Implementation of the Global Strategy for Health for All by the Year 2000
Second Evaluation
Eighth Report on the World Health Situation

This seven-volume work provides a detailed assessment, at global, regional, and country levels, of the extent to which strategies to develop health systems based on primary health care are being successfully implemented. The assessment, which also constitutes the Eighth Report on the World Health Situation, draws upon findings from national evaluations and data submitted by 151 countries covering 5,200 million people and representing 96% of the world population, thus providing an unprecedented basis for a frank appraisal of health conditions and the factors that influence them.

Emphasis is placed on changes in the world health situation as measured through data, revealing the period 1985–1990, on several well-defined indicators of health status and progress in reaching the social goal of health for all. Noting that the health for all strategy is essentially a quest for social justice and equity, the report gives particular attention to changes in the health status of vulnerable or disadvantaged groups and to the plight of populations in the least developed countries. Throughout, an effort is made to identify the lines of action needed to move forward in a world characterized by continuing population growth, increasing health problems, and shrinking funds for health and development.

The report consists of seven volumes: a global overview (volume 1), followed by individual reports from each of WHO's six regions. All regional reports were prepared according to a common outline. Each begins with an overview of socioeconomic developments, changes in the health system, and changes in health status as indicated by statistics on morbidity and mortality. An evaluation of overall achievements, particularly concerning implementation of the strategy for health for all, is followed by an analysis of problems likely to dominate the future and the actions that might be taken. Each regional volume also features a series of richly detailed profiles on health conditions for each country.

Volume 1: Global Review

This first volume provides a global overview of changes in the world health situation as determined through an analysis of data submitted by 151 countries for 1985–1990. Focused on a number of well-defined indicators of health status and its socioeconomic and environmental determinants, the report aims to discern trends, measure progress, define problems, and suggest guide countries in their continuing efforts to strengthen health systems and improve the accessibility and quality of care. Emphasis is placed on factors linked to progress in the achievement of coverage by primary health care, equity in health, and sustainability in the national approaches employed.

The book has eight chapters. The first evaluates health status as indicated by statistics on morbidity and mortality. Emphasis is placed on changes in the world health situation as measured through data, revealing the period 1985–1990, on several well-defined indicators of health status and progress in reaching the social goal of health for all. Noting that the health for all strategy is essentially a quest for social justice and equity, the report gives particular attention to changes in the health status of vulnerable or disadvantaged groups and to the plight of populations in the least developed countries. Throughout, an effort is made to identify the lines of action needed to move forward in a world characterized by continuing population growth, increasing health problems, and shrinking funds for health and development.

Implementation of the Global Strategy for Health for All by the Year 2000: Second Evaluation
Eighth Report on the World Health Situation

1993, vi + 163 pages ISBN 92 4 160218 3 Swr 15.60 £5 50 in developing countries. Swr 24.50 Order no. 1231006

Assessing response reliability of health interview surveys using re-interviews

S.J. Fabricant & T. Harpham

Introduction

Health Interview surveys

Household surveys have become a valuable tool for health planners and policy-makers in the search for better ways of managing and financing the activities of the health sector. Especially in developing countries, where official health statistics may be facility-oriented and data from censuses or general population surveys are likely to be incomplete or out of date, the information required to make sound policy decisions is best obtained using specialized surveys. If, for example, a comparison of the users and non-users of health facilities is needed, it is usually necessary to sample the general population using household interviews.

Sources of error and the need for quality control

There are two basic types of errors associated with sample surveys: sampling errors, which arise because a selected sample is used to obtain information about an entire population; and non-sampling errors, which arise because of variations between the response given by interviewees and the true answer. Sampling errors can be estimated a priori and can be reduced by increasing the size of the sample and by designing the survey to ensure that the sample bias is minimized. Non-sampling errors can be defined as all errors other than sampling errors, and are caused by biases introduced at any stage of the survey process—design, questionnaire development, collection and analysis, and reporting of the findings—that affect the validity or reliability of the results. The causes of some non-sampling errors, such as mistakes in recording respondent's answers or in data processing, can be minimized by exercising care and using appropriate quality control procedures, while others, such as the respondent's inaccurate recall or wish to conceal the truth, may be extremely difficult to avoid.

The magnitude of both sampling and non-sampling errors is of great importance when reporting the results of the survey. For example, the level of significance of an observed difference between two groups is related to the errors associated with both groups. Usually, computers are used to analyse data from surveys and the results obtained are those determined by the software package to be statistically significant. The total error of a sample variable is the geometric sum of the sampling and non-sampling errors, but the latter are not usually taken into account by the software. Studies based on widely used guidelines for survey design that claim, for example, a 95% confidence interval (CI) of ±10% if a particular calculated sample size is used, are therefore misleading; such "rules" ignore the effect of non-sampling errors. In health economics, some of...
The non-sampling error is mentioned in a classic monograph by S.D. Litwak and T. Harpham (1), where the lack of attention paid to non-sampling errors by researchers using household surveys is highlighted. Another standard text on surveys in developing countries (2) suggests that an important quality of survey results should be reported using the following rough grading:

- A) The basic data are reliable (accurate, objective methods were used); errors are mainly due to sampling.
- B) Some of these estimates rely on the respondents’ recall; non-sampling errors may be as important as sampling errors.
- C) The respondents were reluctant to answer the question on which this item depends; non-sampling error is substantially greater than sampling error.

Costly efforts to reduce sampling errors by increasing the sample size may reduce the total error only slightly if the non-sampling errors are large, and inferences can be increased if the non-sampling errors are less than the sample results in a relaxation of other standards of quality.

Although non-sampling errors are routinely reported for national censuses, smaller-scale surveys often ignore such errors. For example, only a few studies that made any validity check at all, although important variations in reporting were measured in the two morbidity surveys that used the World Health Organization’s (WHO) epidemiological methodology (3). Recall bias in error rate because the non-sampling errors have been reported in only one study of reproductive health behavior (4).

In contrast to the sampling errors, which can be calculated, non-sampling errors cannot be estimated statistically. Several methods have been used to check the validity and repeatability of the results of household surveys. These include the following: internal consistency checks, comparison with “expected” patterns of morbidity arising from cross-sections, changes in the survey using a different sample, and observational studies. Moser & Kalton suggest that post-enumeration survey (PES) consisting of reinterviews should become standard practice. The PES of the 1981 United Kingdom national census showed that true non-sampling error rates are hard to predict and are frequently underestimated in the absence of a PES (5, 6). One problem with large-scale PES is the inevitable delay between the original survey and the feedback survey, the risk of non-sampling error arising from informants’ inability to remember the situation at the time of the original survey. Also, reinterviews have been criticized as a validation technique (7) because the results are determined by the respondents and sample-determined, which is unlikely influenced by the first of the first, with the degree of influence likely to increase the shorter the interval between the two interviews.

In recent studies, the reinterviews are a practical and useful method of assessing non-sampling error in household surveys. In a recent study consistency checks were made on a questionnaire (8). The variable “type of water source used” can be estimated separately, and differences found were most probably due to a real change in water sources that had occurred between the two interviews; this highlights the importance of minimizing the interval between interview and reinterview.

In one study of the variables used to examine the association between other sexually transmitted diseases and infection with human immunodeficiency virus (9), it was found that 55% of those who had had five or more sexual partners in the last year claimed that they had had fewer than this number, and 5% of those who had had had less than five partners claimed they had had five or more. The authors showed that, because sexual activity was measured imprecisely, there was an apparent association between syphilis and HIV infection when in reality there was none.

Designers of surveys that attempt to obtain new types of information, especially in unfamiliar cultural settings, would benefit from knowing the reliability of certain types of questions and the magnitude of the non-sampling errors that should be expected. This article examines these needs and the context of a recent health utilization and expenditure survey carried out in Sierra Leone.

Materials and methods

In Sierra Leone the Ministry of Health has been introducing user fees for primary health care since 1982, and in 1989 carried out an operational research study (10, 11) on the effects of payment on the equity and utilization of services. The study included a survey of 1156 households in two rural districts, using a questionnaire consisting of questions on demographics, illnesses over a 2-week recall period and in interviews. In response to them, household socioeconomic indicators, and questions on equity and the seasonality of household finances.

Questionnaire design and survey technique were refined to minimize potential sources of error. No hypothetical questions were asked, e.g., which a person would go for care if they were sick or how much they would be willing to spend. A list of lay terms for common symptoms was ready to respondents to assist them in remembering any illnesses during the 2-week recall period (12). The questions were pretested and modified to minimize confusion, and experienced interviewers were used who had received specific training on the questionnaires and spoke the local languages. Nevertheless, it was considered possible that the answers given by respondents (mainly illiterate subsistence farmers) might not be completely reliable. Responses to questions such as illness of household members, treatments used, and amounts spent depend on subjective recall of past events; others, such as household membership, might be subjective, while still others, such as the quantity of crops sown or harvested, and the possession of livestock, might be objective.

Quality control was addressed by checking questionnaires for completeness and internal consistency while the interviews were still in the village, and by rectifying any discrepancies by sending the original interviewer back to the household. After corrections had been made, reinterviews were conducted in 15% of the households originally surveyed. The original questionnaires were selected at random and kept aside, and different interviewers returned to the selected houses. The ratio between the original interview and reinterview varied from less than 1 hour to overnight. The respondents were told whether their answer differed from the one they had given in the initial interview and no explanation was sought by the interviewer.

In terms of attributes relevant to the study, the characteristics of the reinterviewed households were similar to those of the population interviewed originally. In about 25% of the revised households the original respondent (usually the head of the household) was unavailable and hence a different household member was questioned at the reinterview. In such instances analysis of the questions between the initial interviews and the reinterview also provided information about the reliability of other respondents other than the heads of households and mothers.

Reporting non-sampling errors

The estimation of response reliability from re- interview results is of relatively little attention. For this purpose, a reliable response is taken to be one that is the same when the respondent is asked the same question during the reinterview. A reliable response may not necessarily be a valid one. Since validity implies that the question was interpreted by the respondent to mean what the interviewer intended and was answered truthfully; however, if a response is repeatable, a major type of non-sampling error can be assumed to be absent. In some studies, the large-scale PESs, non-sampling errors have been reported in a way that provides detailed information about the errors associated with each response category. For example, one study (13) defined as described below:

- Gross error rate is the proportion of responses in a given category for which a response different from the original one was given at the reinterview. This is a measure of the reliability of individual responses to a particular question at a particular level of error that would be undetected by a gross comparison of the original interview and reinterview data. Errors that occur randomly tend to weaken or mask true relationships by introducing anomalies into the observed results.

- Net bias is the difference between the proportion of answers to a given question in a particular category in the original interview and in the reinterview. This estimate of error is generally smaller than that indicating the gross error rate. Net bias relates to differences in responses, some extent, cancel each other out because they fall at random into different categories. The net bias reveals systematic errors that tend to distort valid relationships, and can therefore be considered to be a measure of the reliability of the question for the entire sample, i.e., the degree to which a response could be expected to vary between interviews. The sum of the net biases for all the response categories of a given question equals zero.

- Relative net bias, which is derived from net bias, is the net bias for a given category expressed as a percentage of the proportion of responses in the reinterview in that category. The usefulness of the relative net bias is doubtful, since it is always biased upwards for categories with fewer responses.
Reliability of survey variables

As an example, the reliability of the variable "age of all household members" was analysed by comparing the original interview and the reinterview data. The results of the analysis, both by age category and as a continuous variable, are shown in Table 2 and 3, respectively, which reveal some of the weaknesses of the conventional reporting method for continuous variables. Gross errors and net biases, as calculated by age ranges (Table 2), are less stringent than the criteria of exact match and mean absolute error as a percentage of age by single year interval (Table 3).

A summary of similar analyses for other variables used in the survey is shown in Table 4. In general, the means, medians, and distribution of reinterview responses closely matched the original responses; nevertheless, the individual case error was high for some important questions, such as the reason for self-treatment. This reflects non-sampling error and should be taken into account when results are reported.

Table 4 also compares the repeatability of responses in reinterviews with the original respondents and the "reinterview" results obtained from respondents who were not interviewed originally. Although "reinterviewing" a different respondent may not be methodologically rigorous, the fact that such individuals supplied the same answers to certain questions as the original respondents indicates that some, but not all, types of information were well known to most adult household members.

Discussion

Our results indicate that a typical small-scale household health interview survey can be subject to various degrees of non-sampling error. However, the meaning of repeatability as an appropriate measure of validity is open to question. If during reinterview, a respondent gives the same answer to a question asked during the original interview by a different interviewer some time after the initial interview, the respondent was probably sure of the answer in the first place; when given the opportunity to change the answer, the respondents chose not to do so. While such an answer is reliable, it implies little about its validity. Consistency of response does not exclude the possibility that the original reply was biased or a deliberate fabrication. When the interval between interviews is short, as in the present survey, a deliberate lie in the first interview would tend to be repeated in the second.

Similarly, a different answer to the same question could mean that the respondent originally had no firm answer in mind but guessed. The response in the reinterview might be nearer to the truth if the respondent deliberately reconsidered the question, or it could be another guess, or an attempt to satisfy the interviewer's perceived desire for an answer. Since respondents were always given the opportunity to say that they did not know an answer, the only reason for a deliberate lie should have been when it would benefit the respondent; such questions on questionnaires can usually be identified and minimized by explaining that truthful and accurate answers will be most valued.

For questions for which there is no evident motive for a lie, repetition of the initial response might indicate that it was valid, while a different response in the reinterview could mean that the respondent was uncertain and that the answer was probably not valid. In the latter case, leaving aside any interviewer recording errors, the original answer (normally the only one available for analysis) was probably wrong and it cannot be certain that the second answer is any more accurate. This is suggested by the lower overall rate of consistent responses obtained when a different respondent was "reinterviewed" about an event within the household. The following types of error can occur in such instances: the two respondents may have different opinions or interpretations of the question or one may simply not be as well informed about the situation.

Such difficulties may be insoluble in the absence of additional data about the validity of both the consistent and the inconsistent responses. An analysis of the quality of the U.S. Current Population Survey using reinterviews found that proxy data produced lower response variance than self-reported data (J.E.). This arose partly because response variability is an inadequate measure of data quality and reliability is a necessary, but not a sufficient, condition for accurate data; the proxy reports may have been consistent without being valid.
Relevance to health interview surveys

The findings in Table 4 permit some generalizations to be made about the relative reliability of different types of questions often asked in health information surveys, as outlined below:

• Questions for which high response reliability (case error <10%) was observed included the following: the sex of household members; actions taken in response to illness; whether an injection was received during treatment; identification of household members who were ill during the recall period; and the source of money used to pay for treatment. If zero or medium-to-high amounts were reported to have been paid for treatment, the response reliability was also high.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Other errors are important. The importance of these greater amounts to the household, the high error level for amounts >300 leones may have been due to deliberate misrepresentation in the original interviews, and is amplified by the small number of cases involved.

How these errors should be interpreted depends on the use to be made of the data. The nature of the variances is critical, for expenditures on treatment, a large number of small deviations from zero produce a low correlation between the data sets, but whether a certain group spent an average of zero or 4 leones for treatment is probably unimportant against expenditures of hundreds or thousands of leones. For the range of expenditures as a whole, only a few instances of respondents reporting grossly higher amounts at the reinterview or a similar magnitude of interviewer recording error can degrade the overall repeatability of the data. A consistent system of treating "outliers" is therefore essential.

In studies where the misclassification of categorical responses is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.

• Case errors of 10-20% were associated with the following variables: incidence of illness; whether enough money was available to pay for treatment; age of the ill household members; the amount the respondent thought medical treatment would have cost in instances where self-treatment was used; and when low-to-medium amounts were paid for treatment.

• The highest case error (20-30%) related to the following: the result of the action taken; the seriousness of illnesses; the reason for choosing nonmedical treatment; and high levels of expenditure on treatment.

• Replies to questions of a subjective nature, such as the seriousness of an illness or the outcome of treatments, is high, the minimum requirement is that the researchers should draw attention to this, and preferably indicate how it affects the interpretation of the results. In the absence of an accepted technique for taking such non-sampling errors into account, a common-sense approach can be used in reporting results. For example, a z² test of the data from the Sierra Leone survey shown in Table 5 indicated that the difference between the net rate of response for "not enough money" in urban (URB) and rural (RUR) was significant at the P >0.01 level. This high level of significance arose because the 95% CI for the percentage of individuals who had insufficient money was (P ± 1.2)%.
Résumé

Evaluation de la fiabilité des réponses aux enquêtes de santé à l'aide d'entretiens complémentaires

Les enquêtes auprès des ménages sont souvent utilisées dans les pays en développement pour mesurer l'état de santé et les facteurs liés à la capacité et à la bonne volonté des individus à payer les services de santé reçus. Ces enquêtes sont sujettes à deux types d'erreurs fondamentaux : les erreurs d'échantillonnage et les erreurs indépendantes de l'échantillonnage. Si les personnes qui concevant les enquêtes et les décideurs politiques ont souvent conscience des erreurs d'échantillonnage, nombreux sont les chercheurs qui ne tiennent pas compte des erreurs indépendantes de l'échantillonnage, souvent plus graves. La question de l'importance des erreurs non liées à l'échantillonnage est traitée dans les manuels classiques sur les méthodes d'enquête mais très peu de recherches ont été faites pour déterminer les types de variables qui donnent le plus souvent lieu à ces erreurs. La présente étude examine les erreurs autres que les erreurs d'échantillonnage dans une enquête auprès des ménages faite en Sierra Leone en comparant les résultats des entretiens complémentaires aux réponses données lors de l'entretien initial. Elle propose diverses façons de signaler les erreurs non liées à l'échantillonnage dans les enquêtes et dresse la liste des questions qui semblaient s'accompagner d'un faible pourcentage d'erreurs indépendantes de l'échantillonnage (mesures prises en cas de maladie, source de l'argent utilisé pour payer le traitement, etc.) ou qui s'accompagnaient d'un fort pourcentage d'erreurs (gravité de la maladie, raison pour laquelle un traitement non médical a été choisi, résultat du traitement, etc.). Des stratégies de contrôle de la qualité doivent être utilisées dans les études qui incluent des variables s'accompagnant d'un taux élevé d'erreurs non liées à l'échantillonnage (entretiens complémentaires pour mesurer la fiabilité des réponses, par exemple). Des entretiens complémentaires devraient être faits plus souvent et leurs résultats publiés.

Références

3. Ross, D.A. & Vaughan, J.P. Health interview surveys in developing countries. London, London School of Hygiene and Tropical Medicine, 1984 (EPC Publication 4).
6. Thomas, R. Data quality in the National Census of Protection. Survey methods newsletter (Spring); 6-7 (1987).