept as uniform as possible. For that reason the viscosity of the concrete mixture must be checked.

2. SLUMP TEST

The viscosity of the concrete mixture can be examined through a simple test, called the slump test. The word "slump" comes from the English language and means : immediate reduction.
The concrete mixture for this slump test must be taken directly from the mixer, with a pail or other container that does not absorb water (for example a zinc pail, iron pail, or plastic pail).
If necessary, the concrete mixture should be maxed again before carrying out the test. The slump test is carried out as follows:

- An Abram's cone (a cut off cone having a diameter of 10 cm at the top, a diameter of 20 cm at the bottom and a height of 30 cm) is placed on an even surface that does not absorb water (See Fig. 1).

Fig. 1. Abraw's cone

Module	CONCRETE TESTING	Code	TBG 513
		Edition	14-03-1985
Section 4 : HAND OUT		Page	02 of 03

- The Abram's cone is filled with the concrete mixture while being pressed downwards.
-. . The concrete mixture is put into the cone in 3 layers of approximately equal thickness. Each layer is rammed 10 times with a steel stick (16 mm in diameter, 60 cm long, having a blunt point).
- After the top layer is made level with the top edge of the cone, this is left standing for half a minute.
During this time the excess of concrete mixture having falling off around the cone is cleaned away.
- Then the cone is carefully pulled vertically upwards.
- Soon after that, the decrease in level at the top $1 s$ measured against the height of the Abram's cone.
- The result of measuring this decrease in level is called slump. This slump is an indicator of the viscosity of the concrete mixture.

The slump test mentioned above gives a quite satisfactory result for measuring the viscosity of plastic concrete and soft concrete, but it was found to be unsatisfactory for damp concrete.
Remember that the method of filling the Abram's cone and of pulling it upwards has a very great effect on the result of this test.

3. SLUMP VALUES

Below is a list of the allowable slump values for a concrete maxture, for various types of usage.

USAGB

Pre-cast concrete
Concrete for road
construction
Large mass of concrete
Reinforced concrete
(with large reinforcement)
Normal reinforced concrete
Reinforced concrete
(with narrow gaps
between rerods)
Cast concrete
Poor concrete (cannot be used at all)

CONCRETE CLASSIFICATION SLUMP
Damp concrete 0
"Dry" Pounded concrete 0
"Wet" Pounded concrete $0 \mathrm{~cm}-5 \mathrm{~cm}$
"Dry" Plastic concrete $\quad 5 \mathrm{~cm}-12 \mathrm{~cm}$

Normal Plastic concrete $10 \mathrm{~cm}-17 \mathrm{~cm}$
"Het" Plastic concrete - $15 \mathrm{~cm}-20 \mathrm{~cm}$

Soft concrete
Very soft
$18 \mathrm{~cm}-22 \mathrm{~cm}$ more than 22 cm .
'

Module	CONCRETE TESTING	Code	TBG 513
		Edition	14-03-1985
Section	HANDOUT	Page	03 of 03

If the "slump" of the concrete is greater than that specified above for its specific purpose, too much water has been added and the mixture should be rejected.
4. SUMMARY

- The quality of concrete depends very much on its viscosity.
- A useful tool to test concrete viscosity is Abram's cone.
- Allowed slump values depend on the usage of the concrete.
- The Abram's cone test is unsatisfactory for damp concrete.

$$
c
$$

$\perp S \exists \perp$ dWO7S

SLUMP TEST, CRITERIA

USAGE	CONCRETE CLASSIFICATION	SLUMP (cm)
Pre-cast concrete	Damp concrete	0
Concrete for road construction		
Large mass of concrete	"Wet" Pounded concrete	$0-5 \mathrm{~cm}$
Reinforced concrete (with		
large reinforcements)	"Dry" Plastic concrete	5-12 cm
Normal reinforced concrete	Normal Plastic concrete	10-17cm
Reinforced concrete (with narrow gaps		
rods) Cast concrete	"Wet" Plastic concrete Soft concrete	$\begin{aligned} & 15-20 \mathrm{~cm} \\ & 18-22 \mathrm{~cm} \end{aligned}$
Poor concrete (cannot be used at all)	Very sof \dagger	more than 22 cm

Module : PLANS	Code : TBG 514
	Edition : 17-09-1984
Section 3: TRAINING AI	S \quad Page : 01 of 02
Overall plan water TBG ${ }^{-} 514 / \mathrm{V}$ I supply system	Sectional
Symbols used in plans TBG 514/V3 SYMBOLS USED IN PLANS	Use of coordinates TBG 514/V 4 for reference
Use of reference map TBG 514/V 5	Plan of cluster TBG 514/V 6

Module : PLANS		Code	TBG 514
		Edition	17-09-1984
Section 3: TRAININGAIDS		Page	02 of 02
Valve plan with TBG 514/V 7 valve list			
			-
	Plans		TBG 514/H 1

1. INTRODUCTION

A plan, like a map, is a bird's-eye view of an area but, unlike a map, a plan is made to give technical information.
Plans should provide the information adjusted to the ultamate goals they are made for and as these goals differ, plans differ. Scales, symbols, the way in which data are given, elc. will vary accordingly.

During the design phase of a distribution system for instance, other information is needed than when the system has been built and is being operated.
Although this does not necessarily lead to different kinds of plans, most of the.time it is considered more useful to make separate plans for operating the system.

This module will deal with plans required for operating a water supply system.
Generally speaking the following plans can be distinguished within a water enterprise :

- comprehensive plans;
- sectional plans;
- valve plans.

Sectional plans and valve plans are subdivisions, sometimes at a different scale, of the comprehensive plan.
To fit the plans together in the right position a system of coordinates is used on the plans.

Symbols are used for indicating valves, fire hydrants etc. as they cannot be drawn to (the right) scale.
2. SCALES

The direct function of a plan is to give a clear picture of a water supply system, or part of it.
A field crew, involved in maintenance and repalr of e.g. valves needs a plan with many more detalls that the manager of the water enterprise who primarily needs an overall view of the system he manages.

A comprehensive plan is normally drawn to a scale of $1: 5,000$ but when the system is large and not too congested, 1:10,000 may gave satisfactory results (see Fig. l).

Sectional plans are drawn mostly to a scale of l: 1,000 . However, in congested areas $1: 500$ is sometimes better, whereas in rural areas a scale of even $1: 2,000$ may provide a clear and complete picture (see Fig. 2).

$$
.
$$

Fig. 1. Over-all plan of water supply systen

| Module : PLANS | Code $:$ TBG 514 |
| :--- | :--- | :--- |
| | Edition : 17-09-1984 |
| Section 4: HAND OUT | Page 03 of 11 |

Fig. 2. Sectional plan

Module : PLANS	Code $:$ TBG 514	
		Edition $:$ 17-09-1984
Section 4: HAN D OUT	Page $: 04$ of 11	

The scale of valve plans usually is the same as that of the comprehensive map, that is $1: 5,000$, except in rural areas where a scaleof 1 : 10,000 is sufficient.

3. SYMBOLS

Symbols represent, in a standardized way, objects such as valves, etc. that cannot possibly be drawn to the scale of a plan, but which have to be indicated anyway.
Due to the limited number of subjects to be indicated on . comprehensive plans and on valve plans the number of symbols is not so large.

The most important symbols are :

The dimension of the mains are always given in wrıting.
Dimensions are also indicated by the type and thickness of the lines on the plans.

DIAMETER (man)	- COMPREHENSIVE PLAN -VALVE PLAN	- SECTIONAL PLAN
75 and smaller $:$	$:$	
100	$:$	indicate by increasing line thickness and ex plain in legend.

4. COORDINATES/REFERENCE MAPS

In case the water supply system is so extensive that the comprehensive plan cannot be drawn on a single sheet, a system of coordinates becomes necessary to be able to lay maps together in the right order. The $X=0$ and $Y=0$ coordinates are chosen in such way that future extensions of the network are possible without having to use negative figures. For that reasons coordinates usually do not start with zero, but e.g. with 1000 (m) (see Fig. 3).

Coordinates on the comprehensive plan are preferably given at such intervals that subdivision in areas covered by ar sectional plan can be done without interpolation.
When the comprehensive plan is drawn at a scale of $1: 5,000$ and the sectional plan at $1: 1,000$, the coordinates or the comprehensive plan may thus be given at intervals not exceeding ' 00 m.

The sectional plan then only provides onc sector measuring $500 \times 500 \mathrm{~m}$.

Another way to indicate the position of a seticaal plan relative to the comprehensive plan is to incorporate a siror sly reduced drawing of the comprehensive plan in each sectional F in. By using a "box" or shading the position of the sectional pl $n:$ then indicated on the reduced reference map (see Fig. 4).

5. COMPREHENSIVE PLAN

A comprehensive plan gives the manager of a water enterprise a clear picture of the water supply system he operates.
The plan is primarily an operating record but it will be used for planning extensions and modifications of the system as well.
On this plan usually only the mains, with diameters, the valves and the fire hydrants are given, but of course also reservoir(s), treatment plant and other structures are indicated when they fall within the limits of the plan.

For orientation, street names are written, but to keep the plan clear, no street or property lines are drawn, and dimensions of valves and hydrants and valve numbers are left out for the same reason. This can be done without any problem as the manager does not need this kind of information.

From a plan like this it can be concluded whether the network in all areas is as complete as required to supply water not only in normal conditions but also under peak demand and fire fighting conditions.

SECTIONAL PLAN WITH COORDINATES
Fig. 3. Use of coordnates for referconce

The plan will also indicate in which areas fire hydrants are too far apart and thus where hydrants should be added.
Consumer areas, fully depending on only two or even less supply mains can be spotted easily.
In this situation a maintenance job or a failure of one main will interrupt the water supply of the entire area.
The plan shows where additional feeder mains could be constructed to improve this situation.
With the help of this plan it can be decided where the improvement can be made most economically regarding the network as a whole.

6. SECTIONAL PLAN/CLUSTER PLAN

A sectional plan is a part of the comprehensive plan at a larger scale. This record provides the location of the mains up to the house connections, the location of valves, valve numbers, location and number of fire hydrants and all other information needed for the day to day operation of the distribution system.
As all data about valves and hydrants are given in details on the valve plan and in the valve list, no further information except location and number is given on the sectional plan.

Apart from the above the sectional plans usually also show lotnumbers, house numbers and water account numbers, sizes and materials of mains and service lines, distances to property lines, fittings by means of symbols, distances of these fittings from adjacent buildings (to be able to locate them again), etc.

Details of pipes, accessories, valves, etc. are given on "cluster plans". For clarity these plans are usually not to scale (see Fig. 5).

7. Valve plan and valve list

Operating a water distribution system means mainly operating valves. Valves are so essential that mapped records of only valves are considered indispensable.

At a scale of $1: 5,000$, or for rural areas $1: 10,000$, mains are indicated with their sizes, valves with valve numbers, hydrants with numbers, regulators with numbers, etr.

Module : PLANS	Code : TBG 514
	Edition : 17-09-1984
Section 4 : HAND OUT	Page : 09 of 11

SIZE	SYMBOLS	Q'ty		
80.80	\longrightarrow	4		
$100 \cdot 100$	-1	2		
80.80	${ }_{5}$	1		
ND. 100	\triangle	1	SIZE ACCESSORIES	Q'ty
ND. 80	\square	2	80 GASKET	6
100.90°	\checkmark	1	100 GASKET	3
100	\longmapsto	1	M16 $\times 80$ BOLT + NUT	72
80.100	\checkmark	1		

Fig. 5. Plan of cluster

PLANS	Code	TBG 514
	Edition	17-09-1984
Section 4 : HANDOUT	Page	10 of 11

Fig. 6. Valve plan with valve list
.

Module : PLANS	Code $:$ TBG 514	
		Edition $: 17-09-1984$
Section 4 : HAND OUT	Page $:$ ll of 11	

On a separate valve list the information is provided that is not so easily indicated on a plan, such as make, direction to open, reference measurements, distances to property lines, etc (see Fig. 6).

Copies of these records are used by crews in the field, for day-today operation of the system, maintenance, repair and construction.
8. SUMMARY

A plan is a top view of an area, providing mostly technical information. Plans may differ in scale and the type of symbols used, depending on their specific goals and use.
.

Module : PLANS	Code : TBG 514
	Edition : 17-09-1984
Annex : VIEWEOILS	Page : 01 of 08
TITLE :	CODE :
1. Over-all 'plan water supply system	TBG 514/V 1
2. Sectional plan	TBG 514/V 2
3. Symbols used in plans	TBG 514/V 3
4. Use of coordinates for reference	TBG 514/V 4
5. Use of reference map	TBG 514/V 5
6. Plan of cluster	TBG 514/V 6
7. Valve plan with valve list	TBG 514/V 7

SECTIONAL PLAN

SYMBOLS USED IN PLANS

SPECIALS:

PIPELINES
DIAMETER (mm)

75 AND SMALLER
100
150
200
LARGER THAN 200

- COMPREHENSIVE PLAN	-SECTIONAL PLAN
-VALVE PLAN	
-	-

INDICATE IN WRITING
INDICATE BY ${ }^{-}$INCREASING LINE THICKNESS AND EXPLAIN \mathbb{N} LEGEND

$$
1
$$

OVER-ALL PLAN WITH COORDINATES

SECTIONAL PLAN WITH COORDINATES

O!/ER-ALL PLAN WITH SECTIONAL
PLAN GIRD

SIZE	SYMBOLS	$Q^{\prime} t y$
$80 \cdot 80$	-	4
100.100	-	2
80.80	I	1
ND. 100	\square	1
ND. 80	\square	2
100.90°	\longrightarrow	1
100	\longmapsto	1
80.100	\square	1

SIZE	ACCESSORIES	Q'ty
80	GASKET	6
100	GASKET	3
M16 $\times 80$ BOLT + NUT	72	

.

Module	MAPS
Section 1 IN FOAM	
Duration	
Training objectives :	

90 minutes.
After the session the trainees will be able to : - identify the different kind of maps in use in a water enterprise;

- identify scales and symbols used on maps;
- sketch the symbols used on maps.
- Member of Management Board;
- Head of Technical Department;
- Head of Section Distribution;
- Head of Sub-section Distribution \& Connections;
- Pipeline Inspector;
- Head of Section Planning \& Supervision;
- Head of Sub-section Planning;
- Technical Planning Assistant;
- Junior Engineer.
- Maps to different scales;
- Viewfoils : TBG 701/V 1-7;
- Handout : TBG 701/H 1.

Keywords

Map reading/map symbols/legend.

Module : MAPS		Code :	TBG 701
		Edition :	17-09-1984
Section 3: TRAINING AIDS		Page	01 of 02
Map scales TBG 701/V 1	Symbols I		TBG 701/V 2
\qquad	Symbols III	是	TBG 701/V 4
	Map		TBG 701/E 1

| Module : MAPS | Code $:$ TBG 701 |
| :--- | :--- | :--- |
| Section 4 : H A N D O U T | Edition : 17-09-1984 |

1. INTRODUCTION

A map is a bird's-eye view of a part of a town, a country or an even larger area, drawn on a flat piece of paper with the objective to give as much information as possible of the three-dimensional reality.

The imagery of the bird's eye view is not chosen by accident, as more and more maps are drawn on the basis of pictures taken from airplanes (aerial survey).

For practical reasons maps are made to a certain scale.
To keep the map clear and readable without losing too much information, symbols are used to represent certain features.

Depending on their later use, maps differ in scales end in the way and to the extent information is given.

2. SCALES

Maps are used to obtain an overall view of a certain area. For practical reasons maps are drawn to a certain scale, but at the same time to such a scale that the overall view required is still ensured. The scale gives the relationship between the dimensions on the map and the distances in reality.

For example on a topographical map a distance of 1 cm may represent 250 m in the field. The scale is written as 1 : 25,000 which is short for : 1 cm on the map represents $25,000 \mathrm{~cm}$ in reality. On a town map, however, 1 cm may correspond to $1,000 \mathrm{~cm}$ only.

A small scale, e.g. 1 : 100,000 gives an excellent overall view but little detailed information, whereas a larger scale, say $1: 500$, allows for more details to be drawn, but of a smaller area.
So the scale itself depends on the proposed use of the map concerned.
The scale of a map is given in figures, e.g. 1 : 100,000. Maps are sometimes copied. When copied, enlarged or reduced it is possible that the scale of the map is lost when the magnitude of the change from original to copy is not indicated.
Therefore, the scale is sometimes (and preferably) also drawn, like e.g.

Modul	MAPS	Code	TBG 701
		Edition	17-09-1984
Section 4 : HANDOUT		ag	2 of

‘

Module : MAPS	Code $:$ TBG 701	
		Edition $: 17-09-1984$
Section 4: HAND OU T	Page $: 03$ of 08	

3. SYMBOLS

A map should give as much information as possible of a certain area, but at the same time be clear and easy to read. An important expedient to reach this aim is the use of symbols. Symbols can be small signs, colours or full text.

SYMBOLS

$+++++++$
-・ー・-•-••

BANDUNG

DILLI

O TEGAL

- CENGKARENG

18
\neq

River, with flow direction

Stream, with flow direction

Intermittent stream or stream of which position is not known exactly

Frontier

Provincial boundary

Municipal boundary

Provincial capital

Provincial capital when scale does not allow drawing to scale

Capital of regency and municipality, not drawn to scale

Subdistrict town and other cities

Regency number

Wildlife reserve
-

Module ：MAPS		Code ：TBG 701		
		Edition ：	17－09－1	84
Section 4 ：HANDOUT		Page ： 04 of 08		
SYMBOLS（continued） Historical site／monument				
E	Heir			
＋835 Mountain with top level				
$\triangle \begin{gathered}\text { ¢ } \\ \\ 53\end{gathered}$	Triangulation point（ x, y, z ）			
\odot	Traverse point			
-10.70	Secondary benchmark			
10.70	Spot elevation			
	Benchmark with reference number and level			
$-1-$	Point of grid system			
B	Weir，structure			
G	Volcano			
K	River			
P	Island			
\rightleftharpoons Main road with bridge	Main road with bridge			
\longrightarrow	Road			
ーーーーーー－	Footpath			

Module : MAPS	Code : TBG 701
	Edition : 17-09-1984
Section 4 : HANDOU T	Page : 07 of 08

5. GBOLOGY

Colours can tell the difference between land and sea, or between kinds of soil, e.g. clay (mostly green) and sand (mostly yellow).
6. ORIBNTATION

Normally the top of the map represents the geographical north direction; mostly the north-south orientation is given by a symbol, like the north arrow.

In some cases where a high accuracy is required, the difference, that is the angle, between geographic north and magnetic north is given, for a certain year, together with the annual change of that difference.

North arrow, pointing to the north.

$2^{\circ} 00^{\prime}$
or
36 MILS
Approximate mean declination 1943 for center of sheet.
Annual magnetic change 2 ' increase.

Module ：MAPS	Code ：TBG 701
	Edition ：17－09－1984
Section 4 ：HANDOUT	Page ： 08 of 08

7．LEGENDS
Some symbols are standardized，see the Buku Politeknik，others are widely used but not accepted by everyone．
However，every map has a legend in which is explained what is to be understood by the symbols given on that particular map．
It is obvious that the use of always the same symbols for the same object avoids mistakes and allows for using maps from different origins without too much confusion．

Legend（example）

－ーーー一 Regency boundary．

8．SUMMARY

Maps give a bird＇s eye view of an area．
For practical reasons scales and symbols are used to have clear maps． The symbols are explained in the legend．
-
-

(e) DILLI

O TEGAL

- cengkareng

18
$*$

23

$\triangle \quad$| 5.129 |
| :---: |
| |

\odot
$-\frac{\phi}{-10.70}$
10.70

$$
\begin{aligned}
& \square{ }^{81.75}{ }^{81}-1 \\
& -1-
\end{aligned}
$$

$$
\mathbf{B}
$$

G
K
P

- Kupang
- SUKA BUMI
- Walmangura

PROVINCIAL CAPITALS AND CIties that can be drawn to scale

PROVINCIAL CAPITALS THAT CANNOT be drawn to scale
regency capitals and cities that Cannot be drawn to scale

SUb REGENCY CAPITALS AND OTHER cities

NATIONAL BOUNDARY

PROVINCIAL BOUNDARIY

REGENCY BOUNDARY
,

