51711

202.6-880P-3842

202.6 88 OP

•

.

- A ANA Angle Coll (1997) Angle Angle Angle (1997) - Angle Angle (1997) - A Coll (1997) Angle - Angle (1997) Angle (1997)

THE OPERATION AND MAINTENANCE OF WATER SUPPLY SYSTEMS IN DEVELOPING COUNTRIES A Cost Study

A Report Submitted for WASH Activity No. 348

Revised Edition

by

κ

Thomas Bates Alan Wyatt

Research Triangle Institute Office for International Programs January 1988

TABLE OF CONTENTS

<u>Chap</u>	oter	<u>Page</u>
1.0	Introduction	1
2.0	Purpose of Report	2
3.0	Background Information	3
4.0	O&M Cost Calculations	4
5.0	Methodology	6
6.0	Initial Results	6
7.0	O&M Costs of Water Supply Systems.7.1 Handpumps.7.2 Gravity Systems.7.3 Electric Systems.7.4 Diesel Systems.	7 9 10 14 17
8.0	O&M Cost Comparison of Water Supply Systems	20
9.0	Conclusions	23
10.0	Future Research Needs	24
11.0	Bibliography	25
A. H	<u>ndices</u> andpump Systems ravity Systems	

- C. Electric Systems
- o. Electric Systeme
- D. Diesel Systems

1

E. Asian Development Bank O&M Cost Data

2 LIBRARY, INTERNATIONAL REFERENCE OENTRE FOR COMMUNITY WATER SUPPLY * AND SANTE VEN (IRC) , P.O. Dux 53190, 2009 AC The Hague (Tel. (070) S. 61 (1 c. 6. 161)142 R:: ish 3842 L:: 202,6 380P . هي کا کوني محمد يا

TABLES

	Numb	er	Page
	1.	Annual Per Capita Recurrent Costs for Water Systems in Africa and Asia	8
	2.	Summary of Study Results for Handpump Systems	9
	з.	Per Capita O&M Costs for Handpump Systems	10
	4.	Summary of Study Results for Gravity Systems	11
	5.	Per Capita O&M Costs for Gravity Systems	12
	6.	O&M Costs Per Cubic Meter of Water Produced (Gravity Systems)	12
	7.	Summary of Study Results for Electric Pump Systems	14
	8.	Per Capita O&M Costs for Electric Systems	15
	9.	O&M Cost Per Cubic Meter of Water Produced (Electric Systems)	15
1	.0.	Summary of Study Results for Diesel Systems	17
1	.1.	Per Capita 0&M Costs for Diesel Systems	18
1	.2.	Ranges of Average Per Capita O&M Costs by System and Region	20
1	3.	Ranges of Per Cubic Meter Costs for All Regions	23

FIGURES

1.	O&M Cost Per Volume of Water Produced (Gravity Systems in Sri Lanka)	14
2.	O&M Cost Per Volume of Water Produced (Electric Pump Systems Sri Lanka)	16
з.	O&M Cost Per Volume of Water Produced (Africa Data for Diesel Systems)	19
4.	O&M Cost Per Volume of Water Produced (Sri Lanka)	21
5.	Range of Per Capita O&M Costs	22

e

1.0 INTRODUCTION

i

The issue of potable water supplies in developing countries has received increased attention during recent decades. Numerous water development projects have been established, most recently in response to the International Drinking Water Supply and Sanitation Decade. Despite sizeable investment efforts directed toward water supply improvements, a large portion of third world populations remain without adequate access to safe drinking water, especially in rural areas.

General problems associated with the on-going international water crisis include: 1) funding limitations; 2) lack of trained personnel; 3) inadequate cost recovery policies; and 4) insufficient allowances for the operation and maintenance costs of water supply systems. This report focusses on the fourth problem, particularly the magnitude of operation and maintenance (0&M) costs for community water supply systems in developing countries.

Water development investments have emphasized the construction and installation of water systems, thereby placing a higher priority on capital rather than recurrent cost items within project budgets. Due to neglected operation and maintenance considerations, water supply systems are subject to disrepair and breakdown. As a result, many countries receiving water development assistance suffer from a large percentage of nonfunctioning systems. Unreliable water systems consequently reduce the potential benefits derived from and community support for water supply improvements.

The need for more attention to the O&M aspects of water supply improvements is clear. A solution to the problem is much less obvious. Bastemeijer and Visscher (1986) identify the following three approaches to the O&M dilemma facing rural water consumers:

- 1) **technical**, involving either highly reliable (though often expensive) "maintenance free" pumps, or more simple designs which can be maintained at the village level.
- 2) organizational, ranging from a single village caretaker to a three-tier maintenance system combining village operators with mobile repair teams.
- 3) **systematic**, a combination of the previous two approaches with additional emphasis on relevant environmental and social factors.

Before these approaches can be properly evaluated, additional preliminary research is required. An assessment of O&M costs associated with various water technology options is an important first step. Total project cost, including O&M costs, plays a large role in identifying appropriate systems for a specific community. Moreover, O&M costs will affect the community's ability and willingness to pay for the project as well as influence cost recovery policies. This is especially true when a significant portion of the project cost is paid by the recipient community.

Water project O&M is discussed in numerous publications; however, specific cost information is limited. The lack of real data appears to be due

to a combination of inadequate field data collection activities and an uncoordinated information network among water development agencies. The O&M data base is slowly increasing and data collection efforts are improving as a result of more concerted investigations conducted by the World Bank, several United Nations agencies (UNDP, UNICEF, and UNDTCD), the International Reference Centre for Community Water Supply and Sanitation (IRC), and other organizations involved with water supply improvements in developing countries.

Accurate O&M costs are difficult to find, and available data is often incomplete. For these reasons, O&M cost estimates, typically calculated as a percentage of project capital cost, tend to be imprecise. More meaningful O&M cost information first requires a better understanding of O&M procedures along with improved data collection. In the meantime, it is useful to examine currently available O&M costs at regional and country levels. While this study is not intended to provide a means of discerning precise O&M costs, it offers general figures which are useful in evaluating the present O&M cost situation for water supply systems and area also helpful in defining future research needs.

2.0 PURPOSE OF REPORT

The objective of this report is to complete the following tasks:

- o determine the availability of O&M cost information for water supply systems in developing countries;
- provide general O&M cost analyses for a variety of water supply technologies with an emphasis on those used in rural areas;
- o determine the general magnitude of O&M costs required by various water supply technology options;
- o identify important factors which influence O&M costs;
- o identify research needs for the continued investigation of O&M costs.

Reliable 0&M cost information is scarce and rarely compiled in a standardized format. One of the purposes of this study is to identify 0&M information sources and collect cost data directly from these sources. Then by arranging the gathered data according to system technology, specific cost analyses can follow. Water system technologies evaluated in this study include: hand, diesel, electric, and gravity powered systems. Once individual technologies have been evaluated, the different systems will be analyzed comparatively. Based on the information (or lack thereof) generated from the previous sections of the report, areas of additional research needs will be determined.

3.0 BACKGROUND INFORMATION

ļ

ł

The definition of "operation and maintenance" is necessarily broad, because the activities and expenses associated with 0&M for different situations vary significantly. Donaldson (1984) defines "operations" as the actions required to enable the system to deliver water of a desired quantity and/or quality. "Maintenance" involves the preservation of the system elements' capabilities to carry out their task throughout their design life. In this study, it is assumed that 0&M costs for a water supply system include all financial costs required to provide a reliable and satisfactory supply of water from the system. These costs are recurrent rather than single capital expenses and expressed as an annual amount in most cases.

The maintenance of water systems tends to be overlooked more often than operational aspects, perhaps as a result of the unpredictable nature of maintenance requirements. System maintenance can be divided into either preventive or corrective measures. According to Cairncross and others (1980), corrective maintenance is practiced more often than preventive. While preventive maintenance may initially appear to be more expensive than corrective maintenance, long term considerations tend to favor the preventive approach. This is based on the assumption that system breakdown and down time could be reduced and possibly eliminated if an appropriate preventive maintenance regime is followed. For these reasons the preventive approach is intuitively appealing, but more research is required before any single maintenance procedure is deemed clearly superior.

Several reports investigating water system O&M have preceded this study. The IRC has published a paper entitled "Maintenance Systems for Rural Water Supplies" as a part of their Occasional Paper Series. The paper discusses several important topics pertaining to system maintenance from the perspectives of water project feasibility, management, and evaluation. The authors determine the need for: 1) systematic evaluations of maintenance practices and requirements; 2) community-based management systems; and 3) more complete investigations of project preparation and assessment.

The Water Supply and Urban Development Department of the World Bank has recently completed a publication entitled <u>Community Water Supply: The Handpump Option</u>. The book provides detailed information on numerous handpump designs which have been field tested in a variety of developing countries. While O&M considerations for handpumps are addressed, specific cost analyses are not covered. The World Bank study also provides evidence that a community-based organization of O&M is preferable to a more centralized approach. The community oriented approach is referred to as Village Level Operations and Maintenance (VLOM) and is ardently promoted within World Bank/UNDP water development projects throughout the developing world. The VLOM concept has been adopted by many other water development groups as well.

An earlier WASH Technical Report (No. 35), <u>Assessment of the Operations</u> and <u>Maintenance Component of Water Supply Projects</u>, outlines the primary considerations relevant to the planning, organization and evaluation of water system O&M. Much of the report is in a questionnaire format which can be used as a checklist for water project planning criteria. Another WASH Technical Report (No. 48), <u>Estimating Operations and</u> <u>Maintenance Costs for Water Supply Systems in Developing Countries</u>, was in preparation while this cost study was underway. It outlines a logical cost estimation procedure and is described in more detail below.

Additional reports examine a variety of water supply technologies and related institutional considerations. These reports and other related publications are not discussed here, but are listed in the Bibliography.

4.0 <u>O&M COSTS CALCULATIONS</u>

There are numerous factors which can affect O&M costs. These factors include but are not limited to:

- o project location (country and region within country);
- o climate and geophysical environment;
- o system technology and scale;
- o system age and operational status;
- o O&M management and organization;
- o availability and cost of items such as:
 - transportation
 - labor
 - chemicals
 - energy
 - replacement parts;
- o debt service, depreciation and administrative expense¹.

Each of these factors will vary among individual projects. It is therefore difficult to accurately extrapolate O&M costs beyond the site specific level. For instance, it would be incorrect to assume that O&M costs for a certain pumping system in a developed country would be comparable to the costs encountered for the same system in a less advanced country, as several of the above factors would differ significantly. Yet due to the scarcity of specific O&M cost estimates, such substitutions are not uncommon. Many researchers contend that broad general estimations are often unavoidable, especially in the early stages of project planning. But given the likelihood of either over- or understating actual O&M cost requirements, the impact on project financial feasibility must also be considered.

WASH Technical Report (No. 48), <u>Estimating Operations and Maintenance</u> <u>Costs for Water Supply Systems in Developing Countries</u>, describes a detailed procedure for water system O&M cost estimation. Project planners and engineers who use the manual must collect sufficient data on the systems engineering configuration, corrective and preventive maintenance

¹ Debt service and depreciation expense are recurrent costs and are occasionally included in O&M cost figures.

requirements, detailed information on O&M responsibilities and institutional aspects as well as local costs of labor, materials, chemicals, utilities, transport and other inputs. Once these variables have been accounted for, a reasonably accurate O&M cost estimate can be prepared.

Schulz and Okun (1984) suggest that reliable cost estimates can be based on any of the following techniques:

- o cross sectional studies of cost data for similar systems established in similar environments;
- o general cost curves based on based on similar systems located throughout a country;
- o general predictive cost functions developed for similar situations.

Each of these techniques offers a means of predicting general cost figures which can be used to assist development officials in determining the acceptability of O&M costs in relation to project budgets and guidelines.

0&M cost functions can be used to indicate the cost of 0&M for a water system, often in terms of the annual cost as a function of the annual water produced.² An annual cost function is typically expressed in the form of:

$$C_{O&M} = C_{O}Q^{b}$$

where:

 $C_{O&M} = annual O&M cost, ($)$

 C_0 = annual cost corresponding to Q = 1, (\$)

Q = annual water production, (m^3)

b = exponent, economy of scale indicator

This cost function can be alternatively expressed in terms of unit cost where:

Cost per m3 =
$$C_0 Q^{D-1}$$

The economy of scale factor, b, provides additional information concerning project planning. The b value indicates the economy of scale associated with a system as follows:

 $^{^2}$ The volume of water delivered by a system can be in the form of either the volume supplied to consumers or the volume initially produced. These two measures may differ due to system loss and/or leakage. For the purposes of this report, volume is measured as that produced, because many of the costs relate most directly to water production.

if	b < 1	then: economies of scale exist	(b-1 < 0)
	b > 1	diseconomies of scale exist	(b-1 > 0)
	b = 1	no economies of scale exist	(b-1 = 0)

While the analytical tools for O&M cost estimation do exist, the prerequisite information remains limited. Until actual cost data become more available, the response to O&M needs will continue to be reactive rather than predictive. In order to facilitate progress within the water development sector of developing countries, improvements in project planning and management must occur. These improvements dictate more and better field information.

5.0 METHODOLOGY

This project, designated as WASH Activity 348, consists of three phases: 1) data collection, 2) data analysis, and 3) a final report.

The data collection stage involved mailed requests, library searches, and other inquiry. Over seventy five letters were mailed directly to water utilities, consultancies, bilateral and multilateral donor organizations, and other groups active in water development in developing countries. The letters requested O&M cost data and related project reports or publications. Libraries at the Universities of North Carolina at Chapel Hill, North Carolina State, and Duke along with the Joint Bank-Fund Library and the World Bank's Sectoral Library were thoroughly researched for information pertaining to O&M and water supply development. Direct contact was made with various individuals and World Bank personnel followed by two visits to the Bank.

The data received were manipulated using Lotus 1-2-3 spreadsheet software. These data were arranged in two different formats, depending on the detail of the available information (See Appendices). Data were then analyzed according to system types and country. All dollar amounts found in the text of this report have been converted into and/or reexpressed in 1986 dollars (US), based on the Producer Price Index for All Commodities, for accurate cost comparisons. All original cost figures are presented in the Appendices. Unless noted otherwise, all O&M cost figures represent annual amounts.

6.0 INITIAL RESULTS

The results of written requests for 0&M information were less than hoped for. Of the more than 75 letters sent out, there were approximately 30 responses, a return rate of roughly 40%. Significant amounts of data were obtained from agencies in Morocco, and Sri Lanka. Most respondents indicated that data were either uncollected or unavailable. In some cases, responses were followed up with further inquiry of details concerning 0&M information which had been provided.

Library searches resulted in general information regarding O&M of water supply systems. The cost figures which were available tended to be nonspecific. This is indicative of the overall O&M cost data situation. The information generated from the library searches were primarily useful as background information for this report.

Visits to the World Bank were productive in providing detailed O&M cost information, particularly for African and Asian countries, and particularly for handpump systems. One report (Burnett 1984) summarized World Bank efforts to collect O&M cost data and was particularly useful.

7.0 O&M COSTS OF WATER SUPPLY SYSTEMS

Each type of water delivery system requires a different set of activities to keep the system operational and properly maintained. Generally, the principal components of 0&M costs for water supply systems are labor, transport, chemicals, materials, and energy. The composition of available labor (expatriate or local), extent of transportation required for 0&M activities, and availability and cost of energy supplies and spare parts (either of domestic or foreign origin) vary widely among projects, causing significant differences in 0&M costs. Therefore, there are no absolute cost figures which can be universally applied to water supply projects as predictive measures.

Due to the variable nature of O&M costs, cost estimates should be analyzed with clear recognition of their deficiencies. Actual incurred costs are highly dependent on site-specific conditions. However, while it is incorrect to assume that O&M costs for different projects will be equivalent, it is useful to evaluate both the average and the range of O&M costs for several different projects utilizing similar water supply technologies. This approach allows project planners to better forecast O&M costs prior to project implementation. The forecast will only be as accurate as the available data. Therefore, it is appropriate to examine available data and compare them with other available estimates.

This section provides analysis of O&M costs as selected from several sources. The systems evaluated include: handpumps, gravity flow systems with distribution, systems with electric pumps and distribution, and schemes with diesel pumps. The systems are initially discussed individually and later as a group. O&M costs are analyzed according to system type, country and region. For all systems, data were most prevalent for Africa and Asia. A brief description of each of the systems is followed by general cost analyses. Detailed information regarding these data can be found in the Appendices.

The World Bank (Burnett, 1984) has collected a considerable amount of water supply O&M information, particularly in Africa and Asia. A table of O&M costs for several different types of water supply systems are shown in Table 1 on the next page.

Table 1

ANNUAL PER CAPITA RECURRENT COSTS FOR WATER SYSTEMS IN AFRICA AND ASIA

	(1984 Dollar		
SYSTEM TYPE		AVERAGE	RANGE
DUGWELL, Handpump			
	Africa	\$0.70	\$0.20-\$1.40
	Asia	(-)	(-)
BOREHOLE, Handpum	p		
-	Africa	\$0.80	\$0.20-\$1.40
	Asia	\$0.40	\$0.10-\$0.90
DUGWELL			
	Africa	\$0.00	\$0.00-\$2.00
	Asia	\$0.00	(-)
RAIN CATCHMENT			
	Africa	\$0.00	(-)
	Asia	\$0.10	\$0.00-\$2.00
SPRING (+distrib.)		
	Africa	\$3.00	\$0.00-\$6.00
	Asia	\$0.20	\$0.00-\$4.00
BOREHOLE, Electri	c Pump		
	Africa	\$5.40	\$4.90-\$5.90
	Asia	\$0.60	\$0.10-\$1.20
BOREHOLE, Electri	c Pump		
(+storage, +distr	ib.)		
	Africa	\$6.20	\$4.10-\$8.00
	Asia	\$1.50	\$0.70-\$2.30
BOREHOLE, Diesel	Pump		
(+storage)	Africa	(-)	(-)
	Asia	\$1.80	(-)
GRAVITY, (+distri	b .)		
	Africa	\$1.40	\$0.90-\$1.80
	Asia	\$1.00	\$0.90-\$1.10
PIPED, Surface			
	Africa	\$6.90	(-)
	Asia	\$1.80	(-)

Notes: Recurrent costs do not include any annualized capital cost items. (-) indicates no available data.

Source: Burnett, Nick. 1984. "Rural Water Supply Handpumps Project Report on Cost Analysis Work", UNDP Project INT/81/026, World Bank, Draft Report, Tables 1 and 2.

7.1 Handpumps

The UNDP/World Bank Handpumps Project was established in 1981 to identify reliable water supply systems with low capital and recurrent costs. Conclusions from project research thus far indicate that handpumps provide an economically attractive and manageable option for the majority of poor small rural communities. In addition to demonstrating low costs, the relatively simple design of most handpumps facilitates maintenance at the village level. Once applied more extensively, village level operations and maintenance (VLOM) is expected to result in further reductions in recurrent costs.

Data from the World Bank and other respondents has been assembled in Appendix A, and summarized in Table 2. It is obvious from the table that both capital and annual O&M costs are much higher in Africa than in Asia. The same is true on a per capita basis. The higher capital cost in Africa can probably be attributed to increased dependence on imported pumps. Careful study of the annual O&M cost data shows that material and labor costs are on the same order of magnitude for the two continents, but transport costs in Africa are far higher. This result supports the growing movement towards VLOM in that region.

Table 2. SUMMARY OF ST	UDY RESULTS FOR HAN	DPUMP Systems (1986 \$)
	ASIA	AFRICA
# OF DATA POINTS	14	25
CAPITAL COST		
Average	\$341	\$1,219
Range	\$135-\$802	\$647-\$1917
CAPITAL COST/CAPITA		
Average	\$1.56	\$3.92
Range	\$0.45-\$3.50	\$1.72-\$10.00
ANNUAL OSM COST		
Average	\$60	\$145
Range	\$6-\$300	\$24-\$383
ANNUAL OSM COST/CAPITA		
Average	\$0.23	\$0.53
Range	\$0.05-\$0.97	•
OSM COST/CAPITAL COST		
Average	26.2%	16.5%
Range	2.5%-112%	1.7%-53.2%

Per capita 0&M costs for handpump systems from the World Bank and the

Table 3. P	PER CAPITA OSM CO	sts for han	idpump syst	EMS (1986 \$)
HANDPUMP SYSTEM +	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Dugwell	World Bank	Africa	\$0.70	\$0.19-\$1.35
Borehole	World Bank	Africa	\$0.78	\$0.19-\$1.35
Various	Study Results	Africa	\$0.53	\$0.05-\$1.23
Borehole	World Bank	Asia	\$0.40	\$0.10-\$0.87
Various	Study Results	Asia	\$0.23	\$0.05-\$0.97

results from this study (which include the same World Bank data) are compared in Table 3 below.

The study results show a similar range, but a slightly lower average cost indicating that our additional data points had a lower cost than the original World Bank data set.

In the absence of other precise O&M data, planners often estimate O&M costs as a percentage of system capital cost. This ratio was computed for our data, as shown in Table 2. The ratio was lower in Africa (16.5%) than in Asia (26.2%), which can mostly be attributed to higher capital costs in Africa. In both Africa and Asia, very wide ranges were found for this ratio. O&M cost estimates for handpumps based solely on such percentage figures appear to be questionable and should not be applied without careful consideration. Direct estimates of annual O&M cost would be preferable.

7.2 Gravity Systems

ţ

Given appropriate geographic conditions and a perennial source of spring or surface water, gravity fed water supply systems can provide a suitable means of water delivery. Many gravity systems, such as those established in Malawi since the early 1970's, have proven to be quite successful. There are possible problems involved in utilizing surface water in that water supplies are subject to contamination and subsequent quality concerns. For this reason, water treatment systems are often considered necessary and constructed at an additional cost to the distribution system. Water storage may also be required in order to attain sufficient head and volume for distribution purposes. Reliance upon gravity rather than mechanical pumping systems offer the potential of reduced maintenance requirements; however, water treatment and storage facilities add to the capital and recurrent costs of gravity systems. Chemical costs, in particular, are incurred.

Data collected from Indonesia, Sri Lanka, and Malawi are shown in

	ACTA	Mo loui
یون بور بور موجد این بور ور بور موجد من نام که بور موجد می فرد که که	ASIA	Malawi
# OF DATA POINTS	10	5
WATER VOLUME PRODUCED		
Average	512,000	(-)
Range	15,000-1,740,000 m3/yr	
CAPITAL COST		
Average	\$77,600	\$117,200
Range	\$30,300-\$158,000	\$9,000-\$187,000
CAPITAL COST/CAPITA		
Average	\$26.85	\$3.64
Range	\$5.14-\$48.04	\$1.78-\$6.56
ANNUAL OSM COST		
Average	\$44,700	\$5,300
Range	\$1,700-\$150,000	\$2,700-\$10,200
ANNUAL OSM COST/CAPITA		
Average	\$1.01	\$0.26
Range	\$0.58-\$2.28	\$0.10-\$0.72
OSM COST/CAPITAL COST		
Average	5.5%	10.0%
Range	2.1%-12.0%	1.9%-33.4%
OSM COST PER m3		
Average	\$0.07	(-)
Range	\$0.014-\$0.141	

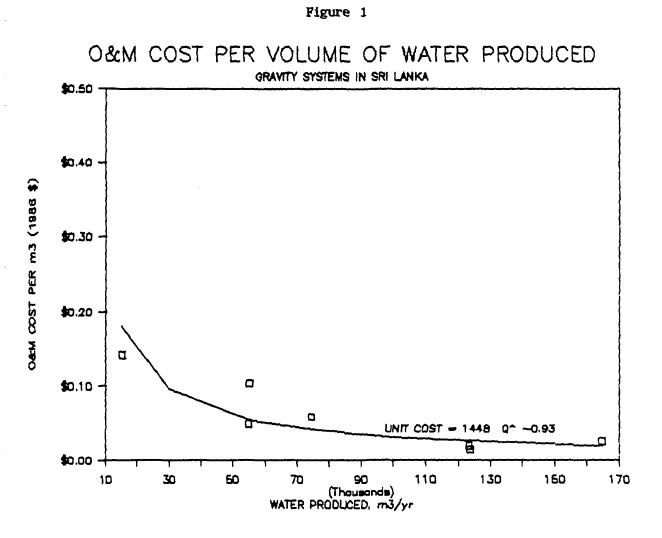
Appendix B, and summarized in Table 4. Additional World Bank data is also given in Appendix B.

The capital costs and annual O&M costs for gravity systems are much larger than for handpumps, because of the much greater size of these systems. In addition, per capita values are higher, in Asia. In Malawi per capita values for gravity systems are actually lower than handpumps in Africa. These low costs in Malawi give some explanation for the successful projects there.

Per capita O&M costs for gravity systems for this study and for World Bank data are compared in Table 5.

Table 5. PER CAPITA OSM COSTS FOR GRAVITY SYSTEMS (1986 \$)

GRAVITY SYSTEM (+)	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Distribution	World Bank	Asia	\$0.97	\$0.87-\$1.06
Distribution	Study Results	Asia	\$1.01	\$0.58-\$2.28
Distribution	World Bank	Africa	\$1.30	\$0.87-\$1.74
Distribution	Study Results	Malawi	\$0.26	\$0.10-\$0.72


For Asia, the study results show a similar average cost per capita, but a much wider range. Our results show that costs in Malawi are well below other African costs.

The O&M cost per cubic meter of water produced is also a useful comparative measure. In addition to the data in Table 4, the Asian Development Bank (ADB) has compiled a table of such costs for nineteen Asian countries (See Appendix E). The ADB average cost figures for gravity systems are compared to the study results in Table 6.

Table 6. 0	SEM COST PER CUBIC	METER OF	WATER PRODU	CED (1986 \$)
GRAVITY SYSTEM (+)	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Distribution + Treatment	ADB	Asia	(-)	\$0.07-\$0.14
Distribution + Treatment	Study Results	Asia	\$0.07	\$0.01-\$0.14

The range of per cubic meter costs determined in this study is wider than that of the ADB cost range, which can perhaps be explained due to scale effects.

A cost function for 0&M cost per cubic meter was derived to examine the question of scale. Figure 1 shows a plot of gravity systems in Sri Lanka only. The fit of the cost function regression was good $(r^2=0.74)$. There are very large economies of scale (b=0.07). For Sri Lanka, the ADB estimates a range of 0&M costs per cubic meter of \$0.04 - \$0.15, which closely corresponds to the range in Figure 1.

7.3 <u>Electric Systems</u>

Electric pumping for water systems is usually limited to areas where reliable electric power already exists, primarily in towns and cities. Such systems vary greatly in size and complexity. They can pump water from boreholes or surface water sources. Larger systems will have storage and distribution networks, but smaller systems may simply have a tank and single standpost. The extent of treatment required will vary from none or simple chlorination, common on borehole systems, to more extensive treatment common with systems using surface water. The maintenance requirements for these systems will vary depending greatly on the engineering configuration and scale. Electric pump systems will have a large energy cost component.

World Bank data, in Appendix C, provide information for the O&M costs of borehole/electric pump/storage systems either with or without distribution. Additional data from Sri Lanka, in Appendix C, is summarized in Table 7.

Table 7. SUMMARY OF	STUDY RESULTS FOR ELECTRIC	PUMP Systems (1986 \$)
	Sri Lanka	AFRICA
# OF DATA POINTS	35	
WATER VOLUME PRODUCED		
Average	169,000	
Range	2,700-1,310,000	
CAPITAL COST		
Average	\$210,000	
Range	\$8000-2,000,000	
CAPITAL COST/CAPITA		
Average	\$24.78	
Range	\$3.17-\$134	
ANNUAL OSM COST		
Average	\$11,383	
Range	\$780-\$75,000	
ANNUAL OSM COST/CAPITA		
Average	\$2.12	
Range	\$0.50-\$7.28	
OSM COST/CAPITAL COST		
Average	18.0%	
Range	1.2%-72.8%	
O&M COST PER m3		
Average	\$0.15	
Range	\$0.028-\$1.17	

The capital cost per capita for electric systems appear somewhat similar to the Asian gravity systems, but the O&M cost per capita is twice the gravity systems. Also, the O&M cost per cubic meter for electric systems is about twice that for gravity schemes.

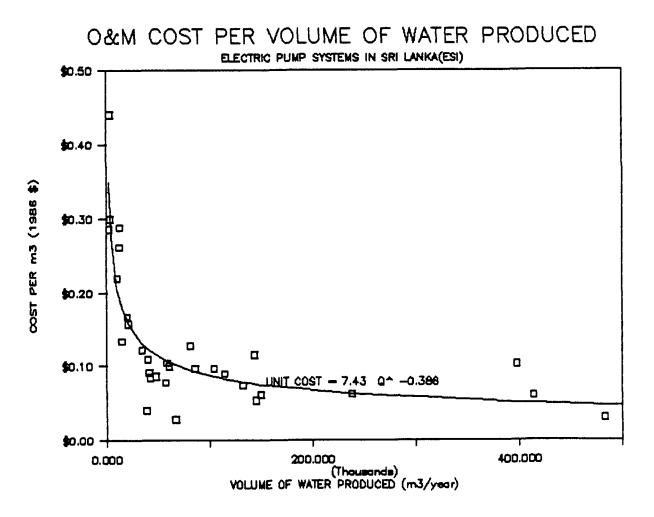

World Bank figures are compared with the study results in Table 8, below, showing slightly higher figures in our study.

Table 8. PER CAPITA OSM COSTS FOR ELECTRIC SYSTEMS (1986 \$)				
ELECTRIC SYSTEM (+)	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Storage	World Bank	Africa	\$6.23	\$4.73-\$7.73
Storage	World Bank	Asia	\$0.61	\$0.10-\$1.16
Storage + Distribution	World Bank	Africa	\$3.96	(-)
Storage + Distribution	World Bank	Asia	\$1.40	\$0.68-\$2.22
Storage + Chlorination + Distribution	Study Results	Sri Lanka	\$2.12	\$0.50-\$7.28

There are also differences between the study results for the O&M cost per cubic meter of water produced for Sri Lanka systems and those determined by the ADB (Appendix E). These cost figures are presented in Table 9.

Table 9.	OSM COST PER CUBI	C METER OF 1	WATER PROD	UCED (1986 \$)
ELECTRIC SYSTEM (+)	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Borehole + Distribution	ADB	Sri Lanka	(-)	\$0.02-\$0.06
Borehole + Treatment + Distribution	ADB	Sri Lanka	(-)	\$0.03-\$0.1 0
Borehole + Chlorination Distribution		Sri Lanka	\$0.15	\$0.028-\$1.17

The very broad range of 0&M costs in our study results can be better understood by examining the effect of scale on these costs. A graph of 0&M costs per cubic meter of produced water plotted against the volume of water produced for electric systems is shown in Figure 2^3 . The fit of the curve is good ($r^2=0.62$). The economies of scale are clearly evident (b=0.614), although they are less marked than in gravity systems in Sri Lanka. Beyond the 50,000 cubic meter production level, costs consistently occur within the \$0.03 to \$0.10 range. This is the same as determined by the ADB. So while smaller scale electric systems in Sri Lanka exhibit a wide range of 0&M costs, systems producing more than 50,000 cubic meters annually appear to be more predictable and in agreement with ADB findings.

Figure 2

 $^{^3}$ The graph excludes the points where cost per cubic meter equals \$1.17 and total volume produced equals 1,310,021 meters per year so that the remaining points can be more easily distinguished.

7.4 <u>Diesel</u> Systems

Diesel systems provide an additional method of providing water to communities dependent upon groundwater supplies. Similar to electric systems, diesel pumping may also involve concurrent investments in storage and distribution facilities. Unlike the other systems previously discussed, diesel systems often require more constant attention for refueling and other O&M activities. Unpredictable fuel prices and supplies can cause diesel system O&M costs to fluctuate and thereby complicate planning for O&M management and organization. Therefore, the price and availability of fuel are important considerations in determining the propriety of diesel powered pumping systems.

Information regarding diesel systems is detailed in Appendix D. and summarized in Table 10. The data obtained for this study pertain to several countries located throughout Africa. Most of the systems analyzed do not have any significant water distribution system, but most all have storage. Although not elaborated in the data, those with distribution have higher capital and O&M costs.

Table 10. SUMMARY	OF STUDY RESULTS FOR DI	IESEL PUMP SYSTEMS (1986 \$)
	ASIA	AFRICA
# OF DATA POINT	 S	38
WATER VOLUME PRODUCE Averag Rang	e	26,700 1,200-147,000
CAPITAL COS Averag Rang	Te	\$6,200 \$3,200-\$16,000
ANNUAL O&M COS Averag Rang	e	\$2,540 \$120-\$12,250
ANNUAL O&M COST/CAPI Averag Rang	e	\$4.27 \$1.94-\$7.30
0&M COST/CAPITAL COS Averag Rang	e	53.2% 12.4%-94.1%
O&M COST PER m Averag Rang	e	\$0.21 \$0.01-\$1.17

Population figures are not available for many of the systems evaluated, so per capita data is limited. Of the 38 systems analyzed, only 9 had sufficient information to calculate annual per capita costs. Although the data are deficient for purposes of comparison, the available averages and ranges of per capita O&M costs for diesel systems are shown in Table 11.

Table 11.	PER CAPITA OSM CO	STS FOR	DIESEL SYSTEMS	(1986 \$)
DIESEL SYSTEM (+)	INFORMATION SOURCE	REGION	AVERAGE	RANGE
Storage	World Bank	Asia	\$1.74	(-)
Storage	World Bank	Africa	(-)	(-)
(Various)	Study Results	Africa	\$4.27	\$1.94-\$7.30

As was the case for electric systems, a graph of annual 0&M cost per volume of water provides better analytical cost information. The graph⁴ for diesel systems is shown in Figure 3. Again, the graph indicates that economies of scale exist (b=0.424). The fit of the cost function was only moderately good, (r^2 =0.5), probably due to a wide variability of costs at the smaller scales.

 $^{^4}$ Once again, the outermost values along each axis have been omitted in order to better distinguish the remaining points.

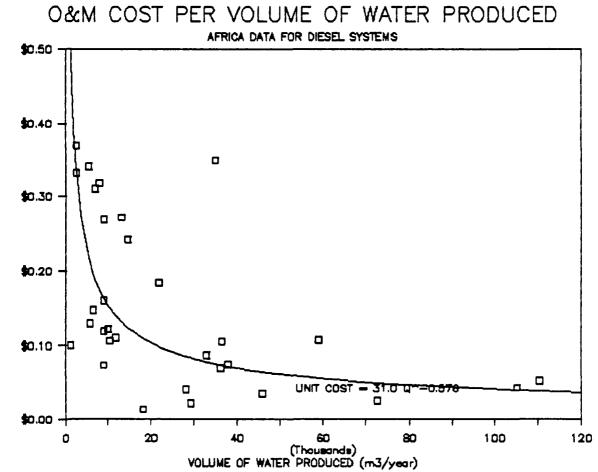
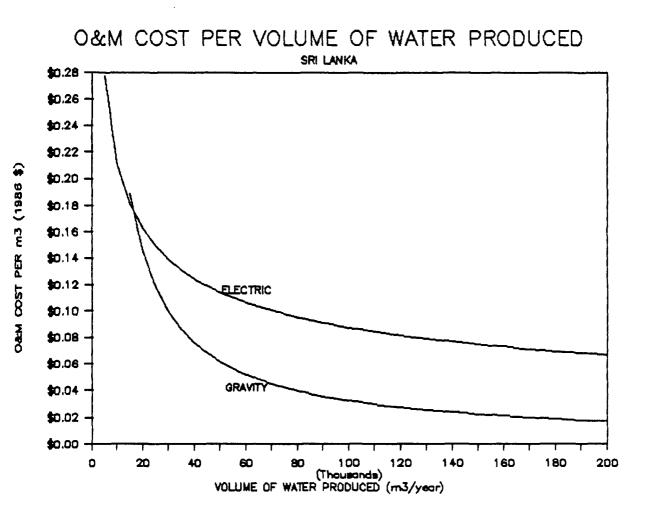


Figure 3

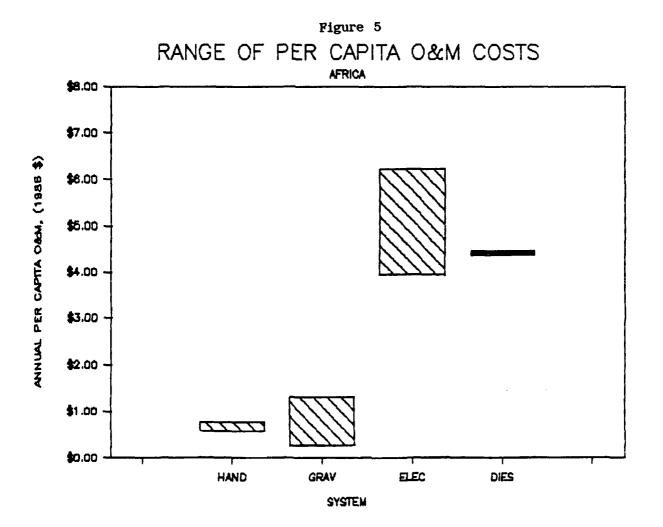
O&M COST PER m3 (1888 \$)

8.0 O&M COST COMPARISON OF WATER SUPPLY SYSTEMS

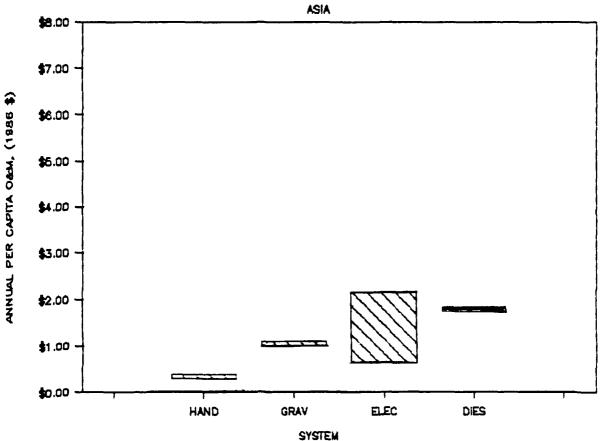

This section combines information found in previous sections in order to compare the various costs of water supply systems. These are primarily average figures which are not intended to be representative of all water development projects. However, they do permit general cost comparisons of the systems.

Given uniform data sets, different technologies can be compared. Unfortunately the limited data collected only allow limited comparisons. In Sri Lanka, however, coherent data were obtained and analyzed for gravity and electric pump systems. Cost functions for these two systems are compared in Figure 4. Clearly gravity systems have a lower unit O&M cost over the range considered. Such ample, uniform data are, however, not widely available.

The ranges of <u>average</u> per capita O&M costs by system and region are shown in Table 12. (Averages from this study and World Bank data were used to compile Table 12).


	F AVERAGE PER TEM AND REGIO	CAPITA OGM COSTS N (1986 \$)
SYSTEM	REGION	RANGE
Handpump	Africa Asia	\$0.53 - \$0.78 \$0.29 - \$0.40
Gravity + Distribution	Africa Asia	\$0.26 - \$1.30 \$0.97 - \$1.01
Electric + Distribution	Africa Asia	\$3.96 - \$6.23 \$1.40 - \$2.12
Diesel	Africa Asia	\$4.27 \$1.74

This same information is presented in bar graph form in Figures 5. While the cost ranges do overlap in some cases, each system type appears to occupy a distinct space, thus providing a rough approximation of O&M cost requirements. Available information suggests that of the systems evaluated, handpumps represent the least cost technology, followed by gravity systems which are less expensive than electric systems. The O&M cost range for diesel systems is narrow due to a lack of data and is therefore inconclusive. However, diesel systems do seem to be among the more expensive options.



21

Figure 4

RANGE OF PER CAPITA O&M COSTS

,

A summary of the average O&M costs per cubic meter for all system types is shown in Table 13. The figures for handpump systems represent a hypothetical calculation based on a daily per capita use of 20 liters. The same rough ranking of handpump, gravity, electric, and diesel systems is evident.

The average costs provide a means of ranking the systems; however, these figures must be viewed carefully. The effect of scale, and other technical factors can lead to very wide ranges of unit water costs. The technologies are best compared as cost functions with scale (as for Sri Lanka above) but there is insufficient data to make such comparisons.

Table 13.	RANGES OF PER CUBIC METER COSTS FOR ALL REGIONS (1986 \$)						
SYSTEM	RANGE	AVERAGE					
Handpump*	\$0.007 - \$0.17	\$0.05					
Gravity	\$0.01 - \$0.14	\$0.07					
Electric	\$0.03 - \$1.17	\$0.14					
Diesel	\$0.01 - \$1.17	\$0.21					

* Assuming production yields 20 lpd per handpump

9.0 CONCLUSIONS

Water supply system O&M costs are important yet relatively unknown components of water development projects. While O&M costs do vary among different system technologies, the costs cannot currently be accurately estimated for site specific applications.

The O&M cost figures found in this report apply only to very broad regions and are therefore inappropriate for purposes of specific estimation. The data do suggest, however, that certain trends do exist thus allowing the general trends and relative magnitudes of O&M costs to be compared. Handpumps, for example, appear to represent the least cost system available. Data for handpump systems are also more available than other systems perhaps because handpumps have received greater emphasis during recent years. Gravity systems demonstrate the next lowest O&M costs. Distinctions between electric and diesel systems are less clear primarily due to a lack of data for diesel systems.

The most evident point concerning O&M for water supply systems is the limited amount of actual cost data. This is an obvious and significant constraint for O&M cost studies, but the lack of data has even greater implications. As the responsibility for O&M is increasingly borne by individual communities, without a better ability to estimate O&M costs, these communities are burdened by unknown costs. Until more is known about O&M costs of water supply systems, current and future water development projects face a precarious existence.

10.0 FUTURE RESEARCH NEEDS

One of the purposes of this report is to identify research needs for the O&M of water supply projects in developing countries. The report provides only a small sample of actual O&M costs. The limited amount of data retrieved for this study reflects the general lack of currently available information. Rather than overemphasize the numbers generated in this and previous studies, it is perhaps more important to consider the direction of future O&M investigations. General research needs are briefly discussed below.

<u>More and better O&M cost information</u>. The awareness of and provision for O&M cost requirements are still in a formative stage for most water supply projects in developing countries. Improved data collection efforts by local water utilities and donor agencies is a necessary prerequisite for improved cost estimation. The Appendices contains several significant data gaps. Until such gaps are more completely filled, O&M cost estimations will also remain incomplete and speculative.

<u>Comprehensive and cost-effective data collection</u>. The funding and time required to improve the O&M data situation are in short supply relative to the extensive and urgent need for water supply improvements in developing countries. These financial and time constraints will result in certain compromises for the collection and analysis of O&M data. Therefore, it is essential to consider methods of investigation which will efficiently determine the most useful information. Cross sectional analysis of appropriate water supply technologies, involving representative environments (physical and social) and O&M management regimes, provide a viable approach to the problem.

<u>Consistent data collection</u>. Given the diversity of project and system types and the numerous organizations involved in water supply development, comparable information is needed to provide accurate cost studies. A standard O&M questionnaire or report form would promote more reliable cost measurements and estimations.

An O&M information network among water development organizations. Despite efforts directed toward this need, O&M studies remain uncoordinated. Without more collaboration, certain O&M investigations are left undone while others are redundant. An information pool would increase the availability of O&M data and thereby promote a more concerted global effort.

11.0 **BIBLIOGRAPHY**

- Arlosoroff, S., et al.; <u>Community Water Supply The Handpump Option</u>, World Bank, 1987
- Ashford, R.; and Miller, J. 1979. <u>SIDA Report on Needs to Improve</u> <u>District Councils' Capacity to Maintain and Operate Village Water</u> <u>Supplies</u>. Botswana: Ministry of Local Government and Lands, Ministry of Mineral Resources and Water Affairs. 59 p.
- 3. Banzinger, H.P. <u>Hand/Foot Pumps for Village Water Supply in Developing</u> <u>Countries, Technology and Maintenance</u>, SKAT, Switzerland, 1982
- 4. Bastemeijer, T.; and Visscher, J.T. <u>Maintenance Systems for Rural Water</u> <u>Supplies</u>, IRC, The Hague, Netherlands, 1986
- 5. Burnett, N.; Rural Water Supply Handpumps Project, "Report on Cost Analysis Work", UNDP Project INT/81/026, World Bank, Draft Report, 1984
- Cairncross, S.; Carruthers, I.; Curtis, D.; Feachem, R.; Bradley, D.; and Baldwin, G.; <u>Evaluation for Village Water Supply Planning</u>, Bath: The Pitman Press, 1980
- 7. CDER, <u>Field Performance of Small Scale Diesel Engines in Morocco</u>, CDER Marrakech, Morocco, 1986
- Bonaldson, D.; <u>Operation and Maintenance of Rural Drinking Water and Latrine Programs in Honduras</u>. WASH Field Report No. 129. September 1984, 23 p.
- 9. Engebak, P.; <u>Operation and Maintenance of Small Water Supply Systems</u>, UNICEF, Presentation at AWWA Annual Conference, Washington, D.C., June 1985.
- Feachem, R.; Burns, E.; Curtis, D.; Cairncross, S.; Khan, M. K.; Cronin, A.; Lamb, D.; Cross, P.; and Southhall, H.; <u>Water, Health and</u> <u>Development, An Interdisciplinary Evaluation</u>, London, Tri-Med Books, Ltd.
- 11. Godfrey, M. "A Case Study of Diesel Motor Pumps and Photovoltaic Pumps under High Head Conditions" CARE- Rwanda, Rwanda, 1987
- Gray, K. D. 1984. "Working Towards Village-based Hand Pump Maintenance - UNICEF Approach in India." <u>Waterlines</u>, 3 (1), July 1984. pp. 26-28.
- 13. Henderson, M.; "Handpump Maintenance in the Extreme North Province of Cameroon"; CARE-Cameroon, 1987
- 14. Hodgkin, J.P., et al.; <u>Small Scale Water Pumping in Botswana</u> Vol. 1 Diesels, ARD, Vermont, Draft Report to WASH, 1987

- 15. Hodgkin, J.P., and McGowan, R.; <u>Water Pump Field Tests in Botswana</u>, ARD, Vermont, 1986
- 16. Hoffman,L. and Buijs, P.; <u>Development of an Operation and Maintenance</u> <u>System for Shaba Refugee Water Supply Project</u>, WASH Field Report No.170, June 1986
- 17. Hofkes, E.H. <u>Guide for Organizing Handpump Maintenance Systems</u>, IRC, The Hague, The Netherlands, July 1983
- 18. Hofkes, E.H. <u>Practical Handpump Systems</u>, IRC, The Hague, The Netherlands, April 1984
- Jordan, J. K.; Buijs, P.; Wyatt, A.; <u>Assessment of the Operations and</u> <u>Maintenance Component of Water Supply Projects</u>. WASH Technical Report No. 35., 1986, 70 p.
- 20. Jordan, J. K.; Wyatt, A.; <u>Estimating Operations and Maintenance Costs</u> for Water Supply Systems in Developing Countries, WASH Technical Report No. 48, 1987
- 21. Kenna, J.P. <u>Cost and Performance Data on Diesel Engine Generators and</u> <u>Pumps</u>, IT Power, Eversley, UK, 1987
- Lamson-Scribner, F. H.; and Burnett, N. R.; <u>Water Supply Case Studies</u> and <u>Work Exercises</u>, <u>Volume One</u>, <u>Seminar Paper No. 8</u>. Economic Development Institute, International Bank for Reconstruction and Development., 1973, 355 p.
- 23. Libenow, J. G. 1984. "Malawi: Clean Water for the Rural Poor, Part Two - Construction and Maintenance." <u>Waterlines</u>, 3 (1) July 1984.
- 24. LUWA, <u>Institutional Development of Water Utilities in the Philippines</u>, LUWA, Manila, 1986
- 25. Okun, D.A.; and Ernst, W.R.; <u>Community Piped Water Supply Systems in</u> <u>Developing Countries</u>, World Bank Technical Paper No. 60, 1987
- 26. de Saram, S. "Maintenance Management System for Water Supply Equipment." Written under WHO/UNDP Project on Institutional Support to the National Water Supply and Drainage Board, Sri Lanka., 1983
- 27. Schulz, C.R.; and Okun, D. A.; <u>Surface Water Treatment for Communities</u> <u>in Developing Countries</u>. New York: John Wiley and Sons, Inc., 1984, 299 p.
- 28. Titus, A.; <u>Training of Community Operators in Operations and Maintenance</u> <u>for Rural Potable Water Supply Systems in Bolivia</u>. WASH Field Report No. 204., 1987
- 29. Warner, D.B.; et al; <u>Malawi Self-Help Rural Water Supply Program: Final</u> <u>Evaluation</u>, WASH Field Report No.186, 1986

- White, R; and Melchert, J.; <u>Operation and Maintenance of Village Water</u> <u>Supplies in Botswana, Recommendations for Improvement</u>. Report to SIDA, September, 1984.
- 31. Williams, R.B.; and Culp, G.L. eds.; <u>Handbook of Public Water Systems</u>. New York: Van Nostrand Reinhold Company. 1025 p.
- 32. World Bank. 1984. Sri Lanka: Water Supply and Sanitation Sector Study. Urban and Water Supply Division, South Asia Projects Department. Report No. 4190-CE. (RESTRICTED)
- 33. World Bank. Philippines: <u>The Provincial Cities Water Supply</u> <u>Project,East Asia and Pacific Region Projects Department, Energy and</u> Water Supply Division. 32 p. (Annexes). 1977
- 34. World Health Organization. <u>Preventive Maintenance of Rural Water</u> <u>Supplies</u>. WHO/CWS/ETS/84.11. 1984
- 35. World Health Organization. <u>Rural Water Supply; Operation and</u> <u>Maintenance; Eight Questions to Ask</u>, ETS/83.9., 1983
- 36. "Improving Rural Water Supply in Malawi." <u>Finance and Development</u>. Baltimore: 15 (3) September 1978, pp. 34-36.

ł

APPENDIX A

Handpump Systems

.

PER CAPITA COST DATA FOR HANDPUMP SYSTEMS IN AFRICA

	(1984 I	Dollars (US)	•	
COUNTRY	SYSTEM	CAPITAL	-	REC/CAP
BURKINA FASSO	Dugwell +Handpump	\$ 15.20	\$ 0.40	2.6%
SIERRA LEONE	Dugwell +Handpump	\$ 25.90	\$ 0.90	3.5%
TANZANIA	Dugwell +Handpump	\$ 7.30	\$ 0.20	2.7%
WEST AFRICA .	Dugwell +Handpump	\$ 55.20	\$ 1.40	2.5%
GHANA	Borehole +Handpump	\$ 41.80	\$ 1.20	2.9%
MALI	Borehole +Handpump	\$ 40.80	\$ 0.20	0.5%
SENEGAL	Borehole +Handpump	\$ 24.00	\$ 0.90	3.8%
SIERRA LEONE	Borehole +Handpump	\$ 57.10	\$ 0.90	1.6%
SUDAN	Borehole +Handpump	\$ 8.30	\$ 0.60	7.2%
TANZANIA	Borehole +Handpump	\$ 13.10	\$ 0.20	1.5%
TOGO	Borehole +Handpump	\$ 44.20	\$ 1.10	2.5%
WEST AFRICA	Borehole +Handpump	\$ 51.00	\$ 1.40	2.7%
	AVERAGE	\$ 25.90		
+Handpump	STD DEV	\$ 18.16		
	STD/AVG MINIMUM	0.70 \$7.30		0.13 2.5%
	MAXIMUM	\$ 55.20		2.5%
Borehole	AVERAGE	\$ 35.04	\$ 0.81	2.8%
+Handpump	STD DEV	\$ 16.67		1.9%
	STD/AVG	0.48		0.67
	MINIMUM	\$ 8.30		0.5%
	MAXIMUM	\$ 57.10	\$ 1.40	7.2%

)

Source: Burnett, Nick. 1984. "Rural Water Supply Handpumps Project Report on Cost Analysis Work", UNDP Project INT/81/026, World Bank, Draft Report, Tables 1 and 2.

PER CAPITA COST DATA FOR HANDPUMP SYSTEMS IN ASIA

COUNTRY	LOCA	TION	SYSTEM		RECURRENT	REC/CAP
INDIA	Madhya	Pradesh		\$ 5.30	\$ 0.20	3.8%
INDIA		Orissa	Deep Borehole +Handpump	\$ 7.00	\$ 0.20	2.9%
INDIA	Tami	l Nadu	Deep Borehole +Hand Pump	\$ 6.50	\$ 0.20	3.1%
INDIA	West	Bengal	Deep Borehole +Handpump	\$ 3.00	\$ 0.10	3.3%
INDONESIA			Deep Borehole +Handpump	\$ 8.20	\$ 0.50	6.1%
PHILIPPINES	:		Deep Borehole +Handpump	\$ 4.40	\$ 0.80	18.2%
THAILAND			Deep Borehole +Handpump	\$ 20.90	\$ 0.90	4.3%
INDONESIA			Shallow Borehole +Handpump	\$ 3.30	\$ 0.30	9.1%
Deep Boreho	le		AVERAGE	\$ 7.90	\$ 0.41	5.9%
+Handpump			STD DEV	\$ 5.54		
			STD/AVG	0.70	0.72	0.86
			MINIMUM MAXIMUM	\$ 3.00 \$ 20.90	\$ 0.10 \$ 0.90	2.9% 18.2%

(1984 Dollars (US))

Source: Burnett, Nick. 1984. "Rural Water Supply Handpumps Project Report on Cost Analysis Work", UNDP Project INT/81/026, World Bank, Draft Report, Tables 1 and 2.

O&M COST DATA FOR HANDPUMP SYSTEMS

							CA01741	CAPITAL	O&M COST,
COUNTRY	PROJECT	PUMP TYPE	SOURCE		SERVED	CAPITAL COST	CAPITAL COST (1986 US\$)	COST PER CAPITA (1986 US\$)	TRANSP.
ANGLADESH		New No. 6		1982 1984		\$200	\$200	\$2.00	
BANGLADESH BURMA NDIA NDIA	Tami] Nadu		SKAT SKAT Hofkes, UNICEF	1982 1982	150 500	\$200 \$800	\$200 \$802	\$1.34 \$1.60	
NDIA NDIA NDIA	Tamil Nadu Orissa Madhya Prades West Bengal	Mark II Mark II	World Bank World Bank World Bank	1984 1984 1984 1984	250 200 350 260	\$370 \$270 \$280	\$357 \$261 \$270	\$1.30 \$0.77	\$11 \$6 \$13 \$0
HEPAL PHILIPPINES PHILIPPINES THAILAND THAILAND	Pampanga	Eureka Takasago Various Various	SKAT World Bank World Bank	1982 1984 1984 1983	100 300 300 224	\$200-\$500 \$140 \$510	\$200-501 \$135 \$493	\$2-\$5 \$0.45 \$1.64	\$14
			COUNT AVERAGE STD DEV STD/AVG MINIMUM MAXIMUM	14	11 249 111 0.45 100 500	9 \$347 \$191 0.55 \$140 \$800	9 \$341 \$191 0.56 \$135 \$802	9 \$1.56 \$0.81 0.52 \$0.45 \$3.50	i \$10 i \$5 i 0.49
AFRICA								CAPITAL	0&M COST
								CAPITAL	
AFRICA COUNTRY JENIN 30TSWANA 30TSWANA	PROJECT LOCATION Dikgonye Theb Hukuntsi	PUMP TYPE	SOURCE	DATE 1984 1985 1985	POPULA. SERVED	CAPITAL COST \$1,974	CAPITAL COST (1986 US\$) \$1,917	CAPITAL COST PER CAPITA	
AFRICA COUNTRY BENIN BOTSWANA BOTSWANA BOTSWANA BOTSWANA BURKINA FASO	PROJECT LOCATION Dikgonye Theb Hukuntsi Tihareseleele Sengwoma (Dugwell) Yatenga	PUMP TYPE	SOURCE World Bank ARD ARD ARD ARD	DATE 1984 1985 1985 1985 1985	POPULA. SERVED	CAPITAL COST \$1,974 \$1,427 \$805 \$812 \$890	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788 \$860	CAPITAL COST PER CAPITA	O&M COST,
AFRICA COUNTRY ENIN BOTSWANA BOTSWANA BOTSWANA BOTSWANA BURKINA FASO BURKINA FASO CAMEROON CAMEROON BHANA	PROJECT LOCATION Dikgonye Theb Hukuntsi Tihareseleele Sengwoma (Dugwell)	PUMP TYPE e Volanta	SOURCE World Bank ARO ARO ARD World Bank World Bank CARE-Cameroon CARE-Cameroon SKAT	DATE 1984 1985 1985 1985 1985 1985 1985 1986 1986 1986 1986	POPULA. SERVED	CAPITAL COST 	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788	CAPITAL COST PER CAPITA (1986 US\$)	O&M COST
AFRICA COUNTRY COUNTRY ENIN BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BURKINA FASO CAMEROON CONCILION CONCIL	PROJECT LOCATION Dikgonye Theb Hukuntsi Tihareseleele Sengwoma (Dugwell) Yatenga North-FSAR North-CARE Upper Region (Borehole) (Borehole) (SODECI)	PUMP TYPE e Volanta Vergnet Various Mono/R&M Mark II Various ABI/Vergnet	SOURCE World Bank ARO ARO World Bank World Bank CARE-Cameroon CARE-Cameroon SKAT Hofkes World Bank World Bank World Bank	DATE 1984 1985 1985 1985 1985 1986 1986 1986 1986 1986 1986 1984 1984	POPULA. SERVED	CAPITAL COST \$1,974 \$1,427 \$805 \$812 \$890 \$1,736 \$1,660	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788 \$860 \$1,736 \$1,560	CAPITAL COST PER CAPITA (1986 US\$) \$1.72	O&M COST,
AFRICA COUNTRY COUNTRY BENIN BOTSWANA BOTSWANA BOTSWANA BOTSWANA BURKINA FASO BURKINA FASO BURKINA FASO CAMEROON BURKINA FASO CAMEROON BHANA CHANA (1) BHANA (1) BHANA (2) VORY COAST MALAWI MALAWI MALAWI SIERRA LEONE BUDAN	PROJECT LOCATION Dikgonye Theb Hukuntsi Thareseleele Sengwoma (Dugwell) Yatenga North-FSAR North-CARE Upper Region (Borehole) (Borehole) (SODECI) Livulezi	PUMP TYPE e Volanta Vergnet Various Mono/R&M Mark II Various	SOURCE World Bank ARD ARD ARD World Bank CARE-Cameroon CARE-Cameroon SKAT Hofkes World Bank World Bank Hofkes, WB Hofkes World Bank World Bank World Bank World Bank	DATE 1984 1985 1985 1985 1985 1986 1986 1986 1986 1986 1984 1984 1984 1984 1984 1984 1985 1985 1984	POPULA. SERVED 500 200 300 350 250 250 250 350	CAPITAL COST \$1,974 \$1,427 \$805 \$812 \$890 \$1,736 \$1,660 \$300-\$2000 \$720 \$850 \$1,390 \$1,840 \$1,260 \$670	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788 \$860 \$1,736 \$1,660 \$301-\$2004 \$696 \$821 \$1,350 \$1,777 \$1,217 \$647	CAPITAL COST PER CAPITA (1986 US\$) 	0&M COST TRANSP.
AFRICA COUNTRY COUNTRY BENIN BOTSWANA B	PROJECT LOCATION Dikgonye Theb Hukuntsi Thareseleele Sengwoma (Dugwell) Yatenga North-FSAR North-CARE Upper Region (Borehole) (Borehole) (Borehole) (SODECI) Livulezi (Dugwell) Shinyanga Centralized Decentralized	PUMP TYPE e Volanta Vergnet Various Mono/R&M Mark II Various ABI/Vergnet MALDEV/other	SOURCE World Bank ARD ARD ARD World Bank World Bank CARE-Cameroon CARE-Cameroon SKAT Hofkes World Bank World Bank SKAT Hofkes Hofkes Hofkes	DATE 1984 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1986 1984 1984 1984 1984 1984 1984 1984	POPULA. SERVED 500 200 300 350 250 250	CAPITAL COST \$1,974 \$1,427 \$805 \$812 \$890 \$1,736 \$1,660 \$300-\$2000 \$720 \$850 \$1,390 \$1,840 \$1,260	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788 \$860 \$1,736 \$1,660 \$301-\$2004 \$696 \$821 \$1,350 \$1,777 \$1,217	CAPITAL COST PER CAPITA (1986 US\$) \$1.72 \$1.50-\$10.00 \$2.32 \$2.35 \$5.40 \$3.55 \$4.87	0&M COST, TRANSP. \$137 \$103
AFRICA COUNTRY COUNTRY ENIN BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA BOTSWANA CANZANIA CANZANIA CANZANIA	PROJECT LOCATION Dikgonye Theb Hukuntsi Thareseleele Sengwoma (Dugwell) Yatenga North-FSAR North-CARE Upper Region (Borehole) (Borehole) (Borehole) (SODECI) Livulezi (Dugwell) Shinyanga Centralized	PUMP TYPE e Volanta Vergnet Various Mono/R&M Mark II Various ABI/Vergnet MALDEV/other	SOURCE World Bank ARD ARD ARD World Bank World Bank CARE-Cameroon CARE-Cameroon SKAT Hofkes World Bank World Bank	DATE 1984 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1988 1984 1984 1984 1984 1984 1984 1984	POPULA. SERVED 500 200 300 350 250 250 250 250 350 200 200 200	CAPITAL COST \$1,974 \$1,427 \$805 \$812 \$890 \$1,736 \$1,660 \$300-\$2000 \$720 \$850 \$1,390 \$1,840 \$1,260 \$670	CAPITAL COST (1986 US\$) \$1,917 \$1,386 \$782 \$788 \$860 \$1,736 \$1,660 \$301-\$2004 \$696 \$821 \$1,350 \$1,777 \$1,217 \$647	CAPITAL COST PER CAPITA (1986 US\$) 	0&M COST TRANSP.

O&M COST DATA FOR HANDPUMP SYSTEMS

22822222	==================	2525222323	=======		ASIA		*************		
YEAR			(O&M COST/YEAR			TOT.O&M COST	PER CAPITA	O&M COST
LABOR	REPAIR & MAINTENANCE	ADMINIS.	OTHER	TOTAL O&M COST/YEAR	<pre>% SYSTEMS IN OPER.</pre>	TOT.O&M COST @100% OPER.	@100% OPER. (1986 US\$)	0&M COST (1986 US\$)	AS % OF CAPITAL
				\$5 \$6-\$10 \$8 \$20 \$35 \$37	80.0%	\$6-\$10 \$8	\$6 \$8 \$24 \$34	\$0.06 \$0.05 \$0.05	3.19 3.89 2.99
\$21 \$17 \$41 \$11	\$5 \$21 \$9 \$2		\$0 \$2 \$2 \$0	\$33 \$40 \$67 \$13 \$7	78.0% 95.0% 98.0% 90.0%	\$47 \$42 \$68	\$46 \$41 \$66 \$14 \$7	\$0.18 \$0.20 \$0.19 \$0.05 \$0.07	12.85 15.65 24.45 1.4%-3.5%
\$71 \$144 \$28	\$71 \$144 \$4	\$9	\$ 5	\$157 \$300 \$57 \$60		\$157 \$300 \$57 \$60	\$152 \$290 \$56 \$58	\$0.07 \$0.51 \$0.97	112.1
7 \$47 \$44 0.94 \$11	7 \$36 \$49 1.35 \$2	1 \$9 \$9	5 \$2 \$2 1.02 \$0	14 \$58 \$77 1.33 \$5	6 87.7% 7.4% 0.08 78.0%	\$77 1.29	13 \$58 \$74 1.28 \$6	10 \$0.23 \$0.28 1.19 \$0.05	9 26.29 34.89 1.33 2.59
\$144	\$144	\$9 \$9	\$0 \$5	\$300	98.0%		\$290	\$0.97	112.1

R			l l	0&M COST/YEAR			TOT OF A COST		05M 0007
ABOR	REPAIR & MAINTENANCE	ADMINIS.	OTHER	TOTAL O&M COST/YEAR	% SYSTEMS IN OPER.	TOT.0&M COST @100% OPER.	TOT.O&M COST @100% OPER. (1986 US\$)	PER CAPITA O&M COST (1986 US\$)	O&M COST AS % OF CAPITAL
				\$114 \$176		\$114 \$176	\$111 \$171		
				\$85		\$85	\$83		6.
				\$181 \$91		\$181 \$91	\$176 \$88		22 11
\$51	\$10		\$0	\$196 İ	95.0%		\$199	\$0.40	23
•								\$ 0.05	
				\$186 \$87		\$186 \$87	\$186 \$87		10 5
				\$70	90.0%	\$78	\$78	\$0.39	3%-2
				\$75-\$90		\$75-\$90	\$72-\$87		
\$199 \$76	\$52 \$34		\$11 \$6	\$368 \$140	96.0% 84.0%		\$370 \$161	\$1.23 \$0.46	53 19
φru	404		40	\$126	04.00	\$126	\$122	40.40	13
				\$20-\$30		\$20-\$30	\$19-\$29		
\$5 \$31	\$3 \$21	\$10	\$0 \$0	\$24 \$84		\$24 \$84	\$23 \$81	\$0.09 \$0.16	1
\$109	\$67		\$18	\$222		\$222	\$214	\$0.86	17
\$95	\$19		\$0	\$212	70.0%		\$293	\$0.84	45
\$25	\$29			\$120 \$111	90.0%	\$133 \$111	\$134 \$111	\$0.67	8
\$20	325			\$130-\$200		\$130-\$200	\$128-\$198		
				\$95		\$95	\$94		
\$7	\$17 \$123		\$0 \$10	\$38	90.0%	\$42 \$323	\$41	\$0.20 \$1.04	
\$61	\$123 		• • • • • • • • • • • • • • • • • • •	\$323 <u> </u>		• • • • • • • • • • • • • • • • • • • •	\$312	¢۱.04 	
10	10	1	9	24	7	24	24	12	
\$66 \$55	\$37	\$10	\$5	\$138 \$83	87.9% 8.1%	\$145 \$90	\$142 \$87	\$0.53 \$0.37	16 14
0.84	\$34 0.90		\$6 1.27	0.60	0.09	0.62	0.61	0.70	0 .
\$5	\$3	\$10	\$0	\$24	70.0%	\$24	\$23	\$0.05	1
\$199	\$123	\$10	\$18	\$368	96.0%	\$383	\$370	\$1.23	53

APPENDIX B

Gravity Systems

PER CAPITA COSTS FOR GRAVITY SYSTEMS IN AFRICA AND ASIA

Source: Burnett, World Bank Date: 1984 (In 1984 US\$)

COUNTRY	SYSTEM	CAPITAL	RECURRENT	REC/CAPITAL
CAPE VERDE	Gravity (surface) +distri.	\$ 73.30	\$ 1.80	2.5%
SIERRA LEONE	Gravity (surface) +distri.	\$ 42.00	\$ 0.90	2.1%

ASIA				
COUNTRY	SYSTEM	CAPITAL	RECURRENT	REC/CAPITAL
INDIA	Gravity (surface) +distri.	\$ 24.00	\$ 0.90	3.8%
PAPUA NEW GUINEA	Gravity (surface) +distri.	\$ 13.70	\$ 1.10	8.0%
	AVERAGE	\$ 18.85	\$ 1.00	5.9%

1

ASIA	_									
COUNTRY	PROJECT LOCATION	SYSTEM TYPE	DATA SOURCE	DATE	POPULAT. SERVED	TOT. VOLUME PRODUCED (m3/yr)	VOLUME PRODUCED (lt/cap/day)	INITIAL CAPITAL COST	CAPITAL COST PER CAPITA	TRANSP
NDONESIA	Sukabumi	Gravity	DHV	1983	173,500	1,240,000	20			
NDONESIA	Sukabumi	Gravity	OHV	1984	176,600	1,530,000	24		ļ	
NDONESIA	Sukabumi	Gravity	DHV	1985	179,700	1,740,000	27		ļ	
SRI LANKA	Gonagaldeniya	Grav/Chlor	ESI	1986	1,200	15,229	35	\$57,644	\$48.04	
RI LANKA	Kannantota	Grav/Chlor	ESI	1986	4,200	54,850	36	\$30,339	\$7.22	
GRI LANKA	Nivitagale	Grav/Chlor	ESI	1986	2,500	55,209	61	\$88,518	\$35.41	
SRI LANKA	Deliowita	Grav/Chlor	ESI	1986	7,000	74,500	29	\$35,978	\$5.14	
RI LANKA	Aranyake	Grav/Chlor	ESI	1986	4,000	123,185	84	\$111,361	\$27.84	
SRI LANKA	Ukuwela	Grav/Chlor	ESI	1986	3,000	123,610	113	\$61,391	\$20.46	
RI LANKA	Pelmadulla	Grav/Chlor	ESI	1986	3,600	164,752	125	\$157,940	\$43.87 <u> </u>	
		COUNT	10		10	10	10	7	7	
		AVERAGE			55,530	512,134	55	\$77,596	\$26.85	
		STD DEV			79,283	659,752	37	\$41,987	\$15.63	
		STD/AVG			1.43	1.29	0.67	0.54	0.58	
		MINIMUM			1,200	15,229	20	\$30,339	\$5.14	
		MAXIMUM			179.700	1,740,000	125	\$157,940	\$48.04	

GRAVITY SYSTEM O&M COST DATA

COUNTRY	PROJECT LOCATION	SYSTEM TYPE	DATA Source	DATE	POPULAT. SERVED		VOLUME PRODUCED (lt/cap/day)	INITIAL CAPITAL COST	CAPITAL COST PER CAPITA	TRANSP
MALAWI	Lufira/Kar.	Gravity	WASH	1986	32,700	(1985 est.)		\$ 186,986	\$5.72	
MALAWI	Ng'onga	Gravity	WASH	1986	4,200	(1985 est.)		\$9,027	\$2.15	ļ
ALAWI	Mchinji	Gravity	WASH	1986	26,600	(1985 est.)		\$53,087	\$2.00	
MALAWI	Sumulu	Gravity	WASH	1986	23,500	(1985 est.)		\$154,210	\$8.56	
MALAWI	Mulanje West	Gravity	WASH	1986	102,700	(1985 est.)		\$182,688	\$1.78	
		COUNT	5		5			5	5	(
		AVERAGE			37,940			\$117,200	\$3.64	
		STD DEV			33,754			\$72,582	\$2.06	
		STD/AVG			1			0.62	0.57	l
		MINIMUM			4,200			\$9,027	\$1.78	
		MAXIMUM			102.700			\$186,986	\$6.56	

L

Į,

þ

L

GRAVITY SYSTEM O&M COST DATA (CONTD.)

			ASIA						
0&M AS %		· · · · · · · · · · · · · · · · · · ·					AR	D&M COST/YE	(
OF CAPITAL COST	O&M COST PER m3	PER CAPITA 0&M COST(\$)	TOTAL O&M COST/YEAR	OTHER	MAINT.	ADMIN.	CHEM.	ENERGY	LABOR
	\$0.121	\$0.86	\$149,916	\$14,037	\$13,476	\$15,283	\$140	\$842	\$105,138
	\$0.081	\$0.71	\$124,691	\$12,843	\$9,708	\$19,720	\$2,023	\$1,011	\$79,385
	\$0.086	\$0.83	\$149,002	\$10,228	\$26,815	\$20,272	\$5,990	\$1,935	\$83,762
3.73	\$0.141	\$1.79	\$2,151	1	\$445		\$29	\$0	\$1,877
8.749	\$0.048	\$0.63	\$2,651	l	\$284		\$323	\$0	\$2,044
6.449	\$0.103	\$2.28	\$5,699	1	\$417		\$332	\$27	\$4,922
12.049	\$0.058	\$0.62	\$4,332	1	\$413		\$172	\$0	\$3,748
2.10	\$0.019	\$0.59	\$2,342	ļ	\$3		\$165	\$34	\$2,139
2.819	\$0.014	\$0.58	\$1,726	ļ	\$43		\$302	\$0	\$1,382
2.709	\$0.026	\$1,18	\$4,265	ł	\$175		\$387	\$46	\$3,657
 1	10	10	10	3	10	3	10	10	10
5.519	\$0.070	\$1.01	\$44,678	\$12,369	\$5,178	\$18,758	\$986	\$390	\$28,785
3.469	\$0.042	\$0.55	\$63,524	\$1,591	\$8,529	\$1,765	\$1,754	\$529	\$40,189
0.63	0.60	0.55	1.42	0.13	1.65	0.09	1.78	1.52	1.40
2.109	\$0.014	\$0.58	\$1,726	\$10,228]	\$3	\$16,283	\$29	\$0	\$1,382
12.049	\$0.141	\$2.28	\$149,916	\$14,037	\$26,815	\$20,272	\$5,990	\$1,935	\$105,138

ĺ

	AFRICA								
O&M AS % OF CAPITA	O&M COST	PER CAPITA	TOTAL O&M				AR	D&M COST/YE	(
COST		O&M COST(\$)	COST/YEAR	OTHER	MAINT.	ADMIN.	CHEM.	ENERGY	LABOR
4.19		\$0.24	\$7,830		\$7,830		~~~~~~~		
33.4		\$0.72	\$3,019	ļ	\$3,019				
5.0		\$0.10	\$2,658		\$2,658				
1.8		\$0.12	\$2,878	j	\$2,878				
5.6		\$0.10	\$10,250	ļ	\$10,250				
		5	5		5				
10.0		\$0.26	\$5,327	Í	\$5,327				
11.78		\$0.24	\$3,129	Ì	\$3,129				
1.1		0.93	0.59		0.59				
1.8		\$0.10	\$2,658		\$2,658				
33.4		\$0.72	\$10,250	İ	\$10,250				

APPENDIX C

Electric Systems

PER CAPITA COSTS FOR ELECTRIC PUMP WATER SYSTEMS

Source: Burnett, World Bank Date: 1984 (In 1984 US \$)

COUNTRY	SYSTEM	CAPITAL	RECURRENT	REC/CAPITAL
CAPE VERDE	Borehole (electric) +storage, +distri.	\$48.40	\$8.00	16.5%
IERRA LEONE	Borehole (electric) +storage	\$25.20	\$4.90	19.4%
	Borehole (electric) +storage, +distri.	\$39.20	\$4.10	10.5%
	AVERAGE w/o distrib.	\$25.20	\$4.90	19.4%
	AVERAGE w/ distrib.	\$43.80	\$6.05	13.5%

ASIA ____ _____ CAPITAL RECURRENT REC/CAPITAL COUNTRY SYSTEM _____ _____ 4.7% BURMA Borehole (electric) \$25.30 \$1.20 +storage Borehole (electric) INDIA \$22.00 \$0.40 1.8% +storage Borehole (electric) INDIA \$21.00 \$0.10 0.5% +storage SRI LANKA Borehole (electric) \$31.70 \$0.80 2.5% +storage Borehole (electric) +storage, +distri. INDIA \$22.80 \$0.70 3.1% Borehole (electric) +storage, +distri. \$29.00 \$1.00 INDIA 3.4% Borehole (electric) +storage, +distri. INDIA \$28.00 \$1.80 6.4% \$35.10 SRI LANKA Borehole (electric) \$2.30 6.6% +storage, +distri. -----------_____ \$25.00 \$0.63 Borehole (electric) AVERAGE 2.4% +storage STD DEV \$4.18 \$0.41 1.5%0.17 \$21.00 DEV/AVG 0.66 \$0.10 0.65 MINIMUM 0.5% \$31.70 4.7% MAXIMUM \$1.20 Borehole (electric) +storage, +distri. AVERAGE \$28.73 \$1.45 4.9% STD DEV DEV/AVG \$4.37 \$0.63 1.6% 0.15 0.44 0.33 MINIMUM \$22.80 \$0.70 3.1% MAXIMUM \$35.10 \$2.30 6.6% _____

ELECTRIC PUMP WATER SYSTEM O&M COST DATA

									1	
						PER CAPITA	INITIAL	CAPITAL	!	
COUNTRY	PROJECT LOCATION	SOURCE	DATE	POPULAT. SERVED) VOLUME (l/cap/day)	CAPITAL COST	COST PER CAPITA	I TRANSPORT	LABO
RI LANKA P	Padeniya	ESI	1986	300	2,726	25				\$5 1
	Idagame	ESI	1986	300					1	\$96
	Buluwela	ESI	1986	1,000					I	\$97
RI LANKA Sam		ESI	1986	800					1	\$1,14
	Indigama	ESI	1986	2,000		15				\$1,05
	nnigama	ESI	1986	500					!	\$2,11
	nbanpola	ESI	1986	2,100	13,528	18	\$71,385	\$33.99		\$2,41
SRI LANKA Mi	inigamuwa	ESI	1986	1,000	15,219	42	\$37,227	\$37.23		\$1,01
	namaduwa	ESI	1986	1,500			\$17,489	\$11.66	Ì	\$2,88
RI LANKA P	Pannala	ESI	1985	2,300			\$103,509	\$45.00		\$2,68
RI LANKA Nik	laweratiya	ESI	1986	8.000	34,575		\$178,463	\$22.31	ļ	\$ 1,58
SRI LANKA Pfl	iyandala	ESI	1986	2,500	38,975	5 43	\$7,924	\$3.17	ļ	\$1.09
	Alawwa	ESI	1986	3,600			\$35,978	\$9.99		\$3,43
	ataleeya	ESI	1986	1,000			\$133,847	\$133.85		\$1,3
	Siriulla	ESI	1986	1,800			\$11,065	\$6.15	•	\$1,0
-	odapola	ESI	1986	8,000			\$33,373	\$4.17		\$2,5
SRI LANKA Ram	woodagalle	ESI	1986	2,000			\$14,099	\$7.05		\$2,3
	ennappuwa	ESI	1986	6,500			\$78,524	\$12.08		\$2.9
	ariyapola	ESI	1986	4,000			\$117,429	\$29.35		\$3.49
	ankotuwa	ESI	1986	3,800			\$28,197	\$7.42	ļ	\$7
RI LANKA D	Dambulla	ESI	1986	7,000					1	\$5,0
SRI LANKA Ga	algamuwa	ESI	1986	4,000			\$24,093	\$5.02		\$3.8
	lalawana	ESI	1986	5,000			\$22,129	\$4.43		\$3,2
SRI LANKA Ehi	liyagoda	ESI	1986	6,000		i 52	\$40,939	\$6.82	ļ.	\$6,8
SRI LANKA Ka	shawatta	ESI	1986	6,000	132.776	i 61	\$23,736	\$3.96	ł	\$6,5
	uwanella	ESI	1986	9,900	143,634	40	\$78,739	\$7.75	ł.	\$8,4
SRI LANKA Yat		ESI	1986	3,000	145,255	i 133	\$10,708	\$3.57	E	\$4,2
SRI LANKA Ga	lagedara	ESI	1986	7,500	150,077	55			1	\$4,4
	Horana	ESI	1986	10,000	238,647	65	\$1,252,811	\$125.28	!	\$8,5
SRI LANKA Avi		ESI	1986	10,000	398,451				ļ	\$11,2
	Matale	ESI	1986	46,000	414,295	25	\$2,070,172	\$45.00	1	\$ 5,2
SRI LANKA Ma	wanella	ESI	1986	12,000	483,453	3 110	\$209,873	\$17.49	ł	\$8,1
SRI LANKA Ba	alangoda	ESI	1986	15,000			\$175,965	\$11.73	1	\$14,6
SRI LANKA Udu	inwara-Yat	ESI	1986	30,000	899,508	8 82				\$8,0
SRI LANKA Ra	tnapura	ESI	1986	20,000	1,310,021	179	\$479,352	\$23.97		\$36.8
	COUNT	35	35	35			25			
	AVERAGE			6,983			\$210,201		•	\$4,9
	STO DEV			9,025			\$454,112			\$6,3
	STD/AVG			1.29			2.16	1.35		1.
	MINIMUM			300			\$7,924			\$5
	MAXIMUM			46,000	1,310;021	179	\$2,070,172	\$ 133.85	1	\$36.8

			ASIA					
M COST/Y	'EAR (198	6 US\$)			ļ			
						PER CAPITA		0&M AS %
REPAIR	ENERGY	CHEM	ADMIN MAINT	OTHER	TOTAL O&M			OF CAPITAL
					COST/YEAR	(\$/year)	(\$/m3)	COST
	\$167	\$1	\$95		\$781	\$2.60	\$0.286	
	\$440	\$15	\$56		\$1,476	\$4.92	\$0.439	
	\$96	\$67			\$1,135	\$1.13	\$0.299	
		\$5	\$4,674		\$5,827	\$7.28	\$1.170	
		\$65	\$1,267		\$2,385	\$1.19	\$0.220	
	\$478	\$46	\$734		\$3,370	\$6.74	\$0.262	
	\$199	\$838	\$448		\$3,904	\$1.86	\$0.289	5.47
	\$946	\$17	\$50		\$2,030	\$2.03	\$0.133	5.45
	\$325	\$130	\$87		\$3,426	\$2.28	\$0.167	19.59
	\$432	\$29	\$237		\$3,368	\$1.46	\$0.157	3.25
	\$907		\$1,697		\$4,193	\$0.52	\$0.121	2.35
	\$121	\$323	\$38		í \$ 1,575	\$0.63	\$0.040	19.88
	\$754	\$195			\$4,392	\$1.22	\$0.109	12.21
	\$1,961	\$ 62	\$382		\$3,759	\$3.76	\$0.091	2.81
	\$2,159	\$111	\$183		\$3,549	\$1.97	\$0.084	32.08
	\$1,048	\$366	\$198		\$4,149	\$0.52	\$0.086	12.43
	\$1,524	\$372	\$282		\$4,502	\$2.25	\$0.078	31.93
	\$1,483	\$1,449	\$209		\$6,101	\$0.94	\$0.104	7.77
	\$1,971	\$483	\$61		\$6,006	\$1.50	\$0.099	5.11
	\$853	\$155	\$149		\$1,883	\$0.50	\$ 0.028	6.68
	\$3,777	\$255	\$321		\$10,378	\$1.48	\$0.127	
	\$3,698	\$451	\$246		\$8,249	\$2.06	\$0.096	34.24
	\$2,700	\$445	\$3,670		\$10,041	\$2.01	\$0.096	45.37
	\$2,443	\$784	\$186		\$10,238	\$1.71	\$0.089	25.01
	\$2,435	\$381	\$469		\$9,790	\$1.63	\$0.074	41.25
	\$7,168	\$215	\$608		\$16,419	\$1.66	\$0.114	21.40
	\$3,333		\$206		\$7,797	\$2.60	\$0.054	72.82
	\$4,235	\$401	\$101		\$9,158	\$1.22	\$0.061	
	\$5,592	\$279	\$370		\$14,779	\$1.48	\$0.062	1.18
	\$15,985	\$592	\$13,103		\$40,905	\$4.09	\$0.103	
	\$14,349	\$5,468			\$25,037	\$0.54	\$0.060	1.21
	\$5,938	\$370	\$56		\$14,544	\$1.21	\$0.030	6.93
	\$11,125	\$1,268	\$2,688		\$29,751	\$1.98	\$0.049	16.91
	\$38,945	\$1,263	\$579		\$48,859	\$1.63	\$0.054	
	\$28,683	\$1,442	\$ 7,638		! \$74,659	\$3.73 	\$0.057	15.58
0	33	33	0 32	0		35	35	25
	\$5,039	\$ 556	\$1,284		\$11,383	\$2.12	\$0.154	17.98
	\$8,353	\$961	\$2,662		\$15,316	\$1.57	\$0.196	18.95
	1.66	1.73	2.07		1.35	0.74	1.27	0.94
	\$96	\$1	\$38		! \$ 781	\$0.50	\$0.028	1.18
	\$38,945	\$5,468	\$13,103		\$74,659	\$7.28	\$1.170	72.82

I

APPENDIX D

Diesel Systems

DIESEL SYSTEMS O&M COST DATA

COUNTRY	PROJECT LOCATION	SOURCE	DATE	ENGINE	HEAD (m)		LOADING	OVERALL EFFI- CIENCY	HOURS PER DAY	WATER VOLUME PRODUCED (m3/yr)	POPULA.	WATER VOLUME PRODUCED (1pd)
KENYA	Karamani(Small)	IT Power	1986	Lister LT1	10	2.6	9.0%	7.7%	2.7	2,608		
KENYA	Maturu II	IT Power	1986	Lister HA3	30		9.1%	4.3%	3.5	5,856		
KENYA	Nyumba IV	IT Power	1986	Lister HR2	100		10.6%	8.0%	5.7	10,025		
KENYA	Karamani(Big)	IT Power	1986	Lister 8/1	45		24.0%	11.3%	5.0	36,209		
BOTSWANA	Malotwana	ARD	1986	Lister SR1	48	3.2	15.0%	8.0%	3.1	3,650		
BOTSWANA	Bonwapitse	ARD	1986	Lister ST1	58	7.7	48.0%		2.5	5,935		31.7
BOTSWANA	Mmankgodi	ARD	1986	Lister LT1	82	2.7	33.0%		8.1	8,030		
BOTSWANA	Oodi	ARD	1986	Lister 8/1	101	3.9	27.0%		9.3	13,140		
BOTSWANA	Mogobane	ARD	1986	Lister ST1	74	8.7	67.0%		11.5	36,500	1980	50.5
RWANDA	··• g= • • • •	CARE	1986		100		• • • •	• • • •		2,555		15.0
ETHIOPIA	Adami Tulu	•••••	1986	5kw		18.0			7.0	45,990		
MOROCCO	El-Attaouia	CDER	1985	Lister	9				6.0	,		
MOROCCO	Pepin. Hortimex	CDER	1985	Ford	40				8.0			
MOROCCO	El-Idrissi	CDER	1985	Lister	14	6.5	7.6%	4.5%	0.5	1,186		
MOROCCO	Abattoir du Souk	CDER	1985	Farymann	19	12.5	42.8%		0.3	1,369		
MOROCCO	Mzouda	CDER	1985	Armstrong	95	3.5	18.5%		1.5	1,971		10.8
MOROCCO	Mejatt	CDER	1985	Lister	59	14,4	27.9%		0.5	2,628		28.8
MOROCCO	Douar Khalifa	CDER	1985	Petter	21	3.0	5.3%		5.0	5,475		20.0
MOROCCO	Arba Tighedoune	CDER	1985	Petter	25	18.0	23.9%		1.0	5,475 6,570		90.0
MOROCCO	Lakhouil	CDER	1985	Ford	42	8.3	23.35		. 3.0	9,062		30.0
MOROCCO	Guemassa	CDER	1985	Lister	42 60	12.5	32.7%		2.0	9,002		125.0
MOROCCO	Rguiguia Tingandiauna	CDER	1985	Petter	37 38	16.7	36.3%		1.5	9,125		138.9
MOROCCO	Timzgadioune	CDER	1985	Simef		12.5			2.0	9,125		
MOROCCO	Mohamed Zapuiato Capidia	CDER	1985	Lister	35	23.1	68.3%		1.3	10,523		50 0
MOROCCO	Zaouiat Saaidia	CDER	1985	Petter	53				1.5	11,826		58.9
MOROCCO	El-Guerne	CDER	1985	Lister	32	6.0	8.1%	2.2%	6.7	14,607		
MOROCCO	Ouled El-Rmedia	CDER	1985	Petter	22		47.08	2 65	2.0	18,250		
MOROCCO	Abid	CDER	1985	Deutz	48	15.0			4.0	21,900		
MOROCCO	Ait Nacer	CDER	1985	Petter	18				4.0	28,105		
MOROCCO	Lagmah	CDER	1985	Petter	15	32.0	40.6%		2.5	29,200		
MOROCCO	8en Wadi	CDER	1985	Ford	50		16.2%	9.1%	5.0	32,850		
MOROCCO	Oul-Hachmi	CDER	1985	Lister	40	24.0			4.0	35,040		
MOROCCO	Haj Mohamed	CDER	1985	Lister	24	26.0			4.0	37,960		
MOROCCO	Si Mohamed	CDER	1985	Ford	33	27.0	13.4%		5.0	59,130		
MOROCCO	Oudia	CDER	1985	Petter	17	24.0	58.9%		8.3	72,708		
MOROCCO	Roserie Hortime	CDER	1985	Ford	32	32.0			9.0	105,120		
MOROCCO	Bouzidia	CDER	1985	Petter	27	21.6			14.0	110,376		
MOROCCO	Rguiguia	CDER	1985	Petter	13	36.6	26.9%	3.8%	11.0	146,949		
COUNT	37	37	38	37	37	32	32	32	37	36	9	ç
AVERAGE				-	42.3	15.8			4.7	26,713		61.1
STD DEV					26.1	9.5			3.4	33,421		44.3
STO/AVE					0.617	0.60		0.50	0.72	1.25		0.73
MINIMUM					9.0	2.6			0.3	1,186		10.8
MAXIMUM					101.0	36.6			14.0	146,949		138.9

-			ANNUAL O	&M COST				1	PER		TOTAL	
								I TOTAL O&M		TOTAL O&M	O&M COST PER m HEAD	O&M COST
-CAPITAL COST	LABOR	MAINT.	REPAIRS & PARTS	FUEL	CHEM.	TRANSP.		COST/YEAR (1986 US \$)	(\$/year)	COST/m3		
	\$338	\$238	\$100	 \$250			\$ 926	\$965		\$ 0.37	3.70	
1	\$231	\$50	\$13	\$438			\$732	\$755		\$0.13	0.43	
\$9,750	\$275	\$63		\$875			\$1,213	\$1,213		\$0.12	0.12	12.4%
1	\$394	\$656	\$100	\$1,276			\$2,425	\$2,527		\$0.07	0.16	
\$3,242							\$2,042	\$2,042		\$0.56	1.17	63.0%
\$3,751							\$2,153		\$3.59	\$0.31		57.4%
\$3,833								\$2,554		\$0.32		66.6%
\$4,748							\$3,566			\$0.27		75.1%
\$4,079								ļ \$ 3,838	\$1.94			
\$16,000		\$317		\$285				\$3,002	\$6.43	\$1.17	1.17	18.8%
\$4,200		\$240		\$1,200				\$1,615		\$0.04		38.5%
!			\$1,067	\$876			\$2,023					
-		\$320		\$3,997		\$267		\$5,368				
		\$29		\$37		\$18		•		\$0.10	0.73	
	\$667	\$27		\$26			\$742			\$0.53	2.77	
	\$667	\$117		\$428			\$1,257		\$2.44	\$0.62	0.65	
	\$667	\$19		\$214			\$899		\$3.49	\$0.33	0.56	
-		\$53		\$876		\$160		\$1,867		\$0.34	1.82	
	\$667	\$56		\$276			\$998	•	\$4.85	\$0.15	0.59	
		\$320		\$1,533		\$20		•		\$0.27	0.65	
	\$667	\$96		\$714			\$1,503	, · · ·	\$7.30	\$0.16	0.27	
	\$667	\$24		\$427			\$1,117		\$6.03	\$0.12	0.32	
	\$667	\$20					\$687			\$0.07	0.19	
	\$657	\$80		\$243		\$80				\$0.11	0.30	
	\$667	\$20	-	\$535			\$1,333	•	\$2.35	\$0.11	0.21	
			\$1,111	\$2,203		\$29				\$0.24	0.75	
		\$80		\$148		\$20				\$0.01	0.06	
		\$480		\$2,855		\$29		\$4,022		\$0.18	0.39	
-		\$121		\$730		\$64				\$0.04	0.23	
		\$27					\$647			\$0.02	0.14	
		\$240		\$1,784		\$69	\$2,927			\$0.09	0.17	
		\$373		\$5,840		\$400		•		\$0.35	0.87	
1		\$150	\$1,000	\$1,728		\$29	\$2,917			\$0.07	0.31	
-			\$4,181	\$2,141		\$214	\$6,536			\$0.11	0.33	
		\$71	\$54	\$1,777			\$1,902	•		\$0.03	0.15	
		\$365		\$3,919		\$400		,		\$0.04	0.14	
. [\$667 \$667	\$680 \$27		\$4,542 \$4,698			\$5,978 \$5,391			\$0.05 \$0.04	0.19 0.28	
8	16	32		32	0			•	9	36	35	8
\$6,200	\$685	\$179		\$1,476		\$133			\$4.27	\$0.21	-0.60	53.2%
\$4,177			\$1,364	\$1,535		\$130			\$1.85	\$0.23	0.74	25.2%
0.67		1.00		1.04		0.98			0.43	1.06	1.24	0.49
\$3,242		\$19		\$26		\$18			\$1.94	\$0.01	0.06	12.4%
\$16,000	\$2,400	2 980	\$6,000	\$5,840		\$400	\$12,613	\$12,247	\$7.30		3.70 ====================	94.1%

DIESEL SYSTEMS O&M COST DATA

_

APPENDIX E

-

_

_

-

~

-

Asian Development Bank 0&M Cost Data

Water Supply Projects Production Cost Per Cubic Meter (¢/cum) (in 1985 prices)

Type of System DMCs	Dug Well with Hand Pump	Shallow Drilled Well with Hand Pump	Deep Borehole Well with Distribution System and Untreated Water	Deep Borehole Well with Distribution System and Treated Water	Surface Water with Gravity Feed Distri- bution and Treated Water	Surface Water with Pumped Distribution System and Treated Water
Bangladesh	1 - 3	2 3	3 - 6	4 - 8	6 - 11	11 - 13
Bhut an	1 - 2	1 - 5	2 - 8	6 - 10	6 - 10	10 - 15
Burma	1 - 2	1 - 2	2 - 5	3 - 6	5 - 8	4 - 10
Horig Kong	2 - 3	2 - 4	3 - 11	7 - 10	7 - 10	7 - 12
India	1 - 2	1 - 2	1 - 5	2 - 5	2 - 6	5 - 8
Indonesia	1 - 2	1 2	2 - 6	3 - 12	10 - 15	6 - 16
Korea	1 - 3	2 - 4	2 - 10	5 - 15	10 - 20	5 - 25
Laos	1 - 4	1 - 4	4 - 7	4 - 10	4 - 10	10 - 15
Malaysia	1 - 2	1 - 5	3 - 10	5 - 15	5 - 15	5 - 18
Maldives	2 - 3	2 - 3	3 - 5	4 - 15	6 - 15	8 - 17
Nepal	1 - 2	1 - 2	1 - 6	5 - 12	5 - 12	11 - 19
fakistan	1 - 3	1 - 3	3 - 8	8 - 10	8 - 15	12 - 18
Papua New Guinea	1 - 2	2 - 5	2 - 10	6 - 20	10 - 25	10 - 30
Phillppines	2 - 3	2 - 3	3 - 9	9 - 15	9 - 18	12 - 20
Singapore	1 - 2	2 - 6	3 - 11	10 - 12	10 - 15	15 - 18
Solomon Islands	2 - 3	2 - 3	2 - 4	4 - 10	6 - 13	13 - 15
Sri Lanka	1 - 2	1 - 4	2 - 6	3 - 10	4 - 15	11 - 23
Thailand	l - 2	2 - 3	3 - 10	10 - 20	10 - 20	10 - 25
Vietnam	1 - 3	2 - 3	3 - 11	5 - 15	5 - 15	9 - 21
Average Range	1 - 3	2 - 3	2 - 8	6 - 12	7 - 14	9 - 18